精品解析:广东省台山市2016-2017学年七年级第二学期期末测试数学试卷及答案(解析版)
广东省2016-2017学年七年级下学期期末考试数学试卷2
广东省2016-2017学年七年级下学期期末考试数学试卷试题满分100分 考试时间90分钟一、选择题(32361''⨯=)1.下列交通标志图案,是轴对称图形的是()A .B .C .D .2.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD , 使其不变形,这样做的根据是( ) A .两点之间,线段最短 B .直角三角形的两个锐角互余 C .三角形三个内角和等于180︒ D .三角形具有稳定性3.空气的密度是30.001293g /cm ,这个数用科学记数法可表示为( ) A .31.29310-⨯B .31.29310⨯-C .212.9310-⨯-D .40.129310-⨯4.下列计算正确的是( ) A .5510a a a +=B .6424a a a ⨯=C .43a a a ÷=D .440a a a -=5.下列事件中,是不确定事件的是( ) A .同位角相等,两条直线平行B .三条线段可以组成一个三角形C .平行于同一条直线的两条直线平行D .对顶角相等6.下列关系式中,正确的是( ) A .222(2)a b b a b a =-++ B .222()b b a a =-- C .22()()a b a b a b +-+-=D .22()()a b a b b a +---=7.标号为A 、B 、C 、D 的四个盒子中所装有白球和黑球数如下,则下列盒子最易摸到黑球的是( ) A .9个黑球和3个白球 B .10黑球和10个白球 C .12个黑球和6个白球D .10个黑球和5个白球8.如图,在Rt △ABC 中,90C ∠=︒,直线DE 是斜边AB 的垂直平分线交AC 于D ,若8AC =,6BC =,则△DBC 的周长为( ) A .12 B .14 C .16D .无法计算9.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该A BCDE FEDCB A小汽车离家的距离S (千米)与时间t (小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是( ) A .景点离小明家180千米 B .小明到家的时间为17点 C .返程的速度为60千米每小时 D .10点至14点,汽车匀速行驶10.如图,在△ABC 中,ABC ∠和ACB ∠的平分线交于点D ,过点D 作EF BC 交AB 于E 交AC 于F ,若10AB =,7BC =,8AC =,则△AEF 的周长为( ) A .15 B .16 C .17 D .1811.如图,直线12l l ,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线1l ,2l 于点B ,C ,连接AC ,BC .若54ABC ∠=︒,则1∠的大小为( ) A .70︒ B .72︒ C .74︒ D .76︒12.如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边△ABC 和等边△ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论: ①AD AE =; ②PQ AE ; ③AP BQ =; ④DE DP =; ⑤60AOB ∠=︒. 其中正确的有( ) A .①③ ⑤B .①③④⑤C .①②③ ⑤D .①②③④⑤二、填空题(4312''⨯=)13.等腰三角形的一个内角为120︒,则其余两个内角的度数分别为__________. 14.如图,AC DB ,20A ∠=︒,30B ∠=︒,那么AM B ∠=_________. 15.若29a ka ++是一个完全平方式,则常数k =_________.16.若2481)(21)(21)1(21)(2A +++=++,则A 的末位数字是_______. 三、解答题(10666771052''''''''++++++=)F EDCB A2 1 CB A 54︒1l2l QPED CBAMDCBA17.(1)计算:22)(32(12)y x z x yz y ⋅-+-; (2)计算:22013201520171-⨯-;(3)计算:220201520152015)2(2015(2)5----⨯+.18.先化简,再求值:2(2)(22)44()x y x y xy y x x ⎡⎤-+⎣+⎦+÷-,其中12x =-,4y =.19.已知,如图,AEC BFD ∠=∠,CE BF ,求证:AB CD .20.在一个不透明的布袋中装有8个红球和16个白球,它们除颜色不同外其余都相同. (1)求从布袋中摸出一个球是红球的概率;(2)现从布袋中取走若干个白球,并放入相同数目的红球,搅拌均匀后,再从布袋中摸出一个球是红球的概率是58,问取走了多个白球?21.如图,AE BC ⊥于E ,AE BE =,D 是AE 上一点,且DE CE =,连接BD ,AC ,试判断BD 与ACF EDC BA的数量关系与位置关系,并说明理由.22.如图,已知在△ABC 中,90ACB ∠=︒,CD 为高,且CD ,CE 三等分ACB ∠. (1)求B ∠的度数;(2)求证:CE 是AB 边上的中线,且12CE AB =.23.如图,已知长方形ABCD ,4AB CD ==,6BC AD ==,90A B C D ∠=∠=∠=∠=︒,E 为CD 边的中点,P 为长方形ABCD 边上的动点,动点P 从A 出发,沿着A →B →C →E 运动到E 点停止,设点P 经过的路程为x ,△APE 的面积为y . (1)求当2x =时,5x =时,对应y 的值; (2)写出y 与x 之间的关系式; (3)当9y =时,求x 的值;(3)当P 在线段BC 上运动时,是否存在点P 使得△APE 的周长最小,若存在,求出此时PAD ∠的度数,若不存在,请说明理由.EDCBAEDCBAPE DCBA扼要参考答案1-5.DDACB ;6-10.CABDD ;11-12.BD ; 13.30,30︒︒; 14.50︒; 15.6±; 16.6;17.(1)32222622y z x y z x y x -+-; (2)3; (3)94;18.2x ;-1; 19.略; 20.(1)13;(2)7个;、21.;BD AC B A D C =⊥;22.(1)30︒; (2)略;23.(1)6;11;(2)416,4103633,0,1012x x x y x x x -<-<⎧⎪=⎨⎪⎩剟……;(3)3,7;(4)存在;45PAD ∠=︒,具体过程略.。
广东省2016-2017学年七年级下学期期末数学试卷
广东省2016-2017学年七年级下学期期末数学试卷广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分.在四个选项中只有一项是正确的.1.在平面直角坐标中,点P(1,﹣3)在()A.第一象限。
B.第二象限。
C.第三象限。
D.第四象限2.下列调查中,适宜采用全面调查方式的是()A.旅客上飞机前的安全检查。
B.对广州市2014-2015学年七年级学生身高现状的调查。
C.多某品牌食品安全的调查。
D.对一批灯管使用寿命的调查3.下列实数中,属于无理数的是()A.。
B.。
C.3.14.D.4.的算术平方根是()A.3.B.±3.C.±。
D.5.点M(2,﹣1)向上平移3个单位长度得到的点的坐标是()A.(2,﹣4)。
B.(5,﹣1)。
C.(2,2)。
D.(﹣1,﹣1)6.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A.24km/h,8km/h。
B.22.5km/h,2.5km/h。
C.18km/h,24km/h。
D.12.5km/h,1.5km/h7.已知下列命题:①相等的角是对顶角;②邻补角的平分线互相垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行.其中真命题的个数为()A.个。
B.1个。
C.2个。
D.3个8.若m>n,则下列不等式中成立的是()A.m+a<n+b。
B.ma<nb。
C.ma>na。
D.a﹣m<a ﹣n9.方程kx+3y=5有一组解是,则k的值是()A.1.B.﹣1.C.。
D.210.天河区某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有()A.1种。
B.2种二、填空题:每小题3分,共18分.11.12.不等式组的解集是__________.13.若点M(a+3,a﹣2)在x轴上,则a=__________.14.若3x﹣2y=11,则用含有x的式子表示y,得y=__________.15.若a+1和﹣5是实数m的平方根,则a的值为__________.16.若|x+2y﹣5|+|2x﹣y|=0,则3x+y=__________.广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分。
人教版七年级下 2016-2017年学年度第二学期期末检测.docx
2016-2017年学年度第二学期期末检测七年级数学一、选择题(本大题共10小题,每小题3分,共30分)1、把方程23=+y x ,写成用含y 的形式为( )A 、32-=y xB 、32y x -= C 、y =3x -2D 、y =2-3x 2.若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±23、不等式组⎩⎨⎧≥->+0302x x 的解集是( )A 、-2≤x ≤3B 、x <-2或x ≥3C 、-2<x <3D 、-2<x ≤34、如图,下列条件不能判断直线a //b 的是( )A 、∠1= ∠2B 、∠1=∠3C 、∠1+∠4=1800D 、∠2+∠4=18005.在平面直角坐标系中,线段AB 两端点的坐标分别为A (1,0),B (3,2). 将线段AB平移后,A 、B 的对应点的坐标可以是( )A .(1,-1),(-1,-3)B .(1,1),(3,3)C .(-1,3),(3,1)D .(3,2),(1,4)6、某区今年共有1.4万名七年级学生参加期末考试,为了了解这1.4万名学生的数学成绩,从中抽取了1000名学生的数学成绩进行统计分析,以下说法正确的有( )个① 这种抽查采用了抽样调查的方式② 1.4万名学生的数学成绩是总体③ 1000名学生是总体的一个样本④每名学生的数学成绩是总体的一个样本A 、 4B 、 3C 、 2D 、 17、平面直角坐标系中,点P (221,1n m --+)一定在( )1 423 a bF DC BA A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限8、已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为3≤x ≤5,则a b 的值为( ) A 、 -2 B 、 21- C 、- 4 D 、-41 9、若方程组()()⎩⎨⎧=++-=+411132y k x k y x 的解x 与y 相等,则 k 的值为( ) A 、 3 B 、 20 C 、 10 D 、 010、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6折B .7折C .8折D .9折二、填空题(本大题共8小题,每小题3分,共24分)11、16的算术平方根的相反数是_________12.已知∣x —y +2∣+(2x +y +4)2=0。
2016-2017学年最新人教版七年级数学(下册)期末试卷及答案
