串联釜实验数据处理报告

合集下载

多釜串联反应器及管式反应器返混测定实验

多釜串联反应器及管式反应器返混测定实验

多釜串联反应器及管式反应器返混测定实验多釜串联返混实验装置是测定带搅拌器的釜式液相反应器中物料返混情况的一种设备,它对加深了解釜式反应器的特性是最好的实验手段之一。

通常是在固定搅拌马达转数和液体流量的条件下,加入示踪剂,由各级反应釜流出口测定示踪剂浓度随时间变化曲线,再通过数据处理得以证明返混对釜式反应器的影响,并能通过计算机得到停留时间分布密度函数及多釜串联流动模型的关系。

此外,也可通过其它种类反应器进行对比实验,进而更深刻的理解各种反应器的特性。

本实验通过管式反应器与三釜串联反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。

一、实验目的(1) 掌握停留时间分布的测定方法。

(2) 了解停留时间分布与多釜串联模型的关系。

(3) 了解模型参数n 的物理意义及计算方法。

二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。

返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数f(t)和停留时间分布函数F(t)。

停留时间分布密度函数f(t)的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率N dN 为f(t)dt 。

停留时间分布函数F(t)物理意义是:流过系统的物料中停留时间小于t 的物料的分率。

停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。

当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知()()Q dt t C V dt t f ⋅= (1)()⎰∞=0dt t VC Q (2)所以 ()()()()()dt t C t C dt t VC t VC t f ⎰⎰∞∞==00 (3) 由此可见()t f 与示踪剂浓度()t C 成正比。

多釜串联

多釜串联

实验报告课程名称: 化工专业实验1 指导老师: 黄灵仙 成绩:__________________ 实验名称: 多釜串联流动特性的测定 实验类型:___________同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的1.观察了解多釜串联的流动特性,并与理想流型特性曲线作比较。

2.掌握用脉冲示踪法测定停留时间分布的实验方法及数据处理。

3.根据单个釜的流动特性推测四釜串联的理论流动特性,并与实际测量值进行比较。

二、实验内容和原理1.对于等容积理想全混式多釜串联的流动,如用脉冲示踪法测定其出口浓度变化曲线,经过换算,可得到停留时间分布的密度函数E ( t ),即1()(1)!N Nt N tN t E t eN t t --⎛⎫= ⎪-⎝⎭(1)令-=t t /θ,代入上式 θθθN N Ne N N E ---=1)()!1()( (2)式中 N —釜数t — 整个装置的平均停留时间,(= N(V R )i / v)(V R )i — 每一小釜的体积 v — 流体流量据式(1),(2)可计算一组理想全混式的流动曲线,如图一(a )所示,由于实验测定的是出口浓度变化曲线C ( t ) ~ t ,如图一(b )所示,经下列关系换算,可得E ( t )()()()C t C t E t Co Cdt∞==⎰ 或写成离散型函数1()()nC t E t C t=-∆∑及 1()()()ntC t E tE t C tθ==∆∑ (3)据式(3)可得一组实验测定E ( θ ) ~ θ曲线,可与图一(a )所得到的一组曲线进行拟合比较。

(a )理论值(b )实验值图1 多釜串联的停留时间分布曲线2.计算实测分布曲线的均值(t )和方差2θσ因为 21Nθσ=由上式可计算的模型参数N (釜数)及t ,再与理论值进行比较。

化工专业实验釜式反应器实验报告

化工专业实验釜式反应器实验报告

化工专业实验釜式反应器实验报告实验名称:实验釜式反应器的使用和操作实验目的:通过对实验釜式反应器的使用和操作,掌握化工反应器的基本原理和操作技能。

实验仪器:实验釜式反应器、温度计、压力表、搅拌器、热水循环装置等。

实验原理:实验釜式反应器是一个封闭的容器,可以进行化学反应。

反应器通常由主体部分、传热传质的搅拌系统、传热系统、控制系统等组成。

在反应过程中,通过对温度、压力等参数的监控和调节,实现对反应的控制。

实验步骤:1.首先检查实验釜式反应器和相关设备的完整性和安全性,确保各项设备正常运行;2.将所需的反应物添加到实验釜式反应器中,并按照比例加入溶剂或催化剂等;3.根据实验要求设定反应温度、压力和搅拌速度等参数;4.打开搅拌器和传热系统,开始反应;5.在反应过程中,定期记录反应温度、压力和搅拌速度等参数的变化,并根据实际情况进行调整;6.当反应达到预定时间后,停止搅拌器和传热系统,并关闭反应器的出口阀门;7.等待反应结束后,将产物从反应器中取出,并进行相应的分析和检测。

