2013届高三理科数学高考模拟试卷(含答案)

合集下载

2013年全国高考仿真模拟题(一)(全国新课标理科数学卷)参考答案

2013年全国高考仿真模拟题(一)(全国新课标理科数学卷)参考答案
因为 +碲 =0 , 所以
( 2 2) +( 2
0 . 4 , , J ( 一 2 ) 一 音 o . 2 , P ( ∈ 一 3 ) = o . 2 , P ( s 一 4 ) 一 一
0 . 1 ,P ( 一5 ) : =o . 1 .故 “ 购 买 该 品 牌 汽 车 的 3位 顾 客 中
所 以 的 分 布 列 为
假 设 抛 物 线 L 上 存 在 点 c ( f , 鲁 ) ( f ≠ o , £ ≠ 4 ) , 使 得 经 过
1 l - 5 l 2
o . I o . 2 I



故 的 数 学 期 望
0 . 4
设 该 圆 的 圆 心 为 N ( n , 6 ) . 因 { I N A I = I N B I , 所 以
( 3 )叩的可 能 取 值 为 1 , 1 . 5 , 2 ( 单位 : 万元 ) , 易 得
P( 1 ) 一 P( 1 ) 一O . 4 ,
} + ; > 兰
P( : 1 . 5 ) 一 P( =2 ) + P( 搴 =3 ) 一0 . 4,
P( 一 2 ) = P( : 4 ) + P( 一 5 ) O . 1 +0 . 1 —0 . 2 .

1 一 a — - t ) 2 + ( b -.
AS B C为 等 腰 三 角 形 , s o_ l _ B c, 且 S O= s A, 从而 O Az +
即 f n 十 6 一 + 吉 解 。 得 t : 一 - 。 十 壑 ,

S O =S A。 . 所 以A S O A 为 直 角 三角 形 , 且S O上A O. 又A 0nB O=0, 所以 S O 上平面 A BC .

2013年高考数学(理科)模拟卷

2013年高考数学(理科)模拟卷

2017学年第一学期浙江“七彩阳光”联盟期中联考高三年级数学学科 参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案B 。

解:1a bi i +=-+Q , 21a b ∴+=。

3.答案A 。

解析:若222log loglog ()a b a b +≥+,则ab a b ≥+。

又0,0a b >>, 则有ab a b ≥+≥4ab ≥,故充分性成立;若4,1a b ==,满足4ab ≥,但22log log 2a b +=,22log ()log 52a b +=>, 即222log log log ()a b a b +≥+不成立,故必要性不成立,故选A.4.答案D.解:所取3个球中没有红球的概率是34137435C p C ==,所取3个球中恰有1个红球的概率是12342371835C C p C ==,则所取3个球中至多有1个红球的概率是122235p p p =+=。

5.答案C .解8511820,0a a a a =+>∴>Q ,则115158151502a a S a +=⨯=>。

又7869780,0a a a a a a +=+<∴<-<,则113137131302a a S a +=⨯=<。

而1141469147()02a a S a a +=⨯=+<,则满足0n S <的正整数n 的最大值是14。

6答案A. 解析:222()2a b a b a b a b a ba b ++-=+++-+-r r r r r r r r r r r r Q g222222a a b b a a b b =+++-+r r r r r r r r g g444sin()αβ=+=+-。

02παβ<-<Q ,24()8a b a b ∴<++-<r r r r,2a b a b ∴<++-<r r r r7.答案C.解法1:设点A 在第一象限,由222b y x a x y c ⎧=⎪⎨⎪+=⎩和0x >,得x a y b =⎧⎨=⎩,即得(,)A a b 。

2013届高三理科数学高考模拟考试4

2013届高三理科数学高考模拟考试4

2013届高三理科数学高考模拟考试4本试卷共4页,21小题, 满分150分.考试用时120分钟.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为( )..35A i + .35B i - .35C i -+ .35D i --2. 设0a >且1a ≠,则“函数()x f x a =在R 上是减函数”是“函数()()32g x a x =-在R 上是增函数”的( )..A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 3. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,,960, 分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ). .7A .9B .10C .15D4. 设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( ).3.,62A ⎡⎤-⎢⎥⎣⎦ 3.,12B ⎡⎤--⎢⎥⎣⎦ [].1,6C - 3.6,2D ⎡⎤-⎢⎥⎣⎦5. 执行右面的程序框图,如果输入4a =,那么输出的n 的值为( )..2A .3B .4C .5D 6. 已知椭圆()2222:10x yC a b a b +=>>的离心率为.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )..A 22182x y += .B 221126x y +=.C 221164x y += .D 221205x y += 7. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )..232A .252B .472C .484D8. 设函数()()()21,,,0f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点()()1122,,,A x y B x y ,则下列判断正确的是( )..A 当0a <时,12120,0x x y y +<+> .B 当0a <时,12120,0x x y y +>+< .C 当0a >时,12120,0x x y y +<+< .D 当0a >时,12120,0x x y y +>+>二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =__________.10. 如图,正方体1111ABCD A BC D -的棱长为1,,E F 为线段1AA ,1BC 上的点,则三棱锥1D EDF -的体积为___________.11. 设0a >,若曲线y =与直线,0x a y ==所围成封闭图形的面积为2a ,则a =___________.12.定义在R 上的函数()f x 满足()()6f x f x +=,当31x -≤<-时,()()22f x x =-+;当13x -≤<时,()f x x =.则()()()()1232013f f f f ++++= ___________. 13. 如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正方向滚动.当圆滚动到圆心位于()2,1时,OP的坐标为____________.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,过圆O 外一点p 分别作圆的切线和割线交圆于A ,B ,且PB =7,C 是圆上一点使得BC =5,∠BAC =∠APB , 则AB = .15.(坐标系与参数方程选讲选做题)1A 图 4已知两面线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩ 和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16. (本小题满分12分)已知向量()()sin ,1,cos ,cos 202A m x n x x A ⎫==>⎪⎭,函数()f x m n =⋅ 的最大值为6. (1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象,求()g x 在50,24π⎡⎤⎢⎥⎣⎦上的值域.17. (本小题满分13分)在如图所示的几何体中,四边形ABCD 是等腰梯形,//AB CD ,60,DAB FC ∠=⊥平面ABCD ,,AE BD CB CD CF ⊥==. (1)求证:BD ⊥平面AED ;(2)求二面角F BD C --的余弦值.18. (本小题满分13分)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .19. (本小题满分14分)在等差数列{}n a 中,345984,73a a a a ++==. (1)求数列{}n a 的通项公式;(2)对任意*m N ∈,将数列{}n a 中落入区间()29,9m m内的项的个数记为m b .求数列{}m b 的前m 项和m S .20. (本小题满分14分)在平面直角坐标系,xOy F 是抛物线()2:20C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 为抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由.(3)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,,A B l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值.21. (本小题满分14分) 已知函数()ln xx kf x e +=(k 为常数, 2.71828e = 是自然对数的底数),曲线()y f x =在点()()1,1f 处的切线与x 轴平行. (1)求k 的值;(2)求()f x 的单调区间;(3)设()()()2g x x x f x '=+,其中()f x '为()f x 的导函数,证明:对任意0x >,()21g x e -<+.。

2013年高考理科数学模拟试题

2013年高考理科数学模拟试题

2013年普通高等学校招生全国统一模拟考试数学(理工农医类)注意事项:全卷满分150分,考试时间120分钟。

[来第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分1、已知集合2=-+=∈{|210,}P x x x x R,则集合P的子集个数是二、 A.1 B.2 C.4 D.82、已知函数,下面结论错误的是A.函数的最小正周期为B.函数在区间上是增函数C.函数的图像关于直线对称 D.函数是奇函数三、3、已知函数f x()的定义域为[0,1?,则函数-f x(1)的定义域为A.[0,1)B.(0,1]C.-[1,1]D.-[1,0)(0,1]4、函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是(A)(B)(C)(D)5、在ΔABC中,、、a b c分别是三内角、、A B C所对边的长,若b a Csin A sin,则ΔABC的形状A.钝角三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形6、将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是w_w w. k#s5_u.c o*m(A)(B)w_w_w.k*s 5*u.c o*m(C)(D)7、如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是A.B.C.D.8、已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是A.2B.3C.D.9、设定义在上的函数满足,若,则( )(A)(B)(C)(D)10、已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为( )(A)(B)(C)(D)11、过双曲线22221(0)y x b a a b -=>>的左焦点(,0)(0)F c c ->作圆222x y a +=的切线,切点为 E ,延长FE交抛物线24y cs =于点 P ⋅若1()2OE OF OP =+,则双曲线的离心率为A .33+B .15+C .5D .13+12、设,则的最小值是w_w w. k#s5_u.c o*m(A)2 (B)4 (C)(D)5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.展开式中的系数为_____________。