2016-2017学年七年级(下)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分.将正确答案的字母填入方框中)1. |﹣2|等于()A.﹣2 B.﹣ C.2 D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚 B.2枚 C.3枚 D.任意枚3.下列问题中不适合于全面调查的是()A.了解全班同学的身高情况B.了解全校教师的年龄C.了解某单位的家庭收入情况D.了解全国中学生的视力情况4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与15.下列各组单项式中,为同类项的是()A.a3与a2B.a2与2a2C.2xy与2x D.﹣3与a6.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0 B.ab=0 C.﹣<0 D. +>07.下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.8.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105° D.120°9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141° D.159°10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AB=BC,则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线;⑥直线l经过点A,那么点A在直线l上.A.2个 B.3个 C.4个 D.5个二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)11.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为.12.单项式﹣xy2的系数是.13.一个角是70°39′,则它的余角的度数是.14.比﹣3大而比2小的所有整数的和为.15.如图,把一张长方形纸折叠后,B、C两点分别落在B′、C′处,如果∠AEB′=70°,则∠B′EF=°.16.一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.17.已知线段AB=6cm,AB所在直线上有一点C,若AC=2BC,则线段AC的长为cm.18.已知单项式3a m+2b4与﹣a5b n﹣1是同类项,则m+n=.19.如果|x+3|+(2y﹣5)2=0,则x+2y=.20.如图所示,由一些点组成的三角形图案,每条边(包括两个顶点)有n(n>1)个点,每个图形中总的点数为s,当n=9时,s=.三、解答题(本大题共8个小题;共60分)21.计算:(1)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);(2)(﹣1)3﹣×[2﹣(﹣3)2].22.一个角的余角比这个角的少30°,求这个角的大小.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.24.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,﹣3,+2,﹣2.5,﹣3,+1,﹣2,﹣2(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?25.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.26.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.27.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分.将正确答案的字母填入方框中)1.|﹣2|等于()A.﹣2 B.﹣ C.2 D.【考点】15:绝对值.【专题】2B :探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚 B.2枚 C.3枚 D.任意枚【考点】IB:直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列问题中不适合于全面调查的是()A.了解全班同学的身高情况B.了解全校教师的年龄C.了解某单位的家庭收入情况D.了解全国中学生的视力情况【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解全班同学的身高情况适合全面调查,故A错误;B、了解全校教师的年龄适合全面调查,故B错误;C、了解某单位的家庭收入情况适合全面调查,故C错误;D、了解全国中学生的视力情况适合抽样调查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1【考点】14:相反数;15:绝对值;1E:有理数的乘方.【专题】11 :计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.下列各组单项式中,为同类项的是()A.a3与a2B.a2与2a2C.2xy与2x D.﹣3与a【考点】35:合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.【点评】本题考查了同类项,利用了同类项的定义.6.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0 B.ab=0 C.﹣<0 D. +>0【考点】29:实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<0<a,∴ab<0,故选项B错误;C、∵b<0<a,∴﹣>0,故选项C错误;D、∵b<﹣1<0<a<1,∴ +>0,故选项D正确.故选:D.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.7.下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.【考点】I6:几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105° D.120°【考点】IK:角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°.故选D.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141° D.159°【考点】IH:方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AB=BC,则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线;⑥直线l经过点A,那么点A在直线l上.A.2个 B.3个 C.4个 D.5个【考点】IJ:角平分线的定义;IB:直线的性质:两点确定一条直线;IC:线段的性质:两点之间线段最短;ID:两点间的距离.【分析】根据角平分线定义,点和直线的位置关系,直线的性质,线段的性质,两点之间的距离的定义逐个判断即可.【解答】解:∵过两点有且只有一条直线,∴①正确;∵连接两点的线段的长度叫两点的距离,∴②错误;∵两点之间,线段最短,∴③正确;当B在直线AC外时,AB=BC,则点B不是AC的中点,∴④错误;∵从角的顶点出发,把一个角分成两相等的角的射线叫角的平分线,∴⑤错误;∵直线l经过点A,那么点A在直线l上,∴⑥正确,即正确的有3个,故选B.【点评】本题考查了角平分线定义,点和直线的位置关系,直线的性质,线段的性质,两点之间的距离的定义的应用,能熟记知识点是解此题的关键.二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)11.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为 2.5×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2 500 000=2.5×106,故答案为:2.5×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.单项式﹣xy2的系数是﹣.【考点】42:单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.13.一个角是70°39′,则它的余角的度数是19°21′.【考点】IL:余角和补角;II:度分秒的换算.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.比﹣3大而比2小的所有整数的和为﹣3.【考点】19:有理数的加法.【分析】首先找出比﹣3大而比2小的所有整数,在进行加法计算即可.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.【点评】此题主要考查了有理数的加法,关键是找出符合条件的整数,掌握计算法则.15.如图,把一张长方形纸折叠后,B、C两点分别落在B′、C′处,如果∠AEB′=70°,则∠B′EF=55°.【考点】JA:平行线的性质.【分析】根据翻折的性质得到∠B′EF=∠BEF,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸折叠后,B、C两点分别落在B′、C′处,∴∠B′EF=∠BEF,∵∠AEB′=70°,∴∠B′EF==55°,故答案为:55.【点评】本题考查了翻折的性质,平角的定义,熟练掌握翻折的性质是解题的关键.16.一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是33.3%.【考点】VB:扇形统计图.【分析】圆心角的度数=百分比×360°,则该部分在总体中所占有的百分比=120°÷360°=33.3%.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.【点评】扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.17.已知线段AB=6cm,AB所在直线上有一点C,若AC=2BC,则线段AC的长为4或12cm.【考点】ID:两点间的距离.【分析】有两种情况:当C在AB的延长线上时,当C在线段AB上时,根据已知求出即可.【解答】解:如图,有两种情况:当C在AB的延长线上时,如图①,∵AB=6cm,AC=2BC,∴AB=BC=6cm,∴AC=12cm;当C在线段AB上时,如图②∵AB=6cm,AC=2BC,∴AC=4cm;故答案为:4或12.【点评】本题考查了求两点之间的距离的应用,能求出符合的所有情况是解此题的关键.18.已知单项式3a m+2b4与﹣a5b n﹣1是同类项,则m+n=8.【考点】34:同类项.【分析】本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:由同类项的定义可知m+2=5,n﹣1=4,解得m=3,n=5,则m+n=8.故答案为:8.【点评】同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.19.如果|x+3|+(2y﹣5)2=0,则x+2y=2.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+3=0,2y﹣5=0,解得x=﹣3,y=,所以,x+2y═﹣3+2×=﹣3+5=2.故答案为:2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图所示,由一些点组成的三角形图案,每条边(包括两个顶点)有n(n>1)个点,每个图形中总的点数为s,当n=9时,s=24.【考点】38:规律型:图形的变化类.【分析】根据已知图形可以发现,前几个图形中的点数分别为:3,6,9,12,所以可得规律为:第n个图形中的点数为3(n﹣1)..【解答】解:根据题意分析可得:n=2时,S=3.此后,n每增加1,S就增加3个.故当n=9时,S=(9﹣1)×3=24,故答案为:24.【点评】此题主要考查了图形的变化规律,可以培养学生的观察能力和分析、归纳能力,属于规律性题目.注意由特殊到一般的归纳方法,此题的规律为:第n个图形中的点数为3(n﹣1).三、解答题(本大题共8个小题;共60分)21.(2016春•鸡西校级期末)计算:(1)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);(2)(﹣1)3﹣×[2﹣(﹣3)2].【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10+2﹣12=﹣20;(2)原式=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.一个角的余角比这个角的少30°,求这个角的大小.【考点】IL:余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.【考点】45:整式的加减—化简求值.【分析】先去括号,然后合并同类项使整式化为最简,再将x的值代入即可得出答案.【解答】解:原式=﹣x2+x﹣2﹣x+1=﹣x2﹣1,将x=代入得:﹣x2﹣1=﹣.故原式的值为:﹣.【点评】化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.24.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,﹣3,+2,﹣2.5,﹣3,+1,﹣2,﹣2(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?【考点】11:正数和负数.【专题】11 :计算题;511:实数.