三角形说理题9
八年级上册数学三角形判定说课稿9篇
八年级上册数学三角形判定说课稿9篇八年级上册数学三角形判定说课稿9篇说课稿能够促进教师的自我反思和专业成长,通过不断反思、总结和探究教学方法和教学策略,来提高自己的教学能力。
能够提高教学效果和教学质量,是课堂教学不可或缺的重要组成部分。
现在随着小编一起往下看看八年级上册数学三角形判定说课稿,希望你喜欢。
八年级上册数学三角形判定说课稿【篇1】一、教材分析(说教材):1、教材所处的地位和作用:这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。
在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。
本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的SSS和SAS。
④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。
⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点、难点:①掌握并理解三角形全等的判定定理②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题二、教学策略(说教法)1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。
探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。
这样学生就更容易理解和掌握定理。
在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
说理与证明-精选题(包含答案与详细讲解)
说理与证明一、命题与定理1、在下列空格内填上正确或错误:(1)在同一平面内,到三角形三边距离相等的点只有一个正确.(2)在同一平面内,到三角形三边所在直线距离相等的点只有一个错误.(3)三角形三条角平分线交于一点正确.(4)等腰三角形底边中点到两腰的距离相等正确.(5)三角形是以它的角平分线为对称轴的轴对称图形错误.2、下列命题中,属于真命题的是()A、若一个角的补角大于这个角B、若a∥b,b∥c,则a∥cC、若a⊥c,b⊥c,则a∥bD、互补的两角必有一条公共边3、已知命题①一个命题是真命题,它的逆命题也是真命题.②如果ab=0,那么a=0,b=0.③三角形三条边的垂直平分线的交点到三条边的距离相等.④等腰三角形两底角的平分线相等.真命题有()A、1B、2C、3D、44、(2010•芜湖)下列命题中是真命题的是()A、对角线互相垂直且相等的四边形是正方形B、有两边和一角对应相等的两个三角形全等C、两条对角线相等的平行四边形是矩形D、两边相等的平行四边形是菱形5、(2010•泰州)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程的解是x=0;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有()A、1个B、2个C、3个D、4个6、(2010•广州)下列命题中,是真命题的是()A、若a•b>0,则a>0,b>0B、若a•b<0,则a<0,b<0C、若a•b=0,则a=0,且b=0D、若a•b=0,则a=0,或b=07、(2010•巴中)下列命题是真命题的是()A、若a2=b2,则a=bB、若x=y,则2﹣3x>2﹣3yC、若x2=2,则x=±D、若x3=8,则x=±28、(2008•漳州)下列命题是假命题的是()A、等角的补角相等B、内错角相等C、两点之间,线段最短D、两点确定一条直线9、任何命题都有逆命题.√10、写出你熟悉的一个定理:两直线平行,同位角相等,写出这个定理的逆定理:同位角相等,两直线平行..11、命题“如果∠1与∠2是邻补角,那么∠1+∠2=180°”.它的逆命题是如果∠1+∠2=180°,那么∠1与∠2是邻补角..12、写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是到角的两边距离相等的点在角平分线上.13、在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C,以其中两个作为题设,另外一个作为结论,用“如果…那么…”的形式,写出一个你认为正确的结论:如果AB∥DC,∠A=∠C,那么AD=BC.14、(1)如图1,矩形ABCD中,AB:BC=2:3,点E、F分别在边AD和CD上,且AF⊥BE于O,求的值;(2)在上面的问题中,若=k,通过变式,我们可以得到如下的两个命题:①若将AF沿直线AB方向平移到PQ,将BE沿直线AD方向平移到RS,然后将PQ与RS同时绕点O旋转(保持PQ 与RS垂直),则=k;②设P、R、Q、S依次是矩形的边AB、BC、CD、DA上的点,若=k,则PQ⊥RS.(Ⅰ)判断命题的真假性:①真命题;②假命题;(在横线上填“真命题”或“假命题”)(Ⅱ)若其中有假命题,请你在图3中,用画图的方法举反例进行说明;若以上两个命题都是真命题,请选择其中一个给予证明.二、推理与论证15、(2009•防城港)如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点,且它们都位于同一对角线上.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有()A、4种B、6种C、8种D、10种16、(2007•台湾)小华和小明到同一早餐店买馒头和米浆.已知小华买了5个馒头和5杯米浆;小明买了7个馒头和3杯米浆,且小华花的钱比小明少10元.关于馒头与米浆的价钱,下列叙述何者正确()A、2个馒头比2杯米浆多10元B、2个馒头比2杯米浆少10元C、12个馒头比8杯米浆多10元D、12个馒头比8杯米浆少10元17、(2006•厦门)唐寅点秋香的故事家喻户晓了,现在我们来玩个游戏:“唐伯虎点秋香”.【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是:春香、夏香、秋香、冬香.【所给人物】A,B,C,D①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是夏香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香.若上面的命题都是真命题,问谁是秋香()A、AB、BC、CD、D18、(2006•嘉峪关)某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A、嫌疑犯乙B、嫌疑犯丙C、嫌疑犯甲D、嫌疑犯甲和丙19、(2006•南宁)图是小李发明的填图游戏,游戏规则是:把5,6,7,8四个数分别填入图中的空格内,使得网格中每行、每列的数字从左至右和从上到下都按从小到大的顺序排列.那么一共有6种不同的填法.20、(2006•茂名)甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩.请你根据下面回答者对甲、乙两人回答的内容进行分析,则这四人的名次排列共可能有4种不同情况.21、某车间新调来三名青年工人,车间赵主任问他们三人的年龄:①小刘说:“我比小陈小2岁.”②小陈说:“小李和我差三岁.”③小李说:“我比小刘年岁小,小刘23岁.”那么他们三人的岁数分别是小刘23岁,小陈25岁,小李22岁.三、反证法22、(2010•通化)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A、有一个内角大于60°B、有一个内角小于60°C、每一个内角都大于60°D、每一个内角都小于60°23、用反证法证明“若a∥c,b∥c,则a∥b”,第一步应假设()A、a∥bB、a与b垂直C、a与b不一定平行D、a与b相交24、已知:如图,直线a,b被c所截,∠1,∠2是同位角,且∠1≠∠2,求证:a不平行b.证明:假设a平行b,则∠1=∠2,(两直线平行,同位角相等)这与∠1≠∠2相矛盾,所以假设不成立,所以a不平行b.25、用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.26、用反证方法证明“任意三角形中不能有两个内角是钝角”的第一步是假设:任意三角形中能有两个钝角.27、已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.28、如图,四边形PQMN是平行四边形ABCD的内接四边形,(1)若MP∥BC或NQ∥AB,求证:S四边形PQMN=S ABCD(2)若S四边形PQMN=S ABCD,问是否能推出MP∥BC或QN∥AB?证明你的结论.答案与评分标准一、(共28小题)1、在下列空格内填上正确或错误:(1)在同一平面内,到三角形三边距离相等的点只有一个正确.(2)在同一平面内,到三角形三边所在直线距离相等的点只有一个错误.(3)三角形三条角平分线交于一点正确.(4)等腰三角形底边中点到两腰的距离相等正确.(5)三角形是以它的角平分线为对称轴的轴对称图形错误.考点:命题与定理。
八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案
《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
初中数学鲁教版(五四制)七年级上册第一章 三角形5 利用三角形全等测距离-章节测试习题
章节测试题1.【答题】如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长;判定△EDC≌△ABC的理由是( )A. SSSB. ASAC. AASD. SAS【答案】B【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】由题意得:根据ASA得:△EDC≌△ABC.选B.2.【答题】到三角形各顶点的距离相等的点是三角形( )A. 三边的垂直平分线的交点B. 三条高的交点C. 三条角平分线的交点D. 三条中线的交点【答案】A【分析】根据三角形外心的作法,确定到三定点距离相等的点.【解答】因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.选A.3.【答题】如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,如图所示的这种方法,是利用了三角形全等中的( )A. SSSB. ASAC. AASD. SAS【答案】D【分析】根据三角形全等判定定理,可以得出结果.【解答】由原题可得:AC = DC∠ACB=∠DCBBC =BC∴△ACB ≌△D C B(SAS)∴AB = DB故选D.。
4.【答题】如图所示小明设计了一种测零件内径AB的卡钳,问:在卡钳的设计中,要使DC=AB,AO、BO、CO、DO应满足下列的哪个条件?( )A. AO=COB. BO=DOC. AC=BDD. AO=CO且BO=DO【答案】D【分析】三角形全等,需要三个条件.【解答】各选项中,只给出了一个条件,再加上隐含的对顶角相等,才两个条件,故不正确。
对于选项D,可得:AO=CO且BO=DO(已知)∠AOB=∠COD(对顶角相等)∴△ACB ≌△D C E(SAS)∴DC = AB,故选D.。
三角形内角和定理
(1)解:
∵ ∠A+∠B+∠C = 180º(三角形内角和定理) ∴ ∠C=180º-(∠A+ ∠B) ·
∵ ∠A= 30º ,∠B = 65º(已知) ∴ ∠C=180º-( 30º + 65º ) = 85º
2.在△ABC中,∠B=62º24 ′ ,∠C= 28º52 ′ ,求∠A的度数.