实验结果与分析:通过对实验釜式反应器的使用和操作,我们成功完成了一系列化学反应。

根据反应过程中监测到的数据,我们可以得出以下结论:1.反应温度的控制对反应的进行起着关键作用。

在温度过高或过低的情况下,反应速率会受到影响,导致产物不纯或反应效果不达预期。

因此,在实验中需要对反应温度进行严格的控制和调节。

2.反应时间对反应结果也有着重要的影响。

在一些反应中,反应时间过长可能导致产物的分解或降解,从而影响反应的效果。

而反应时间过短则可能导致反应不完全,产物产率低。

因此,合理控制反应时间,可以得到理想的反应结果。

3.实验釜式反应器具有良好的密封性能,可以保证反应过程中的安全性。

在实验过程中,我们没有出现泄漏或其他安全问题,验证了实验釜式反应器的可靠性和稳定性。

结论:通过本次实验,我们成功掌握了化工专业实验釜式反应器的使用和操作。

我们深入了解了实验釜式反应器的基本原理和操作技巧,并能够根据实际需求进行合理的调节和控制。

多釜串联反应器及管式反应器返混测定实验

多釜串联反应器及管式反应器返混测定实验

多釜串联反应器及管式反应器返混测定实验多釜串联返混实验装置是测定带搅拌器的釜式液相反应器中物料返混情况的一种设备,它对加深了解釜式反应器的特性是最好的实验手段之一。

通常是在固定搅拌马达转数和液体流量的条件下,加入示踪剂,由各级反应釜流出口测定示踪剂浓度随时间变化曲线,再通过数据处理得以证明返混对釜式反应器的影响,并能通过计算机得到停留时间分布密度函数及多釜串联流动模型的关系。

此外,也可通过其它种类反应器进行对比实验,进而更深刻的理解各种反应器的特性。

本实验通过管式反应器与三釜串联反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。

一、实验目的(1) 掌握停留时间分布的测定方法。

(2) 了解停留时间分布与多釜串联模型的关系。

(3) 了解模型参数n 的物理意义及计算方法。

二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。

返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数f(t)和停留时间分布函数F(t)。

停留时间分布密度函数f(t)的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率N dN 为f(t)dt 。

停留时间分布函数F(t)物理意义是:流过系统的物料中停留时间小于t 的物料的分率。

停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。

当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知()()Q dt t C V dt t f ⋅= (1)()⎰∞=0dt t VC Q (2)所以 ()()()()()dt t C t C dt t VC t VC t f ⎰⎰∞∞==00 (3) 由此可见()t f 与示踪剂浓度()t C 成正比。

串联流动反应釜停留时间分布的测定

串联流动反应釜停留时间分布的测定

附页:数据处理结果一、单釜实验部分 1, 原始图表2,原始电导率的Origin60作图200400600800100012001400160018000.70.80.91.01.11.21.31.41.5图1 单釜原始图像图2 单釜原始电导率作图3,平滑后原始电导率的Origin60作图200400600800100012001400160018000.70.80.91.01.11.21.31.41.54,浓度与时间的Origin60作图200400600800100012001400160018001020304050图3 单釜平滑后电导率作图 图4 单釜实验KCl 浓度与时间的关系图5,选取数据点计算数学期望、方差及模型参数根据要求,按离散化方法取30个数据点,如表1所示表1 单釜实验选取数据表二、多釜实验部分 1,原始图表2,原始电导率的Origin60作图1002003004005000.81.01.21.41.61.82.0图5 多釜原始图像图6 多釜原始电导率作图3,平滑后原始电导率的Origin60作图1002003004005000.81.01.21.41.61.82.04,浓度与时间的Origin60作图100200300400500010203040506070图7 多釜平滑后电导率作图图8 多釜实验KCl 浓度与时间的关系图5,选取数据点计算数学期望、方差及模型参数根据要求,按离散化方法取30个数据点,如表1—表3所示表2 多釜中釜1的选取数据表。

