可靠性基本概念与参数体系(精)
可靠性工程第二讲
是在时刻t尚未失效产品在t+△t的单位 时间内发生失效的条件概率.反映t时刻 失效的速率,也称为瞬时失效率.
故障率(失效率)
估计公式可按下式进行工程计算:
维修
累积分布 不可靠度F(t)
维修度
密度分布
f(t)
m (τ)
率
故障率λ (t) 修复率μ (t)
两种状态中停 平均无故障工 平均修理时间 留时间(平均) 作时间MTBF MTTR
问题:
请从性能指标、时间依据、决定因 素等方面对可靠性与维修行进行对 比。
有效性特征量
∑ 1 N
MTTF
=
N
ti
i =1
式中:N——测试的产品总数 ti——第 i 个产品失效前的工作时间
可修复产品的平均寿命
一次故障发生后到下一次故障发生之前无故障工作
时间的平均值,又称为平均无故障工作时间或平均
故障间隔,记为MTBF(Mean Time Between
Failures)
1 N ni
f (t) =
=
Δt N • Δt
故障概率分布函数F(t)
又称累积失效概率,是产品在规定条件下和 规定时间内未完成规定功能(即发生失效) 的概率,也称为不可靠度。记为F(t):
F(t) = P(T ≤t) 0 ≤t ≤∞
它表示在规定条件下产品寿命不 超过 t 的 概率,又称为累积故障概率密度函数,与 f(t)关系为:
∑∑ N—测试产品总数 MTBF = N
tij
∑ ni
可靠性基本概念
可靠性基本概念 Ting Bao was revised on January 6, 20021可靠性设计主要符号表可靠性的概念可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。
在具体使用“产品”这一词时,其确切含义应加以说明。
例如汽车板簧、汽车发动机、汽车整车等。
规定条件:一般指的是使用条件,环境条件。
包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。
规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。
因此以数学形式表示的可靠性各特征量都是时间的函数。
这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。
例如应力循环次数、汽车行驶里程。
规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。
产品丧失规定功能称为失效,对可修复产品通常也称为故障。
怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。
当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。
若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。
究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。
能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。
产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。
RAMS培训教材之一RAMS概念及参数
技术规范
规定功能常用故障判据逆向 表达
性能界限
过应力 设计裕度 正常工作区
第四页,共54页。
故障类别-EN50126
序号 故障分类 系统故障模式
运行影响
1
重大
完全失效
铁路产品不运行 1 效
3
较小
非致 命性功能 紧急运行 2 失效
可以 忽略的功 正常运行
4
轻微故障
能失效
修复性维修-处理故障的维修 ,是非计划性的,常称为修理 或修复。
准备
启动
检验
调整
隔离
分解
更换 结合
第八页,共54页。
1.3
可用性
可用性(Availability)
可用性是产品在任意一个随机时刻处于可用状态的能 力。
可用性常用可用时间占总时间的比值来描述,即:
Þ 可用性=可用时间/(可用时间+不可用时间)
RAMS 的参数和指标
RAMS 参数是产品RAMS定量化描述的数学属性,RAMS 参数体系 是某种产品RAMS 的参数的集合;
RAMS指标是产品某一RAMS 参数的要求值,RAMS指标体系是 所有RAMS 参数的要求值。
第三十三页,共54页。
4.1
铁路产品可靠性参数体系
参数
符号
量纲
备注
平均故障间隔时间 MTBF
计算:故障次数除以总工作时间
是MTBF 的倒数:
1
MTBF
第三十七页,共54页。
浴盆曲线
早期失效期
偶然失效区
浴盆曲线
耗损失效区
失效率
制造缺陷