【分析】(1)求出记录数字之和,确定出总重即可;(2)设蔬菜商店在销售过程中白菜的单价应定为每千克x元,根据售价﹣进价=利润列出方程,求出方程的解即可得到结果.【解答】解:(1)根据题意得:25×8+(+1.5﹣3+2﹣2.5﹣3+1﹣2﹣2)=200﹣8=192(千克),则这8筐白菜一共重192千克;(2)设蔬菜商店在销售过程中白菜的单价应定为每千克x元,根据题意得:192x﹣10×8=10×8×20%,解得:x=0.5,则蔬菜商店在销售过程中白菜的单价应定为每千克0.5元.【点评】此题考查了正数与负数,弄清题意是解本题的关键.25.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【考点】IJ:角平分线的定义.【专题】11 :计算题.【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°故答案为75°.【点评】本题主要考查角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.26.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【考点】ID:两点间的距离.【专题】34 :方程思想.【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.27.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.【考点】V8:频数(率)分布直方图;VB:扇形统计图.【专题】27 :图表型.【分析】(1)由两个统计图可以看出:该校学生报名总人数有160÷40%=400人;(2)羽毛球的学生有400×25%=100人;因为选排球的人数是100人,即可求得占报名总人数的百分比;(3)因为选篮球的人数是40人,除以总人数即可求解.【解答】解:(1)由两个统计图可知该校报名总人数是(人);(2)选羽毛球的人数是400×25%=100(人),因为选排球的人数是100人,所以,因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.(3)如图:【点评】本题是考查频数的计算以及动手操作能力.。
2016-2017学年七年级下期末数学试卷及答案解析
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2016-2017七年级下册数学期末试题
2016-2017七年级下册数学期末试题FEDGCBA 2016~2017学年度下学期期末试题七年级数学一、选择题(每小题3分,共27分)每小题均有四个选项,其中只有一项符合题目要求.) 1.如果a <b ,下列各式中错误的是( ) A .﹣3a <﹣3bB .﹣3+a <﹣3+bC .a ﹣3<b ﹣3D .a 3<b 32.如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .对顶角3.已知M (1,﹣2),N (﹣3,﹣2),则直线MN 与x 轴,y 轴的位置关系分别为( ) A .相交,相交 B .平行,平行 C .垂直相交,平行 D .平行,垂直相交4.已知关于y x ,的方程组⎩⎨⎧-=+=-1,332by ax y x 和⎩⎨⎧=+=+332,1123by ax y x 的解相同,则b a ,的取值为( )A .⎩⎨⎧=-=52b a B .⎩⎨⎧-==52b a C .⎩⎨⎧-=-=52b a D .⎩⎨⎧==52b a 5.已知点P (2﹣4m ,m ﹣4)在第三象限,且满足横、纵坐标均为整数的点P 有( )A .1个B .2个C .3个D .4个6.如图是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函数图象,下列说法不正确...的是( ) A .从1时到2时匀速前进 B .从1时到2时在原地不动 C .从0时到3时,行驶了30千米D .从0时到1时与从2时到3时的行驶速度相同 7. 某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于( )A .1500B .1000C .150D .500 8.下列说法中,正确的...是( ) A .图形的平移是指把图形沿水平方向移动 B .“相等的角是对顶角”是一个真命题 C .平移前后图形的形状和大小都没有发生改变 D .“直角都相等”是一个假命题9.某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来 他又以每条2b a +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A .a >bB .a <bC .a =bD .与ab 大小无关10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则∠A 与∠1、∠2之间 的数量关系是( )A .∠A =∠1-∠2B .2∠A =∠1-∠2C .3∠A =2∠1-∠2D .3∠A =2(∠1-∠2) 二.填空题(本大题共7个小题,每小题3分,共21分)11.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 12.如图,在△ABC 中,∠C=90°,AB=10,AD 是△ABC 的一条角平分线.若CD=3,则△ABD 的面积为_________.13.已知点O (0,0),B (1,2)点A 在坐标轴上,且S △OAB=2,则A 的坐标为____________________________. 14.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .15.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其它10个小长方形高之和的 ,且样本容量是60,则中间一组的频数是 .16.如图,∠ABC 的平分线与∠ACB 的外角平分线相交于点D ,过点D 作 EF ∥BC ,交AB 于E ,交AC 于F ,若BE =8cm ,CF =5cm ,则EF = .第12题图第2题图1(E DCBA2第10题图第6题图24.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少? (2)5 m 的平方根又是多少?25.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗,水果店老板把售价至少定为多少,才能避免亏本?26.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是______度; (2)请把条形统计图补充完整; (3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?27.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3), 请画出三角形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.x O 2 1 3 4 56 ---- 123 4 ---y28.(本小题10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠. 书包每个定价20元,水性笔每支定价5元. 小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的关系式;(用x表示y)(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.29.(本小题12分)如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P 运动时,的值是否会改变?若不变,求其值;若改变,说明理由.25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A、B两种旅游纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100 件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l1∥l2,直线l3和直线l1、l2交于C、D两点,点P在直线CD上.(1)试写出图1中∠APB、∠PAC、∠PBD之间的关系,并说明理由;(2)如果P点在C、D之间运动时,∠APB,∠PAC,∠PBD之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2、图3),试分别写出∠APB,∠PAC,∠PBD之间的关系,并说明理由.参考答案及评分标准三.解答题(本大题共6个小题,共55分) 15.(本小题满分12分,每题6分) (1) 计算:()()2201531213π-⎛⎫---+--- ⎪⎝⎭(2) 计算:223333⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+x xABFEDC16.(本小题满分7分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求当a=3,b=2时的绿化面积.17.(本小题满分8分)如图,已知ABC △的面积是212cm ,6cm BC =,在BC 边上有一动点P ,连接AP ,设BP x =,ABP S y =△. (1)作A D ⊥BC 于D ,求y 与x 之间的关系式;(2)用表格表示当x 从1变到6时(每次增加1),y 的相应值;(3)当x 每增加1时,y 如何变化?18.(本小题满分8分)某书店参加某校读书活动,并为每班准备了A ,B 两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班甲、乙两名优秀读者都想获得A 名著,于是班主任决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A 名著;若牌面数字之和为奇数,则乙获得A 名著,你认为此规则对甲、乙双方公平吗?为什么?19.(本小题满分9分)已知:如图,AB CD =,AB CD ∥,点E F ,在BD 上,DE BF =. 求证:(1)AF CE =;(2)AE ∥CF .20.(本小题满分10分)如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC 于点G ,在GD 的延长线上取点E ,使DE =DB ,连接AE ,CD . (1)求证:△AGE ≌△DAC ;DF EDCBA(2)过点E 作EF ∥DC ,交BC 于点F ,请你连结AF , 试判断△AEF 的形状,并说明理由.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21.已知012=-+y x ,则6355x y ⋅的值为 .22.从长为10cm 、7cm 、4cm 、3cm 的四条线段中任选三条,则所选三条线段能够成三角形的概率是_____. 23.如图,在ΔABC 中,∠BAC =90°,DA ⊥BC 于点D ,∠ABC的平分线BE 交AD 于F ,交AC 于E ,若AE =3,DF =2,则AD =_______. 24.观察下列各式后填空:①()()1112-=+-x x x ; ②()()11132-=++-x x x x ;③32(1)(1)x xx x -+++=14-x ; (1)利用你发现的规律计算:65432(1)(1)x x x x x x x -++++++= ;(2)利用该规律计算:20153233331+++++ = .25. 如图,在△ABC 中,AC =BC ,∠ACB =90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连接CD ,给出四个结论:①∠ADC =45°;②BD =AE ;③AC +CE =AB ;④AB -BC =2MC ;其中正确的结论有__________________. 二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)(1)已知(a +b )2=7,(a -b )2=4,求a 2+b 2和ab 的值.(2)已知y x ,满足y x x y --+-=45222,求代数式y x xy +的值27. (本小题满分10分)如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通.A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km .现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货.该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为x km ,这辆货车每天行驶的路程为y km . (1)用含x 的代数式填空: 当0≤x ≤25时:货车从H 到A 往返1次的路程为2x km ,货车从H 到B 往返1次的路程为____________km , 货车从H 到C 往返2次的路程为____________km , 当25<x ≤35时:这辆货车每天行驶的路程y =_________________; (2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)第25题图第23题图28.(本小题满分12分)如图,已知∠ABC=90°,△ABD是边长为3的等边三角形,点E为射线BC上任意一点(点E与点B不重合),连结AE,在AE上方作等边三角形AEF,连结FD并延长交射线BC于点G.(1)如图甲,当BE=BA时,求证:△ABE≌△ADF;(2)如图乙,当△AEF与△ABD不重叠时,求∠FGC的度数;(3)若将已知条件中的“在AE的上方作等边三角形AEF,连结FD并延长交射线BC于点G.”改为“在AE的下方作等边三角形AEF,连结FD交射线BC于点G.”(如图丙所示),试问当点E在何处时BD∥EF?并求此时△AEF 的周长.。