2013年高考模拟试卷1

2013年高考模拟试卷1

2013年高考模拟试卷 数学(理科)卷本试卷分第I 卷和第II 卷两部分.考试时间120分钟,满分150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:如果事件A , B 互斥, 那么棱柱的体积公式P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n )球的表面积公式棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上、下底面积, V =34πR 3h 表示棱台的高 其中R 表示球的半径第I 卷(共50分)一、选择题: 本大题共10小题, 每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.(1)(原创)已知集合}023|{2>-+=x x x M ,}1|{≥=x x N ,则=N M (A )),3(+∞ (B ))3,1[ (C ))3,1( (D )),1(+∞- (2)(原创)已知0>a 且1≠a ,则0log >b a 是0)1)(1(>--b a 的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 (3)(原创)若复数i z +=1(i 是虚数单位),则( ) (A )01222=--z z (B )01222=+-z z (C )0222=--z z (D )0222=+-z z (4)(引用)在243)1(xx +的展开式中,x 的幂指数是整数的项共有( )(A )3项 (B )4项 (C )5项 (D )6项(5)(原创)某程序框图如图所示,该程序运行后输出的k 的值是( ) (A )12 (B )13 (C )14 (D )15(6)(根据宁波市2013届高三上期末测试4题改编)函数⎪⎩⎪⎨⎧<-≥-=-0,13,0,31)(x x x f x x则该函数为( )(A )单调递增函数,奇函数(B )单调递增函数,偶函数 (C )单调递减函数,奇函数 (D )单调递减函数,偶函数(7)(根据2010浙江省高考参考试卷第7题改编)已知ABC ∆中,3==AC AB ,32cos =∠ABC .若圆O 的圆心在边BC 上,且与AB 和AC 所在的直线都相切,则圆O 的半径为( ) (A )253 (B )352 (C )3 (D )332 (8)(引用)某几何体的三视图如图所示,其中正视图是腰长为a 2的等腰三角形俯视图是半径为a 的半圆,则该几何体的表面积是( )(A )22325a a +π (B )22323a a +π(C )2233a a +π (D )224325a a +π (9)(根据2013萧山中学3月月考10题改编)已知点)0)(0,(>-c c F 是双曲线12222=-by a x 的左焦点,过F 且平行于双曲线渐近线的直线与圆222c y x =+交于点P ,且点P 在抛物线cx y 42=上,则该双曲线的离心率是( ) (A )253+ (B )5 (C )215- (D )251+ (10)(根据2013届杭州一模17题改编)如图,在扇形OAB 中,︒=∠60AOB ,C 为弧AB 上且与BA ,不重合...的一个动点,y x +=,若)0(,>+=λλy x u 存在最大值,则λ的取值范围为( )(A ))1,21( (B ))3,1( (C ))2,21( (D ))3,31(第II 卷(共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分.(11)(引用)在平面直角坐标系中,不等式组)(,,04,0为常数a a x y x y x ⎪⎩⎪⎨⎧≤≥+-≥+表示的平面区域的面积是9,那么实数a 的值为_______▲_____.(12)(引用)记数列}{n a 的前n 项和为n S ,且)1(2-=n n a S ,则=2a _______▲______.俯视图侧视图正视图(第8题)(第10题)(14)(原创)已知A 为直线2:=+y x l 上一动点,若在1:22=+y x O 上存在一点B 使︒=∠30OAB 成立,则点A 的横坐标取值范围为_____▲____. (15)(原创)函数)2,0(),2cos(πϕϕ∈+=x y ,在区间)6,6(ππ-上单调递增,则实数ϕ的取值范围是_____▲____.(16)(根据09年全国数学联赛题改编)若方程)1ln(2ln +=x kx没有实数根,那么实数k 的取值范围是___▲___. (17)(根据2013浙江六校联盟10题改编)棱长为2的正四面体ABCD 在空间直角坐标系中移动,但保持点B A ,分别在x 轴、y 轴上移动,则原点O 到直线CD 的最近距离为____▲____ 三、解答题: 本大题共5小题, 共72分.解答应写出文字说明, 证明过程或演算步骤.(18)(根据北京市东城区08届模拟考改编)(本小题满分14分)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且B c B a C b cos cos 4cos -=.(I )求B cos 的值;(II )若2=⋅,且32=b ,求a 和c 的值.(19)(原创)(本小题满分14分)袋中有大小相同的10个编号为1、2、3的球,1号球有1个,2号球有m 个,3号球有n 个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是13. (Ⅰ)求m 、n 的值;(Ⅱ)从袋中任意摸出2个球,记得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望E ξ.(20)(引用)(本小题满分14分)如图,在各棱长均为2的三棱柱111C B A ABC -中,侧面⊥11ACC A 底面ABC ,︒=∠601AC A .(Ⅰ)求侧棱1AA 与平面C AB 1所成角的正弦值的大小;(Ⅱ)已知点D 满足+=,在直线1AA 上是否存在点P ,使C AB DP 1//平面?若存在,请确定点P 的位置;若不存在,请说明理由.(21)(根据09年清华大学自主招生试题改编)(本小题满分15分)已知椭圆)0(1:2222>>=+b a by a x C 的左顶点)0,2(-A ,过右焦点F 且垂直于长轴的弦长为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点A 的直线l 与椭圆交于点Q ,与y 轴交于点R ,过原点与l 平行的直线与椭圆交于点P ,求证:2OPAR AQ ⋅为定值.(22)(原创)(本小题满分14分)已知函数x ea x f x+-=2)21()(.(R a ∈)(Ⅰ)若)(x f 在区间)0,(-∞上单调递增,求实数a 的取值范围;(Ⅱ)若在区间),0(+∞上,函数)(x f 的图象恒在曲线x ae y 2=下方,求a 的取值范围.2013年高考模拟试卷数学(理科)答卷一、选择题:本大题共10小题,每小题5分,共50分。

2013届高三模拟试卷(10)数学(理)模拟试卷

2013届高三模拟试卷(10)数学(理)模拟试卷

2013届高三模拟试卷数学(理)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合11A x x ⎧⎫=≥⎨⎬⎩⎭,{}0,1,2B =,则( ) A .A B ⊆ B .B A ⊆ C .A B B ⋃= D .A B ⋂≠∅2.已知函数()sin()(0)6f x x πωω=+>两相邻对称轴间的距离为23π,则ω的值为( ).A .23B .32C .32πD .23π 3.已知a>l ,22(),xx f x a +=则使()1f x <成立的一个充分不必要条件是( )\ 10x -<<21x -<<20x -<<01x <<4. .设复数ii x -=12(i 是虚数单位),则20132013201333201322201312013x C x C x C x C +⋯+++= A.iB. -iC. -1 -iD.1+i 5.在△ABC 中,a 、b 、c 分别是内角A 、B 、C 所对的边,C=3π.若OD aOE bOF =+u u u r u u u r u u u r ,且D 、E 、F 三点共线(该直该不过点O ),则△ABC 周长的最小值是 ( )A . 12B .32C .54D .946.已知数列{}n a 满足1n n a a n ++=,若11,a =则84a a -=( )A. —1B. 1C. 2D. 47.已知数列{}n a 是单调递增的等差数列, 从7654321,,,,,,a a a a a a a 中取走任意三项, 则剩下四项依然构成单调递增的等差数列的概率是( )。

A. 335B. 233C. 332D. 6358.能够把()()22:221M x y -+-=e 的面积一分为二的曲线:(,)0C f x y =被称为Me 的“八卦曲线”,下列对M e 的“八卦曲线” C 的判断正确的是( )A. “八卦曲线”C 一定是函数B. “八卦曲线” C 的图象一定关于直线2x =成轴对称;C. “八卦曲线” C 的方程为2y =D. “八卦曲线” C 的图象一定关于点(2,2)成中心对称;9. 在平面直角坐标系xOy 中,随机地从不等式组22x y ⎧≤⎪⎨≤⎪⎩表示的平面区域Ω中取一个点点P ,如果点P 恰好在不等式组()2200x y m x m ⎧-≥⎪>⎨≤⎪⎩表示的平面区域的概率为18,则实数m 的值为( )A 、1B 、2 CD 、310. 若1()1(1)f x f x +=+,当[0x ∈,1]时,()f x x =,若在区间(1-,1]内()()g x f x mx m =--有两个零点,则实数m 的取值范围是( )第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把正确答案填写答题卡中的横线上11.正偶数列有一个有趣的现象:①246+=;②810121416++=+;③18202224262830,+++=++L按照这样的规律,则2012在第 个等式中。

2013年高考模拟系列试卷(2)—数学(理)含答案

2013年高考模拟系列试卷(2)—数学(理)含答案

2013年高考模拟系列试卷(二)数学试题【新课标版】(理科)注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的 1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y xx ==-+≤≤,则()RM N ⋂等于 ( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅ 2、在复平面内,复数2013i i 1iz =+-表示的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3、若sin 601233,log cos 60,log tan 30a b c ===,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}na 是公差不为零的等差数列,它的前n 项和为nS ,且1S 、2S 、4S 成等比数列,则41aa 等于( )A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭ 6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否定为( ) A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤-7、设a b <,函数()()2y x a x b =--的图象可能是( )8、程序框图如下:如果上述程序运行的结果S 的值比2013小,若使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,则此几何体的体积是( )A .1533πB .233πC .33πD .433π10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y-1)2=1上,那么|PQ |的最小值为( ) A .5-1B .355C .3515-D .523-112、已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A,并与椭圆C 交与不同的两点P,Q,如图,若A 为线段PQ 的靠近P 的三等分点,则椭圆的离心率为 ( )A .23B .33C .53D .73第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上13、由曲线23y x =-和直线2y x =所围成的面积为 。

2013高三数学理科模拟试题附加答案

2013高三数学理科模拟试题附加答案

2013高三数学理科模拟试题附加答案以下是xx为大家整理的关于《2013高三数学理科模拟试题附加答案》的文章,供大家学习参考!第一部分选择题(共40分)一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合≤ ≤ , ≤ ≤ ,则()2. 计算:()A. B.- C. 2 D. -23. 已知是奇函数,当时,,则()A. 2B. 1C.D.4. 已知向量 ,则的充要条件是()A. B. C. D.5. 若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为,则该几何体的俯视图可以是()6. 已知函数,则下列结论正确的是()A. 此函数的图象关于直线对称B. 此函数的值为1C. 此函数在区间上是增函数D. 此函数的最小正周期为7. 某程序框图如图所示,该程序运行后,输出的值为31,则等于()A. 0B. 1C. 2D. 38. 已知、满足约束条件,若,则的取值范围为()A. [0,1]B. [1,10]C. [1,3]D. [2,3]第二部分非选择题(共100分)二、填空题(本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分)。