工艺缺陷
元件缺陷
第三十八页,共54页。
固有缺陷
耗损故障
第二章__可靠性的基本概念
2.3 可靠性尺度
表示产品总体可靠性水平高低的各种可靠性指
标称为可靠性尺度。
2.3.1 可靠性概率指标及其函数 1. 可靠度与失效概率
可靠度可定义:产品在规定的条件下和规定的时间内,完成规 定功能的概率,通常以“R”表示。考虑到它是时间的函数,又 可表示为R(t) ,称为可靠度函数。 如果用随机变量T表示产品从开始工作到发生失效或故障的 时间,则该产品在某一指定时刻t的可靠度为:
tr
r
失效率是产品可靠性常用的数量特征之一,失效率愈高,则 可靠性愈低。失效率的单位用单位时间的百分数表示。例如:
1 -1。比如,某型号滚动轴承的失 效率为 % 10 3 h 1 , km,次 λ(t)=5*10-5/h,表示105个轴承中每小时有5个失 效,它反映 了轴承失效的速度。
f (t ) F (t ) R(t ) f (t ) d ln Rt (t ) R(t ) R(t ) R(t ) 1 F (t ) dt
0 R(t ) e
( t ) dt
t
——可靠度函数R(t)的一般方程
说明:
(1)R(t),F(t),f (t),λ(t)可由1个推算出其余3个。 (2)R(t),F(t)是无量纲量,以小数或百分数表示。 f(t), λ(t)是 有量纲量。 当λ(t)为恒 定值时:
① 早期失效
一般为产品试车跑合
λ(t )
早期失效期
偶然失效期
阶段。由于材料缺陷、制造工艺缺 陷、检验差错等引起。出厂前应进 行 严格的测试,查找失效原因,并 采取 各种措施,发现隐患,纠正缺 ② 正常运行期
损耗失效期
机械产品
λ=常数
电子产品
tm t
可靠性的基本概念知识
可靠性的基本概念知识一、可靠性产品在规定的条件下和规定的时间内,完成规定功能的能力称为可靠性。
可靠性的概率度量称为可靠度。
这里的产品指的是新版ISO)9000中定义的硬件和流程性材料等有形产品以及软件等无形产品。
它可以大到一个系统或设备,也可以小至一个零件。
产品终止规定功能就称为失效,也称为故障。
产品按从发生失效后是否可以通过维修恢复到规定功能状态,可分为可修复产品和不可修复产品。
如汽车属于可修复产品,日光灯管属不可修复产品。
习惯上,终止规定功能,对可修复产品称为故障,对不可修复产品称为失效。
可靠性定义中的“三个规定”是理解可靠性概念的核心。
“规定条件”包括使用时的环境条件和工作条件。
产品的可靠性和它所处的条件关系极为密切,同一产品在不同条件下工作表现出不同的可靠性水平。
一辆汽车在水泥路面上行驶和在砂石路上行驶同样里程,显然后者故障会多于前者,也就是说使用环境条件越恶劣,产品可靠性越低。
“规定时间”和产品可靠性关系也极为密切。
可靠性定义中的时间是广义的,除时间外,还可以是里程、次数等。
同一辆汽车行驶1万公里时发生故障的可能性肯定比行驶1千公里时发生故障的可能性大。
也就是说,工作时间越长,可靠性越低,产品的可靠性和时间的关系呈递减函数关系。
“规定的功能”指的是产品规格书中给出的正常工作的性能指标。
衡量一个产品可靠性水平时一定要给出故障(失效)判据,比如电视机图像的清晰度低于多少线就判为故障要明确定义,否则会引起争议。
因此,在规定产品可靠性指标要求时一定要对规定条件、规定时间和规定功能给予详细具体的说明。
如果这些规定不明确,仅给出产品可靠度要求是无法验证的。
产品的可靠性可分为固有可靠性和使用可靠性。
固有可靠性是产品在设计、制造中赋予的,是产品的一种固有特性,也是产品的开发者可以控制的。
而使用可靠性则是产品在实际使用过程中表现出的一种性能的保持能力的特性,它除了考虑固有可靠性的影响因素之外,还要考虑产品安装、操作使用和维修保障等方面因素的影响。
可靠性参数及指标1基本概念2常用可靠性参数-Read
可靠性参数及指标1 基本概念(1) 可靠性参数可靠性参数是描述系统(产品)可靠性的量。
它直接与装备战备完好、任务成功、维修人力和保障资源需求等目标有关。
根据应用场合的不同,又可分为使用可靠性或合同可靠性参数两类。
前者是反映装备使用需求的参数,一般不直接用于合同;如确有需要且参数的所有限定条件均明确,也可用于合同,而合同参数则是在合同或研制任务书中用以表述订购方对装备可靠性要求的,并且是承制方在研制与生产过程中能够控制的参数。
(2) 可靠性指标可靠性指标是对可靠性参数要求的量值。
如“MTBF≥1000h”即为可靠性指标。
与使用、合同可靠性参数相对应,则有使用、合同可靠性指标。
前者是在实际使用保障条件下达到的指标;而后者是按合同规定的理想使用保障条件下达到的要求。
所以,一般情况下同一装备的使用可靠性指标低于同名的合同指标。