解: ∵ ∠B=62º24 ′ ,∠C=28º52 ′ (已知) 又 ∵ ∠A+∠B+∠C = 180º(三角形内角和定理) ∴ ∠A=180º-(∠B+ ∠C) =180º-( 62º24 ′ + 28º52 ′ ) = 88º44 ′ ·
∴ ∠DBC= 180º - ∠BDC - ∠C = 180º -90º -72º =18º.
请同学们谈一谈本 节课自己的收获
2、已知△ABC,延长BC到点D,过点C作直线CE ∥ AB,得 到∠ 1和 ∠2 . ∠1和 ∠2 与三角形的内角有什么关系?
A
E
A
E 1
2 1
B
2C
B
C
D
D
3、请根据右图给出的图示(过点C作ED ∥ AB),对“三 角形内角和等于180 °”说理.
∠B=∠1(两直线平行,同位角相等) ∵ ∠1+∠2+∠ACB = 180º(平角的定义) ∴ ∠B+∠A+∠ACB = 180º(等量代换)
三角形的内角和等于180º
请根据下图给出的图示(过点C作ED ∥ AB),对“三 角形内角和等于180 °”说理.
说理过程:
A
过点C作DE ∥AB .
E ∵ DE ∥AB ,
解: ∵ ∠C=42º,∠A = ∠B, (已知) 又 ∵ ∠A+∠B+∠C = 180º(三角形内角和定理) ∴ ∠B+∠B+ 42º = 180º · ∴ ∠B=69º ·
四年级下册数学奥数试题-培优拓展训练--第3讲:三角形(教师版)
四年级下册数学奥数试题-培优拓展训练--第3讲:三⾓形(教师版)第三讲三⾓形(1).三⾓形的定义:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三⾓形(2).三⾓形有三个顶点,三条边和三个⾓。
从三⾓形的⼀个顶点到它的对边做⼀条垂线,顶点和垂⾜之间的线段叫做三⾓形的⾼,这条对边叫做三⾓形的底。
为了表达⽅便,⽤字母A,B,C分别表⽰三⾓形的三个顶点,这个三⾓形可以表⽰成三⾓形ABC。
(3).三⾓形具有稳定的特性,这⼀特性在⽣活中有着⼴泛的应⽤(4).三⾓形边的关系:三⾓形任意两边的和⼤于第三边,如果⽤a,b,c表⽰三⾓形三条边的长度,则有:a+b>c;a+c>b;b+c>a。
(5).认识⼏种三⾓形锐⾓三⾓形:三个⾓都是锐⾓的三⾓形直⾓三⾓形:有⼀个⾓是直⾓的三⾓形钝⾓三⾓形:有⼀个⾓是钝⾓的三⾓形(6).三⾓形的分类:(1)按⾓分有:锐⾓三⾓形,直⾓三⾓形和钝⾓三⾓形。
(2)按边分有:不等边三⾓形和等腰三⾓形,其中等腰三⾓形中还包括三条边都相等的等边三⾓形。
(7).等腰三⾓形各部分的名称;在等腰三⾓形⾥,相等的两条边叫做腰;另⼀条边叫做底;两腰的夹⾓叫做顶⾓;底边上的两个⾓叫做底⾓。
等腰三⾓形的两个底⾓相等。
(8).三⾓形的内⾓和:任何三⾓形三个内⾓的和都是180度。
⼀个三⾓形,已知两个⾓的度数,可以根据“三⾓形的内⾓和是180度”求出第三个⾓的度数。
(9).⽤三⾓形拼四边形两个完全相同的三⾓形可以拼成⼀个平⾏四边形;两个完全相同的直⾓三⾓形可以拼成⼀个长⽅形;两个完全相同的等腰直⾓三⾓形可以拼成⼀个正⽅形;三个完全相同的三⾓形可以拼成⼀个梯形。
⼀:三⾓形内⾓和定理的应⽤。
⼆:三⾓形三边关系的应⽤,及画钝⾓三⾓形⾼。
1.两个椭圆圈重合的部分应是什么三⾓形?答案:等腰直⾓三⾓形2.在能组成的三⾓形的三个⾓后⾯画“√”。
1. 900 500 400 ( )√2. 500 500 500 ( )3. 1200 300 300 ( )√4. 1000 320 190 ( )5. 600 600 600 ( )√3.在能组成三⾓形的三条线段后⾯画“√”。
(2021年整理)三角形全等证明题60题(有答案)
三角形全等证明题60题(有答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角形全等证明题60题(有答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角形全等证明题60题(有答案)的全部内容。
全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC= _________ .2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌"表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△E BC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB 的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________ ,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________ ,∴∠1+∠2=90°_________ .∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________ .在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD 交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G 点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2。
二年级数学说理题目训练
二年级数学说理题目训练
一、比较大小说理题
1. 题目:比较35和53的大小,并说出理由。
解析:先看十位上的数字,35十位上是3,表示3个十;53十位上是5,表示5个十。
因为5个十大于3个十,所以53大于35。
2. 题目:比较89和98的大小,说明原因。
解析:89十位上是8,表示8个十;98十位上是9,表示9个十。
9个十比8个十大,所以98大于89。
二、加减法运算结果说理题
1. 题目:计算32 + 15 = 47,说说你是怎么算的。
解析:先算个位上的数相加,2+5 = 7;再算十位上的数相加,30+10 = 40;最后把个位和十位上的结果相加,40+7 = 47。
2. 题目:45 23 = 22,解释计算过程。
解析:先算个位上的数相减,5 3 = 2;再算十位上的数相减,40 20 = 20;最后把个位和十位的结果相加,20+2 = 22。
三、图形相关说理题
1. 题目:一个三角形有3条边,一个四边形有4条边,为什么四边形的边比三角形多?