2016-2017学年度第二学期七年级数学期末试卷
2016-2017学年度第二学期七年级数学期末试卷(考试试卷120分钟、卷面满分200分)一、选择题(共10小题、每小题3分、共39分) 1、下列说法中,错误的是( )。
A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-12、方程组⎩⎨⎧=+-=523y x yx 的解是( )A .⎩⎨⎧==53y xB 。
⎩⎨⎧==21y xC 。
⎩⎨⎧==12y xD 。
⎩⎨⎧==13y x3、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A .(3,0) B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)4、(2014春•岑溪市期末)已知a <b ,则下列式子正确的是( )A .a+5>b+5 B .3a >3b C .﹣5a >﹣5b D .>5、如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( )A 、0180=∠+∠+∠γβαB 、0180=∠+∠-∠γβαC 、0180=∠-∠+∠γβαD 、0270=∠+∠+∠γβα6、在下列调查中,比较容易用普查方式的是( )A.了解凯里市居民年人均收入B.了解凯里市初中生体育中考的成绩C.了解凯里市中小学生的近视率D.了解某一天离开凯里市的人口流量7、张雷同学从A 地出发沿北偏东500的方向行驶到B 地,再由B 地沿南偏西200的方向行驶到C 地,则∠ABC 的度数为( )A 、400B 、300C 、200D 、1008、将不等式组12(1)131322x x x x -≥+⎧⎪⎨-≤-⎪⎩的解集在数轴上表示,正确的是( ) A 、 B 、C 、D 、9.(3分)(2014春•岑溪市期末)下列说法正确的是( ) A . 25的平方根是5 B . (﹣4)2的平方根是4C .±4是64的立方根D .﹣8的立方根是﹣210.(3分)(2014春•岑溪市期末)2014年中考已经结束,市教科研所随机抽取1000名学生试卷进行调查分析,这个问题的样本是( ) A . 1000B . 1000名C . 1000名考生的数学试卷D . 1000名学生11.(3分)(2014春•岑溪市期末)下列调查中,适合用全面调查的是( ) A . 了解某班同学立定跳远的情况 B . 了解一批炮弹的杀伤半径 C . 了解某种品牌奶粉中含三聚氰胺的百分比 D . 了解全国青少年喜欢的电视节目13.(3分)(2014春•岑溪市期末)如果点M (3a ﹣9,1﹣a )是第三象限的整数点,则M 的坐标为( )A . (﹣3,﹣1)B . (﹣2,﹣1)C . (﹣6,0)D . (0,﹣4)二、填空题(每小题3分,共39分)14、一个数的平方根等于它的立方根,这个数是 。
2016-2017学年七年级第二学期数学期末考试卷(十)
2016-2017学年七年级第二学期数学期末考试卷(十)(考试时间90分钟满分120分)一、单项选择题(每小题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.D.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣14.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>5.在图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠57.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=89.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=110.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共30分)11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.如图所示,由三角形ABC平移得到的三角形有个.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第象限.14.满足不等式的非正整数x共有个.15.如果的平方根是±3,则= .16.已知点A(﹣1,b+2)不在任何象限,则b= .17.不等式的解集是.18.已知x满足(x+3)3=27,则x等于.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k= ,b= .20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.三、解答题(60分)21.解方程组:.22.计算:﹣|﹣3|+.23.解不等式组:并把解集在数轴上表示出来.24.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.25.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.26.如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.27.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?28.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.29.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?参考答案一、单项选择题1. B.2. B.3. A 4. B.5. B.6. C.7. D.8. C 9. A.10. D.二、填空题11.答案为:4.12.答案为:5.13.答案为:二.14.答案为:3.15.答案为:4.16.答案为:﹣2.17.答案为:x<6.18.答案为0.19.答案为:﹣2;1.20.答案为:130°.三、解答题21.解:原方程组变形为:,(1)﹣(2)得:y=﹣,代入(1)得:x=6.所以原方程组的解为.22.解:原式=4+﹣3+6=7+.23.解:∵由①得:x>﹣2.5,由②得x≤4,∴不等式组的解集为﹣2.5<x≤4,在数轴表示为:.24.解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3) 2=(2×1﹣3) 2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3) 2=[2×﹣3]2=故这个正数是1或.25.解:∵∠1=30°,∠BAC=90°,∴∠BAD=180°﹣90°﹣∠1=180°﹣90°﹣30°=60°,∵EF∥AD,∴∠2=∠BAD=60°.26.解:(1)175÷35%=500(个);(2)图如下面.27.解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.56.由x应为正整数,得x≥37答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.28.解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°﹣110°=70°(4分)∴∠2=∠GED=110°(5分)29.解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.。
2016-2017学年度第二学期期末调研考试七年级下数学试题(含答案).docx
分核分人2016-2017 学年度第二学期期末调研考试七年级下数学试题友情提示: 的同学 , 你保持 松的心 , 真 ,仔 作答, 自己正常的水平,相信你一定行, 祝你取得 意的成 。
一、 (本大 共12 个小 ;每小2 分,共 24 分.在每小 出的四个 中,只有一 是符合 目要求的,每小 出答案后,用 2B 笔把答 卡上 目的答案 号涂黑,答在 卷上无效. )1.点 P ( 5, 3)所在的象限是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .第一象限B .第二象限C .第三象限D .第四象限2. 4 的平方根是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .2B . ±2C . 16D . ±163.若 a b , 下列不等式正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 3a3bB . mambC .a 1b 1D .a1b1224.下列 中, 方式 合理的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 了了解某一品牌家具的甲 含量, 全面 ;B . 了了解神州 船的 零件的 量情况, 抽 ;C . 了了解某公园全年的游客流量, 抽 ;D . 了了解一批袋装食品是否含有防腐 , 全面.5.如右 ,数 上点 P 表示的数可能是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 2B .5 P-1C . 10 D.1 234156.如 ,能判定AB ∥CD 的条件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A3DA .∠ 1=∠ 2B .∠ 3=∠ 44C .∠ 1=∠ 3D .∠ 2=∠ 421BC7.下列 法正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . ( 8) 的立方根是 2B .立方根等于本身数有 1,0,1C .64 的立方根4D .一个数的立方根不是正数就是 数 8.如 ,直 l 1 ,l 2, l 3 交于一点,直 l 4∥ l 1,若l 3l 2∠ 1=124°,∠ 2=88°, ∠ 3 的度数 ⋯()3l 121A .26°B . 36°C . 46°D . 56°x 2ax by 7 b 的 ⋯⋯⋯⋯(9.已知1是二元一次方程by的解, a)y ax 1A .3B .2C . 1D .- 110.在如 的方格 上,若用(-1, 1)表示 A 点,(0, 3)表示 B 点,那么 C 点的位置可表示 B⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()CA .( 1, 2)B .( 2, 3)AC .(3, 2)D .( 2, 1)11.若不等式2 x1 3的整数解共有三个,a 的取 范 是⋯⋯⋯⋯⋯()x aA . 5 a 6B . 5 a 6C . 5a6D . 5 a612.运行程序如 所示, 定:从“ 入一个 x ”到“ 果是否> 95” 一次程序操作,如果程序操作 行了三次才停止,那么x 的取 范 是⋯⋯⋯⋯⋯⋯⋯⋯⋯()输入x×2+1>95 是停止21 世纪教育网版权所有否A . x ≥ 11B .11≤x< 23C .11<x ≤ 23D .x ≤ 23二、填空 (本大 共 8 个小 ;每小 3 分,共 24 分. 把答案写在答 卡上)13.不等式x 2≤ 1 的解集是;314.若xa是方程 2x y 0 的一个解,6a 3b 2;yb15.已知 段 MN 平行于 x ,且 MN 的 度 5,AB若 M 的坐 (2, -2),那么点 N 的坐 是1;16.如 ,若∠ 1= ∠D=39°,∠ C=51°, ∠ B=°;DC17.