(一)必做题:第9至13题为必做题,每道试题考生都必须作答。

9. 已知等比数列的公比为正数,且,则 = .10. 计算 .11. 已知双曲线的一个焦点是(),则其渐近线方程为 .12. 若 n的展开式中所有二项式系数之和为64,则展开式的常数项为 .13. 已知依此类推,第个等式为 .(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的只算前一题得分。

14. (坐标系与参数方程选做题)已知曲线C的参数方程为(θ为参数),则曲线C上的点到直线3 -4 +4=0的距离的值为15.(几何证明选讲选做题)如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤。

新课标2013届高考模拟试卷及答案(理科数学)[1]

新课标2013届高考模拟试卷及答案(理科数学)[1]

新 课 标 2013 届 高 考 模 拟 试 卷( 理 科 数 学)考试时间:120分钟 满分:150分 出题者:秦庆广一、选择题:(本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一个选项是符合题目要求的).若iim -+1是纯虚数,则实数m 的值为( )✌.1-.. .2.已知集合}13|{},1|12||{>=<-=xx N x x M ,则N M ⋂ ☎ ✆✌.φ .}0|{<x x .}1|{<x x .}10|{<<x x .若)10(02log ≠><a a a 且,则函数)1(log )(+=x x f a 的图像大致是☎ ✆.已知等比数列}{n a 的公比为正数,且1,422475==⋅a a a a ,则1a ☎ ✆✌.21 .22.2 ..已知变量⌧、⍓满足的约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,则y x z 23+=的最大值为☎ ✆✌.  .25.  . .过点( , )且与曲线11-+=x x y 在点( , )处的切线垂直的直线的方程为☎ ✆ ✌.012=+-y x .012=-+y x .022=-+y x .022=+-y x.函数)sin (cos 32sin )(22x x x x f --=的图象为C ,如下结论中正确的是☎ ✆♊图象C 关于直线11π12x =对称; ♋图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ♌函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ♍由x y 2sin 2=的图角向右平移π3个单位长度可以得到图象C (✌)♊♋♌ ( )♋♌♍ ( )♊♌♍ ( )♊♋♌♍ .已知6260126(12)x a a x a x a x -=+++⋅⋅⋅+,则0126a a a a +++⋅⋅⋅+=( )✌. .1-.63 .62.若函数)(x f 的导函数34)('2+-=x x x f ,则使得函数)1(-x f 单调递减的一个充分不必要条件是⌧ ☎ ✆✌.☯,  .☯,  .☯,  .☯, .设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是☎ ✆ ✌      . ✌中, ✌ ✌的平分线✌交边 于 ,已知✌,且)(31R AB AC AD ∈+=λλ,则✌的长为☎ ✆ ✌. .3 .32 ..在三棱锥 ✌中,✌✌2 ✌,二面角 ✌的余弦值是33-,若 、✌、 、 都在同一球面上,则该球的表面积是☎ ✆ ✌.68 .π6 . π . π二、填空题:(本大题 小题,每小题 分,共 分).在 ✌中, 3π中,且34=⋅BC BA 则 ✌的面积是.若函数1)(2++=mx mx x f 的定义域为 ,则❍的取值范围是.已知向量b a ,满足:2||,1||==b a ,且6)2()(-=-⋅+b a b a ,则向量a 与b 的夹角是 .某几何体的三视图如图所示,则它的体积是正视图 侧视图 俯视图三、解答题(本大题共 小题,共 分。