实验七 多釜串联流动特性的测定

实验七 多釜串联流动特性的测定

实验报告课程名称: 化工专业实验 指导老师: 成绩:________________实验名称: 多釜串联流动特性的测定 实验类型: 反应工程实验 同组学生姓名: 一、实验目的和要求 二、实验内容和原理 三、主要仪器设备 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得一、实验目的1.观察了解多釜串联的流动特性,并与理想流型特性曲线作比较。

2.掌握用脉冲示踪法测定停留时间分布的实验方法及数据处理。

3.根据单个釜的流动特性推测四釜串联的理论流动特性,并与实际测量值进行比较。

二、实验原理1.对于等容积理想全混式多釜串联的流动,如用脉冲示踪法测定其出口浓度变化曲线,经过换算,可得到停留时间分布的密度函数E ( t ),即1()(1)!N Nt N tN t E t eN t t --⎛⎫= ⎪-⎝⎭ (1)()1()(1)!N N N t E N e N t θθθθ--⎛⎫==⎪-⎝⎭…………(2) 式中 N —釜数t — 整个装置的平均停留时间,(= N (V R )i / v ) (V R )i — 每一小釜的体积 v — 流体流量据式(1),(2)可计算一组理想全混式的流动,由于实验测定的是出口浓度变化曲线C ( t ) ~ t ,经下列关系换算,可得E ( t )()()()C t C t E t CoCdt∞==⎰ 或写成离散型函数1()()nC t E t C t=-∆∑及 1()()()ntC t E tE t C tθ==-∆∑ (3)据式(3)可得一组实验测定E ( θ ) ~ θ曲线,可与图1(a)所得到的一组曲线进行拟合比较。

(a)理论值(b)实验值图1 多釜串联的停留时间分布曲线2.计算实测分布曲线的均值(t)和方差2θσ因为21 Nθσ=由上式可计算的模型参数N(釜数)及t,再与理论值进行比较。

三、实验装置及仪器本装置由四个搅拌釜反应器组成,分别装备了不同类型的搅拌桨和挡板,每个搅拌釜反应器可独立操作,也可以串联操作。

实验一 多釜串联连续流动反应器中停留时间分布的测定

实验一  多釜串联连续流动反应器中停留时间分布的测定

实验一多釜串联连续流动反应器中停留时间分布的测定一、实验目的本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。

1、掌握停留时间分布的测定方法;2、了解停留时间分布与多釜串联模型的关系;3、掌握多釜串联模型参数N的物理意义及计算方法。

二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。

返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。

然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数E(t)和停留时间分布函数F(t)。

停留时间分布密度函数E(t)的物理意义是:同时进入的N个流体粒子中,停留时间介于t到t+dt间的流体粒子所占的分率dN/N为E(t)dt。

停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t的物料所占的分率。

停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。

当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知:E(t)dt=VC(t)/Q (1)⎰∞=)(dtt VCQ (2)所以 ⎰⎰∞∞==)()()()()(dtt C t C dtt VC t VC t E (3)由此可见E (t )与示踪剂浓度C (t )成正比。

本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。

在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。

多釜串联返混性能测定实验

多釜串联返混性能测定实验

多釜串联返混性能测定实验实验基本要求及注意事项:(1) 书包放书包柜或实验台最外侧柜子;(2) 必须穿实验服;(3) 实验完成后清扫桌面和地面;关闭锁好窗户拉好窗帘;(4) 老师在原始数据上签字后方可离开实验室;(5) 实验操作规程在设备对应实验台的第一个抽屉内。

1实验前准备工作1.1检查并确认水箱内水满(去离子水);用100ml烧杯配好饱和KCl溶液待用。

1.2电导率仪调节:按下绿色按钮后,打开电导率仪开关,将温度补偿旋钮调至25℃,按“测量”档位至“×103”,“调零”旋钮调至“0.000”;按下“校正”键,校对电极常数与电极棒常数(已标在电极棒上)相一致;再按“测量”档位至“×103”。