解析:三角形就是由3条线段首尾相连围成的封闭图形,四边形是由4条线段首尾相连围成的封闭图形。
4比3大,所以四边形的边数比三角形多。
2. 题目:在长方形中,相对的边一样长,说说你是怎么知道的。
解析:可以通过观察长方形的形状,我们可以把长方形对折,发现长的那两条边能完全重合,宽的那两条边也能完全重合,这就说明相对的边一样长。
数学三角形试题答案及解析
数学三角形试题答案及解析1.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.【考点】多边形.点评:剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.2.已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是()A.4<c<7B.7<c<10C.4<c<10D.7<c<13【答案】B【解析】首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,根据a<b<c即可得c的取值范围.解:根据三角形三边关系可得4<c<10,∵a<b<c,∴7<c<10.故选B.【考点】三角形三边关系.点评:已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.需注意本题的第三边要比其余两边较大的边要大.3.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选B .【考点】多边形内角与外角.点评:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.4. 如图,四边形ABCD 的对角线AC 和BD 相交于O 点,如果S △ABD =5,S △ABC =6,S △BCD =10,那么S △OBC .【答案】4【解析】先设出一个三角形的面积:△AOB 的面积是s 1=x ,再用代数式表示出图中其它三角形的面积,利用中间桥得出方程,进一步求出结果.解:设△AOB 的面积是s 1=x ,则△ADO 的面积是ss 2=5﹣x ,△BOC 的面积是s 3=6﹣x ,△DOC 的面积是s 4=10﹣(6﹣x )=4+x ,∵△ABO 的边OA 上和△BOC 的边上的高相等, ∴=, 同理=, ∴=,即=,解得:x=2,∴S △OBC =6﹣2=4.【考点】三角形的面积.点评:解此题的关键是灵活运用三角形的面积公式,等高时面积比等于边之比,从而转化成解方程,求出未知数的值.5. 如图:直角△ABC 中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为 .【答案】30【解析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=30. 【考点】平移的性质.点评:主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.6. 图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3. (若三角形中含有其它三角形则不记入)(1)图2有个三角形;图3中有个三角形(2)按上面方法继续下去,第20个图有个三角形;第n个图中有个三角形.(用n 的代数式表示结论)【答案】(1)5 9(2)77 (4n﹣3)【解析】正确数一下(2)(3)中,三角形的个数,可以得到(3)比(2)增加了4个三角形,同理(4)比(3)增加了4个三角形,依此类推即可求解.解:(1)图2有5个三角形;图3中有9个三角形;(2)按上面方法继续下去,可以得到(4)比(3)增加了4个三角形,依此类推,第20个图有1+(20﹣1)×4=77个三角形;第n个图中有4(n﹣1)+1=4n﹣3个三角形.【考点】三角形.点评:正确观察图形得到规律是解决本题的关键,解决这类题的方法是根据题目的叙述,求出几个图形中三角形的个数,从而求出规律.7.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.【答案】45°【解析】在三角形中,三内角之和等于180°,锐角三角形三个高交于一点.解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【考点】三角形的角平分线、中线和高.点评:考查三角形中,三条边的高交于一点,且内角和为180°.8.已知:如图,AB∥CD,求图形中的x的值.【答案】x=85°【解析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【考点】多边形内角与外角;平行线的性质.点评:本题主要考查了平行线的性质和多边形的内角和,属于基础题.9.探索:在图1至图3中,已知△ABC的面积为a,(1)如图1,延长△ABC 的边BC 到点D ,使CD=BC ,连接DA .若△ACD 的面积为S 1,则S 1= (用含a 的代数式表示)(2)如图2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连接DE .若△DEC 的面积为S 2,则S 2= (用含a 的代数式表示)(3)在图2的基础上延长AB 到点F ,使BF=AB ,连接FD ,FE ,得到△DEF (如图3).若阴影部分的面积为S 3,则S 3= (用含a 的代数式表示),并运用上述(2)的结论写出理由. 发现:像上面那样,将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF (如图3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的 倍.应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC 的空地上种红花,然后将△ABC 向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种谎话,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC )的面积是10平方米,请你运用上述结论求出: ①种紫花的区域的面积; ②种蓝花的区域的面积.【答案】(1)a (2)2a (3)6a 7 ①420平方米 ②2940平方米 【解析】(1)根据等底等高的三角形的面积相等得出即可;(2)连接AD ,根据等底等高的三角形的面积相等求出△ADE 的面积即可;(3)根据等底等高的三角形的面积相等求出△ADE 、△AEF 、△AFD 的面积,相加即可;①分别求出各个三角形的面积,相加即可;②根据等底等高的三角形的面积相等求出每个三角形的面积,相加即可.解:(1)∵BC 和CD 上的高相等,BC=CD ,根据等底等高的三角形的面积相等,得出S 1=S △ACD =a , 故答案为:a . (2)连接AD ,与(1)类似,根据等底等高的三角形的面积相等, 得出S △ACD =S △ADE =a , ∴S 2=2a ,故答案为:2a .(3)与(2)类似:得出S △AFE =S △BFD =S △CDE =2a , ∴S 3=2a+2a+2a=6a , 故答案为:6a .(3)①黄花区域的面积是6×10=60平方米,紫花区域的面积是6×(60+10)=420平方米;②蓝花区域的面积是6×(420+60+10)=2940平方米.【考点】面积及等积变换;三角形的面积.点评:本题考查了三角形的面积,面积和等积变形等知识点的应用,能根据等底等高的三角形的面积相等求出每个三角形的面积和根据得出的结果得出规律是解此题的关键,培养学生分析问题的能力.10.命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果a2=b2,那么a=b;⑧三角对应相等的两三角形全等;⑨如果∠A+∠B=90°,那么∠A与∠B互余.其中真命题有…()A.3个B.4个C.5个D.6个【答案】B【解析】根据邻补角互补,对顶角相等的性质,线段的性质,直线的性质,倒数的特殊规定,绝对值的选择性,全等三角形的判定,余角的定义对各小题分析判断后即可求解.解:①邻补角互补,正确;②对顶角相等,正确;③被截线不平行则同旁内角不互补,故本小题错误;④两点之间线段最短,是线段的性质,正确;⑤直线是向两方无限延伸的,没有长短,故本小题错误;⑥0没有倒数,故本小题错误;⑦如果a2=b2,那么a=b或a=﹣b,故本小题错误;⑧三角对应相等的两三角形相似但不一定全等,故本小题错误;⑨如果∠A+∠B=90°,那么∠A与∠B互余,是定义,正确.综上所述,真命题有①②④⑨共4个.故选B.【考点】对顶角、邻补角;倒数;线段的性质:两点之间线段最短;全等三角形的判定.点评:本题是对基础知识的综合考查,熟记概念与性质是解题的关键.11.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【答案】D【解析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选D.【考点】全等三角形的性质.点评:本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.12.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;其中假命题共有()A.1个B.2个C.3个D.4个【答案】B【解析】根据三角形全等的判定方法即可解得,做题时要根据已知条件结合判定方法逐个验证.解:①符合SAS,成立;②SSA不符合三角形全等的条件;③符合SAS,是真命题;④没有对应相等不符合三角形全等的条件,是假命题.则正确的是①和③.故选B.【考点】全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.5【答案】B【解析】由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠AHE+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.【考点】全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.14.如图,在△ABC和△BAD中,若∠C=∠D,再添加一个条件,就可以判定△ABC≌△BAD你添加的条件是.【答案】∠DAB=∠CBA(答案不唯一)【解析】由图可知,AB是公共边,然后根据全等三角形的判定方法选择添加不同的条件即可.解:∵∠C=∠D,AB是公共边,∴可添加∠DAB=∠CBA或∠DBA=∠CAB,故答案为:∠DAB=∠CBA(答案不唯一).【考点】全等三角形的判定.点评:本题考查了全等三角形的判定,根据∠D、∠C是公共边AB的对角,只能选择利用“角角边”证明两三角形全等添加条件.15.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).【答案】①②③【解析】由已知条件,可直接得到三角形全等,得到结论,采用排除法,对各个选项进行验证从而确定正确的结论.解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.【考点】全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.得到三角形全等是正确解决本题的关键.16.如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有对.