国军标GJB1909《装备可靠性维修性参数选择和指标确定要求》中,将指标分为最低要求和希望达到的要求,即:使用指标的最低要求值称为“门限值”,希望达到的值称为“目标值”;合同指标的最低要求值称“最低可接受值”,希望达到的值称“规定值”。
某装甲车辆可靠性参数与指标举例见表2-2。
表2-2 某装甲车辆可靠性参数与指标举例使用指标 合同指标参数名称目标值 门限值 规定值 最低可接受值 任务可靠度 0.66 0.61 - -致命性故障间任务里程 1200km 1000km 1500km 1250km平均故障间隔里程 250km 200km 300km 250km2 常用可靠性参数除前面介绍的)(tR,)(tλ可作为可靠性参数外,还有以下一些常用的可靠性参数。
应当根据装备的类型、使用要求、验证方法等选择。
(1) 平均寿命θ(meanlife)①定义。
产品寿命的平均值或数学期望称为该产品的平均寿命,记为θ。
设产品的故障密度函数为)(tf,则该产品的平均寿命,即寿命T(随机变量)的数学期望为∫∞= =0d)()(ttfTEθ对可修产品平均寿命又称平均故障间隔时间,可记为MTBF(Mean Time BetweenFailure)。
可靠性概论
可靠性概论(一)1. 可靠性概述1 .1可靠性基本概念1 . 1. 1可靠性工程学的诞生产品可靠性是什么?简单地说产品可靠性就是产品不易丧失工作能力的性质。
研究产品可靠性的工程学科称为可靠性工程学。
产品的可靠性本应随产品复杂性的增加而早受重视,但事实上直到第二次世界大战后,它对现代科学技术发起来势凶猛的挑战,才迫使人们耗费大量的财力和物力来研究它,解决它,从而对科学技术的发展起到了巨大的促进作用。
与此同时,一门独立的边缘科学可靠性工程学诞生了。
形成可靠性工程学这一学科的原因归纳起来有如下四个方面:1. 产品的性能优异化和结构复杂化之间的矛盾导致可靠性问题日益突出;2. 产品使用场所的广泛性与严酷性从而对产品的可靠性提出了更高的要求;3. 产品可靠程度与国家及社会安全之间的关系日益密切;4. 可靠性工程学的内部因素有力的推动了可靠性工程学的发展。
1 . 1 . 2可靠性基本概念产品可靠性的定义:产品可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。
“产品”,在过程控制系统行业中,可以是一台整机,如差压变送器,可以是一个装置甚至一个系统,如控制柜、DCS系统,也可以是一台部件以至一个元器件,如放大器,电阻。
总之,可大可小,视所研究问题的范围而定。
随着可靠性工程学的发展,人、语言、方法、程序的软件也可作为产品。
“规定的条件”有着广泛的内容,一般分为:1. 环境条件环境条件是指能影响产品性能的环境特性。
单一环境参数可分为四类:气候环境:主要包括温度、湿度、大气压力、气压变化、周围介质的相对移动、降水、辐射等;生物和化学环境:包括生物作用物质、化学作用物质、机械作用微粒;机械环境:包括冲击在内的非稳态振动、稳态振动、自由跌落、碰撞、摇摆和倾斜、稳态力;电和电磁环境:包括电场、磁场、传输导线的干扰。
2. 动力条件动力条件是指能影响产品性能的动力特性。
一般分为:电源,主要参数为电源电压和频率、电流等;流体源(包括气源和液体源),主要参数为压力、流量等。
可靠性基本概念、参数体系及模型建立
可靠性基本概念
寿命剖面与任务剖面
寿命剖面:产品从制造到寿命终结或退出使用这段时间内所经历 的全部事件和环境的时序描述
关键因素:事件、事件顺序、持续时间、环境和工作方式 包含一个或多个任务剖面,分为后勤和使用两个阶段 产品指标论证时就应提出
任务剖面:产品在规定任务这段时间内所经历的事件和环境的 时序描述
20
可靠性模型建立
基本可靠性模型和任务可靠性模型
正确区分系统原理图、功能框图、功能流程图和可靠性框图 正确建立系统基本可靠性模型和任务可靠性模型
基本可靠性模型:估计产品及其组成单元可能发生的故障引起的维修及保障 要求,全串联模型 任务可靠性模型:估计产品在执行任务过程中完成规定功能的概率,描述完 成任务过程中产品各单元的预定作用并度量工作有效性
可靠性建模方法
可靠性框图、网络可靠性模型 故障树模型、事件树模型 马尔科夫模型、Petri网模型、GO图模型 19
可靠性模型建立
可靠性框图模型
定义:为预计或估算产品的可靠性而建立的可靠性方框图和数学 模型 组成:代表产品或功能的方框、逻辑关系和连线、节点组成
节点:分为输入节点、输出节点和中间节点 输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 连线:有向、无向,反映系统功能流程的方向,无向意即双向
n
RS = e
−λt
(1 +
RD λ t )
28
可靠性模型建立
典型可靠性模型