已知 5x-2 的立方根是 -3, x+69的算 平方根是;18.在平面直角坐 系中,如果一个点的横、 坐 均 整数,那么我 称 点 整点,若整点 P ( m 2 , 1m 1 )在第四象限,m 的;2ax 5y 15 ①a 得到方程组的解为19.已知方程组by2由于甲看错了方程①中的4x ②x 3 x 5,若按正确的 a 、b 计算 ,y;乙看错了方程②中的 b 得到方程组的解为41y则原方程组的解为 ;20.《孙子算经》中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5 尺;将绳子对折再量木条, 木条剩余 1尺,问木条长多少尺?” 如果设木条长 x 尺,绳子长 y尺,可列方程组为;【三、解答题(本大题共7 个小题,共 72 分.解答应写出文字说明,说理过程或演算步骤)21.计算(本题满分 10 分)(1) 32732 ( 1) 2 3 8( 2) 123222.计算(本题满分12 分)xy 135x9 3( x 1)( 2)解不等式组:3 1(1)解方程组:6 y711xx x2 223.(本题满分 8 分)某校随机抽取部分学生, 就“学习习惯” 进行调查, 将“对自己做错题进行整理、 分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下: www-2-1-cnjy-com各选项人数的扇形统计图各选项人数的条形统计图请根据图中信息,解答下列问题:( 1)该调查的样本容量为________ , a =________% , b =________% ,“常常”对应扇形的圆心角的度数为 __________; 2-1-c-n-j-y( 2)请你补全条形统计图;( 3)若该校有 3200 名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(本题满分 8 分)如图,在平面直角坐标系中, 已知长方形 ABCD 的两个顶点坐标为A ( 2,-1),C ( 6,2),点 M 为 y 轴上一点,△ MAB 的面积为 6,且 MD < MA ;请解答下列问题:y( 1)顶点 B 的坐标为;( 2)求点 M 的坐标;DC( 3)在△ MAB 中任意一点 P ( x 0 , y 0 )经平移1后对应点为 P 1 ( x 0 -5, y 0 -1),将△ MAB 作同样的平 O 1x移得到△ M A B ,则点 M 1的坐标为。
16—17学年下学期七年级期末考试数学试题(附答案)
2016-2017学年度下学期期末数学质量检测试卷七年级数学(考试时间120分钟,满分120分)一、选择题(本大题共8个小题每小题4分,共32分)1. 将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.下列调查中,适宜采用全面调查(普查)方式的是( )A.调查市场上老酸奶的质量情况B.调查马龙县中学生每周体育锻炼的时间C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了危禁物品3.已知21yχ⎧=⎨=⎩是二元一次方程81m nyn myχχ⎧+=⎨-=⎩的解,则2m-n的算术平方根为( )A.±2 B.2 C D.44.已知下列各数:3.14,0.1010010001,0.0123有( )A.1个B.2个C. 3个D.4个5.如果点P(2 x +6,x -4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为( )A.B.C.D.6.如图1,已知AB∥CD,E是AB上一点,ED平分∠BEC交CD于点D,∠BEC=100°,则∠D的度数是( )A.50°B.100°C.80°D.60°7的平方根是( )A.±3 B.3 C.±9 D.9 8.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1,A2,A3,A4,A5,…,则顶点A55的坐标是( )A.(13,13)B.(-13,-13)C.(-14,-14)D.(14,14)二、填空题(本大题共6个小题;每小题3分,共18分)9.在方程4x-2y=7中,如果用含x的式子表示y,则y=.10.已知点P的坐标为(5,a),且点P在一、三象限角平分线上,则a=.11.把命题“对顶角相等”改写成“如果……那么……”的形式.12.关于x、y的二元一次方程组3234y ay aχχ⎧+=+⎨+=-⎩的解满足x+y>2,则a的取值范围为.13.若(x-1)2=4则x=.14.如图,一个含有30°角的直角三角板的两个顶点放在一个长方形的对边上,若∠1=25°,则∠2=.三、解答题(本大题共9个小题;共70分.)15.(616.(7分)解方程组43624y y χχ⎧+=⎨+=⎩17.(7分) 并把它们的解集在数轴上表示出来。
广东省台山市2016-2017学年七年级第二学期期末测试数学试卷试题及答案
2016~2017学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、9的算术平方根是( )A 、3B 、-3C 、±3D 、3 2、-8的立方根是( )A 、2B 、-2C 、±2D 、32 3、在平面直角坐标系中,点P (-3,-4)的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图,AB ∥CD ,EF 分别与AB ,CD 相交于点E 、F ,则图中与AEF ∠相等的角的个数有( )A 、2个B 、3个C 、4个D 、5个5、下列各组数中,不是二元一次方程10=+y x 的一组解的是( )A 、⎩⎨⎧=-=133y x B 、⎩⎨⎧-==212y x C 、⎩⎨⎧==52y x D 、⎩⎨⎧==64y x 6、若b a >,则下列式子一定成立的是( ) A 、53+>+b a B 、99->-b aABC D F EC 、b a 55->-D 、32b a < 7、下列关于统计图的说法中,错误的是( )A 、条形图能够显示每组中的具体数据B 、折线图能够显示数据的变化趋势C 、扇形图能够显示数据的分布情况D 、直方图能够显示数据的分布情况 8、下列实数中,是无理数的是( ) A 、0 B 、21C 、5D 、4 9、下列命题中,是真命题的是( )A 、相等的角是对顶角B 、互补的角是邻补角C 、同旁内角是互补的角D 、邻补角是互补的角 10、如图,︒=∠+∠18021,︒=∠1083,则=∠4( )A 、︒72B 、︒80C 、︒82D 、︒108二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、=-327 .12、计算:=-3233 .13、如图,OD OC ⊥,︒=∠501,则2∠的度数是 14、点A 在x 轴上,且到原点的距离为3,则点A 的坐标是 . 15、已知32=-y x ,则=+-y x 423 .16、数轴上有两个点A 和B ,点A 表示的数是3,点B 与点A 相距2个单位长度,则点B 所表示的实数是 .答案: 一、选择题1、A ,2、B ,3、C ,4、B ,5、C ,6、B ,7、C ,8、C ,9、D , 10、A 二、填空题11、3-; 12、3; 13、︒40; 14、(-3,0),(3,0); 15、9; 16、23+,23-123 4O1 2ABDC三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:)5(58163-----+. 解:)5(58163-----+25524=+--=.(评分说明:16,38-,5-,)5(--计算正确各占1分,答案正确占2分) 18、如图,点A ,D 在直线a 上,点B ,C 在直线b 上,a ∥b ,a BA ⊥,连结AC . (1)写出与C ∠相等的角; (2)求C BAC ∠+∠等于多少度.解:(1)C CAD ∠=∠; 2分(2)∵AD BA ⊥,∴︒=∠90BAD , 4分 ∴︒=∠=∠+∠=∠+∠90BAD CAD BAC C BAC . 6分19、如图,正方形网格的每个小正方形边长为1,四边形ABCD 的顶点都在格点上. (1)以点A 为坐标原点建立平面直角坐标系,写出四边形ABCD 各顶点的坐标; (2)计算四边形ABCD 的面积.解:(1)画平面直角坐标系(略), 1分A (0,0),B (4,0),C (3,6),D (-2,4); 5分 (2)四边形ABCD 的面积为36-5-4-3=24. 6分(评分说明:(1)正确画平面直角坐标系给1分,每个点坐标正确给1分,共5分;(2)计算结果正确给1分)四、解答题(二)(本大题3小题,每小题7分,共21分)20、解方程组:⎩⎨⎧=+=-82332y x y x .解:由①得32-=x y , 1分 代入②得 8)32(23=-+x x 3分147=x ,2=x 4分把2=x 代入32-=x y ,得1322=-⨯=y , 6分ADab CB∴这个方程组的解是⎩⎨⎧==12y x . 7分(评分说明:若用加减法消元相应给分,即求出x (或y )给4分,再求y (或x )再给2分,写出答案又加1分)21、解不等式组:⎪⎩⎪⎨⎧+<->--21314)2(3x x x x ,并把解集在数轴上表示出来.解:不等式4)2(3>--x x 的解是1<x , 2分 不等式2131+<-x x 的解是5->x , 2分 ∴不等式组的解是15<<-x , 6分7分(-5,1两个点应为空心点)22、下面数据是20位同学的身高(单位:cm ):156 154 161 158 164 150 163 160 159 155 159 161 157 168 163 159 165 164 158 153 (1)这组数据中,最大值与最小值的差是 ;(2)将这组数据分为5组:154150<≤x ,158154<≤x ,162158<≤x ,166162<≤x ,170166<≤x ,则组距是 ;(3)完成下面频数分布表,并将频数分布直方图补充完整.-6 -5 -4 -3 -2 -1 0 1(cm)频数(学生人数)解:(1)18;(2)4;(3)(评分说明:(1)(2)小题各占2分;(3)表格正确占1分(只有部分正确的不给分),直方图补充完整占2分,共7分)五、解答题(三)(本大题3小题,每小题9分,共27分)23、货主两次租用某汽车运输公司的甲,乙两种货车运送货物往某地,第一次租用甲货车2辆和乙货车3辆共运送15.5吨货物,第二次租用甲货车3辆和乙货车2辆共运送17吨货物,两次运输都按货车的最大核定载货量刚好将货物运送完,没有超载.(1)求甲,乙两种货车每辆最大核定载货量是多少吨?(2)已知租用甲种货车运费为每辆1200元,租用乙种货车运费为每辆800元,现在货主有24吨货物需要运送,而汽车运输公司只有2辆甲种货车,其它的都是乙种货车,问有几种租车方案?哪种方案费用较少?解:(1)设甲,乙两种货车每辆核定最大载货量为x 吨,y 吨, 1分 依题意得,⎩⎨⎧=+=+17235.1532y x y x , 3分解得⎩⎨⎧==5.24y x , 4分答:甲种货车最大载货量是4吨,乙种货车最大载货量是2.5吨; 5分 (2)设租用m 辆乙种货车,①若全部租用乙种货车,则245.2=m ,6.9=m ,需用10辆乙种货车,费用为8000元,6分 ②若租用1辆甲种货车,其余为乙种货车,则245.24=+m ,8=m ,用1辆甲种货车,8辆乙种货车,刚好把货物运完,费用为7600元, 7分 ③若租用2辆甲种货车,其余为乙种货车,则245.28=+m ,4.6=m ,需租用2辆甲种货车,7辆乙种货车,费用为8000元, 8分(cm)综上所述,共有3种租车方案,租用1辆甲种货车,8辆乙种货车费用较少. 9分24、如图,点D ,E ,F 分别是三角形ABC 的边BC ,CA ,AB 上的点,DF ∥CA ,C EFD ∠=∠.(1)求证:EF ∥CB (请同学们在答题卡上将证明过程补充完整); (2)AEF ∠与BDF ∠相等吗?为什么?请说出理由; (3)求证:︒=∠+∠+∠180C B A . 解:(1)证明:∵DF ∥CA , ∴=∠AEF EFD ∠. 1分 又∵C EFD ∠=∠,∴=∠AEF C ∠, 2分∴EF ∥CB (理由是: 同位角相等,两直线平行 ); 3分 (2)BDF AEF ∠=∠. 4分 理由是:∵EF ∥CB ,∴EFD AEF ∠=∠, ∵DF ∥CA ,∴EFD BDF ∠=∠,∴BDF AEF ∠=∠; 6分(没有先写出结论,直接进行证明且正确的,本小题给满分3分;若证明错误,但过程中有正确的推理,本小题只给1分)(3)由(1)得EF ∥CB ,∴EFA B ∠=∠, 7分 ∵DF ∥CA ,∴DFB A ∠=∠, 8分 又C EFD ∠=∠,∴︒=∠+∠+∠=∠+∠+∠180EFD EFA DFB C B A . 9分(本小题若证明有错,但证明过程中,写出一个正确且与本题证明有关的推理,可给1分)25、如图,在直角坐标系中,点C 在直线AB 上,点A 、B 的坐标分别是(-1,0),(1,2),点C 的横坐标为2,过点B 作x BD ⊥轴于D ,过点C 作x CE ⊥轴于E ,直线BE 与y 轴交于点F .(1)若α=∠OFE ,β=∠ACE ,求ABE ∠(用α,β表示);ECDF(2)已知直线AB 上的点的横坐标x 与纵坐标y 都是二元一次方程1-=-y x 的解(同学们可以用点A 、B 的坐标进行检验),直线BE 上的点的横坐标x 与纵坐标y 都是二元一次方程42=+y x 的解,求点C 、F 的坐标;(3)解方程组⎩⎨⎧=+-=-421y x y x ,比较该方程组的解与两条直线的交点B 的坐标,你得出什么结论?解:(1)∵x BD ⊥轴,x CE ⊥轴,∴BD ∥CE , 1分 ∴α=∠=∠OFE DBE ,β=∠=∠ACE ABD , ∴βα+=∠+∠=∠DBE ABD ABE ; 3分 (2)∵点C 的横坐标为2,把2=x 代入方程1-=-y x ,解得3=y ,∴点C 的坐标为(2,3); 4分 ∵点F 在y 轴上,∴点F 的横坐标为0, 5分 把0=x 代入42=+y x ,解得4=y ,∴点F 的坐标是(0,4); 6分(3)方程组⎩⎨⎧=+-=-421y x y x 的解是⎩⎨⎧==21y x , 7分∵点B 的坐标是(1,2),∴直线AB 与直线BE 的交点坐标就是方程组⎩⎨⎧=+-=-421y x y x 的解. 9分。