【答案】4【解析】根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证.解:∵CD⊥AB,BE⊥AC,垂足分别为D、E,且AO平分∠BAC,∴△ODA≌△OEA,∴∠B=∠C,AD=AE,∴△ADC≌△AEB,∴AB=AC,∴△OAC≌△OAB,∴△COE≌△OBD.故填4.【考点】全等三角形的判定.点评:本题考查了三角形全等的判定方法;提出猜想,验证猜想是解决几何问题的基本方法,做题时要注意从已知条件开始思考结合全等的判定方法逐一判断,做到不重不漏,由易到难.17.如图,已知:△ABC中,∠ACB=90°,D为AC边上的一点,E为DB的中点,CE的延长线交AB于点F,FG∥BC交DB于点G.试说明:∠BFG=∠CGF.【答案】本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.【解析】本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.证明:∵∠ACB=90°,E为DB的中点,∴CE=DE=BE,(直角三角形斜边上的中线等于斜边一半)∴CE=EB,∴∠ECB=∠CBE,∵FG∥BC,∴∠GFE=∠ECB,∠EGF=∠CBE∴∠EGF=∠EFG,∴GE=EF,∵∠GEC=∠FEB,∴△GEC≌△FEB,∴∠EFB=∠EGC,∵∠BFG=∠EFB+∠EFG,∠CGF=∠EGC+∠EGF,∴∠BFG=∠CGF.【考点】全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,两个全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,两条相等的直角边AC,A1C1在同一直线上,A1B1与AB交于O,AB与B1C1交于E1,A1B1与BC交于E.(1)写出图中除△ABC≌△A1B1C1外的所有其它各组全等三角形(不再连线和标注字母);(2)求证:B1E1=BE.【答案】(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.【解析】(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.(1)解:△ACE≌△A1C1E1,△OBE≌△O1B1E1;(2)证明:∵△ABC≌△A1B1C1∴AC=A1C1,BC=B1C1∴AC1=A1C已知∠A=∠A1,∠ACE=∠A1C1E1=90°∴△ACE≌△A1C1E1∴CE=C1E1又∵BC=B1C1∴B1E1=BE.【考点】全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.19.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【答案】(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC= BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.【解析】(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC= BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.【考点】全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.20.如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:;得到的一对全等三角形是△≌△.【答案】PA=PB PAD PBC【解析】三角形全等条件中必须是三个元素,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,并且一定有一组对应边相等.解:所添加条件为PA=PB,得到的一对全等三角形是△PAD≌△PBC;证明:∵PA=PB,∴∠A=∠B,又∵AD=BC,∴△PAD≌△PBC.故分别填PA=PB,△PAD,△PBC.【考点】全等三角形的判定.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
冀教版七下数学第9章三角形单元试卷附答案
第九章三角形一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段,能组成三角形的是()A.3,3,6B.5,6,12C.5,7,2D.6,8,102.如图,图中的直角三角形共有()A.1个B.2个C.3个D.4个第2题图第3题图第4题图3.如图,为估计池塘岸边A,B两点的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A.5米B.20米C.25米D.30米4.如图,AB∥CD,AD,BC交于点O,∠A=35°,∠BOD=76°,则∠C的度数是()A.41°B.35°C.31°D.76°5.下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°6.当三角形的一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.20°B.30°C.40°D.50°7.如图,∠1,∠2,∠3的大小关系为()A.∠2>∠1>∠3B.∠1>∠3>∠2C.∠3>∠2>∠1D.∠1>∠2>∠38.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是() A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高第8题图第9题图第10题图9.如图,点D是AB上一点,点E是AC上一点,BE,CD交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BFC的度数是()A.82°B.97°C.107°D.117°10.如图,在△ABC中,∠A=40°,∠B=60°,CD⊥AB于点D,CE平分∠ACB,DF⊥CE于点F,则∠CDF的度数为()A.70°B.78°C.80°D.85°11.如图,用四条线段首尾相接连成一个框架(四个连接点可转动),其中AB=12,BC=14,CD=18,DA=24,则A,B,C,D任意两点之间的最大距离为() A.24 B.26 C.32 D.36第11题图第12题图12.如图,△ABC的角平分线CD,BE相交于点F,∠A=90°,EG∥BC,且CG⊥EG于点G,给出下∠CGE.其中正列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=12确的结论的个数为()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题3分,共12分)13.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为.第13题图第14题图第15题图第16题图14.如图,∠BDC=98°,∠C=38°,∠A=37°,则∠B的度数是.15.如图,在△ABC中,E是BC上的一点,EC=2BE,D是AC的中点,AE与BD交于点F,△ABC 的面积为12,设△ADF,△BEF的面积分别为S1,S2,则S1-S2的值为.16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1;∠A1BC和∠A1CD的平分线交于点A2……∠A2 018BC和∠A2 018CD的平分线交于点A2 019,则∠A2 019=°.三、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)如图,一块三角形的试验田,需将该试验田划分为面积相等的四小块,种植四个不同的优良品种,请你制定出三种不同的划分方案,并给出说明.18.(本小题满分8分)已知三角形的三条边长为互不相等的整数,且两条边长分别为7和9,第三条边长为偶数.(1)请写出一个符合上述条件的第三条边长.(2)若符合上述条件的三角形共有a个,求a的值.19.(本小题满分8分)如图,在△ABC中,∠A=60°,BD,CE分别是AC,AB上的高,H是BD,CE的交点,求∠BHC的度数.20.(本小题满分8分)如图,∠BAD=∠CBE=∠ACF,∠FDE=64°,∠DEF=43°,求△ABC各内角的度数.21.(本小题满分10分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?22.(本小题满分12分)在△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由.(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①对BF∥OD进行说理;②若∠F=35°,求∠BAC的度数.参考答案1.D【解析】三条线段中两条较短线段的长度之和大于第三条线段,能组成三角形.∵3+3=6,∴3,3,6不能组成三角形,故选项A错误;∵5+6<12,∴5,6,12不能组成三角形,故选项B错误;∵5+2=7,∴5,7,2不能组成三角形,故选项C错误.故选D.2.C【解析】如图,图中的直角三角形有△ABD,△BDC,△ABC,共3个.故选C.3.B【解析】设A,B间的距离为x米.根据三角形的三边关系,得15-10<x<15+10,解得5<x<25,结合选项知,选B.4.A【解析】∵∠BOD=76°,∠A=35°,∠BOD=∠A+∠B,∴∠B=76°-35°=41°.∵AB∥CD,∴∠C=∠B=41°.故选A.5.D【解析】按角分类,三角形可以分为钝角三角形、锐角三角形和直角三角形,所以A 错误;按边分类,三角形可分为等腰三角形、不等边三角形,所以B错误;三角形的一个外角大于与它不相邻的任意一个内角,所以C错误;因为三角形的内角和等于180°,所以一个三角形中至少有一个内角不大于60°,所以D正确.故选D.6.B【解析】由题意得α=2β,α=100°,则β=50°,则第三个内角为180°-100°-50°=30°,所以这个“特征三角形”的最小内角的度数为30°.故选B.7.D【解析】如图,因为∠2是△ABF的一个外角,∠1是△AEF的一个外角,所以∠2>∠3,∠1>∠4,又因为∠4=∠2,所以∠1>∠2.所以∠1,∠2,∠3的大小关系为∠1>∠2>∠3.故选D.8.C【解析】∵AE=DE,∴BE是△ABD的中线,A正确;∵BD平分∠EBC,∴BD是△EBC 的角平分线,B正确;∵BD平分∠EBC,∴∠2=∠3,而∠1与∠2的度数未知,∴由题意得不到∠1=∠2=∠3,C不正确;∵∠C=90°,∴BC是△ABE的高,D正确.故选C.9.D【解析】∵∠A=62°,∠ACD=35°,∴∠BDC=∠A+∠ACD=97°,又∵∠ABE=20°,∴∠BFC=∠BDC+∠ABE=117°.10.C 【解析】 ∵∠A=40°,∠B=60°,∴∠ACB=180°-∠A-∠B=80°, ∵CE 平分∠ACB ,∴∠ACE=12∠ACB=40°,∵CD ⊥AB ,∴∠CDA=90°,∴∠ACD=180°-∠A-∠CDA=50°,∴∠ECD=∠ACD-∠ACE=10°,∵DF ⊥CE ,∴∠CFD=90°,∴∠CDF=180°-∠CFD-∠ECD=80°.