桥联系统:可靠性模型逻辑描述中出现了电路中桥式结构逻辑关 系,其数学模型较为复杂,不能建立通用的表达式 网络模型:从抽象的角度看,网络就是一个图,由一些节点及连 接节点的弧组成,应用图论理论进行分析
29
可靠性模型建立
第五章 可靠性基础知识(1)可靠性的基本概念及常用度量
第五章可靠性基础知识第五章可靠性基础知识【考试趋势】单选3-4题,多选4-5题,综合分析1题。
考查方式以理解题和计算题为主。
总分值25-35分。
总分170分。
【大纲考点】基本脉络:可靠性概念——测量——模型——分析——试验——管理。
一、可靠性的基本概念及常用度量1.掌握可靠性、维修性与故障(失效)的概念与定义(重点)2.熟悉保障性、可用性与可信性的概念(难点)3.掌握可靠性的主要度量参数(难点)4.熟悉浴盆曲线(重点)5.了解产品质量与可靠性的关系二、基本的可靠性维修性设计与分析技术1.了解可靠性设计的基本内容和主要方法2.熟悉可靠性模型及串并联模型的计算(重点)3.熟悉可靠性预计和可靠性分配(难点)4.熟悉故障模式影响及危害性分析(重点)(难点)5.了解故障树分析(重点)6.熟悉维修性设计与分析的基本方法;三、可靠性试验三、可靠性试验1.掌握环境应力筛选(重点)2.了解可靠增长试验和加速寿命试验(重点)3.手续可靠性测定试验(难点)4.了解可靠性鉴定试验四、可信性管理1.掌握可信性管理基本原则与可信性管理方法(难点)2.了解故障报告分析及纠正措施系统(重点)3.了解可信性评审作用和方法第一节可靠性的基本概念及常用度量【考点解读】第一节可靠性的基本概念及常用度量学习目标要求:1、掌握可靠性、维修性与故障的概念与定义2、熟悉保障性、可用性及可信性的概念3、掌握可靠性的主要度量参数4、了解浴盆曲线5、了解产品质量与可靠性关系基本脉络是:可靠性——不可靠(故障)——可靠度——可靠度函数——常用指标——模型——地位意义(与质量的关系)典型考题典型考题:单选题22、下述设计方法中不属于可靠性设计的方法是()。
a、使用合格的部件b、使用连续设计c、故障模式影响分析d、降额设计23、产品使用寿命与()有关。
a、早期故障率b、规定故障率c、耗损故障率d、产品保修率一、故障(失效)及其分类一、故障(失效)及其分类1、故障定义:产品或产品的一部分不能或将不能完成预定功能的事件或状态称为故障。
第二章 可靠性基本概念
n(t) — 在0到t时刻的工作时间内,产品的累计故障数。
例:有50个在恒定载荷条件下运行的零件,运行记 录如表所示,求这批零件在100小时,400小时时 的可靠度。
寿命方差和寿命标准差
• 平均寿命只能够说明一批产品寿命的平均水平, 而寿命方差和标准差反映产品寿命的离散程度
n 1 2 ( t ) i n 1 i 1
可靠寿命、中位寿命和特征寿命
• 由可靠度反求相应的工作寿命(时间) – 可靠寿命
• 指可靠度等于给定值r时产品的寿命
– 中位寿命
– 取决于设计技术、制造技术、零部件材料和结构等
– 产品的开发者可以控制
• 使用可靠性
– 产品在实际使用过程中表现出的可靠性
– 包括使用维修方法、操作人员的技术水平等 – 除固有可靠性的影响因素外,还要考虑安装、操作使用、维修保 障等方面因素的影响
可靠性基本概念—维修性
• 维修性
– 在规定条件下使用的产品,在规定时间内,按 规定的程序和方法进行维修时,保持或恢复到 完成功能的能力
• r=50%时产品的可靠度寿命
– 特征寿命 1 r e 0.368时的可靠寿命 •
可靠性指标间的关系
例子2
• 已知某产品的失效率为常数, (t ) 0.25 10 4 / h 可靠度函数 R(t ) e t ,求可靠度为99%的可 靠寿命,以及中位寿命和特征寿命 • 解:对可靠度函数两边去对数,即
• 有时也用与其相当的“动作次数”、“转数”、 “距离”等的倒数
可靠性基础理论
有效性 availability-可以维修的产品在某时刻 具有或维持规定功能的能力。
耐久性 durability-产品在规定的使用和维修条 件下,达到某种技术或经济指标极限时,完 成规定功能的能力。
失效(故障) failure-产品丧失规定的功能。 对可修复产品通常也称故障。
失效模式 failure mode-失效的表现形式。
品寿命单位总数与该产品计划和非计划维修时间总 数之比)。
任务可靠性的定义:“产品在规定的任务剖面内完 成规定功能的能力”。它反映了产品的执行任务成 功的概率,它只统计危及任务成功的致命故障。常 见的任务可靠性参数有任务可靠性,MCSP (Mission Completion Success Probability,完成任 务的成功概率,其度量方法为:在规定的条件下和 规定的时间内系统完成规定任务的概率),MTBCF (Mission Time Between Critical Failure,致命故障 间的任务时间,其度量方法为:在规定的一系列任 务剖面中,产品任务总时间与致命性故障数之比) 等。