山东省2013届高三高考模拟卷(二)理科数学含答案

山东省2013届高三高考模拟卷(二)理科数学含答案

山东省2013届高三高考模拟卷(二)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i i z +=-1)2(,那么复数z 的虚部为A .1B .1-C .iD .i -2.已知集合}1{2+==x y P ,},1|{2R x x y y Q ∈+==,=S },1|{2R x x y x ∈+=,},1|),{(2R x x y y x T ∈+==,=M }1|{≥x x ,则A .P=MB .Q=SC .S=TD .Q=M3.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该种日用品中随机抽取200件,对其等级系数进行统计分析,得到频率f 的分布表如下:则在所取的200件日用品中,等级系数X=1的件数为A .40B .20C .30D .604.若p :R x ∈∀,cos 1x ≤,则A .p ⌝:R x ∈∃0,0cos 1x >B .p ⌝:R x ∈∀,cos 1x >C .p ⌝:R x ∈∃0,0cos 1x ≥D .p ⌝:R x ∈∀,cos 1x ≥5.如图所示,已知向量BC AB 2=,a OA =,b OB =,c OC =,则下列等式中成立的是A .a b c 2123-=B .a b c -=2C .b a c -=2D .b a c 2123-= 6.如图,若程序框图输出的S 是254,则判断框①处应为A .5≤nB .6≤nC .7≤nD .8≤n7.在△ABC 中角A ,B ,C 的对边分别为c b a ,,,已知272cos 2sin 42=-+C B A ,且5=+b a ,7=c ,则△ABC 的面积为 A .233 B .23 C .43 D .433 8.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,m m x f x (3)(+=为常数),则函数)(x f 的大致图象为9.箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是A .62516B .62596C .625624D .6254 10.设O 为坐标原点,点M 的坐标为(2,1),若点),(y x N 满足不等式组⎪⎩⎪⎨⎧≤-+≥≤+-01221034y x x y x ,则使ON OM ⋅取得最大值的点N 有 A .1个 B .2个 C .3个 D .无数个11.若P 是双曲线1C :)0,0(12222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点且=∠12F PF 212F PF ∠,其中21F F 、是双曲线1C 的两个焦点,则双曲线1C 的离心率为A .13-B .13+C .2D .312.已知函数()|4|()f x x x x R =-∈,若存在正实数k ,使得方程k x f =)(在区间(2,+∞)上有两个根b a ,,其中a b <,则)(2b a ab +-的取值范围是A .)222,2(+B .)0,4(-C .)2,2(-D .)2,4(-第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置.13.设dx x a ⎰=π0sin ,则曲线()2x f x xa ax =+-在点))1(,1(f 处的切线的斜率为__________.14.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,该三棱锥的外接球的半径为2,则该三棱锥的体积为_______.15.62)1)(1(++ax x 的展开式中各项系数的和为1458,则该展开式中2x 项的系数为_______.16.设函数⎩⎨⎧<+≥-=0),1(0],[)(x x f x x x x f ,其中][x 表示不超过x 的最大整数,如2]5.1[-=-,1]5.1[=,若直线)0)(1(>+=k x k y 与函数)(x f y =的图象有三个不同的交点,则k 的取值范围是__________.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置.17.(本小题满分12分) 已知函数13sin 322sin )(2++-=x x x f .(1)求)(x f 的最小正周期及其单调增区间:(2)当]6,6[ππ-∈x 时,求)(x f 的值域. 18.(本小题满分12分)如图,在三棱锥A-BCD 中,△ABD 和△BCD 是两个全等的等腰直角三角形,O 为BD 的中点,且AB=AD=CB=CD=2,AC=a .(1)当2=a 时,求证:AO ⊥平面BCD ;(2)当二面角C BD A --的大小为︒120时,求二面角D BC A --的正切值.19.(本小题满分12分)某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表:(1)计算这50天的日平均销售量;(2)若以频率为概率,且每天的销售量相互独立.①求5天中该种商品恰有2天的销售量为1.5吨的概率;②已知每吨该商品的销售利润为2万元,X 表示该种商品两天销售利润的和,求X 的分布列和数学期望.20.(本小题满分12分)已知等差数列}{n a 的首项11=a ,公差0>d ,且第2项、第5项、第14项分别是等比数列}{n b 的第2项、第3项、第4项.(1)求数列}{n a 、}{n b 的通项公式;(2)设数列}{n c 对任意的*N n ∈,均有12211+=+++n nn a b c b c b c 成立,求122013c c c +++ .21.(本小题满分13分)已知中心在原点的椭圆C :12222=+by a x 的一个焦点为)3,0(1F ,)0)(4,(>x x M 为椭圆C 上一点,1MOF ∆的面积为23. (1)求椭圆C 的方程;(2)是否存在平行于OM 的直线l ,使得直线l 与椭圆C 相交于A ,B 两点,且以线段AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.22.(本小题满分13分)已知函数xk x x f +=ln )(,R k ∈. (1)若1=k ,求函数)(x f 的单调区间;(2)若xe xf -+≥12)(恒成立,求实数k 的取值范围; (3)设k x xf xg -=)()(,若对任意的两个实数21,x x 满足210x x <<,总存在00>x ,使得=')(0x g 2121)()(x x x g x g --成立,证明:10x x >.数学(理科)参考答案一、选择题:1.B 2.D3.B4.A5.A6.C7.A8.B9.B10.D11.B12.B二、填空题13.2ln 24+ 14.2 15.61 16.)31,41[三、计算题17.【解析】1)sin 21(32sin )(2+-+=x x x f ++=x x 2cos 32sin 1)32sin(21++=πx . (1)函数)(x f 的最小正周期ππ==22T . 由正弦函数的性质知,当223222πππππ+≤+≤-k x k , 即)(12125Z k k x k ∈+≤≤-ππππ时,函数)32sin(π+=x y 为单调增函数,所以函数)(x f 的单调增区间为]12,125[ππππ+-k k ,)(Z k ∈. (2)因为]6,6[ππ-∈x ,所以]32,0[32ππ∈+x ,所以∈+)32sin(πx ]1,0[, 所以]3,1[1)32sin(2)(∈++=πx x f ,所以)(x f 的值域为[1,3]. 18.【解析】(1)根据题意知,在△AOC 中,2==a AC ,2==CO AO ,所以222CO AO AC +=,所以AO ⊥CO .因为AO 是等腰直角E 角形ABD 的中线,所以AO ⊥BD . 又BD CO=O ,所以AO ⊥平面BCD .(2)法一 由题易知,CO ⊥OD .如图,以O 为原点,OC 、OD 所在的直线分别为x 轴、y 轴建立如图所示的空间直角坐标系xyz O -,则有O(0,0,0),)0,2,0(D ,)0,0,2(C ,)0,2,0(-B . 设)0)(,0,(000<x z x A ,则=OA ),0,(00z x ,)0,2,0(=. 设平面ABD 的法向量为),,(111z y x n =, 则⎪⎩⎪⎨⎧=⋅=⋅,0,0OD n OA n 即⎪⎩⎪⎨⎧==+.02,011010y z z x x 所以01=y ,令01z x =,则01x z -=. 所以),0,(00x z n -=.因为平面BCD 的一个法向量为)1,0,0(=m ,且二面角C BD A --的大小为︒120,所以=><|,cos |n m 21|120cos |=︒, 即21=,整理得20203x z =. 因为2||=OA ,所以22020=+z x , 解得220-=x ,260=z ,所以)26,0,22(-A , 设平面ABC 的法向量为),,(222z y x l =, 因为)26,2,22(-=BA ,)0,2,2(=, 则⎪⎩⎪⎨⎧=⋅=⋅,0,0BC l BA l 即⎪⎩⎪⎨⎧=+=++-.022,02622222222y x z y x 令12=x ,则12-=y ,32=z .所以)3,1,1(-=l .设二面角D BC A --的平面角为θ,则|,cos |cos ><=m l θ515|)3()1(13|222=+-+=.所以36tan =θ,即二面角D BC A --的正切值为36. 法二 在△ABD 中,BD ⊥AO ,在△BCD 中,BD ⊥CO ,所以∠AOC 是二面角C BD A --的平面角,即∠AOC=︒120. 如图,过点A 作CO 的垂线交CO 的延长线于点H ,因为BD ⊥CO ,BD ⊥AO ,且CO AO=O ,所以BD ⊥平面AOC .因为AH ⊂平面AOC ,所以BD ⊥AH .又CO ⊥AH ,且CO BD=O ,所以AH ⊥平面BCD .过点A 作AK ⊥BC ,垂足为K ,连接HK .因为BC ⊥AH ,AK AH=A ,所以BC ⊥平面AHK .因为HK ⊂平面AHK ,所以BC ⊥HK ,所以∠AKH 为二面角D BC A --的平面角.在△AOH 中,∠AOH=︒60,2=AO ,则26=AH ,22=OH , 所以223222=+=+=OH CO CH . 在Rt △CHK 中,∠HCK=︒45,所以232==CH HK . 在Rt △AHK 中,362326tan ===∠KH AH AKH , 所以二面角D BC A --的正切值为36. 19.【解析】(1)日平均销售量为55.150152255.110=⨯+⨯+(吨). (2)①日销售量为1.5吨的概率5.05025==p . 设5天中该商品有Y 天的销售量为1.5吨,则)5.0,5(~B Y , 所以==)2(Y P 165)5.01(5.03225=-⨯⨯C . ②X 的所有可能取值为4,5,6,7,8.又日销售量为1吨的概率为2.05010=,日销售量为2吨的概率为3.05015=,则 04.02.0)4(2===X P ;2.05.02.02)5(=⨯⨯==X P ;37.03.02.025.0)6(2=⨯⨯+==X P ;3.03.05.02)7(=⨯⨯==X P ;09.03.0)8(2===X P .所以X 的分布列为数学期望⨯+⨯+⨯+⨯+⨯=83.0737.062.0504.04EX 2.609.0=.20.【解析】(1)由已知得d a +=12,d a 415+=,d a 13114+=,所以)131)(1()41(2d d d ++=+,解得0=d 或2=d .又因为0>d ,所以2=d .所以122)1(1-=⨯-+=n n a n .又322==a b ,953==a b ,所以等比数列}{n b 的公比33923===b b q , 所以1222333---=⨯==n n n n qb b . (2)由12211+=+++n nn a b c b c b c ①,得当2≥n 时, n n n a b c b c b c =+++--112211 ②, ①-②,得当2≥n 时,21=-=+n n n n a a b c ,所以≥⨯==-n b c n n n (32212).而1=n 时,211a b c =,所以31=c .所以⎩⎨⎧≥⨯==-2,321,31n n c n n . 所以122013c c c +++ 1220123232323=+⨯+⨯++⨯2013201320136233333313-⨯=+=-+=-. 21.【解析】(1)因为椭圆C 的一个焦点为)3,0(1F ,所以922+=a b ,则椭圆C 的方程为192222=++a y a x , 因为0>x ,所以233211=⨯⨯=∆x S MOF ,解得1=x . 故点M 的坐标为(1,4). 因为M(1,4)在椭圆上,所以1916122=++a a ,得09824=--a a , 解得92=a 或12-=a (不合题意,舍去),则18992=+=b .所以椭圆C 的方程为118922=+y x . (2)假设存在符合题意的直线l 与椭圆C 相交于),(11y x A ,),(22y x B 两点,其方程为m x y +=4(因为直线OM 的斜率)4=k , 由⎪⎩⎪⎨⎧=++=,1189,422y x m x y 消去y ,化简得01881822=-++m mx x . 进而得到18821m x x -=+,1818221-=⋅m x x . 因为直线l 与椭圆C 相交于A ,B 两点,所以0)18(184)8(22>-⨯⨯-=∆m m ,化简,得1622<m ,解得2929<<-m .因为以线段AB 为直径的圆恰好经过原点,所以0=⋅,所以02121=+y y x x .又221212121)(416)4)(4(m x x m x x m x m x y y +++=++=, 221212121)(417m x x m x x y y x x +++=++--=183218)18(1722m m 02=m , 解得102±=m . 由于)29,29(102-∈±,所以符合题意的直线l 存在,且所求的直线l 的方程为1024+=x y 或1024-=x y .22.【解析】(1)当1=k 时,函数)0(1ln )(>+=x xx x f , 则=')(x f 22111xx x x -=-. 当0)(<'x f 时,10<<x ,当0)(>'x f 时,>x 1,则函数)(x f 的单调递减区间为(0,1),单调递增区间为(1,)∞+. (2)x e x f -+≥12)(恒成立,即xe x k x -+≥+12ln 恒成立,整理得e x x x k -+-≥1ln 2恒成立. 设e x x x x h -+-=1ln 2)(,则x x h ln 1)(-=',令0)(='x h ,得e x =.当),0(e x ∈时,0)(>'x h ,函数)(x h 单调递增,当∈x ),(+∞e 时,0)(<'x h ,函数)(x h 单调递减,因此当e x =时,)(x h 取得最大值1,因而1≥k .(3)x x k x xf x g ln )()(=-=,1ln )(+='x x g .因为对任意的)0(,2121x x x x <<总存在00>x ,使得21210)()()(x x x g x g x g --='成立, 所以21210)()(1ln x x x g x g x --=+,即2122110ln ln 1ln x x x x x x x --=+, 即121221110ln 1ln ln ln ln x x x x x x x x x ----=-21122212ln ln x x x x x x x x --+-= 11ln212121--+=x x x x x x . 设t t t -+=1ln )(ϕ,其中10<<t ,则011)(>-='t t ϕ,因而)(t ϕ在区间(0,1)上单调递增,0)1()(=<ϕϕt ,又0121<-x x . 所以0ln ln 10>-x x ,即10x x >.。

2013届高考理科数学第一次模拟试题(附答案)

2013届高考理科数学第一次模拟试题(附答案)

2013届高考理科数学第一次模拟试题(附答案)江门市2013年高考模拟考试数学(理科)本试卷共4页,21题,满分150分,测试用时120分钟.参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.如果事件、互斥,那么.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈已知函数定义域为,定义域为,则A.B.C.D.⒉在复平面内,是原点,向量对应的复数是(其中,是虚数单位),如果点关于实轴的对称点为点,则向量对应的复数是A.B.C.D.⒊采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的50人中,编号落入区间1,400]的人做问卷A,编号落入区间401,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为A.12B.13C.14D.15⒋右图是某个四面体的三视图,该四面体的体积为A.72B.36C.24D.12⒌在中,若,,,则A.B.C.D.⒍若、,则是的A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件⒎已知、满足,则的取值范围是A.B.C.D.⒏设是定义在上的周期为2的偶函数,当时,,则在区间内零点的个数为A.2013B.2014C.3020D.3024二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)⒐已知数列的首项,若,,则.⒑执行程序框图,如果输入,那么输出.⒒如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率.⒓在平面直角坐标系中,若双曲线的焦距为,则.⒔在平面直角坐标系中,直线()与抛物线所围成的封闭图形的面积为,则.(二)选做题(14、15题,考生只能从中选做一题)⒕(坐标系与参数方程选做题)在极坐标系()中,曲线与的交点的极坐标为.⒖(几何证明选讲选做题)如图,圆内的两条弦、相交于,,.若到的距离为,则到的距离为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.⒗(本小题满分12分)已知函数(,)的最小值为.⑴求;⑵若函数的图象向左平移()个单位长度,得到的曲线关于轴对称,求的最小值.⒘(本小题满分14分)春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动。