故选C .11.C 【解析】 ①选12+14,18,24作为三角形的三边长,则三边长分别为26,18,24,26-24<18<26+24,能构成三角形,此时两个端点间的最长距离为26;②选12,14+18,24作为三角形的三边长,则三边长分别为12,32,24,32-24<12<32+24,能构成三角形,此时两个端点间的最大距离为32;③选12,14,18+24作为三角形的三边长,则三边长分别为12,14,42,12<42-14,不能构成三角形;④选14,18,12+24作为三角形的三边长,则三边长分别为14,18,36,18<36-14,不能构成三角形.故选C .12.C 【解析】 ①∵EG ∥BC ,∴∠CEG=∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG=∠ACB=2∠DCB ,故①正确;②∵∠CEG=∠ACB ,而∠GEC 与∠GCE 不一定相等,∴CA 不一定平分∠BCG ,故②不正确;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD 平分∠ACB ,∴∠ACD=∠BCD ,∴∠ADC+∠BCD=90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD ,故③正确;④由三角形的内角和等于180°可知∠ABC+∠ACB=90°,∵CD平分∠ACB ,BE平分∠ABC ,∴∠EBC=12∠ABC ,∠DCB=12∠ACB ,∴∠DFB=∠EBC+∠DCB=12(∠ABC+∠ACB )=45°,∵∠CGE=90°,∴∠DFB=12∠CGE ,故④正确.故选C .13.2 【解析】 ∵AE 是△ABC 的中线,EC=4,∴BE=EC=4.∵DE=2,∴BD=BE-DE=4-2=2. 14.23°【解析】如图,延长CD 交AB 于点E ,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC-∠1=98°-75°=23°.15.2【解析】∵S △ABC =12,EC=2BE ,点D 是AC 的中点,∴S △ABE =13S △ABC =4,S △ABD =12S △ABC =6,∴S △ABD -S △ABE =S △ADF -S △BEF =6-4=2,即S 1-S 2的值为2.16.m 22019【解析】 ∵A 1B平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,∵∠A 1CD=∠A 1+∠A 1BC ,即12∠ACD=∠A 1+12∠ABC ,∴∠A 1=12(∠ACD-∠ABC ),∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD-∠ABC ,∴∠A 1=12∠A ,∠A 2=12∠A 1=122∠A ,…,以此类推可知∠A 2 019=122019∠A=(m22019)°.17.【解析】 如图所示.(答案不唯一)18.【解析】 (1)第三边长是4.(答案不唯一)设第三条边长是m ,∵两条边长分别为9和7,∴9-7<m<7+9,即2<m<16. (2)∵2<m<16,∴m 的值可能为4,6,8,10,12,14,共6个, ∴a=6.19.【解析】 因为BD ,CE 分别是△ABC 的边AC ,AB 上的高, 所以∠BEH=∠ADB=90°. 又因为∠A=60°,所以∠ABH=30°. 因为∠BHC=∠ABH+∠BEH , 所以∠BHC=30°+90°=120°.20.【解析】 ∵∠FDE=∠BAD+∠ABD ,∠BAD=∠CBE ,∴∠FDE=∠CBE+∠ABD=∠ABC , ∴∠ABC=64°.同理∠DEF=∠FCB+∠CBE=∠FCB+∠ACF=∠ACB ,∴∠ACB=43°,∴∠BAC=180°-∠ABC-∠ACB=180°-64°-43°=73°, ∴△ABC 各内角的度数分别为64°,43°,73°.21.【解析】 (1)在△ABE 中,∵∠ABE=15°,∠BAE=40°,∴∠BED=∠ABE+∠BAE=15°+40°=55°.(2)如图,EF 为BD 边上的高.(3)∵AD 为△ABC 的中线,BE 为△ABD 的中线,∴S △ABD =12S △ABC ,S △BDE =12S △ABD ,∴S △BDE =14S △ABC , ∵△ABC 的面积为40,BD=5,∴S △BDE =12BD ·EF=12×5×EF=14×40,解得EF=4,即△BDE 中BD 边上的高为4.22.【解析】 (1)∠AOC=∠ODC ,理由如下:∵在△ABC 中,三个内角的平分线交于点O ,∴∠OAC+∠OCA=12(∠BAC+∠BCA )=12(180°-∠ABC ),又∵∠OBC=12∠ABC ,∴∠AOC=180°-(∠OAC+∠OCA )=90°+12∠ABC=90°+∠OBC ,∵OD ⊥OB ,∴∠BOD=90°, ∴∠ODC=90°+∠OBC , ∴∠AOC=∠ODC.(2)①∵BF 平分∠ABE ,∴∠EBF=12∠ABE=12(180°-∠ABC )=90°-∠OBD , ∵∠ODB=90°-∠OBD , ∴∠EBF=∠ODB ,∴BF ∥OD. ②∵BF 平分∠ABE ,∴∠FBE=12∠ABE=12(∠BAC+∠ACB ), ∵△ABC 的三个内角的平分线交于点O , ∴∠FCB=12∠ACB ,∵∠F=∠FBE-∠FCB=12(∠BAC+∠ACB )-12∠ACB=12∠BAC ,又∵∠F=35°,∴∠BAC=2∠F=70°.。
阿基米德三角形小题
阿基米德三角形小题
阿基米德三角形(Archimedean triangle)是指具有特定边长比例的一类三角形。
它们是由古希腊数学家阿基米德在几何学领域研究中发现并命名的。
阿基米德三角形的定义是:一个三角形的三条边长度满足以下关系式之一:
1. a : b : c = m : n : p (其中m、n、p为正整数,且m、n、p没有公因子)
2. a : b : c = n : m : p (同样,m、n、p为正整数,且m、n、p没有公因子)
这里的a、b、c分别表示三角形的三条边的长度。
阿基米德三角形与等边三角形、等腰三角形和直角三角形不同,它们的边长比例是特殊的。
阿基米德三角形有无限多种,其中一些比较常见的有:
1. 3:4:5三角形
2. 8:15:17三角形
3. 7:24:25三角形
4. 9:40:41三角形
这些三角形被广泛应用于几何学和工程学中,可以用来构建各种形状和结构。
例如,在建筑设计中,阿基米德三角形可以用来构建稳定且美观的屋顶结构或者墙面装饰。
在机械设计中,阿基米德三角形也被用于设计特定形状的齿轮或传动装置。
希望以上信息对你有所帮助!。
《第9章三角形》期末综合复习能力提升训练(附答案) 2020-2021学年七年级数学冀教版下册
2021年冀教版七年级数学下册《第9章三角形》期末综合复习能力提升训练(附答案)1.如图,将一副直角三角板按如图所示叠放,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的大小是()A.10°B.15°C.25°D.30°2.下列长度的四根木棒,能与长度分别为1cm和5cm的木棒构成三角形的是()A.3cm B.5cm C.6cm D.10cm3.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形4.下列长度的三条线段(单位:cm)能组成三角形的是()A.1,2,1B.4,5,9C.6,8,13D.2,2,45.下面每组数分别是三根小木棒的长度,用它们不能摆成一个三角形的是()A.5cm,10cm,5cm B.7cm,8cm,9cmC.3cm,4cm,5cm D.6cm,20cm,20cm6.如图,在△ABC中,D是BC中点,E是AD中点,连接BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.如图,△ABC的面积是16,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG 的面积是()A.6B.7C.8D.98.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等9.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A.B.C.D.10.如图,三角形ABC的面积为1,分别延长AB、BC、CA至M、N、P,使得BM=2AB,CN=3BC,AP=4CA,则三角形MNP面积是.11.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC =140°,∠BGC=110°,则∠A=.12.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.如图,在△ABC中,AB=8,AC=5,AD为中线,则△ABD与△ACD的周长之差=.15.如图,在Rt△ABC中,∠ACB=90°,AC=5,点G是重心,GH⊥BC,垂足是H,则GH的长为.16.如图,G为△ABC的重心,GE∥BC,则GE:BC=.17.如图,∠A+∠B+∠C+∠D+∠E=度.18.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=°.19.在小学时,我们已经了解过“三角形的内角和是180°”,那为什么三角形的内角和一定是180°呢?小红在学习完平行线一节后,想到可以利用平行线的知识证明这个结论.如图1,是小红为证明三角形内角和是180°所采取的构图方法:延长△ABC的边BC至点E,过点C作CD平行于AB.(1)请你利用小红的构图,说明∠A+∠B+∠ACB=180°的理由.(2)如图2,BC和AD相交于点O,BA⊥AD,DC⊥BC,BE平分∠CBA,延长AD至点G,作∠CDG的角平分线DF.请结合(1)中已经证明的结论:三角形内角和是180°,解决下列问题.①写出证明∠OBA=∠ODC的推理过程.②通过说理判断BE和DF是否平行.20.如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC 于点F.(1)判断∠ADE与∠EFC是否相等,并说明理由;(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.21.已知△ABC.(1)如图1,若P为BC边上的任意一点(与点B、C不重合),则图中共有个三角形;(2)如图2,若P1、P2分别为BC边上的任意两点(与点B、C不重合),则图中共有个三角形;(3)若在BC边上任取4点(与点B、C不重合),则共有个三角形;(4)若在BC边上任取n点(与点B、C不重合),则共有个三角形.22.已知:如图,△ABC的两个外角的平分线交于点P,如果∠A=40°,求∠BPC的度数.参考答案1.解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选:B.2.解:设第三根木棒的长为xcm,∵两木棒的长度分别为1cm和5cm,∴5﹣1<x<5+1,即4<x<6,∴只有5cm的木棒符合题意,故选:B.3.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x,3x,5x,∴2x+3x+5x=180°,解得x=18°,∴5x=5×18°=90°.∴此三角形是直角三角形.故选:C.4.解:根据三角形的三边关系,知A、1+1=2,不能够组成三角形,故本选项错误;B、4+5=9,不能够组成三角形,故本选项错误;C、6+8>13,能够组成三角形,故本选项正确;D、2+2=4,不能够组成三角形,故本选项错误.