七年级下数学期末试卷含答案
第1页 共10页2016—2017学年度第二学期期末考试(说明:全卷共有六个大题,23个小题,满分120分,考试时间120分钟;答案一律写在答题卷上,否则成绩无效.)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)相交,4.下列调查中,调查方式选择正确的是( )A .为了了解一批灯泡的使用寿命,选择全面调查;B .为了了解某班同学的身高情况,选择抽样调查;C .为了了解航天飞机各个零件是否安全,选择全面调查;D .为了了解生产的一批炮弹的杀伤半径,选择全面调查.5.已知⎩⎨⎧=+=+1034443b a b a ,则a +b 等于( )A .5B .4C .3D .26.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判 断结果是否大于190?”为一次操作,如果操作恰好进行三次才停止,那么x 的取值范 围是( )A .B .C .D . 二、填空题(本大题共6小题,每小题3分,共18分) 7.点P (3,-4)到 x 轴的距离是 .8.已知a,b 为两个连续的整数,且a <13<b ,则a +b = .9.如图,将一副三角板和一张对边平行的纸条按下列方式 摆放,两个三角板的一直角边重合,含30°角的直角三 角板的斜边与纸条一边重合,含45°角的三角板的一个 顶点在纸条的另一边上,则∠1的度数是 ° .10.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示。
则点A 2017的坐标为 .11.已知实数x 、y 满足632=-y x ,并且3-≥x,2<y ,现有y x k 2-=,则k 的取12.如图,三角形ABC 中∠BAC =70°,点D 是射线BC 上一点(不与点B 、C 重合),DE ∥AB 交直线AC 于E ,DF ∥AC 交直线AB 于F ,则∠FDE 的度数为 . 三、(本大题共5小题,每小题6分,共30分) 13.计算:1623483+---.14.若方程组 472+=+⎧⎨-=⎩x y kx y k 的解x 与y 是互为相反数,求k 的值.学校 班级 姓名 座号装订线228≤<x 6422≤<x 6222≤<x 208≤<x第2页 共10页15.解不等式组⎪⎩⎪⎨⎧->+≥--13414)2(3x x x x ,并把解集在数轴上表示出来.116. 如图,DE ∥BC ,∠1 +∠2 =180°,∠3 =40°,求∠B 的度数.17.如图,△ABC 在平面直角坐标系中.A (0,4) (1)在图中画出△ABC 关与y 轴的对称△A′B′C′; (2)在图中画出△A′B′C′的平移图形,使A′的对应点A ″的坐标为(-3,-2)并写出对应点B ″,C ″的坐标. . 四、(本大题共3小题,每小题8分,共24分) 18.如图,已知OA ∥BE ,OB 平分∠AOE ,∠4=∠1,∠2与∠3互余, 求证:(1)DE ∥OB ;(2)DE ⊥CD .19. 如图,在平面直角坐标系中A (a ,0), B (b ,0),C (-1,2) 且0)42(122=-++++b a b a .(1)求a ,b 的值;(2)在y 轴上是否存在一点M ,使△COM 的面积为△ABC 面积的一半,求出点M 的坐标.20.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出两幅不完整的统计图,请根据统计图回答问题.(1)这次活动一共调查了_____名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于_______度; (4)若该学校有3000人,请你估计该学校选择足球项目的学生人数约是________人.五、(本大题共2小题,每小题9分,共18分)21. (1)请你根据图1回答下列问题:①若∠DEC+∠ACB=180°,可以得到哪两条线段平行?②在①的结论下,如果∠1=∠2,又能得到哪两条线段平行?(2分)(2)请你在图2中按下面的要求画图(画图工具和方法不限):过点A画AD⊥BC于D,过点D 画DE∥AB交AC于E,在线段AB上任取一点F,以F为顶点,FB为一边画∠BFG,使∠BFG =∠ADE,∠BFG的另一边FG与线段BC交于点G.(2分)(3)请你根据(2)中画图时给出的条件,猜想FG与BC的位置关系,并给予证明.(5分)六、(本大题共1小题,共12分.)23.如乙图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).点X,Y分别在x,y的正半轴上.(1)请直接写出D点的坐标.(2)连接线段OB,OD,OD交BC于E,如甲图,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOE = n ,求∠OFE的度数(用n表示).(3)若长方形ABCD以每秒1个单位的速度向下运动,设运动的时间为t秒,问是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的32?若存在,请求出t的值;若不存在,请说明理由.第3页共10页第4页 共10页章贡区2016-2017学年第二学期期末考试七年级数学试题参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.C 2.B 3.B 4.C 5.D 6.A 二、填空题(本大题共6小题,每小题3分,共18分) 7. 4 8. 7 9. 15 10 .(1008,1) 11 .52≤<k 12.70°;110° 三、(本大题共5小题,每小题6分,共30分)13解:原式2424=--+ …………… …4分= …………………………………6分14.解:472+=+⎧⎨-=⎩x y k x y k① + ②得:3(x+y )=2k +7 ………………………………2分∴372+<+k y x ……………………………3分 又∵x 与y 互为相反数 ∴0372=+k ………4分 ∴27-=k …………………………………6分15.解: 3(2)41413x x xx --≥⎧⎪⎨+>-⎪⎩①②解①得:x ≤1,…………………………………………1.5分 解②得:x >-4;……………………………………… 3分 解集为:-4<x ≤1;……………………………………5分 不等式组解集在数轴表示如下图:(虚实点、长度单位,画图正确)…………6分16.解:∵∠1 +∠2 =180°,∠DFE +∠2 =180° ;∴∠1=∠DFE ; …………………………2分 ∴AB ∥EF , ………………………………3分 ∴∠ADE =∠3 ;……………………………4分 又∵DE ∥BC ,∴∠ADE =∠B , ………… 5分 ∴∠B =∠3 =40°.……………………………6分17. 解:(1)如图每个图各2分 ……………………4分(2) B ″(2,-4) ,C ″(-1,-5) ……………………6分四、(本大题共3小题,每小题8分,共24分)18.证明: (1)∵OA ∥BE ,∴∠AOB =∠ 4. …………………1分 又∵OB 平分∠AOE ,∴∠AOB =∠2, …………………2分 ∴∠4=∠2.又∵∠4=∠1, …………………3分 ∴∠2=∠1,①② ① ②A ′B ′C ′A ″B ″C ″第5页 共10页∴DE ∥OB , …………………4分 (2)∴∠EDF =∠BOF . …………………5分 又∵∠2+∠3=90°,∴∠EDF =∠BOF =90°,…………………7分 ∴DE ⊥CD . …………………8分19.解:(1)∵ 0)42(122=-++++b a b a∴⎩⎨⎧=-+=++042012b a b a ……………2分∴⎩⎨⎧=-=32b a ……………4分(2)∴ A (-2,0), B (3,0),∵C (-1,2)∴S △ABC =22⨯AB =5, ……………5分设M (0,y ) ∴S △COM =25210=⨯-y ……………6分∴5±=y …………………………7分 (3) 108 …………………………………6分 (4) 960 …………………………………8分 五、(本大题共2小题,每小题9分,共18分).21. 解:(1)① DE ∥ BC , (2) DC ∥ FG . ······················ 2分(2) 画图正确,字母标注正确得2分 ······························· 4分 (3)FG ⊥BC . ···················· 5分 证明:∵ DE ∥AB , ∴ ∠1=∠3. ··························· 6分 又∵ ∠1=∠2, ∴ ∠2=∠3, ∴ AD ∥FG . ···················· 7分 ∵ AD ⊥BC 于D , ∴ ∠CAD=90°. ·························· 8分 ∵ AD ∥FG , ∴ ∠FGB =∠CDA=90°,∴ FG ⊥BC ······················ 9分22.解: (1)设商场计划购进A 种设备x 套,B 种设备y 套,由题意得 ⎩⎨⎧=-+-=+31)6.12()25.2(1246.12x y x ……………2分解得:⎩⎨⎧==4030y x答:商场计划购进A 种设备30套,B 种设备40套;……………4分(2)设商场购进A 种设备a 套,则B 种设备(70-a )套, 由题意得 ⎩⎨⎧≥--+-≤-+8.29)70)(6.12()25.2(120)70(6.12a a a a ……………6分解得:2018≤≤a ……………8分 答:有三种购买方案,分别是购买A 种设备18套,购买B 种设备52套;或购买A 种设备19套,购买B 种设备51套; 或购买A 种设备20套,购买B 种设备50套.…………………………………………9分六、(本大题共12分)23.解: (1)(7,8); ……………………………2分∵四边形ABCD 是长方形, ∴AB =DC ,AD =BC ,∵点A (1,8),B (1,6),C (7,6),第6页 共10页∴AB = DC = 2,AD =BC = 6 ∴D 点的坐标为:(7,8);(2)过F 作FG ∥OX ,如图1所示:∵∠BOY 的平分线和∠BEO 的平分线交于点F ,BOY FOY BOF ∠=∠=∠∴21,BEO OEF BEF ∠=∠=∠21, ∵BC ∥OX ,∴∠BEO =∠EOX , ……………………………3分 设∠BEO =2x ,则∠EOX =2x ,则∠FOX =21∠BOY +∠BOE +∠EOX =21∠BOY +n +2x , 又∵21∠BOY =21(90°-n -2x )=45°-21n -x ,∴∠FOX =45°-21n -x +n+2x =45°+21n +x , …………………4分∵BC ∥FG ∥OX ,∴∠EFG =∠BEF =x , ……………………………5分 ∴∠OFG =180°-∠FOX =135°-21n -x , ∴∠OFE =∠EFG +∠OFG =135°-21n ; ……………………6分 (3)存在某一时刻,使△OBD 的面积等于长方形ABCD 面积的32,t =2或 ;t =325………………………………………8分当长方形ABCD 在第一象限时,延长DA 交y 轴于M ,如图2所示, ∴AM ⊥OY ,∵S 矩形ABCD =2×6=12,S △OBD =S △ODM -S △ABD -S 梯形AMOB =12×32, ∴21×(8-t )×7-21×12-21(2+8-t )×1=12×32, 解得:t =3. …………………………………10分当长方形ABCD 在第四象限时,延长DA 交y 轴于E ,延长CB 交y 轴于F ,如图3所示,∴AE ⊥OY ,∴BF ⊥OY ,∵S △OBD =S △ODE -S 梯形BFED -S △OBF =12×32, ∴21×(t -8)×7 + 21(1+7)×2-21×1×(t -8+2)=12×32, 解得:t =325. ………………………………………12分第7页 共10页八年级数学试题参考答案一、选择题(本大题共6小题,每小题3分,共18分) 1.A 2. D 3.D 4. C 5.C 6.B 二、填空题(本大题共6小题,每小题3分,共18分) 7、3≤x ; 8、7; 9、下, 3; 10、34 ;11、2.5 ;12、1或2;三、(本大题5小题,每小题6分,共30分) 13、(1)解:原式=33631631+-…………………………2分 =33 ………………………………3分(2)能选取(1,—2)和(—1,2)两点画线为最佳,其他合理即可…… ………………………………6分 14、(1) (2)(1)CD 即为线段AB 的垂直平分线; (3 (2) ∠EAB =45°与∠F AB =45°两种情况写出一种即可 15、解:原式=ab ab a a b a b a 222))((-+÷-+=2)())((b a aa b a b a -∙-+ =b a b a -+当32+=a ,32-=b 时,原式=)32(32)32(32--+-++=324=33216. 解:能。