注意不要碰触蓝色电极棒,以免损坏。

1.3 检查搅拌釜及其控制系统:搅拌马达控制器电源为关闭状态(“0”),搅拌转速为0(旋钮逆时针旋到头);关闭各釜下底阀门(注意:左手扶住阀体,右手顺时针方向扳阀柄至水平位。

固定阀柄的螺母松动后,应及时拧紧)。

1.4记录实验室温度和各反应釜的体积(体积已标在相应反应釜上)。

1.5确认离心泵旁路阀已打开,多釜进水阀和流量计阀门已关闭,启动离心泵(按下黄色按钮)。

1.6打开计算机,点击桌面上文件名为“dfc”的实验装置图标进入操作系统界面。

2三釜串联实验2.1向釜内加水:打开多釜进水阀,慢慢打开转子流量计调节阀至20L/hr,向釜内注水至红色刻线。

此期间,当水位没过搅拌桨时,开启搅拌釜上方搅拌马达开关(“1” ),用旋钮缓慢调节马达转速至200rpm。

通过调节搅拌釜左侧π形管高度,控制各釜内的液位至红色刻线。

2.2实验及采集数据:各釜内液位稳定在红色刻线后,调节电导仪调零旋钮至“0.000”,以扣除本底。

点击“实验操作”“参数设定”“采样频率”调为5s“确定”;“实验操作”“多釜实验”;“实验操作”“开始实验”。

点击“结果显示”“曲线图”,待跑线稳定后,用注射器取3ml饱和KCl溶液,赶气泡并用滤纸吸干注射器外面液体后,迅速注入第一釜。

实验四_多釜串联返混性能测定

实验四_多釜串联返混性能测定

实验四 多釜串联返混性能测定
4
实验原理(续)
停留时间分布密度函数 f(t)正比于反应器出口 示踪剂的浓度.因此,本实验中用水作为物料,
使用饱和KCl溶液作为示踪剂,在系统出口处 安装了一套电导检测系统。由于在一定的KCl 水溶液浓度范围内,其浓度正比于电导值。显 然,所测系统的物料停留时间密度函数正比于 系统出口处KCl水溶液的电导值,即 E(t)∝L(t),L(t)为t时刻水溶液的电导值。
实验装置图
实验流程图
实验四 多釜串联返混性能测定
6
4 操作步骤
4.1 准备工作 (1)将饱和KCl液体注入标有KCl的储瓶内,将 水注入标有H2O的储瓶内。 (2)连接好入水管线,打开自来水阀门,使管 路充满水。 (3)检查电极导线连接是否正确。
实验四 多釜串联返混性能测定
7
4.2 操作步骤(续)
(1)打开总电源开关、水位控制开关、入水阀门, 当水位指示绿灯亮后,打开进水转子流量计的 阀门,调节水流量维持在30升/时 。
(2)分别开启三个釜的搅拌,后再调节马达转速, 使三釜搅拌程度大致相同。开启电磁阀和电导 仪并校正,使电导仪表针指示为满刻度1.0。 将拨钮扳至“测量”位置,准备测量。
实验四 多釜串联返混性能测定
通常是在固定搅拌马达转数和液体流量的条件下加入示踪剂由各级反应釜流出口测定示踪剂浓度随时间变化曲线再通过数据处理得以证明返混对釜式反应器的影响并能通过计算机得到停留时间分布密度函数及多釜串联流动模型的关系
实验四_多釜串联返混性 能测定
综述
多釜串联返混实验装置是测定带搅拌器的釜 式反应器中物料返混情况的一种设备。通常 是在固定搅拌马达转数和液体流量的条件下, 加入示踪剂,由各级反应釜流出口测定示踪 剂浓度随时间变化曲线,再通过数据处理得 以证明返混对釜式反应器的影响,并能通过 计算机得到停留时间分布密度函数及多釜串 联流动模型的关系。

专业实验多釜串联反应器返混的测定新MicrosoftWord文档

专业实验多釜串联反应器返混的测定新MicrosoftWord文档

实验一连续流动反应器中返混的测定A 实验目的本实验通过三釜串联反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。