任何产品只要有可靠性要求就必须有故障判 据。故障判据需要根据下面的依据进行确定。 1)研制任务书;2)技术要求说明书;3)由 可靠性人员制定。
(2)可靠度
可靠度就是在规定的时间内和规定的条件下 系统完成规定功能的成功概率。一般记为R。 它是时间的函数,故也记为 R(t),称为可靠性 函数。
如果用随机变量 t 表示产品从开始工作到发生 失效或故障的时间,其概率密度为 f(t) 如下图 所示:
② 偶然失效期,也称随机失效期 (Random Failures) 。失效率曲线为恒定型,即t0到t1间 的失效率近似为常数。失效主要由非预期的
过载、误操作、意外的天灾以及一些尚不清
1-11 可靠性工程(系统课程)
可靠性工程课程大纲第一章:可靠性基本概念1、可靠性学科发展历程2、可靠性的定义——IEEE可靠性的定义——装备可靠性的定义——产品工作可靠性的定义——广义可靠性3、可靠性学科研究的内容4、可靠性设计的主要工作5、二十世纪留给二十一世纪可靠性工程热点问题第二章可靠性基础理论第一节、可靠性特征量——定义:——可靠性特征量指标——可靠度与不可靠度——失效(故障)密度函数——失效率(故障率) Failure Rate——故障率与可靠度、故障密度函数的关系——故障率浴盆曲线——产品的故障率曲线的三个阶段——产品的寿命特征——平均故障前时间——平均故障间隔时间——可用性定义——可靠性参数和指标选择的要求和依据第二节、可靠性数据统计分析的过程及意义——可靠性数据分析概述——什么是可靠性数据?——可靠性数据的来源、——什么是可靠性数据分析?——各阶段可靠性数据分析的目的和意义——可靠性数据库第三节、统计学基本概念——统计学术语第四节、常用的概率分布第五节、常用的参数估计方法第三章系统可靠性模型第一节概述——系统定义——系统可靠性设计的目的——影响系统可靠性的因素——不可修复系统——可修复系统——系统的各种模型(原理图、功能框图、功能流程图、可靠性框图)——基本可靠性模型——任务可靠性模型——典型可靠性模型分类第二节不可修系统——串联系统——并联系统——混联系统——表决系统——旁联系统第三节可修系统——概述——维修性特征量——可用性特征量——马尔柯夫过程——典型可修系统可用性第四章可靠性分配与预计第一节概述——可靠性分配——可靠性预计——可靠性分配目的——可靠性预计的目的——可靠性分配与可靠性预计的关系——可靠性分配与可靠性预计的作用——可靠性分配的程序——可靠性分配的准则——可靠性分配方法的种类第二节可靠性分配一、可靠性分配的无约束分配方法——等分配法——评分分配法——再分配法——比例分配法——AGREE方法——不同研制阶段的可靠性分配方法二、可靠性分配的优化方法第三节可靠性预计1、可靠性预计目的、用途2、产品可靠性预计的程序3、可靠性预计的类型4、电子产品的可靠性预计5、可靠性预计的传统方法——数学模型法——相似设备法——相似复杂性法——功能预计法——边值法——元部件计数法——应力分析法——边值法(上下限法)6、可靠性预计方法及其应用范围7、非指数分布的产品可靠性预计第五章故障模式影响与危害度分析(FMECA)第一节 FMECA概述——基本概念——故障、故障模式、故障影响、危害度——FMECA的目的——FMECA 的步骤——FMECA方法分类——在产品寿命周期各阶段的FMECA方法第二节故障模式影响分析FMEA——FMEA分析流程——系统定义——故障模式分析——故障判据——故障模式分析的工作内容——故障模式分析的方法——典型故障模式。
可靠性工程的基本概念与模型
可靠性工程的基本概念与模型可靠性工程是一门应用工程学科,旨在提高产品、系统或服务的可靠性。
通过运用可靠性工程的原则和方法,可以降低故障率、延长使用寿命、提高性能稳定性,从而满足人们对产品可靠性的需求。
本文将介绍可靠性工程的基本概念和常用模型,帮助读者理解和应用可靠性工程。
一、可靠性工程的基本概念1.1 可靠性可靠性是产品或系统在特定环境下连续正常运行的能力。
它可以用概率来表示,通常以失效率来度量,即单位时间内发生失效的概率。
可靠性的增加可以提高产品的性能稳定性,减少故障对用户的影响。
1.2 故障故障是指产品或系统在特定条件下出现的不符合预期的功能、性能或质量的现象。
故障分为软故障和硬故障,软故障通常可以通过重启或软件升级来解决,而硬故障需要更换硬件部件或进行专业修复。
1.3 可靠性评估可靠性评估是可靠性工程的核心内容,旨在对产品或系统的可靠性进行量化分析。
通过搜集故障数据、运用统计学方法,可以计算出可靠性参数,如失效率、平均无故障时间等,从而为产品设计、改进和维护提供依据。