2016-2017学年初一下数学期末试卷含答案
2016~2017学年第二学期期末调研测试卷初一数学 2017.6本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1. 答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2. 考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1. 11()2-等于A.12 B.2 C.12- D.2- 2. 下列计算中,正确的是A. 235235x x x += B. 236236x x x =gC. 322()2x x x ÷-=- D. 236(2)2x x -=- 3. 不等式321x +>-的解集是A. 13x >- B. 13x <- C. 1x >- D. 1x <-4. 方程组425x y x y +=⎧⎨-=⎩的解是A. 31x y =⎧⎨=⎩ B. 22x y =⎧⎨=⎩ C. 13x y =⎧⎨=⎩ D. 4x y =⎧⎨=⎩ 5.如图,由下列条件不能得到//AB CD 的是A. 34∠=∠B. 12∠=∠C. 180B BCD ∠+∠=︒D. 5B ∠=∠6. 如图,已知点,,,A D C F 在同一条直线上,,AB DE BC EF ==,要使ABC DEF ∆≅∆,还需要添加一个条件是A. BCA F ∠=∠B. B E ∠=∠C. //BC EFD. A EDF ∠=∠ 7. 若2,2mna a ==,则2m na-的值是A. 1B. 12C.34 D. 438. 下列命题:①同旁内角互补,两直线平行;②若a b =,则a b =;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是A. 4个B. 3个C. 2个D. 1个9. 如图,在ABC ∆中,已知点,D E 分别为,BC AD 的中点,2EF FC =,且ABC ∆的面积12,则BEF ∆的面积为 A. 5 B.92 C. 4 D. 7210. 如图,在ABC ∆中,,,,50B C BF CD BD CE A ∠=∠==∠=︒,则FDE ∠的度数为 A. 75° B. 70° C. 65° D. 60°二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11. 已知一粒米的质量约为0. 000021千克,数字0. 000021用科学记数法表示为 . 12. 一个n 边形的内角和是720°,那么n = .13. 若0a >,并且代数式216x ax ++是一个完全平方式,则a = .14. 若5,3a b ab +==,则22a b + = .15. 若二元一次方程组2943x y x y +=⎧⎨-=⎩的解恰好是等腰ABC ∆的两边长,则ABC ∆的周长为 . 16. 若不等式组1020x x a +>⎧⎨-<⎩的最大正整数解是3,则a 的取值范围是 .17. 如图,四边形ABCD 中,点,M N 分别在,AB BC 上,将BMN ∆沿MN 翻折,得FMN ∆,若//,//MF AD FN DC ,则B ∠= .18. 如图所示,在ABC ∆中,,AB AC AD =是ABC ∆的角平分线,,DE AB DF AC ⊥⊥,垂足分别是,E F ,连结EF .给出下列结论:①DA 平分EDF ∠;②,AE AF DE DF ==;③EF AD ⊥;④图中共有5对全等三角形,其中正确的结论有 . (把你认为正确的结论的序号都填上)三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上) 19. (本题满分5分) 分解因式: 2(5)4x +-. 20. (本题满分5分)解方程组:1139x y x y ⎧-=⎪⎨⎪+=⎩ 21. (本题满分6分)先化简,再求值: 2(1)(2)(3)x x x +---,其中2x =-. 22. (本题满分6分)解不等式组:21113x x x +≥-⎧⎪+⎨>-⎪⎩,并把它的解集在数轴上表示出来.23. (本题满分8分)如图,C 是线段AB 的中点,123,CD CE ∠=∠=∠=. (1)求证: ACD BCE ∆≅∆;(2)若70A ∠=︒,求E ∠的度数.24. (本题满分8分)如图,方格纸中每个小正方形的边长均为1, ABC ∆的三个顶点都在小正方形的顶点上. (1)利用三角板在图中画出ABC ∆中AB 边上的高,垂足为H . (2)①画出将ABC ∆先向右平移2格,再向上平移2格得到的111A B C ∆ ; ②平移后,线段AB 扫过的部分所组成的封闭图形的面积为 .25. (本题满分8分)如图,CD 是ABC ∆的角平分线,点E 是AC 边上的一点,EC ED =. (1)求证: //ED BC ; (2) 30,65A BDC ∠=︒∠=︒,求DEC ∠的度数.26. (本题满分10分)某电器超市销售每台进价分别为200元、170元的,A B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本) (1)求,A B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27. (本题满分10分)如图,已知正方形ABCD 中,边长为10 cm ,点E 在AB 边上,BE = 6cm.点P 在线段BC 上以4 cm/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a cm/秒的速度由C 点向D 点运动,设运动的时间为t 秒.(1) CP 的长为 cm(用含t 的代数式表示);(2)若存在某一时刻t ,使得EBP ∆和PCQ ∆同时为等腰直角三角形时,求t 与a 的值. (3)若以,,E B P 为顶点的三角形和以,,P C Q 为顶点的三角形全等,求t 与a 的值.28. (本题满分10分) 探究发现:如图①,在ABC ∆中,45B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,且ADE AED ∠=∠,连结DE .(1)当60BAD ∠=︒时,求CDE ∠的度数;(2)当点D 在BC (点,B C 除外)边上运动时,试探究BAD ∠与CDE ∠的数量关系;深入探究:如图②,若B C ∠=∠,但45C ∠≠︒,其它条件不变,试继续探究BAD ∠与CDE ∠的数量关系.。
2016-2017学年第二学期七年级期末测试数学
2016-2017学年第二学期七年级期末测试(2017.6)数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷,满分为60分;第Ⅱ卷,满分为90分.本试卷满分为150分.考试时间为90分钟.2.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.3. 第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,超出答题区域作答无效。
本考试不允许使用计算器.第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 4的算术平方根是()A.±2B.2C.2D.22、下列图形中,不是轴对称图形的个数是()A.1B.2C.3D.43、如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°3题图4、下列各式计算正确的是( )A .()()xy xy xy 332=÷B .()1122+=+a a C .55a a a ÷= D .523a a a =⋅5、若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ) A.50°B.80°C .65°或50°D .50°或80°6、下列计算正确的是( ) A.235=- B.()ππ-=-332C.1535=⨯D.5315=7、下面的说法正确的个数为 ( )①若∠α=∠β,则∠α和∠β是一对对顶角;②若∠α与∠β互为补角,则∠α+∠β=180o; ③同旁内角相等,两直线平行;④过一点有且只有一条直线平行于已知直线; ⑤从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.A .1B .2C .3D .48、某装满水的水池按一定的速度放掉水池的部分水后,停止放水并立即按一定的速度注水,水池注满后停止注水,又立即按一定的速度放完水池的水,若水池的存水量为V (m 3),放水或注水时间为t (min ),则V 与t 的关系的大致图象只能是( )9 、满足75<<-x 的整数x 有( )个A.6个B.5个C.4个D.3个 10.下列说法正确的是( )A.有理数只是有限小数B.无理数是无限小数C.无限小数是无理数D. 是分数3πFE_ DCBA11. 如图所示,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 与D ,则∠DBC=( )A.30°B.20°C.15°D.10°12. 有6张写有数字的卡片(图1),它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( )A.61 B.31 C.21 D.3213. 如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是( )A .(1)(5)(2)B .(1)(2)(3)C .(2)(3)(4)D .(4)(6)(1)14、分别计算下列图形的周长;当图形的个数是n 时,用代数式表示图形的周长( ).图形个数 1 2 3 4 5 6 …… n周 长581114……A .3n+1 B.3n+5 C.3n+2 D.3n-111题图图1 图212题图15.如图,先将正方形ABCD 对折,折痕为EF , 将这个正方形展平后,再分别将A 、B 对折,使点A 、 点B 都与折痕EF 上的点G 重合,则∠NCG 的 度数是( )A.15°B.30°C.60°D.20°第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题4分,共24分) 16.若x 2+kx +25是一个完全平方式,则k = . 17.下列事件中,不确定事件是 .①两直线平行,内错角相等; ②拔苗助长; ③掷一枚硬币,国徽的一面朝上; ④太阳每天早晨从东方升起;⑤车辆随机到达一个路口,遇到红灯. 18. 如图,△ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度.19.如图,有一个五角星的图案,那么图中的∠A +∠B +∠C +∠D +∠E= 度. 20. 一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .21.已知:如图,△ABC 中,BO ,CO 分别是∠ABC 和∠ACB 的平分线,过O 点的直线分别交AB 、AC 于点D 、E ,且DE ∥BC .若AB =6cm ,AC =8cm ,则△ADE 的周长为______.765421320题图21题图18题图NM DG FCB EA15题EDCB A19题图三、解答题(共7小题,共66分,解答应写出文字说明,证明过程或演算步骤) 22.