(1)用脉冲示踪法测定停留时间分布及数据处理方法; (2)了解停留时间分布与多釜串联模型的关系; (3)了解模型参数N 的物理意义及计算方法。

B 实验原理在连续流动反应器中,由于反应物料的返混以及在反应器内出现的层流,死角,短路等现象,使得反应物料在反应器中的停留时间有长有短,即形成停留时间分布,影响反应进程和最终结果。

测定物料的停留时间分布是描述物料在反应器内的流动特性和进行反应器设计计算的内容之一。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数f(t)和停留时间分布函数F(t)。

停留时间分布密度函数f(t)的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+△t 间的流体粒子所占的分率dN /N 为f(t)dt 。

停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t 的物料的分率。

停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。

当系统达到稳定后,在系统的人口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知由此可见f(t)与示踪剂浓度C(t)成正比。

因此,本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液电导值。

在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即f(t)∝L(t),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。

停留时间分布密度函数f(t)在概率论中有两个特征值,平均停留时间(数学期望)t 和方差2t σ。

t 的表达式为:采用离散形式表达,并取相同时间间隔△t ,t 的表达式为:2tσ的表达式为:若用离散形式表达,并取相同△t ,则:若用无量纲对比时间θ来表达,即t t θ=, ()()()()()()()()()()()()000V C t dt f t dt 1Q Q V C t dt 2VC t C t Vf t C t = 3Q V C t dt C t dt∞∞∞====⎰⎰⎰()()()0tC t dt t tf (t )dt 4 C t dt∞∞∞==⎰⎰⎰()()()()()NNi 1i 1NNi 1i 1t C t t t L t t 5C t t L t ∆∆====⋅⋅==∑∑∑∑()()()()()2222t 00 t t f t dt t f t dt t 6σ∞∞=-=-⎰⎰()()()()()()()()()()N N N2222222i 1i 1i 1t N N Ni 1i 1i 1t f t t C t t L t t t t 7f t C t L t σ=======-=-=-∑∑∑∑∑∑()()()0C t L(t)f t = = L(t)t C t dt ∞∆∑⎰在测定了一个系统的停留时间分布后,如何来评价其返混程度,则需要用反应器模型来描述。

实验一 多釜串联连续流动反应器中停留时间分布的测定

实验一  多釜串联连续流动反应器中停留时间分布的测定

实验一多釜串联连续流动反应器中停留时间分布的测定一、实验目的本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。

1、掌握停留时间分布的测定方法;2、了解停留时间分布与多釜串联模型的关系;3、掌握多釜串联模型参数N的物理意义及计算方法。

二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。

返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。

然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数E(t)和停留时间分布函数F(t)。

停留时间分布密度函数E(t)的物理意义是:同时进入的N个流体粒子中,停留时间介于t到t+dt间的流体粒子所占的分率dN/N为E(t)dt。

停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t的物料所占的分率。

停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。

当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知:E(t)dt=VC(t)/Q (1)⎰∞=)(dtt VCQ (2)所以 ⎰⎰∞∞==)()()()()(dtt C t C dtt VC t VC t E (3)由此可见E (t )与示踪剂浓度C (t )成正比。

本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。

在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。

多釜串联反应器及管式反应器返混测定实验

多釜串联反应器及管式反应器返混测定实验

多釜串联反应器及管式反应器返混测定实验多釜串联返混实验装置是测定带搅拌器的釜式液相反应器中物料返混情况的一种设备,它对加深了解釜式反应器的特性是最好的实验手段之一。

通常是在固定搅拌马达转数和液体流量的条件下,加入示踪剂,由各级反应釜流出口测定示踪剂浓度随时间变化曲线,再通过数据处理得以证明返混对釜式反应器的影响,并能通过计算机得到停留时间分布密度函数及多釜串联流动模型的关系。

此外,也可通过其它种类反应器进行对比实验,进而更深刻的理解各种反应器的特性。

本实验通过管式反应器与三釜串联反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。

一、实验目的(1) 掌握停留时间分布的测定方法。

(2) 了解停留时间分布与多釜串联模型的关系。

(3) 了解模型参数n 的物理意义及计算方法。

二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。

返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数f(t)和停留时间分布函数F(t)。

停留时间分布密度函数f(t)的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率N dN 为f(t)dt 。