2.1 故障模式与失效分析(FMEA)故障模式与失效分析是一种常用的可靠性分析方法,通过识别产品或系统可能的故障模式和失效原因,评估其潜在风险和影响程度,从而采取相应的改进措施。
FMEA可以在设计阶段发现和解决潜在问题,提高产品的可靠性。
2.2 信赖度增长模型(RGA)信赖度增长模型是一种常用的可靠性增长预测方法,通过收集产品的实际寿命数据,对其进行分析和建模,预测未来产品的信赖度增长趋势。
RGA模型可以帮助制定产品维护策略、预防性维修计划,提高产品的可靠性和维修效率。
2.3 加速寿命试验(ALT)加速寿命试验是一种常用的可靠性验证方法,通过对产品在加速条件下的寿命试验,推断其在正常使用条件下的可靠性性能。
ALT模型可以帮助评估产品的可靠性指标,优化产品设计和制造工艺,提前发现潜在问题。
2.4 保障时间分析(MTA)保障时间分析是一种常用的系统可靠性分析方法,通过识别系统各个组成部件的失效模式和失效率,计算出系统的平均无故障时间(MTBF)、平均修复时间(MTTR)等指标。
可靠性基本概念(术语)
以下是可靠性术语第一部分-基本概念1、基本概念
以下是可靠性术语第二部分-故障2、故障
以下是可靠性术语第三部分-维修3、维修
以下是可靠性术语第四部分-时间4、时间
以下是可靠性术语第五部分-可靠性和维修性参数5、可靠性和维修性参数
以下是可靠性术语第六部分-可靠性和维修性管理6、可靠性和维修性管理
以下是可靠性术语第七部分-可靠性和维修性设计7、可靠性和维修性设计
以下是可靠性术语第八部分-可靠性和维修性试验8、可靠性和维修性试验
以下是可靠性术语第九部分-其他术语9、其他术语。
可靠性基础知识介绍
表1:电子元件累计失效统计
序号 失效时间范围h 失效数 累计数r(t) 仍在工作数Ns R(t) F(t)
10
0
0
110
1
0
2 0~400
6
6
104
0.945 0.055
3 400~800
28344 800~来自2003771
5 1200~1600 23
94
6 1600~2000 9
103
7 2000~2400 5
382
=
=4.33/h
3
平均修复时间MTTR,是度量产品维修性的重 要指标。
8、贮存寿命 产品在规定条件下存储时,仍能满足规定质量 要求的时间长度,称为贮存寿命。产品出厂后 即使不工作,在规定的条件下存贮,产品也有 一个非工作状态的偶然故障率,非工作的偶然 故障率比工作故障率小的多,但贮存产品的可 靠性也在不断下降,因此,储存寿命是度量产 品存储可靠性的一个不可忽视的度量参数。
=1000+1500+2000+2200+2300 5
=1800h
λ(t)= 1 = 1 =0.00056/h
MTTF 1800
R(t)
e= 0.000561800 = e1
例:有100个不可修复的电子产品进行试验, 在500小时内,3个坏掉了,到600小时时,又 有2个坏掉了,求λ(t)在500小时这个时刻的故 障率? 已知:t=500h, △t=600-500=100,△r(t)=2,
故障率趋于常数,A、B区是耗损期到来之前产 品的主要使用期。 出现的偶然故障,只能通过统计方法来预测。 ③耗损故障期 产品使用很长一段时间后,故障迅速上升,直 至极度。此时的故障主要由产品的老化、疲劳、 磨损、腐蚀等原因引起。 对耗损故障可通过实验数据分析耗损期到来的 起始拐点,并通过预防维修来延长产品的寿命。
可靠性基本概念与参数体系
显然,以下关系成立:
R(t)F(t)1
2019/10/22
14
可靠度函数与累积故障分布函数的性质
R(t)与 F (t) 的性质如下表 所示:
取值范围 单调性 对偶性
R (t )
[0,1] 非增函数
1 F(t)
F (t)
[0,1] 非减函数
1 R(t)
2019/10/22
2019/10/22
32
首翻期、翻修间隔期和使用寿命
λ(t)
首次翻修期
翻修间隔期
规定 A 的故 障率
B λ(=1/MTBF)
使用寿命
t
2019/10/22
33
可靠性参数体系
可靠性参数是描述系统可靠性的度量。它直接与战备完好、 任务成功、维修人力和保障资源有关。
可靠性指标是可靠性参数要求的量值。
4
可靠性基本概念
质量与可靠性关系 从广义质量观看,质量涵盖可靠性 从狭义的质量观看,就是“符合性质量” 可靠性毕竟与狭义的质量管理还是有很大区别的,质 量出了问题,往往批次性很强 可靠性是更深层次的与设计、工艺相关的根本性问题。 有些企业对于可靠性工程有一种错误观念,认为可靠 性工程是质量部门的事情,而设计部门却很少人员 参与。 产品的可靠性是在设计阶段就已经决定了 在用户使用过程中,均是“可靠性”问题
11%
E 15% F 66%
?