山东省2013届高三高考模拟卷(一)数学理

山东省2013届高三高考模拟卷(一)数学理

山东省2013届高三高考模拟卷数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.把复数z 的共轭复数记作z ,i 为虚数单位,若i z +=1,则(2)z z +⋅=A .42i -B .42i +C .24i +D .4 2.已知集合}6|{2--==x x y x A ,集合12{|log ,1}B x x a a ==>,则A .}03|{<≤-x xB .}02|{<≤-x xC .}03|{<<-x xD .}02|{<<-x x 3.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示:若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为A .10B .20C .8D .16 4.下列说法正确的是A .函数xx f 1)(=在其定义域上是减函数 B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“R x ∈∃,220130x x ++>”的否定是“R x ∈∀,220130x x ++<” D .给定命题q p 、,若q p ∧是真命题,则p ⌝是假命题 5.将函数x x x f 2sin 2cos )(-=的图象向左平移8π个单位后得到函数)(x F 的图象,则下列说法中正确的是A .函数)(x F 是奇函数,最小值是2-B .函数)(x F 是偶函数,最小值是2-C .函数)(x F 是奇函数,最小值是2-D .函数)(x F 是偶函数,最小值是2-6.已知点),(y x P 满足⎪⎩⎪⎨⎧≥≥≤+,1,,4x x y y x 过点P 的直线与圆1422=+y x 相交于A ,B 两点,则AB 的最小值为 A .2 B .62 C .52 D .47.一个几何体的三视图如图所示,其正视图和侧视图都是底边长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是A .π6B .π12C .π18D .π24 8.执行如图所示的程序框图,若输入5=p ,6=q ,则输出a ,i 的值分别为A .5,1B .30,3C .15.3D .30.69.若双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离等于其焦距的41,则该双曲线的渐近线方程是A .02=±y xB .02=±y xC .03=±y xD .03=±y x10.我们定义若函数)(x f 为D 上的凹函数须满足以下两条规则:(1)函数在区间D 上的任何取值有意义;(2)对于区间D上的任意n 个值n x x x ,,,21 ,总满足)()()()(2121n x x x nf x f x f x f n n +++≥+++ ,那么下列四个图象中在]2,0[π上满足凹函数定义的是11.若2013(2)x -220130122013a a x a x a x =++++ ,则02420121352013a a a a a a a a ++++=++++A .201320133131+-B .201320133131+--C .201220123131+-D .201220123131+--12.已知c b a ,,为互不相等的三个正实数,函数)(x f 可能满足如下性质:①)(a x f -为奇函数;②)(a x f +为奇函数;③)(b x f -为偶函数;④)(b x f +为偶函数;⑤()()f x c f c x +=-.类比函数2013sin y x =的对称中心、对称轴与周期的关系,某同学得到了如下结论:(i)若满足①②,则)(x f 的一个周期为4a ;(ii)若满足①③;则)(x f 的一个周期为||4b a -;(iii)若满足③④,则)(x f 的一个周期为||3b a -;(iv)若满足②⑤;则)(x f 的一个周期为||4c a +. 其中正确结论的个数为( ). A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置. 13.已知向量)3,2(=a ,)2,1(=b ,且b a ,满足)()(b a b a -⊥+λ,则实数=λ_______. 14.对任意的实数R x ∈,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是________. 15.由直线02=-+y x ,曲线3x y =以及x 轴围成的封闭图形的面积为________.16.如图放置的边长为2的正方形PABC 沿x 轴滚动.设顶点),(y x P 的轨迹方程是)(x f y =,则)(x f y =在其两个相邻零点间的图象与x 轴所围成的区域的面积为______.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置. 17.(本小题满分12分)在△ABC 中,三个内角分别为A ,B ,C ,已知4π=A ,54cos =B . (1)求cosC 的值;(2)若BC=10,D 为AB 的中点,求CD 的长. 18.(本小题满分12分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,BC ⊥CF ,3=AD ,EF=2,BE=3,CF=4.(1)求证:EF ⊥平面DCE ;(2)当AB 的长为何值时,二面角C EF A --的平面角的大小为︒60.19.(本小题满分12分)为迎接2013年“两会”(全国人大3月5日-3月18日、全国政协3月3日-3月14日)的胜利召开,某机构举办猜奖活动,参与者需先后回答两道选择题,问题A 有四个选项,问题B 有五个选项,但都只有一个选项是正确的,正确回答问题A 可获奖金m 元,正确回答问题B 可获奖金n 元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答错误,则该参与者猜奖活动中止.假设一个参与者在回答问题前,对这两个问题都很陌生,试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大. 20.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,且满足332412++=n n S n ,数列*)}({log 3N n b n ∈为等差数列,且31=b ,273=b .(1)求数列}{n a 与}{n b 的通项公式; (2)若125-=n n a c ,n n n c b c b c b c b T ++++= 332211,求n T 的值. 21.(本小题满分13分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为21,以原点为圆心,以椭圆的短半轴长为半径的圆与直线06=+-y x 相切.(1)求椭圆C 的方程;(2)设P(4,0),A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明:直线AE 与x 轴相交于定点Q ;(3)在(2)的条件下,设过点Q 的直线与椭圆C 交于M ,N 两点,求ON OM ⋅的取值范围. 22.(本小题满分13分)已知函数⎩⎨⎧≥<+++-=)1(ln )1()(23x x a x c bx x x x f ,的图象过点)2,1(-,且在点))1(,1(--f 处的切线与直线-x 015=+y 垂直.(1)求实数c b ,的值;(2)求)(x f 在e e ](,1[-为自然对数的底数)上的最大值;(3)对任意给定的正实数a ,曲线)(x f y =上是否存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形,且此三角形斜边的中点在y 轴上?山东省2013届高三高考模拟卷数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 【解析】由i z +=1得z z ⋅+)1((3)(1)i i =+-=31342i i i +-+=-.2.D 【解析】由题意得集合2|{-≤=x x A 或}3≥x ,故}32|{<<-=x x ,又集合}0|{<=x x B ,所以}02|{<<-=x x .3.B 【解析】该班学生视力在0.9以上的频率为4.02.0)25.075.01(=⨯++,故该班50名学生中能报A 专业的人数为20504.0=⨯.4.D 【解析】由减函数的定义易知xx f 1)(=在其定义域上不是减函数,A 错;两个三角形全等是这两个三角形面积相等的充分条件,B 错;命题“R x ∈∃,220130x x ++>”的否定是“R x ∈∀,220130x x ++≤”,C 错;由q p ∧是真命题可知p 和q 都是真命题,故p ⌝一定是假命题,D 正确,选D .5.C 【解析】由题易得)42cos(2)(π+=x x f ,将)(x f 的图象向左平移8π个单位后,得=++=]4)8(2cos[2)(ππx x F x x 2sin 2)22cos(2-=+=π的图象,易知)(x F 为奇函数,最小值为2-,故选C .6.D 【解析】当P 点同时满足(1)P 为AB 的中点;(2)P 点到D 点的距离最线大时,AB 取得最小值.P 点的可行域如图所示,因为直线x y =和直+x 4=y 垂直,故P 点的坐标是(1,3)时,OP 最大.易知此时AB=4,故选D . 7.B 【解析】结合三视图可知该几何体是一个圆台,其上,下底面的半径分别为2,1,其直观图如图所示.则该几何的侧面积⨯=2(πS π12)414=⨯+.8.D 【解析】执行程序框图可知,当1=i 时,15⨯=a ;当2=i 时,25⨯=a ;…;当6=i 时,65⨯=a ,即a 能被q 整除,退出循环,输出i a ,的值分别为30,6.9.C 【解析】由双曲线)0,0(12222>>=-b a by a x 的对称性可取其一个焦点)0,(c 和一条渐近线x a b y =,则该点到该渐近线的距离为b ab c a b=+-⨯221|0|,而412=c b ,因此c b 21=,=-=22b c a c 23,所以33=a b ,因此双曲线的渐近线方程为03=±y x . 10.A 【解析】要判断是不是凹函数,需要先明确凹函数的定义,由定义的第一点可以排除D ,在A 、B 、C 这三个选项中可以考虑特值法,取01=x ,22π=x ,则显然选项B 、C 不满足)2(2)()(2121x x f x f x f +>+,故选A . 11.B 【解析】令1=x 得01234520131a a a a a a a +++++++= ①, 令1-=x 得201301234520133a a a a a a a -+-+-+-= ②,由①②联立,可得2012420a a a a ++++ 2013312+=,++31a a 52013a a ++ 2013132-=,从而02420121352013a a a a a a a a ++++++++ 20132013312132+=-201320133131+=--. 12.B 【解析】由2013sin y x =的图象知,两相邻对称中心的距离为2T 两相邻对称轴的距离为2T ,对称中心与距其最近的对称轴的距离为4T,若满足①②,则)(x f 的两个相邻对称中心分别为)0,(a ,)0,(a -,从而有a a a T2)(2=--=,即a T 4=;若满足①③,则)(x f 的对称轴为b x =,与对称轴相邻的对称中心为)0.(a ,有||4b a T-=,即||4b a T -=;若满足③④,则)(x f 的两个相邻的对称轴为b x -=和b x =,从而有=--=)(2b b Tb 2,即b T 4=;若满足②⑤,则)(x f 的对称中心为)0,(a -,与其相邻的对称轴为c x =,从而有()4Tc a a c =-+=-,即=T 4||a c -.故只有(iii)(iv )错误.