故选:C.5.解:A、5+5=10,故以这三条线段不能构成三角形,选项正确;B、7+8>9,故以这三条线段能构成三角形,选项错误;C、3+4>5,故以这三条线段能构成三角形,选项错误;D、6+20>20,故以这三条线段可以构成三角形,选项错误.故选:A.6.解:∵D是BC中点,∴△ABD的面积=△ACD的面积=×△ABC的面积=10,∵E是AD中点,∴△EBD的面积=△ABD的面积=5,△ECD的面积=△ACD的面积=5,∴△BCE的面积=△EBD的面积+△ECD的面积=10,故选:B.7.解:∵点D是BC的中点,∴AD是△ABC的中线,∴△ABD的面积=△ADC的面积=×△ABC的面积,同理得:△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=×16=2,△AEG的面积=2,△BCE的面积=×△ABC的面积=8,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=×8=2,∴△AFG的面积是2×3=6,故选:A.8.解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选:C.9.解:延长AG交BC于D,如图,∵点G是△ABC的重心,∴CD=BD=BC=4,AG=2GD,∵GE⊥AC,∴∠AEG=90°,而∠C=90°,∴GE∥CD,∴EG=CD=×4=.故选:C.10.解:连接MC,AN∵2AB=BM,∴S△BCM=2S△ABC,∴S△BCM=2×1=2,∵3BC=CN,∴S△MNC=3S△BCM,S△ACN=3S△ABC,∴S△MNC=3×2=6,S△ACN=3×1=3,∵4CA=AP,∴S△ANP=4S△ACN,S△AMP=4S△AMC,∴S△ANP=4×3=12,S△AMP=4×(2+1)=12,∵S△MNP=S△ABC+S△BCM+S△MNC+S△ACN+S△ANP+S△AMP,∴S△MNP=1+2+6+3+12+12=36.故答案为:36.11.解:连接BC,∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∴∠GBD+∠GCD=70°﹣40°=30°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABG+∠ACG=∠GBD+∠GCD=30°,在△ABC中,∠A=180°﹣40°﹣30°﹣30°=80°.故答案为:80°.12.解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.13.解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.解:∵AD为中线,∴BD=CD,则C△ABD﹣C△ACD=(AB+AD+BD)﹣(AC+AD+CD)=AB+AD+BD﹣AC﹣AD﹣CD=AB﹣AC=8﹣5=3,故答案为:3.15.解:连接BG并延长交AC于D,如图,∵点G是△ABC的重心,∴BG=2GD,CD=AD=,∵HG⊥BC,∠C=90°,∴GH∥CD,∴GH=.故答案为.16.解:延长AG交BC于H,∵G为△ABC的重心,∴GE:BC=1:3,故答案为:1:3.17.解:∵∠2是△OBC的外角,∴∠B+∠C=∠2,∵∠1是△AEF的外角,∴∠A+∠E=∠1,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180.18.解:由题意得,∠2=60°,∠3=45°,则∠1=∠2+∠3=105°,故答案为:105.19.解:(1)因为CD∥AB,所以∠A=∠ACD,∠B=∠DCE,又因为∠ACB+∠ACD+∠DCE=∠BCE=180°,所以∠A+∠B+∠ACB=180°;(2)因为BA⊥AD,DC⊥BC,所以∠A=∠C=90°,因为∠BOA=∠DOC(对顶角相等),在△ABO中,∠OBA+∠A+∠BOA=180°,在△DOC中,∠ODC+∠C+∠DOC=180°,所以∠OBA=∠ODC;(3)因为∠OME=∠BMA=90°﹣∠ABE=90°﹣∠OBA,因为∠GDF=∠GDC=(180°﹣∠ODC)=90°﹣∠ODC,因为∠OBA=∠ODC,所以∠OME=∠GDF,所以BE∥DF.20.解:(1)∠ADE=∠EFC,理由:∵DE∥BC,∴∠ADE=∠B,∵CD⊥AB,EF⊥CD,∴AB∥EF,∴∠B=∠EFC,∴∠ADE=∠EFC;(2)∵∠ACB=72°,∠A=60°,∴∠B=180°﹣∠A﹣∠ACB=48°,∵CD⊥AB,∴∠BDC=90°,∴∠DCB=180°﹣90°﹣48°=42°.21.解:(1)有△ABP、△ABC、△APC共3个三角形,即和A组成3个三角形.(2)有△ABP1、△ABP2、△ABC、△AP1P2、△AP1C、△ACP2共6个三角形.(3)BC上有15条线段,即和A组成15个三角形.(4)BC上有条线段,即和A组成个三角形.故答案为3,6,15,.22.解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠EBC+∠FCB=360°﹣140°=220°,∵BP、CP是△ABC的外角平分线,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB)=110°,∴∠BPC=180°﹣(∠PBC+∠PCB)=70°。
7七年级数学 学习·探究·诊断(人教版下)--第七章 三角形
第七章三角形测试1 三角形的边学习要求1.理解三角形及与三角形有关的概念,掌握它们的文字表述、符号语言表述及图形表述方法.2.掌握三角形三边关系的一个重要性质.课堂学习检测一、填空题1.由__________________三条线段_______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______;相邻两边所组成的角叫做______ ,简称______.2.如下图,顶点是A ,B ,C的三角形,记作______ ,读作____________.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用_______表示;顶点C所对的边______还可用______表示.3.由"连接两点的线中,线段最|短〞这一性质可以得到三角形的三边有这样的性质:______________________________.由它还可推出:三角形两边的差_____________ __________________.4.对于△ABC ,假设a≥b ,那么a+b_______c ,同时a-b______c;又可写成________<c<________.5.假设一个三角形的两边长分别为4cm和5cm ,那么第三边x的长度的取值范围是_________ ______ ,其中x可以取的整数值为__________________.综合、运用、诊断一、填空题6.:如图,试答复以下问题:(1)图中有______个三角形,它们分别是____________________________________.(2)以线段AD为公共边的三角形是________________________________________.(3)线段CE所在的三角形是______ ,CE边所对的角是______.(4)△ABC ,△ACD ,△ADE这三个三角形的面积之比等于______∶______∶______.二、选择题7.以下各组线段能组成三角形的是( ).(A)3cm ,3cm ,6cm (B)2cm ,3cm ,6cm(C)5cm ,8cm ,12cm (D)4cm ,7cm ,11cm8.现有两根木条,它们的长分别为50cm ,35cm ,如果要钉一个三角形木架,那么以下四根木条中应选取( ).(A)长的木条(B)长的木条(C)1m长的木条(D)长的木条9.从长度分别为10cm ,20cm ,30cm ,40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个10.假设三角形的两边长分别为3和5 ,那么其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<16三、解答题11.(1)一个等腰三角形的周长为18 ,假设腰长的3倍比底边的2倍多6 ,求各边长.(2)假设等腰三角形的两边长分别为3cm和8cm ,那么它的周长是多少?(3)一个等腰三角形的周长为30cm ,一边长为6cm ,求其他两边的长.(4)有两边相等的三角形的周长为12cm ,一边与另一边的差是3cm ,求三边的长.拓展、探究、思考12.(1)假设三角形三边分别为2 ,x-1 ,3 ,求x的范围.(2)假设三角形两边长为7和10 ,求最|长边x的范围.(3)等腰三角形腰长为2 ,求周长l的范围.13.如图,△ABC中,AB=AC ,D是AB边上一点.(1)通过度量AB ,CD ,DB 的长度 ,确定AB 与)(21DB CD 的大小关系. (2)试用你所学的知识来说明这个不等关系是成立的.14.小颖要制作一个三角形木架 ,现有两根长度为8m 和5m 的木棒.如果要求第三根木棒的长度是整数 ,小颖有几种选法?第三根木椁的长度可以是多少?15.如图 ,P 是△ABC 内一点 ,请想一个方法说明AB +AC >PB +PC .16.如图 ,D ,E 是△ABC 内的两点 ,求证:AB +AC >BD +DE +EC .测试2 三角形的高、中线与角平分线学习要求1.理解三角形的高、中线和角平分线的概念 ,学会它们的画法. 2.对三角形的稳定性有所认识 ,知道这个性质有广泛的应用.课堂学习检测一、填空题 1.从三角形一个顶点向它的对边画______ ,以______和______为端点的线段叫做三角形这边上的高.如图 ,假设CD 是△ABC 中AB 边上的高 ,那么∠ADC ______∠BDC =______ ,C 点到对边AB 的距离是______的长.2.连接三角形的一个顶点和它__________________的______叫做三角形这边上的中线.如图 ,假设BE 是△ABC 中AC 边上的中线 ,那么AE ______EC =21______.3.三角形一个角的_______与这个角的对边相交 ,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是______________ ___________________________.如图 ,假设AD 是△ABC 的角平分线 ,那么∠BAD ______ ∠CAD =21______或∠BAC =2______=2______.二、画图题4.分别画出△GEF 的高GH ,中线EM ,角平分线FN .综合、运用、诊断一、画图 ,并答复以下问题5.(1)分别画出△ABC 的三条高AD ,BE ,CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD ,BE ,CF 所在的直线有怎样的位置关系?6.(1)分别画出△ABC的三条中线AD ,BE ,CF.(2)这三条中线AD ,BE ,CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?7.(1)分别画出△ABC的三条角平分线AD ,BE ,CF.(2)这三条角平分线AD ,BE ,CF有怎样的位置关系?(3)设△ABC的角平分线BE,CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?