停留时间分布函数F(t)物理意义是:流过系统的物料中停留时间小于t 的物料的分率。

停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。

当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知()()Q dt t C V dt t f ⋅= (1)()⎰∞=0dt t VC Q (2)所以 ()()()()()dt t C t C dt t VC t VC t f ⎰⎰∞∞==00 (3) 由此可见()t f 与示踪剂浓度()t C 成正比。

实验九多釜串联反应器停留时间分布测定实验

实验九多釜串联反应器停留时间分布测定实验

实验九 多釜串联反应器停留时间分布测定实验一、目的1.利用电导率测定单釜及三釜串联液相反应器停留时间分布密度函数及多釜串联流动模型的关系。

2.掌握停留时间分布的统计特征值的计算方法。

3.学会用理想反应器串联模型来描述实验系统的流动特性。

4.了解微机系统数据采集的方法。

二、装置与流程本实验装置为浙江中控科教仪器设备有限公司的产品,见图1。

反应器为有机玻璃制成的搅拌釜,其中1000mL 搅拌釜3个;3000 mL 搅拌釜1个;搅拌方式为叶轮搅拌;供分别进行单釜、三釜串联停留时间的实验测定。

釜内搅拌器由直流电机经端面磁驱动器间接驱动,并由转速调节仪进行调控和测速。

主流流体(水)例子水槽,经水泵加压,用阀1、阀2调节,流量计计量流量,加入单釜或第1釜顶部,再由釜底排出或进入第2釜,逐级下流,由第3釜釜底排出流进下水道。

示踪剂可依需要,分别由各釜釜顶注入口注入。

单釜反应器设有单独的主流量控制阀阀1和示踪剂电磁控制阀。

三釜串联反应器同样设有单独主流量控制阀阀2和示踪剂电磁控制阀。

实验用的示踪剂为KCI 或 KNO 3的饱和溶液,通过电磁阀瞬时注入反应器,示踪剂在不同时刻浓度()τC 的由设在各釜底部排出管处的铂电极检测,铂电极在图1中未示出。

铂电极即是电导率仪的传感器,当含有KCI 或 KNO 3的水溶液通过安装在釜内液相出口处铂电极时,电导率仪将浓度()τC 转化为毫伏级的直流电压信号,该信号经放大器与A/D 转化卡处理后,由模拟信号转换为数字信号。

代表浓度()τC 的数字信号由微机内用预先输入的程序进行数据采集记录和处理,并且形成相应的实验原始数据文件,供拷贝或用打印机输出。

数据采集原理方框图见图2。

实验试剂:主流体:自来水 示踪剂:KCl 或KNO 3饱和溶液1图1 多釜串联反应器停留时间分布测定实验流程图图2 数据采集原理方框图三、基本原理1.停留时间分布密度函数()τE 、停留时间分布函数()τF 测定方法本实验停留时间分布测定所采用示踪响应法。

实验四_多釜串联返混性能测定

实验四_多釜串联返混性能测定
(1)打开总电源开关、水位控制开关、入水阀门, 当水位指示绿灯亮后,打开进水转子流量计的 阀门,调节水流量维持在30升/时 。
(2)分别开启三个釜的搅拌,后再调节马达转速, 使三釜搅拌程度大致相同。开启电磁阀和电导 仪并校正,使电导仪表针指示为满刻度1.0。 将拨钮扳至“测量”位置,准备测量。
实验四 多釜串联返混性能测定
2.全混流反应器应具有什么样的特征?如何用实验 的方法判断是否达到全混流反应器的模型要求? 如果尚未达到,应如何调整?
3.何谓示踪剂?对示踪剂有哪些要求?在反应器入 口处注入示踪剂时应注意什么?
4.模型参数n与实验中测得n有何不同,为什么?
实验四 多釜串联返混性能测定
11
多釜串联返混性能测定装置
实验四 多釜串联返混性能测定
12
实验四 多釜串联返混性能测定
13
结束语
谢谢大家聆听!!!
14
实验四 多釜串联返混性能测定
2
1 实验目的
1 通过实验了解停留时间分布测定的基本原理 和实验方法;
2 掌握停留时间分布的统计特征值的计算方法; 3 了解停留时间分布密度函数与多釜串联流动
模型的关系; 4 了解多釜串联模型中模型参数n的物理意义;
实验四 多釜串联返混性能测定
3
2 实验原理
返混程度的大小,通常是利用物料停留 时间分布的测定来研究返混程度。但是 返混与停留时间分布两者不存在一一对 应关系,因此不能直接把测定的停留时 间分布用于描述微团间充分混和系统的 返混程度,而要藉助于符号实际流动模 型方法。
实验四 多验装置如附图所示。由三釜串联系统组成, 三釜串联反应器中每个釜的体积为1L。实验时, 水经转子流量计流入三釜串联系统,待系统稳 定后,在三釜串联系统的第一只反应釜的进口 注入示踪剂,借助安置在每个反应釜出口处的 电导测试系统可以检测示踪剂浓度变化情况, 并由记录仪连续记录。