二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置.13.35-【解析】由)3,2(=,)2,1(=,得++=+3,2(λλ)2λ,)1,1(=-,因为)()(b a b a -⊥+λ,所以0)()(=-∙+b a b a λ,即01)23(1)2(=⨯++⨯+λλ,解得35-=λ.14.),2[+∞-【解析】当0=x 时,R a ∈;当0=/x 时,原不等式变形可得)||1|(|x x a +-≥,因为2||1||≥+x x (当且仅当1||=x 时,等号成立),所以2)||1|(|-≤+-x x ,即)||1|(|x x +-的最大值是2-,所以2-≥a .15.43【解析】由⎪⎪⎩⎪⎪⎨⎧==-+302xy y x ,解得直线02=-+y x 和曲线3x y =的交点坐标是(1,1),结合图形可知,由直线02=-+y x ,曲线3x y =以及x 轴围成的封闭图形的面积为=-+⎰⎰dx x dx x )2(2113104|41x 212|)212(x x -+432141=+=. 16.44π+【解析】由于本题是求两个相邻零点问的图象与x 轴所围成的区域的面积,所以为了简便,可以直接将P 点移到原点,开始运动,如图所示,当P 点第一次回到x 轴时经过的曲线是三段相连的圆弧,它与x 轴围成的区域面积为2221112[22]244444ππππ⨯⨯+⨯⨯+⨯+⨯⨯=+(.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置.17.【解析】(1)因为54cos =B ,且),0(π∈B ,=-=B B 2cos 1sin 53,则)cos(cos B A C --=π+=-=B B cos 43cos )43cos(ππB sin 43sin π 10253225422-=⨯+⨯-=. (2)由(1)可得=∠-=∠ACB ACB 2cos 1sin 1027)102(12=--=. 由正弦定理得ACB ABA BC ∠=sin sin ,即10272210AB =,解得AB=14.因为在△BCD 中,721==AB BD ,⋅⋅-+=BD BC BD BC CD 222237541072107cos 22=⨯⨯⨯-+=B , 所以37=CD . 18.【解析】(1)由题易知在△BCE 中,3==AD BC ,BE=3, 所以3222=+=BE BC EC ,又在△FCE 中,==162CF 22CE EF +,所以 EF ⊥CE , 因为平面ABCD ⊥平面EFCB ,DC ⊥BC ,所以DC ⊥平面EFCB , 又EF ⊂平面EFCB ,所以DC ⊥EE ,又DC EC=C ,所以EF ⊥平面DCE .(2) 法一过点B 作BH ⊥EF 交FE 的延长线于点H ,连接AH . 由平面ABCD ⊥平面BEFC ,又平面ABCD 平面BEFC=BC ,AB ⊥BC ,所以AB ⊥平面BEFC ,从而AB ⊥EF ,又因为BH ⊥EF ,BH AB=B ,所以EF ⊥平面ABH . 又AH ⊂平面ABH ,所以EF ⊥AH ,所以∠AHB 为二面角C EF A --的平面角. 在Rt △CEF 中,因为EF=2,CF=4,所以∠CFE=︒60,因为BE ∥CF ,所以∠BEH=∠CFE=︒60. 又在Rt △BHE 中,BE=3,所以233233sin =⨯=∠⋅=BEH BE BH , 由二面角C EF A --的平面角的大小为︒60,得∠AHB=︒60, 在Rt △ABH 中,解得293233tan =⨯=∠⋅=AHB BH AB . 所以当29=AB 时,二面角C EF A --的平面角的大小为︒60. (2)法二 由题知,平面ABCD ⊥平面BEFC ,又平面ABCD 平面BEFC=BC ,DC ⊥BC ,则DC ⊥平面BEFC .又CF ⊥BC ,则BC ,CD ,CF 两两垂直,以点C 为坐标原点,CB ,CF 和CD 所在直线分别作为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系xyz C -.设)0(>=a a AB ,则)0,0,0(C ,),0,3(a A ,)0,0,3(B ,)0,3,3(E ,)0,4,0(F , 从而)0,1,3(-=EF ,),3,0(a AE -=.设平面AEF 的法向量为),,(z y x n =,由0=⋅n EF ,=⋅n AE 0得,⎩⎨⎧=-=+-0303az y y x ,取1=x ,则3=y ,az 33=, 即平面AEF 的二个法向量为)33,3,1(an =. 不妨设平面EFCB 的法向量为),0,0(a BA =, 由条件,得||,cos |BA n =><21274332=+=a ,解得29=a .所以当29=AB 时,二面角C EF A --的平面角的大小为︒60. 19.【解析】该参与者随机猜对问题A 的概率411=P , 随机猜对问题B 的概率512=P .回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B ,参与者获奖金额ξ的可能取值为n m m +,,0,则431)0(1=-==P P ξ, =⨯=-==5441)1()(21P P m P ξ51, 2015141)(21=⨯==+=P P n m P ξ. 数学期望204201)(51430nm n m m E +=⨯++⨯+⨯=ξ.②先回答问题B ,再回答问题A ,参与者获奖金额η的可能取值为n m n +,,0,则541)0(2=-==P P η, =⨯=-==4351)1()(12P P n P ξ203, 2014151)(12=⨯==+=P P n m P η. 数学期望520201)(203540nm n m n E +=⨯++⨯+⨯=η.2034)520()204(n m n m n m E E -=+-+=-ηξ. 于是,当43>n m 时,ηξE E >,即先回答问题A ,再回答问题B ,参与者获奖金额的期望值较大;当43=n m 时,ηξE E =,无论是先回答问题A ,再回答问题B ,还是先回答问题B ,再回答问题A ,参与者获奖金额的期望值相等;当43<n m 时,ηξE E <,即先回答问题B ,再回答问题A ,参与者获奖金额的期望值较大. 20.【解析】(1)由题意得1247332411=++=a ,当2≥n 时,1--=n n n S S a ---++=22)1(4133241n n n 12523)1(32+=--n n ,又1247121112521=/=+,所以⎪⎪⎩⎪⎪⎨⎧≥+==.2,1252,1,1247n n n a n 设等差数列}{log 3n b 的公差为d .由31=b ,273=b , 可得27log 3log )3(log 2333+=+d ,解得1=d . 所以+=3log log 33n b n n =⨯-1)1(,所以nn b 3=.(2)由(1)得,当1=n 时,2712511=-=a c ,当2≥n 时,=n c 2n , 所以当1=n 时,221273111=⨯==c b T ;当2≥n 时,n n n c b c b c b c b T ++++= 3322112323322327332n n ⨯++⨯+⨯+⨯=)33323(2122132n n ⨯++⨯+⨯+=. 记n Q nn ⨯++⨯+⨯=3332332, ①n n Q n n n ⨯+-⨯++⨯+⨯=+1433)1(333233 ,②①-②得n Q n nn ⨯-+++⨯=-+132333232 --⨯+=-2)13(27182n n n ⨯+13,故234273911n Q n n n ⨯+---=++, 则)2342739(2122111n T n n n ⨯+---⨯+=++)2(8753)12(1≥+⨯-=+n n n . 因为221875312=+⨯,所以=n T 8753)12(1+⨯-+n n . 21.【解析】(1)由题意知21==a c e ,所以41222222=-==a b a a c e ,即2234b a =. 又因为以原点为圆心,以椭圆的短半轴长为半径的圆222b y x =+,与直线06=+-y x 相切,所以=b 3)1(1622=-+, 所以42=a ,32=b ,故椭圆C 的方程为13422=+y x . (2)由题意知直线PB 的斜率存在且不为0,则直线PB 的方程为)4(-=x k y . 由⎪⎩⎪⎨⎧=+-=,134),4(22y x x k y 得0126432)34(2222=-+-+k x k x k . ① 设点),(11y x B ,),(22y x E ,则),(11y x A -.由题意知直线AE 的斜率存在,则直线AE 的方程为)(212122x x x x y y y y -++=-. 令0=y ,得121222)(y y x x y x x +--=,将)4(11-=x k y ,-=22(x k y 4)代入整理得 8)(42212121-++-=x x x x x x x . ② 由①式利用根与系数的关系得34322221+=+k k x x ,=21x x 34126422+-k k , 代入②式整理得1=x .所以直线AE 与x 轴相交于定点Q(1,0).(3)当过点Q 的直线MN 的斜率存在时,设直线MN 的方程为)1(-=x m y ,),(M M y x M ,),(N N y x N . 由⎪⎩⎪⎨⎧=+-=,134),1(22y x x m y 得01248)34(2222=-+-+m x m x m , 易知0)1(144)124)(34(4)8(22222>+=-+--=∆m m m m , 由根与系数的关系知34822+=+m m x x N M ,3412422+-=m m x x N M , 则=N M y y 349]1)([)1()1(222+-=++-=-⋅-m m x x x x m x m x m N M N M N M , 则N M N M y y x x ON OM +=⋅)34(4334534125222+--=++-=m m m , 因为02≥m ,所以0)34(4334112<+-≤-m ,所以--≤-45445)34(4332-<+m , 所以)45,4[--∈⋅ON OM .当过点Q 的直线MN 的斜率不存在时,其方程为1=x ,代入椭圆方程得23±=y ,不妨设)23,1(M ,)23,1(-N ,此时⋅OM 45-=ON . 综上所述,ON OM ⋅的取值范围是]45,4[--.22.【解析】(1)当1<x 时,b x x x f ++-='23)(2,由题意,得⎩⎨⎧-=-'=-,5)1(,2)1(f f 即⎩⎨⎧-=+--=+-,523,22b c b 解得0==c b . (2)由(1),知⎩⎨⎧≥<+-=),1(ln ),1()(23x x a x x x x f ①当11<≤-x 时,)23()(--='x x x f ,由0)(>'x f ,得320<<x ;由0)(<'x f ,得01<≤-x 或132<<x .所以)(x f 在)0,1[-和)1,32(上单调递减,在)32,0(上单调递增. 因为2)1(=-f ,274)32(=f ,0)0(=f ,所以)(x f 在)1,1[-上的最大值为2.②当e x ≤≤1时,x a x f ln )(=,当0≤a 时,0)(≤x f ;当0>a 时,)(x f 在],1[e 上单调递增.所以)(x f 在],1[e 上的最大值为a .所以当2≥a 时,)(x f 在],1[e -上的最大值为a ;当2<a 时,)(x f 在],1[e -上的最大值为2.(3)假设曲线)(x f y =上存在两点P ,Q 满足题意,则P ,Q 只能在y 轴两侧,因为△POQ 是以O 为直角顶点的直角三角形,所以0=∙,不妨设)0))((,(>t t f t P ,则由△POQ 斜边的中点在y 轴上知,(t Q -)23t t +,且 1≠t .所以0))((232=++-t t t f t .(*) 是否存在两点P ,Q 满足题意等价于方程(*)是否有解.若10<<t ,则23)(t t t f +-=,代入方程(*),得++-+-3232)((t t t t 0)2=t ,即0124=+-t t ,而此方程无实数解;当1>t 时,则t a t f ln )(=,代入方程(*),得0)(ln 232=+∙+-t t t a t ,即t t aln )1(1+=, 设)1(ln )1()(≥+=x x x x h ,则011ln )(>++='xx x h 在),1[+∞上恒成立, 所以)(x h 在),1[+∞上单调递增,从而0)1()(=≥h x h ,即)(x h 的值域为),0[+∞.因为1>t ,所以t t t h ln )1()(+=的值域为),0(+∞,所以当0>a 时,方程t t aln )1(1+=有解,即方程(*)有解. 所以对任意给定的正实数a ,曲线)(x f y =上总存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形,且此三角形斜边的中点在y 轴上.。