二、填空题8.等腰三角形的底边长为10cm ,一腰上的中线将这个三角形分成两局部,这两局部的周长之差为2cm ,那么这个等腰三角形的腰长为_______.9.要使六边形木架不变形,至|少要再钉上_______根木条.拓展、探究、思考10.将一个三角形剖分成假设干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图).(1)一个任意三角形,将其剖分成3个等积的三角形.(2)一个任意三角形,将其剖分成4个等积的三角形.11.不等边△ABC的两条高长度分别为4和12 ,假设第三条高的长也是整数,试求它的长.测试3 与三角形有关的角学习要求1.理解三角形的内角、外角的概念.2.掌握三角形的内角和及外角的性质,并能运用这些性质进行简单的推理和计算.课堂学习检测一、填空题1.三角形的内角和性质是______________________________.2.三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的推理过程如下::△ABC.求证:∠BAC+∠ABC+∠ACB=______.证明:过A点作______∥______ ,那么∠EAB=______ ,∠F AC=______.(____________ ,____________)∵∠EAF是平角,∴∠EAB+______+______=180°.( )∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.( )即∠ABC+∠BAC+∠ACB=______.3.三角形的一边与____________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.4.利用"三角形内角和〞性质,可以得到三角形的外角性质.如图,∵∠ACD是△ABC的外角,∴∠ACD与∠ACB互为______ ,即∠ACD=180°-∠ACB.①又∵∠A+∠B+∠ACB=______ ,∴∠A+∠B=___________.②由①、②,得∠ACD=______+______.∴∠ACD>∠A ,∠ACD>∠B.由上述说理,可以得到三角形外角的性质如下:三角形的一个外角等于______________________________________________________.三角形的一个外角大于______________________________________________________.二、解答题5.如图,在△ABC中,∠A=70°,BO ,CO分别平分∠ABC和∠ACB ,求∠BOC的度数.6.如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.7.:如图,CE⊥AB于E ,AD⊥BC于D ,∠A=30°.求∠C的度数.8.依据题设,写出结论,想一想,为什么?如图,△ABC中,∠ACB=90°.那么(1)∠A+∠B=______ ,即∠A与∠B互为______;(2)假设作CD⊥AB于点D ,可得∠BCD=∠______ ,∠ACD=∠______.综合、运用、诊断一、填空题9.△ABC中,假设∠A+∠C=2∠B ,那么∠B=______.10.△ABC中,假设∠A∶∠B∶∠C=2∶3∶5 ,那么∠A=______ ,∠B=______ ,∠C=______.11.如图,直线a∥b ,那么∠A=______.12.如图,∠DAC=∠B ,∠ADC=115°,那么∠BAC=______.13.如图,△ABC中,∠ABC=∠C=∠BDC ,∠A=∠ABD ,那么∠A=______.14.在△ABC中,假设∠B-∠A=15°,∠C-∠B=60°,那么∠A=______ ,∠B=______ ,∠C=______.二、解答题15.如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C 位于北偏东25°,求∠ACB.16.如图,△ABC中,∠ABC=60°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H 是BE和CF的交点,求∠ABE ,∠ACF和∠BHC的度数.17.如图,在△ABC中,AD ,AE分别是△ABC的高和角平分线.(1)假设∠B=30°,∠C=50°,求∠DAE的度数.(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.拓展、探究、思考18.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.假设∠A=n°,试用含n的代数式表示∠BOC.19.如图,△ABC中,AD是高,AE ,BF是角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAC及∠BOA.20.如图,线段AD ,BC相交于点Q ,DM平分∠ADC ,BM平分∠ABC ,且∠A=27°,∠M =33°,求∠C的度数.测试4 多边形及其内角和学习要求1.理解多边形的有关概念,掌握多边形的内角和及其外角和的计算公式.2.理解正多边形的概念.课堂学习检测一、填空题1.平面内,由__________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______________.多边形_____________________叫做它的内角,多边形的边与它的邻边的_______组成的角叫做多边形的外角.连接多边形______________的线段叫做多边形的对角线.2.画出多边形的任何一条边所在直线,如果整个多边形都在_____________ ,那么这个多边形称作凸多边形.3.各个角_______ ,各条边_________的_________叫做正多边形.4.n边形的内角和等于_______________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为_______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.5.请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O ,依次连接______、_______、______、…、______、_______ ,那么它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×_______-( )=( )×180°.6.一个多边形的内角和是1980°,那么它的边数是______ ,共有______条对角线,它的外角和是______.7.正n边形的每一个内角等于______ ,每一个外角等于______.8.假设一个正多边形的内角和为2340°,那么边数为______ ,它的外角等于______.9.假设一个多边形的每一个外角都等于40°,那么它的内角和等于______.10.多边形的每个内角都等于150°,那么这个多边形的边数为______ ,对角线条数为______.11.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,那么另一个角为______.综合、运用、诊断一、选择题12.一个多边形的内角和等于它的外角和,这个多边形是( ).(A)三角形(B)四边形(C)五边形(D)六边形13.一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定14.假设一个多边形从一个顶点,只可以引三条对角线,那么它是( ).(A)五边形(B)六边形(C)七边形(D)八边形15.如果一个多边形的边数增加1 ,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°16.如果一个四边形四个内角度数之比是2∶2∶3∶5 ,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角二、解答题17.如图,四边形ABCD中,∠ABC的平分线BE交CD于E ,∠BCD的平分线CF交AB于F ,BE、CF相交于O ,∠A=124°,∠D=100°.求∠BOF的度数.拓展、探究、思考18.(1):如图a ,求∠1+∠2+∠3+∠4+∠5+∠6=______.(2):如图b ,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=______.图a 图b19.如图,在图a中,猜测:∠A+∠B+∠C+∠D+∠E+∠F=______°.请说明你猜测的理由.图a 图b如果把图a称为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图b称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H ,那么2环四边形的内角和为______°;2环五边形的内角和为______°;2环n边形的内角和为______°.20.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.21.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?假设能,当他走回点A时共走了多少米?假设不能,写出理由.测试5 镶嵌学习要求通过镶嵌这一课题的学习,体验角的知识(特别是多边形内角和)在生活、生产实际中的应用;在解决问题的探究实践活动过程中,培养自己学数学、用数学的意识,提高分析问题和解决问题的能力.课堂学习检测一、问答题1.我们常常见到如以下图那样图案的地板,它们分别是用正方形、正三角形的材料铺成的.为什么用这样形状的材料能铺成平整(不互相重叠) ,又无空隙的地板呢?2.工人师傅把一批形状、大小完全相同,但不规那么的四边形边脚余料用来铺地板,按照下面给出的拼接四边形木块的方法,就可以不留下任何空隙而铺成一大片.(1)请你说出工人师傅之所以能这样拼接的道理.(2)如果工人师傅手里还有一批形状、大小完全相同,但不规那么的三角形边脚余料,那么工人师傅能否用它们拼成平整且无空隙的地板呢?如果可以,请说出你的理由,并将你剪好的一些形状、大小完全相同、但不规那么的三角形纸片,贴在下面的空白处(不互相重叠且无空隙) ,镶嵌成地板模型.综合、运用、诊断3.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成一个平面图形.(1)请根据以下图形,填写表中空格:正多边形边数 3 4 5 6 7 8 …n 正多边形每个内角度数60°90°…(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)不能用正五边形形状的材料铺满地面的理由是什么?正五边形的地砖会留有不少缝隙(4)某家庭准备用正三角形与正六边形两种瓷砖结合在一起镶嵌地面,请你帮助设计镶嵌图案,你能设计几种不同的镶嵌方案?(5)正三角形和正方形组合呢?(画图说明)(6)边长相等的以下两种正多边形的组合,不能作平面镶嵌的是( ).(A)正方形与正三角形(B)正五边形与正三角形(C)正六边形与正三角形(D)正八边形与正方形参考答案第七章 三角形测试11.不在同-直线上的 ,首|尾顺次相接 ,三角形的边 ,三角形的顶点 ,三角形的内角 ,三角形的角.2.△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c . 