实验一 多釜串联连续流动反应器中停留时间分布的测定

实验一  多釜串联连续流动反应器中停留时间分布的测定

实验一多釜串联连续流动反应器中停留时间分布的测定一、实验目的本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。

1、掌握停留时间分布的测定方法;2、了解停留时间分布与多釜串联模型的关系;3、掌握多釜串联模型参数N的物理意义及计算方法。

二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。

返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。

然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。

所用的概率分布函数为停留时间分布密度函数E(t)和停留时间分布函数F(t)。

停留时间分布密度函数E(t)的物理意义是:同时进入的N个流体粒子中,停留时间介于t到t+dt间的流体粒子所占的分率dN/N为E(t)dt。

停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t的物料所占的分率。

停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。

当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知:E(t)dt=VC(t)/Q (1)⎰∞=)(dtt VCQ (2)所以 ⎰⎰∞∞==)()()()()(dtt C t C dtt VC t VC t E (3)由此可见E (t )与示踪剂浓度C (t )成正比。

本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。

在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。

多釜串联实验装置指导书

多釜串联实验装置指导书

多釜串连实验装置实验指导书串联流动反应器停留时间分布的测定一.实验目的1.通过实验了解:利用电导率测定停留时间分布的基本原理和实验方法。

2.掌握停留时间分布的统计特征值的计算方法3.学会用理想反应器串联模型来描述实验系统的流动特性。

4.了解微机系统数据采集的方法。

二.实验原理本实验停留时间分布测定所采用的主要是示踪响应法。

它的原理是:在反应器入口用电磁阀控制的方式加入一定量的示踪剂KNO 3,通过电导率仪测量反应器出口处水溶液电导率的变化,间接的描述反应器流体的停留时间。

常用的示踪剂加入方式有脉冲输入,阶跃输入和周期输入等。

本实验选用脉冲输入法。

脉冲输入法是在较短的时间内(0.1~1.0秒),向设备内一次注入一定量的示踪剂,同时开始计时并不断分析出口示踪物料的浓度c(t)随时间的变化。

由概率论知识,概率分布密度E(t)就是系统的停留时间分布密度函数。

因此,E(t)dt 就代表了流体粒子在反应器内停留时间介于t-dt 间的概率。

在反应器出口处测得的示踪计浓度c(t)于时间t 的关系曲线叫响应曲线。

由响应曲线可以计算出E(t)与时间t 的关系,并绘出E(t)-t 关系曲线。

计算方法是对反应器作示踪剂的物料衡算,即()dt t mE dt t Qc )(= (1)式中Q 表示主流体的流量,m 为示踪剂的加入量,示踪剂的加入量可以用下式计算⎰∞=0)(dt t Qc m (2)在Q 值不变的情况下,由(1)式和(2)式求出⎰∞=)()()(dtt c t c t E (3)关于停留时间分布的另一个统计函数是停留时间分布函数F(t),即⎰∞=0)()(dt t E t F (4)用停留时间分布密度函数E(t)和停留时间分布函数F(t)来描述系统的停留时间,给出了很好的统计分布规律。

但是为了比较不同停留时间分布之间的差异,还需引进两个统计特征,即数学期望和方差。

数学期望对停留时间分布而言就是平均停留时间t ,即⎰⎰⎰∞∞∞==00)()()(dt t tE dtt E dt t tE t (5)方差是和理想反应器模型关系密切的参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档