2013届高三模拟试卷(01)数学(理)参考答案

2013届高三模拟试卷(01)数学(理)参考答案

2013届高三模拟试卷(01) 数学(理)试卷参考答案11、34π12、 13、[1,3] 14、①④ 15、A :21-≤m ;B :2或8- 三、解答题16.解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ………………………2分ACB AC B cos cos -cos -2sin sin sin =+Θ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴A C AB A sin 2)(sin )(sin =+++∴………………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴……………………………………6分 (Ⅱ)因为2bc a b c +==,,所以a b c ==,所以ABC △为等边三角形21sin 2OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅ …………8分435cos 3-sin +=θθ2sin (-)3πθ=,……………10分 (0)θπ∈Q ,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为2+分17.解:(1)设四层下到三层有n 个出口,恰好被三楼的警员抓获,说明五层及四层的警员均没有与他相遇。

9141)11)(311(=⨯--∴n ,解得3=n ………………………3分(2)ξ可能取值为0,1,2,3,4,5 9231)311()1(,31)0(=⨯-====ξξp p 9141)311)(311()2(=⨯--==ξp12141)411)(311)(311()3(=⨯---==ξp24161)411)(411)(311)(311()4(=⨯----==ξp 2452411219192311)5(=-----==ξp ………………………8分 所以,分布列为………………………………………………………………………………10分72137245524141213912921310=⨯+⨯+⨯+⨯+⨯+⨯=ξE ………………………12分18.解:(1)解法1:因为平面⊥ABE 平面ABCD ,且BC AB ⊥所以BC ⊥平面ABE ,则CEB ∠即为直线EC 与平面ABE 所成的角………2分 设BC=a ,则AB=2a则直角三角形CBE即直线EC 与平面ABE 所成角的正弦值为………………………6分解法2:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥, 所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,则(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面ABE 的一个法向量为(0,1,0)OD =u u u r.…………3分 设直线EC 与平面ABE 所成的角为θ,所以即直线EC 与平面ABE 所成角的正弦值为…………………………6分 (2)存在点F ,且时,有EC // 平面FBD . 证明如下:由设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rv v 所以 取1=a ,得)2,1,1(=v .………………………………9分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足时,有EC // 平面FBD .……………………………………12分 19.解:2)1(3n n d -+=Θ,∴1232n n a d d d d =+++⋅⋅⋅+3232n n ⨯== …………………3分 又由题知:令1m = ,则22212b b ==,33312b b ==L 12n nn b b == ……………5分若2n n b =,则2m nm n b =,2n mn m b =,所以m nn m b b =恒成立若2n n b ≠,当1m =,m nn m b b =不成立,所以2n n b = …………………………………6分(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项……删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8 …………9分201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=--………………………………………12分20.解:(Ⅰ) 设F2(c ,0),则1212c c -+=13,所以c =1.因为离心率e2,所以a.所以椭圆C 的方程为2212x y +=. …………………………………………4分(Ⅱ) 当直线AB 垂直于x 轴时,直线AB 方程为x =-12,……………………6分 此时P(2-,0)、Q(2,0) ,221F P F Q ⋅=-u u u u r u u u u r.不合;当直线AB 不垂直于x 轴时,设存在点M(-12,m ) (m ≠0),直线AB 的斜率为k , ),(11y x A , ),(22y x B .由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得12112212()2()0y y x y x y x x -+++⋅=-,则 -1+4mk =0, 故k =14m.此时,直线PQ 斜率为m k 41-=,PQ 的直线方程为)21(4+-=-x m m y .即 m mx y --=4.联立⎪⎩⎪⎨⎧=+--=12422y x mmx y 消去y ,整理得 2222(321)16220m x m x m +++-=. 所以212216321m x x m +=-+,212222321m x x m -=+.………………………………8分由题意=⋅F F 220,于是=⋅Q F P F 22(x1-1)(x2-1)+y1y2)4)(4(1)(212121m mx m mx x x x x +++++-=22122121))(14()161(m x x m x x m +++-++=2222222(116)(22)(41)(16)1321321m m m m m m m +---=+++++22191321m m -=+=0.1919±=∴m 因为M 在椭圆内,872<∴m 1919±=∴m 符合条件;……………………12分 综上,存在两点M 符合条件,坐标为)1919,21(±-M .……………………13分 21.解:(Ⅰ)∵()ln()f x a x b =+,∴()af x x b'=+, 则()f x 在点(0,ln )A a b 处切线的斜率(0)ak f b'==,切点(0,ln )A a b , 则()f x 在点(0,ln )A a b 处切线方程为ln ay x a b b=+,……………………2分 又()e 1x g x a =-,∴()e x g x a '=,则()g x 在点(0,1)B a -处切线的斜率(0)k g a '==,切点(0,1)B a -,则()g x 在点(0,1)B a -处切线方程为1y ax a =+-,…………………………4分 由,ln 1,a a b a b a ⎧=⎪⎨⎪=-⎩解得1a =,1b =.…………………………………………6分(Ⅱ)由()1x m g x ->+得ex x m-e x m x <在[0,)+∞上有解,令()e x h x x =-,只需max ()m h x <.……………………………………8分 ①当0x =时,()e 0x h x x =-=,所以0m <;………………………………10分 ②当0x >时,∵()1e )1x x x h x '=-=-+,∵0x >,e 1x >,∴x >故()10x h x '=-<,即函数()e x h x x =在区间[0,)+∞上单调递减,所以max ()(0)0h x h ==,此时0m <.…………………………………………13分 综合①②得实数m 的取值范围是(,0)-∞.……………………………………14分。

2013届高考模拟卷试题卷(理科)

2013届高考模拟卷试题卷(理科)