3.三角形两边之和大于第三边 ,小于第三边. 4.> ,< ,a -b ,a +b .5.1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm . 6.(1)六 ,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE . (2)△ABD 、△ACD 、△ADE . (3)△ACE ,∠CAE . (4)BC ∶CD ∶DE .7.C .8.D .9.A .10.D .11.(1)6 ,6 ,6;(2)19cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm . 12.(1)2<x <6;(2)10≤x <17;(3)4<l <8. 13.(1)).(21DB CD AB +>(2)提示:对于△ADC ,∵AD +AC >DC , ∴(AD +DB )+AC >CD +DB , 即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB . 从而).(21DB CD AB +>14.小颖有9种选法.第三根木棒的长度可以是4 cm ,5 cm ,6 cm ,7cm ,8 cm ,9 cm ,10cm ,11 cm ,12 cm .15.提示:延长BP 交AC 于D .∵在△ABD 中 ,AB +AD >BD =BP +PD ,① 在△DPC 中 ,DP +DC >PC ,② 由①、② ,∴AB +(AD +DC )+DP >BP +PC +DP . 即AB +AC >PB +PC .16.证明:延长BD 交AC 于P ,延长CE 交BP 于F .在△ABP中,AB+AP>BP.①在△FPC中,FP+PC>FC.②在△DEF中,DF+FE>DE.③①+②+③得AB+AP+FP+PC+DF+FE>BP+FC+DE ,即:AB+AC+DF+FP+FE>BD+DF+FP+FF+EC+DE ,所以AB+AC>BD+DE+EC.测试21.垂线,顶点、垂足,=,90°,高CD.2.所对的边的中点、线段,=,AC.3.平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC ,∠BAD ,∠DAC.4.略.5.(1)略,(2)三条高所在直线交于一点.6.(1)略,(2)三条中线交于一点,(3)BM=2ME.7.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.8.12 cm或8 cm.9.310.(1)(2)以下各图是答案的一局部:11.它的长为5或4.提示:设S△ABC=S ,第三条高为h ,那么△ABC的三边长可表示为:42S 、122S 、h S 2 ,列不等式得:12242212242S S h S S S +<<- ∴3<h <6.测试31.三角形的内角和等于180° ,2.性质、平角 ,说理过程(略). 3~4.略. 5..1252190=∠+A 6.∠B +∠C =∠E +∠F .(此图中的结论为常用结论) 7.30°. 8.(1)90° ,余角;(2)∠A ,∠B .9.60°. 10.36° ,54° ,90°. 11.39°. 12.115°. 13.36°. 14.30° , 45° ,105°. 15.35°. 16.24° ,24° ,114°. 17.(1)10°;(2)).(21B C DAE ∠-∠=∠ 18.)(21180)32(180FCB EBC BOC ∠+∠-=∠+∠-=∠)]()[(21180ABC A ACB A ∠+∠+∠+∠-=.21902190)180(21180o o n A A -=∠-=∠+-=19.∠DAC =90°-∠C =30°;CAB ABC BOA ∠-∠-=∠2121180=180°-35°-25°=120°.20.39°.由本练习中第4题结论可知: ∠C +∠CDM =∠M +∠MBC ,即.2121ABC M ADC C ∠+∠=∠+∠①同理 ,.2121ABC A ADC M ∠+∠=∠+∠②由①、②得)(21C A M ∠+∠=∠ ,因此∠C =39°. 测试41~3.略.4.(n -2)×180° ,n -3 ,n -2 ,n -2.5.OA 1 ,OA 2 ,OA 3 ,OA n -1 ,OA n ,n ,n ,360° ,(n -2).6.十三 ,65 ,360°. 7.⋅⨯-n nn360,180)2( 8.十五 ,24°. 9.1260° 10.十二 ,54. 11.65°或115°. 12.B . 13.C .14.B .15.C .16.A . 17.68°. 18.(1)360°;(2)360°.19.360;720;1080;2(n -2)×180.20.九.提示:设多边形的边数为n ,某-个外角为α.那么(n -2)×180+α=1350.从而⋅-+=-=-1809071801350)2(ααn 因为边数n 为正整数 ,所以α=90 ,n =9. 21.可以走回到A 点 ,共走100米.测试51.这是因为它们的每一个内角分别为90°和60° ,用它们可以拼成周角(360°). 2.(1)这是因为任意四边形的内角和都是360°. (2)可以.因为三角形的内角和为180° ,拼图略. 3正多边形的边数5678…n 正多边形每个内角的度数 108° 120° (12874)° 135° … nn o180)2(⋅-(2)正三角形、正方形、正六边形.(3)因为正五边形的每一个内角是108° ,它不是360°的约数 ,所以不行.同理 ,因为正七边形、正八边形等的每一个内角 ,也分别不是360°的约数 ,所以也都不行. (4)参考图案:(5)参考图案:(6)B .。
八年级数学几何说理题
B
E C
F
把命题用几何语言表述
9,角的平分线上的点到角的两边的距离相等。
A D
F B C
E
把命题用几何语言表述
10,角的内部到角的两边的距离相等的点在角的平分线上
A D F
●
B E C
把命题用几何语言表述
11,线段垂直平分线上的点与这条线段两个端点的距离 相等 。
E C
●
●
●
A
B
F
把命题用几何语言表述
把下列命题用几何语言表述
把命题用几何语言表述
1,直角三角形的两个锐角互余
A
C
B
把命题用几何语言表述
2,有两个角互余的三角形是直角三角形
A
C
B
把命题用几何语言表述
3,三角形的外角等于与它不相翎邻的两个内角的和。
A
D
C
把命题用几何语言表述
4,三边分别相等的两个三角形全等。
A D
B
C
E
F
把命题用几何语言表述
D
12,斜边和一条直角边分别相等的两个直角三角形全等。
A
B
E C
F
把命题用几何语言表述
11,与线段两个端点距离相等的点在这条线段的垂直平 分线上。
E C
C ●
●
●
A
B
F
5,两角和它们的夹边分别相等的两个三角形全等。
A D
B
C
E
F
把命题用几何语言表述
6,两边和它们的夹角分别相等的两个三角形全等。
A D
B
C
E
F
把命题用几何语言表述
7,两角分别相等且其中一组对边相等的两个三角形全等。
利用全等三角形解决实际问题
巧用全等解决实际问题同学们在学完全等三角形后,就可以利用全等三角形的知识来解决日常生活中遇到的实际问题了,从而体会数学与实际生活的紧密联系,学会用数学知识解决问题,能在解决问题的过程中进行有条理的思考和表达.下面分类介绍其应用.一、说理题例1 工人师傅经常利用角尺平分一个任意角,如图1,∠AOB 是一个任意角,在OA 、OB 边上分别取OD=OE ,移动角尺使角尺两边相同的刻度分别与D 、E 重合,这时过角尺顶点P 的射线OP 就是∠AOB 的平分线,你能说明其中的道理吗? 分析:解决这类问题时,关键是要仔细阅读题目, 根据题意,抓住相等的量,先证明三角形全等,在证明三角形全等时,一定要利用好条件, 不能任意造条件和结论. 解:根据题意得OE=OD ,PE=PD ,在△POB 和△POD 中,OD OE OP PO PE PD =⎧⎪=⎨⎪=⎩,∴△POE ≌△POD (SSS ),∴∠AOP=∠BOP ,∴射线OP 就是∠AOB 的平分线.二、操作题例2.如图2,小明为了测量河的宽度,他先站在河边的C 点面向河对岸,压低帽檐使目光正好落在河对岸的岸边A 点,然后他姿态不变原地转了1800,正好看见他所在岸上的一块石头B 点,他度量了BC=30米,你能猜出河有多宽吗?解:河宽30米,理由如下:∵小明姿态不变原地转了1800,∴∠ACD=∠BCD=900,∵帽檐的位置没动,∴帽檐与小明自身的角度不变, 即∠ADC=∠BDC ,在△ACD 和△BCD 中,ACD BCD CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△BCD ,∴AC=BC=30m .评析:这个题目关键是设计三角形全等,这一过程正好得到两个△ACD 和△BCD ,且有∠ACD=∠BCD=900,∠ADC=∠BDC (因为小明的视线角度没变),易证△ACD ≌△BCD , ∴AC=BC=30m .三、判断题例3.某校二(4)班学生到野外活动,为测量一池塘两端A 、B 的距离,设计了如下方案:(1)如图3(1)先在平地取一个可以直接到达A 、B 的点C ,可连结AC 、BC ,并延长AC 到D 、BC 到E ,使DC=AC ,EC=BC ,最后测出DE 的距离即为AB 之长.(2)如图3(2)先过B 点作AB 的垂线BF ,再在BF 上取C 、D 两点,使BC=CD ,接着过点D 作BD 的垂线DE ,交AC 的延长线于E ,B ACD D图2 图1 OA B P D E测出DE 的长即为A 、B 的距离,阅读后回答下列问题:(1)方案(1)是否可行? ,理由是(2)方案(2)是否切实可行? ,理由是 (3)方案(2)中作BF ⊥AB ,ED ⊥BF 的目的是 ;若仅满足∠ABD=∠BDE ≠900, 方案(2)是否成立? .解:(1)可行,边角边;(2)可行,角边角;(3)使∠ABC=∠EDC ,仍成立评析:本题让我们了解测量两点之间的距离的设计方案不只一种,只要符合三角形全等的条件,方案的操作性很强,需要测量的线段和角度在陆地一侧即可实施.练一练:1.如图7,公园里有一条“Z ”字型道路ABCD ,其中AB ∥CD ,在AB 、BC 、CD 三段路旁各有一只石凳 E 、M 、F 恰为BC 的中点,且E 、F 、M 在同一条直线上,在BE 道路上停放着一排小汽车,从而无法直接测量B 、E 之间的距离,你能想出解决的办法吗?试说明其中的道理.图3(1) 图3(2) A B C D ·M ·E·F 图7。
初一数学三角形与全等三角形知识点大全-经典练习-含答案
初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形说理题9
1. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.
2.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③量出DE 的长a 米,FG 的长b 米.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?
3. 要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.
4. 如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.
A D E C
B F G G D F A
C B
E G D F
A C
B E。