2019/10/22
25
故障率与可靠度、故障密度函数的关系
(t)d(tr ) d(tr ) N 0(t)f(t)
N s(t)dtN 0(t)dtN s(t) R (t)
由于 f (t) dR(t)
可靠性概念
第一部分产品可靠性基本概念编讲杨志飞1 质量定义为了某个目的而进行的单项具体工作叫“活动”。
活动需要“资源”,资源包括人员、设施、设备、技术、资金和时间。
将输入转化为输出的一组关联的资源和活动称“过程”。
产品:ISO 9000定义为“活动或过程的结果”。
产品可包括:硬件、流程性材料、软件、服务或它们的组合;产品可以是有形的(如组件或流程性材料),也可以是无形的(如知识或概念)或是它们的组合;产品可以是预期的(如提供给客户的)或非预期的(如污染物或不愿有的后果)。
(国内曾经把产品定义为:是指任何元器件、零部件、组件、设备、分系统或系统,可以指硬件、软件或者两者的结合。
)硬件,是有形的、不连续的、具有特定形状的产品,通常由制造的、建造的和装配的零件、部件或(和)组件组成。
流程性材料,是由固体、气体、液体或由它们的组合所组成,经转换形成的产品(最终产品或中间产品),通常由管道、桶、袋、罐或以卷的形式交付。
软件,是通过支持媒体表达的信息所构成的一种智力创作。
服务,是为满足顾客的需要,供方和顾客之间接触的活动以及供方内部活动产生的结果。
整机:是指产品的部分内涵,即产品中设备以上的部分。
系统:能够完成某项工作任务的设备、人员及技术的组合。
一个完整的系统应包括在规定的工作环境下,使系统的工作和保障可以达到自给所需的一切设备、有关的设施、器材、软件、服务和人员。
分系统:在系统中执行一种使用功能的组成部分。
如数据处理分系统、制导分系统等。
请注意:组件多数可以看作整机,有时也当作元器件,在高度集成的器件中,往往包含了整机的模块,现代的部件往往也做成组件。
因此很难划清它们的界线。
实体,是可以单独描述和考虑的事物,可以是某项活动和过程、某个产品、某个组织、体系或人或他们的任何组合。
特性,是帮助识别和区分各类实体的一种属性。
属性包括物理、化学、外观功能或其它可识别的性质。
其描述的量叫“特性参数”。
反映实体满足规定和潜在需要能力的特性之和叫“质量”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运 输
发 送
使 检用 测贮 存
运 输
任 务 剖 面
运 输
维 修
运 输
报 废
后勤阶段 寿命剖面内的事件
使用阶段
2019/3/19
6
寿命剖面示例
生产 阶段
运 输
后 勤 阶 段
储存/后勤阶段 准备阶段 主 动 段 发射段
使用阶段
任务阶段 惯性飞行段
下降段
生 (使用方法)产 事件
验 收
装卸和 公路运 输
装卸和 铁路运 输
装卸 和空 运
工作准 备阶段
发射 阶段
飞行阶段 命中 目标
装卸和 船运
装卸和后勤 有遮蔽存贮, 无遮蔽 导弹处 支援运输 帐篷,圆屋 存储 调整 于战斗 发射后第 (最坏路线) 顶 状态 一个动作 位置
某导弹的寿命剖面
2019/3/19 7
任务剖面
产品在完成规定任务这段时间内所经历的事件和环境的时 序描述。任务剖面一般应包括: 产品的工作状态; 维修方案; 产品工作的时间与顺序;
r (t ) F (t ) N0
显然,以下关系成立:
R(t ) F (t ) 1
2019/3/19
14
可靠度函数与累积故障分布函数的性质
R(t ) 与 F (t )
的性质如下表 所示:
R(t )
F (t )
取值范围 单调性 对偶性
[0,1] 非增函数
1 F (t )
[0,1] 非减函数
TTF tf (t )dt
0
R(t )dt
0
当产品的寿命服从指数分布时,
2019/3/19
TTF e dt
t 0
1
。
28
平均故障间隔时间
1 N0 T TBF ti N 0 i 1 N0 式中, T ——产品总的工作时间。 产品典型的修复状态有基本修复和完全修复两种。
2019/3/19
18
问题
故障率是概率值么? 故障率有量纲么? 故障率和累计故障密度之间有什么关系?
2019/3/19
19
人类健康的曲线
(t )
为革命健康工作五十年 A B
年幼体弱
年富力强 图 人类典型的健康曲线
年老体衰
t
2019/3/19
20
产品故障浴盆曲线
浴盆曲线
大多数产品的故障率随时间的变化曲线形似浴盆,称之 为浴盆曲线。由于产品故障机理的不同,产品的故障率 随时间的变化大致可以分为三个阶段:
12 Ma=0.673 15min Ma=0.582 300m 19min48s 9150m Ma=0.69 14min30s 14000m
6
Ma=0.584 22min36s 1200m
时间(分钟) 飞机投放炸弹事件的任务剖面示例
9
可靠性基本概念
基本可靠性 产品在规定的条件下,无故障的持续时间或 概率。 在没有后勤保障情况下系统工作能力的度 量 考虑所有需要维修保障的故障 •采用冗余,降低基本可靠性 •通常等于或低于任务可靠性
2
可靠性基本概念—可靠性
可靠性 产品在规定条件下和规定时间内,完成规定功能的能力。
产品可靠性定义的要素是三个“规定”:
“规定条件”、“规定时间”、“规定功能”
2019/3/19
Introduction to Reliability Engineering_Conception
3
故障及其分类
2019/3/19 32
首翻期、翻修间隔期和使用寿命