(本小题12分)化简或计算(1)3426)()(2y y - (2)232)()2(ab b a ÷ (3)2017201702)5()2.0()3()101(-⨯-+---π23. (本小题7分)如图,已知∠EFD=∠BCA , BC=EF ,AF=DC.线段 AB 和线段DE 平行吗?请说明理由.24.(本小题满分8分)①先化简,再求值:(x-2y )2-2(x-y)(x+y)+2y(x-3y),其中x=3,y=-1. ②解方程(x-3)³=6425.(本小题8分).Windows2003下有一个有趣的游戏“扫雷”,图中是扫雷游戏的一部分:说明:图中数字2表示在以该数字为中心的8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A 、B 、C 三个方格未被探明,其它地方为安全区(包括有数字的方格). (1)现在还剩下几个地雷?(2)A 、B 、C 三个方格中有地雷的概率分别是多大?26.(本小题9分)某地区要在S 小区内修建一个超市M , 如图,按照要求,超市M 到两个新建的居民小区A 、B 的 距离相等,到两条公路OC,OD 的距离也相等,这个超市M 应建在何处(在图上标出它的位置)?(要求:用尺规作图,保留作图痕迹,不写作法)23题图ABC DEF26图27.(本小题10分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ; (3)试估算口袋中黑、白两种颜色的球各有多少只?28.(本小题12分)在△ABC 中,AB=AC ,P 是△ABC 内任意一点,将AP 绕点A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ ,CP ;(1)如图1,试说明BQ=CP ;(2)若将点P 在△ABC 外,如图2,其它条件不变,结论依然成立吗?试说明理由.摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m58 96116295496610 摸到白球的频率nm0.580.64 0.58 0.59 0.620.6128题图(2)QBCPA28题图(1)BP。
2016-2017学年下学期七年级期末数学试卷
2016-2017学年下学期七年级期末数学试卷满分120分,考试时间100分钟一.选择题:(本大题8个小题,每小题3分,共24分) 1.不等式2(2)2x x -≤-的非负整数解的个数为( ) A.1个 B.2个 C.3个 D.4个2.方程组⎩⎨⎧=++=+32,12y x m y x 中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ) A .m >-4 B .m ≥-4 C .m <-4 D .m ≤-43.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( ) A .1B .2C .3D .44.把一张正方形纸片按如图(1)对折两次后,再挖去一个小圆孔,那么展开后的图形应为( )5.不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为()A .B.C. D. 6.如右图,∠A=320,∠B=450,∠C=380,则∠DFE 等于( ) A. 1150B. 1100 C. 1200D. 10507.重百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元, 但不超过300元一律9折;(3)一次性购物超过300元一律8折。
某人两次购物分别付款80元、252 元,如果他将这两次所购商品一次性购买,则应付款( )A 、288元B 、332元C 、288元或316元D 、332元或363元 8.已知△ABC ,(1)如图l ,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ︒+∠;(2)如图2,A .B .C .D . 图(1)ACD BEF0 1 2 3 4 012340 1 2 3 40 1 234若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90A ︒-∠;(3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=1902A ︒-∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016~2017学年度第二学期期末学业水平调研测试七年级数学及答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1. 9的算术平方根是()A. 3B. -3C. ±3D.【答案】A【解析】试题分析:9的算术平方根是3.故选C.考点:算术平方根.2. -8的立方根是()A. 2B. -2C. ±2D.【答案】B【解析】-8立方根是 .故选B.3. 在平面直角坐标系中,点(-3,-4)的位置在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】∵-3<0,-4<0,∴点P(-3,-4)在第三象限,故选C.4. 如图,∥,分别与,相交于点、,则图中与相等的角的个数有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】∵AB∥CD,∴∠AEF=∠CFG=∠DFE.∵∠AEF与∠BEH是对顶角,∴∠AEF=∠BEH.∴∠AEF=∠CFG=∠DFE=∠BEH.故选B.5. 下列各组数中,不是二元一次方程的一组解的是()A. B. C. D.【答案】C【解析】A. ∵-3+13=10,∴ 是二元一次方程的一组解;B.∵12-2=10,∴ 是二元一次方程的一组解;C.∵2+5=7≠10,∴ 不是二元一次方程的一组解;D.∵4+6=10,∴ 是二元一次方程的一组解;故选C.6. 若,则下列式子一定成立的是()A. B.C. D.【答案】B【解析】A.∵当a=2,b=1,∴ ,故不正确;B. ∵,∴ ,故正确;C. ∵,∴ ,故不正确;D. ∵,∴ ,故不正确;故选B.7. 下列关于统计图的说法中,错误的是()A. 条形图能够显示每组中的具体数据B. 折线图能够显示数据的变化趋势C. 扇形图能够显示数据的分布情况D. 直方图能够显示数据的分布情况【答案】C【解析】A. ∵条形图能够显示每组中的具体数据,故正确;B. ∵折线图能够显示数据的变化趋势,故正确;C. ∵扇形图能够显示部分与总体的关系,故不正确;D. ∵直方图能够显示数据的分布情况,故正确;故选C.8. 下列实数中,是无理数的是()A. 0B.C.D.【答案】C【解析】A. 0是有理数;B. 是有理数;C. 是无理数;D. 是有理数;故选C.9. 下列命题中,是真命题的是()A. 相等的角是对顶角B. 互补的角是邻补角C. 同旁内角是互补的角D. 邻补角是互补的角【答案】D【解析】A. 因对顶角相等,但相等的角不一定是对顶角,故是假命题;B.因邻补角一定互补,但互补的角不一定是邻补角,故是假命题;C. 因两直线平行,同旁内角互补,故是假命题;D. 因邻补角是互补的角,故是真命题;故选D.10. 如图,,,则()A. B. C. D.【答案】A【解析】∵∠1+∠2=180°,∴a∥b,∴∠7=∠3=108°,∴∠4=180°-108°=72°.故选A.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11. _______.【答案】【解析】 .12. 计算:________.【答案】【解析】13. 如图,,,则的度数是_______【答案】【解析】∵OC⊥OD,∴∠COD=90°,∴∠1+∠2=180°-90°=90°,∴∠2=90°-∠1=90°-50°=40°.14. 点在轴上,且到原点的距离为3,则点的坐标是_______.【答案】(-3,0),(3,0)【解析】当点A在原点得右侧时,坐标为(3,0);当点A在原点得左侧时,坐标为(-3,0);∴点A的坐标为(3,0)或(-3,0)15. 已知,则____________.【答案】9【解析】∵,∴.16. 数轴上有两个点和,点表示的数是,点与点相距2个单位长度,则点所表示的实数是______________.【答案】,【解析】当点B在点A的右侧时,点B所表示的实数是;当点B在点A的左侧时,点B表示的实数是;∴点B所表示的实数是或.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:.【答案】2【解析】.18. 如图,点,在直线上,点,在直线上,∥,,连结.(1)写出与相等的角;(2)求等于多少度.【答案】(1)∠CAD;(2)90°【解析】(1); 2分(2)∵,∴, 4分∴.19. 如图,正方形网格的每个小正方形边长为1,四边形的顶点都在格点上.(1)以点为坐标原点建立平面直角坐标系,写出四边形各顶点的坐标;(2)计算四边形的面积.【答案】(1)作图见解析;A(0,0),B(4,0),C(3,6),D(-2,4);(2)24. 【解析】(1)画平面直角坐标系(略), 1分(2)四边形的面积为36-5-4-3=24.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 解方程组:.【答案】【解析】由①得, 1分代入②得 3分, 4分把代入,得, 6分∴这个方程组的解是.21. 解不等式组:,并把解集在数轴上表示出来.【答案】【解析】不等式的解是, 2分不等式的解是, 2分∴不等式组的解是,22. 下面数据是20位同学的身高(单位:):156 154 161 158 164 150 163 160 159 155159 161 157 168 163 159 165 164 158 153(1)这组数据中,最大值与最小值的差是;(2)将这组数据分为5组:,,,,,则组距是;(3)完成下面频数分布表,并将频数分布直方图补充完整.【答案】(1)18;(2)4;(3)补图见解析.【解析】(1)18;(2)4;(3)五、解答题(三)(本大题3小题,每小题9分,共27分)23. 货主两次租用某汽车运输公司的甲,乙两种货车运送货物往某地,第一次租用甲货车2辆和乙货车3辆共运送15.5吨货物,第二次租用甲货车3辆和乙货车2辆共运送17吨货物,两次运输都按货车的最大核定载货量刚好将货物运送完,没有超载.(1)求甲,乙两种货车每辆最大核定载货量是多少吨?(2)已知租用甲种货车运费为每辆1200元,租用乙种货车运费为每辆800元,现在货主有24吨货物需要运送,而汽车运输公司只有2辆甲种货车,其它的都是乙种货车,问有几种租车方案?哪种方案费用较少?【答案】(1)甲种货车最大载货量是4吨,乙种货车最大载货量是2.5吨;(2)共有3种租车方案,租用1辆甲种货车,8辆乙种货车费用较少.【解析】(1)设甲,乙两种货车每辆核定最大载货量为吨,吨, 1分学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...解得, 4分答:甲种货车最大载货量是4吨,乙种货车最大载货量是2.5吨; 5分(2)设租用辆乙种货车,①若全部租用乙种货车,则,,需用10辆乙种货车,费用为8000元, 6分②若租用1辆甲种货车,其余为乙种货车,则,,用1辆甲种货车,8辆乙种货车,刚好把货物运完,费用为7600元, 7分③若租用2辆甲种货车,其余为乙种货车,则,,需租用2辆甲种货车,7辆乙种货车,费用为8000元, 8分综上所述,共有3种租车方案,租用1辆甲种货车,8辆乙种货车费用较少.24. 如图,点,,分别是三角形的边,,上的点,∥,.(1)求证:∥(请同学们在答题卡上将证明过程补充完整);(2)与相等吗?为什么?请说出理由;(3)求证:.【答案】(1)证明见解析;(2);理由见解析;(3)证明见解析.【解析】(1)证明:∵∥,∴. 1分又∵,∴, 2分∴∥(理由是:同位角相等,两直线平行); 3分(2). 4分理由是:∵∥,∴,∵∥,∴,∴; 6分(3)由(1)得∥,∴, 7分∵∥,∴, 8分又,∴.25. 如图,在直角坐标系中,点在直线上,点、的坐标分别是(-1,0),(1,2),点的横坐标为2,过点作轴于,过点作轴于,直线与轴交于点.(1)若,,求(用,表示);(2)已知直线上的点的横坐标与纵坐标都是二元一次方程的解(同学们可以用点、的坐标进行检验),直线上的点的横坐标与纵坐标都是二元一次方程的解,求点、的坐标;(3)解方程组,比较该方程组的解与两条直线的交点的坐标,你得出什么结论?11【答案】(1);(2)点的坐标为(2,3);点的坐标是(0,4); (3)直线与直线的交点坐标就是方程组的解. 【解析】(1)∵轴,轴,∴∥, 1分∴,,∴; 3分 (2)∵点的横坐标为2,把代入方程, 解得,∴点的坐标为(2,3); 4分 ∵点在轴上,∴点的横坐标为0, 5分把代入,解得,∴点的坐标是(0,4); 6分 (3)方程组的解是, 7分 ∵点的坐标是(1,2), ∴直线与直线的交点坐标就是方程组的解.。