λ(t) 首次翻修期 规定 的故 障率 A B λ(=1/MTBF) t 翻修间隔期
使用寿命
2019/3/19
33
可靠性参数体系
可靠性参数是描述系统可靠性的度量。它直接与战备完好、 任务成功、维修人力和保障资源有关。 可靠性指标是可靠性参数要求的量值。
2019/3/19 10
可靠性基本概念
任务可靠性 产品在规定的任务剖面内完成规定功能的能 力 系统完成任务能力的度量 只考虑引起任务失败的故障 通过冗余提高任务可靠性 通常高于基本可靠性
2019/3/19 11
可靠性基本概念
固有可靠性
产品在设计、制造过程中赋予的固有属性。
(t )
使用寿命 规定的 故障率 A B 维修后故障 率下降 早期 故障 偶然故障 图 产品典型的故障率曲线 耗损故障 t
2019/3/19
21
对故障发生规律认识的变化
2019/3/19
22
故障发生规律的六种模式
A B C 4% 2% 5% D 7% E 14% F 68%
六种模式所占的比率(美国联合航空公司统计)
产品的开发者可以控制。
使用可靠性
产品在实际使用过程中表现出的可靠性。
除固有可靠性的影响因素外,还要考虑安装、操作 使用、维修保障等方面因素的影响。
2019/3/19
12
可靠度及可靠度函数
可靠度及可靠度函数
产品在规定的条件下和规定的时间内,完成规定功
能的概率称为可靠度。依定义可知,可靠度函数R(t)为:
可靠性基本概念与参数体系
Introduction to Reliability_Conception & Parameter
北京航空航天大学工程系统工程系
2019/3/19
1
主要内容
可靠性基本概念
可靠性参数体系
2019/3/19
Introduction to Reliability_Conception & Parameter
1 R(t )
2019/3/19
15
累积故障分布函数
可靠度函数与累积故障分布函数的性质
由密度函数的性质
0
f (t ) dt 1 可知:
t 0 t
因此, R(t ) 、F (t ) 与 f (t ) 之间的关系如图所示。
f(t)
f(t) R(to) F(to)
R (t ) 1 F (t ) 1 f (t )dt f (t )dt
视角
生理角度 可靠性角度
如何描述
概念
特性描述 人/系统
完整性要求
怎么描述
参数
身高/R(t) 体重/MTBF 性别/ 其他
量值多少
参数体系
2019/3/19
指标
34
可靠性参数反映目标
反映目标 战备完好性
说明
任务成功性
军事单位接到命令时,实施其作战计划的能力。 任务开始时给定的可用性下,系统在规定的任务 剖面内任意时刻能够工作和完成规定功能的能力。
R (t )
(t )
R*
*
tr
t
t
t
可靠寿命
使用寿命
2019/3/19
31
寿命特征
首次翻修期限(首翻期) : 指在规定条件下,产品从开 始使用到首次翻修的工作时间和(或)日历持续时间。 翻修是指把产品分解成零部件,清洗、检查,并通过修 复或替换故障零部件,恢复产品寿命等于或接近其首翻 期的修理。 翻修间隔期限: 指在规定条件下,产品两次相继翻修间 的工作时间、循环次数和(或)日历持续时间。 总寿命:指在规定条件下, 产品从开始使用到规定报废的 工作时间、循环次数和(或)日历持续时间。 贮存期限: 在规定条件下,产品能够贮存的日历持续时 间,在此时间内,产品启封使用能满足规定要求。
2019/3/19
27
平均故障前时间(MTTF)
设 N 0 个不可修复的产品在同样条件下进行试 验,测得其全部故障时间为 t1 , t2 ,, tN 。其平均故
0
障前时间(用符号 TTF 表示)为:
TTF
1 N0
t
i 1
N0
i
当 N 0 趋向无穷时, TTF 为产品故障时间这一随机变 量的数学期望,因此,
维修人力费用 系统需要维修人力的频度与多寡。 保障资源费用 系统对备件、维修工具、维修设备等的要求
2019/3/19
35
可靠性参数分类 可靠性参数分为基本可靠性参数和任务可靠性参 数
基本可靠性反映了产品对维修人力费用和后勤保障资源 的需求。 确定基本可靠性指标时应统计产品的所有寿命单位 和所有的故障。 任务可靠性是产品在规定的任务剖面中完成规定功能的 能力。 确定任务可靠性指标时仅考虑在任务期间那些影响 任务完成的故障(即致命性故障)。
2019/3/19 36
可靠性参数的相关性
平均故障间隔时间 (MTBF)与平均故障间隔 飞行小时(MFHBF) 任务成功概率与致命故 障间的任务时间 MTBF与故障率 平均维修间隔时间与 MTBF 平均拆卸间隔时间与 MTBF
可靠性基本概念
质量与可靠性关系 从广义质量观看,质量涵盖可靠性 从狭义的质量观看,就是“符合性质量” 可靠性毕竟与狭义的质量管理还是有很大区别的,质 量出了问题,往往批次性很强 可靠性是更深层次的与设计、工艺相关的根本性问题。 有些企业对于可靠性工程有一种错误观念,认为可靠 性工程是质量部门的事情,而设计部门却很少人员 参与。
2019/3/19
17
故障率函数
可按下式进行工程计算:
r(t ) (t ) N s (t )t
式中r (t ) —— t 时刻后, t 时间内故障的产品数;
t ——所取时间间隔;
N s (t ) ——残存产品数。
对于低故障率的元部件常以 109 / h 为故障率的单位,称之为菲特(Fit)。
故障及其分类 产品或产品的一部分不能或将不能完成预定功能的 事件或状态,称之为故障。