湖南省长沙市2013届高三模拟考试数学试卷(理科)时量:120分钟 满分:150分 命题: .选择题:本大题共 8小题,每小题5分,共40分. 是符合题目要求的.uuu向量BA 在向量 BC 方向上的 1投影的数量为( )B.込C.3D 142226.若随机变量X :N(1,2), Y2X 1,则DY( )A.2B.4C.8D.167.已知x 0, y 0,x 2y2xy 8 ,则x 2y 的最小值是( )A.3B.4C.3、2 D.^21•设A {x|x 24x 5 0}, B {x||x 1| 1},则 AI BA{x| 5}B.{x| 1 x5}C.{x| 0}D.{x|x 0或 x 2}2.已知i 为虚数单位,复数1 ai2 i为纯虚数,则实数a 等于 B.- 3 D.2 3.阅读右面程序框图,如果输出的函数值在区间则输入的实数x 的取值范围是 [丄,1]内, 4 2 ( ) 开始 输入xA[ 1,2] B.[ 2, 1] C.( , 2] D. [2,) 否xx [ 2,2是■f(x) 2f(x) 24.某几何体的三视图如图所示,则它的体积是 2输出f (x), |_结束D.825.已知 ABC 的外接圆的圆心为 O ,半径为1,uu u AB AC UULT2AO ,uuu uuur 且 |OA| | AC |,则 明德中学高三数学备课组在每小题给出的四个选项中 ,只有一项交双曲线右支于点 P ,若 T 为线段FP 的中点,则该双曲线的渐近线方程为 16.若一个二进制数中1的个数多于0的个数,则称此数为 好数” ⑴6位二进制数中 好数”的个数为8.已知函数f (x )-4 k2 21(x R ),若对于任意实数x 1,x 2,x 3 ,总存在以 1f (xj, f (X 2), f (X 3)为三边边长的三角形, 则实数k 的取值范围是1 A[齐]B.[1,4]C.[D.[1,)二•填空题:本大题共 8小题,考生作答中对应题号后的横线上.7小题,每小题5分,共35分把答案填在答题卡(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做,则按前2题给分)9.已知直线l 的极坐标方程为:cos(寸2,则极点0到直线I 的距离为 ________ .10.如图,已知O O 的半径为2, PA 是O O 的切线,A 为切点,且PA 2. 2,过点P 的一条割线与O O 交于B,C 两点,圆心O 到割线的距离为,3,则PB11.若不等式|2x 1||2x 5| a 无解,则实数a 的取值范围是(二)必做题(12 —16题)1 6-)的展开式中的常数项为x212.二项式(X 13•给出下列命题: ①函数ysin 2x 在[0, —]上是增函数;②在 ABC 中,sin A sin B 4 的充要条件是A B ;③函数 f(x)sin 2 x, x (,0] 的最大周期为.其中真命题的个数为14.已知点P (x, y )的坐标满足: 2xy 2y0,则x 2 2—匕的取值范围为xy2x15.过双曲线—- a2=1(a>0,b>0)的左焦点 bF 引圆2 2y a 的切线,切点为T ,延长FT⑵6位二进制数中所有 好数”的和为 .(结果用十进制数表示)三•解答题:本大题共 6小题,共75分,解得应写出文字说明,证明过程或演算步骤 •17.(本小题满分12分)锐角 ABC 的三个内角A 、 B 、 C 所对边的长分别为a 、 b , c .设向量ur rur rm (c a,b a), n (a b, c),且m// n.⑴求角B 的大小;⑵若b 1,求a c 的取值范围.18.(本小题满分12分)某人将一颗粒 P 放于坐标原点 0,他通过掷一颗骰子来移动点 P :若掷出的点数大于2,则将点P 右移一个单位,否则,上移一个单位 .他一共抛掷了 5次.⑴求点P 移到了点Q(3,2)的概率;⑵若点P 移到了点Q(x, y),设 |x y |,求随机变量的分布列和数学期望19.(本小题满分12分)已知正四棱柱 ABCD A ,B 1C 1D 1 中,AB 1,AA 1 2.⑴求证:BQ //平面ABD ;⑵求直线AD 与平面ABD 所成角的正弦值; ⑶若点P 平面ABD , AP 平面ABD ,在如图所示 的空间直角坐标系中求点 P 的坐标.⑶求证:对任意n N*且n 2有1 1 cos — cos L cos 1L4 62n 2320.(本小题满分13分)1113 已知数列{a n }满足:a a( a 1),a n 1a ; a n (n 22 4 4N ).证明:⑴数列{a n }是递增数列;⑵ |印 1| |a ;1| L |a n 1| 2(n N ).21.(本小题满分13 分)已知焦点为F 1( 1,0), F 2(1,0)的椭圆经过点 A, B 两点,其中O 为坐标原点.uuu uuu⑴求椭圆的方程;⑵求 OAgOB 的范围.22.(本小题满分13 分)已知函数f(x) Sin ^,x0 x2⑴求证:f (x)为单调递减函数;⑵当 0 x 时,4k 的最小值;1一 1 sin sin L sin . n 46 2n,直线I 过点F 2与椭圆交于 f(x)湖南省长沙市2013届高三模拟考试数学试卷(理科)参考答案时量:120分钟 满分:150分 命题:明德中学高三数学备课组.选择题:本大题共 8小题,每小题5分,共40分•在每小题给出的四个选项中 ,只有一项 是符合题目要求的•7•解:x 2y 2xy 8 9 (1 x)(1 2y) [(1 x) (1 2y)'2(二)必做题(12 —16题)512.答案:15 13.答案:214 •答案:[2,-]215.答案:2x y 016.答案:⑴16;⑵85316•解:⑴后5位中,1的个数至少有3个,所求个数为C ; C ; C? 16 ⑵所求和为 16 25(C : C : C :)(24 23 22 2 1) 853.三、解答题:本大题共 6小题,共75分,解得应写出文字说明,证明过程或演算步骤 17.(本小题满分 解:⑴m // n , 12分) • (c a)c(b a)(a b) 0, • 2 2 …a cb 2 ac ,2 2 .2a c b1 1即,cosB,B . 6分2ac2 2 3• B ,二 2 AC —3, 3ABC 为锐角三角形,•••0 A -,0 C2 ,…—A, 7分23262高三数学(理科)第5页共9页2y 4当且仅当x 8•解:2,y 1时取等号,所以(x 2y )min , k t k2x,则函数化为f (x ) g (t ) 1(0,1时, k 2f (x )的值域为(1 --- ],问题,3解得1时, f (x )的值域为{1},符合;1时, k 2f (x )的值域为[亠上1),问题2〉3解得综上,实数一 1k 的取值范围是[—,4]2本大题共 8小题,考生作答7小题,每小题5分,二、填空题:中对应题号后的横线上(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做, 9•答案:2 10答案:211.答案: 共35分把答案填在答题卡 则按前 2题给分) (,6]2sin Asin B —,且 b 1,sin Cbsin A bsinCsin Bsin A sin(2A)32 3...3(2sinA、.、3 sin A cos A 2sin( A10分c (.3,2].12分18.(本小题满分 解:⑴点P 由原点移到点Q(3,2),需向右移 3 2 3 1 2 80 p c ;(n 3(:)23 3 24312 分) 3次,向上移2次, 故所求概率为⑵点Q 所有可能的位置为(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),于是随机变量 的取值为: 的所有可能P( 1) P(3) P( 5) 1,3,5. C 3(2)3_(1)2 c 2(2)2g (1)3 120 C 5( ) a :)C 5( ) a ;)3 3 3 243 g 1 C 12g ^1)490 「C 5 c(_) 3 3 3 2432 1 33 c 5(-)5 c 0(-)53 3 2433 2、33 c ;(|)4 3 ”2 - i八3' 随机变量的分布列为: 1 3 5 P 120 90 33243 243 243120 90 33 185 E 1 3 5243 243 243 81 19. (本小题满分 12分) 解:⑴证明:••• A 1B 1 P AB P cD , •••四边形 A ,BQD 为平行四边形, EC // A 1D , 又BC 平面ABD , A ,D 平面A ,BD , 所以B 1C //平面A ,BD 4分 uuu BD ( 1,1,0),r设平面ABD 的一个法向量为nruur r uuu nBD n gBD 0 x r UULT r uuirn BA , ngBAj 0 uuu r x cos UULT r AD, n ADgn 2uuu L |ADgn|3⑵在如图所示的空间直角坐标系中, uur uiu BA 「WAD (O,1,。

2013届高考数学理科模拟试题(有答案)

2013届高考数学理科模拟试题(有答案)

2013届高考数学理科模拟试题(有答案)安徽省阜阳市第一中学2013届高三上学期第二次模拟考试数学(理)试题一、选择题(共10小题,每小题5分,每小题只有一个正确答案)1、复数的共轭复数为()。

ABCD2、实数x,条件P:xA充分不必要B必要不充分C充要条件D既不充分也不必要3、某几何体的三视图如下,则几何体的表面积为()。

ABCD4、对任意x都有则()。

AB0C3D5、为锐角三角形,则则与的大小关系为()。

ABCD6、动点在区域上运动,则的范围()。

ABCD7、四面体的五条棱长都是2,另一条棱长为1,则四面体的体积为()。

ABCD8、已知:在上为减函数,则的取值范围为()。

ABCD9、为x的整数部分。

当时,则的值为()。

A0B1C2D310、数列、、、、、、、、、……依次排列到第项属于的范围是()。

ABCD二、填空题:(共5小题,每小题5分)。

11、等比数列中,若则¬¬_____________。

12、过点P(1,2)的直线,在x轴、y轴正半轴截距分别为、,则最小值为____________。

13、如图:矩形ABCD中,AB=BC=2点E为BC的中点,点F在CD上。

若则_____________。

14、函数,则不等式的解集_________。

15、,为x的整数部分,当时,的解集为___________。

三、解答题:解答应写出文字说明,证明过程或演算步骤。

16、(12分)已知向量(1)求并求的单调递增区间。

(2)若,且与共线,为第二象限角,求的值。

17、(12分)函数为奇函数,且在上为增函数,,若对所有都成立,求的取值范围。

18、(12分)直三棱柱中,点M、N分别为线段的中点,平面侧面(1)求证:MN//平面(2)证明:BC平面19、(12分)若,证明:20、(13分)设(1)讨论函数的单调性。

(2)求证:21、(14分)数列中,(1)求证:时,是等比数列,并求通项公式。

(2)设求:数列的前n项的和。

山东省2013届高三高考模拟卷(三)-数学(理).

山东省2013届高三高考模拟卷(三)-数学(理).

山东省2013届高三高考模拟卷(三)数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为A .7B .12C .32D .642.已知20<<a ,复数z 的实部为a ,虚部为1,则||z 的取值范围是A .(1,5)B .(1,3)C .)5,1(D .)3,1( 3.若命题“p 或q ”与命题“非p ”都是真命题,则A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 同真同假4.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aaa aa a a中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为A .16B .32C .36D .725.某几何体的三视图如右图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为A .63π B .33π C .23π D .π3 6.执行如右图所示的程序框图,如果输入的n 是4,则输出的p 的值是A .8B .5C .3D .2 7.函数()cos(2)f x x x π=-的图象大致为8.连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB 、CD 的长度分别为72、34,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ;②弦AB 、CD 可能相交于点N ;③MN 的最大值为5;④MN 的最小值为1.其中真命题的个数为A .1B .2C .3D .49.在直角坐标系中,若不等式组⎪⎩⎪⎨⎧--≤≤≥1)1(,2,0x k y x y y 表示一个三角形区域,则实数k 的取值范围是A .)1,(--∞B .),0(+∞C .),2()2,0(+∞D .),2()2,0()1,(+∞--∞10.将“你能HOlD 住吗”8个汉字及英文字母填人5×4的方格内,其中“你”字填入左上角,“吗”字填入右下角,将其余6个汉字及英文字母依次填入方格,要求只能横读或竖读成一句原语,如图所示为一种填法,则共有不同的填法种数是A.35B.15C.20D.70 11.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若)1(>=λλ,则λ的值为A .5B .4C .34 D .25 12.对任意实数y x ,,定义运算cxy by ax y x ++=*,其中c b a ,,为常数,等号右边的运算是通常意义的加、乘运算.现已知1*2=4,2*3=6,且有一个非零实数m ,使得对任意实数x ,都有x m x =*,则=mA .2B .3C .4D .5 第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置. 13.若非零向量,满足||||=,0)2(=⋅+,则a 与b 的夹角为______. 14.已知26()kx x+(k 是正整数)的展开式中,常数项小于120,则=k _______. 15.若关于x 的不等式3|||1|>++-m x x 的解集为R ,则实数m 的取值范围是_______.16.过双曲线的一个焦点的直线垂直于一条渐近线,且与双曲线的两支相交,则该双曲线离心率的取值范围是_________.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置. 17.(本小题满分12分)已知函数1)sin (cos cos 2)(+-=x x x x f ,R x ∈. (1)求函数)(x f 的最小正周期; (2)求函数)(x f 在区间]43,8[ππ上的最小值与最大值.18.(本小题满分12分)某学校的一间功能室统一使用某种节能灯管,已知这种灯管的使用寿命ξ(单位:月)服从正态分布),(2σμN ,且使用寿命不少于12个月的概率为0.8,使用寿命不少于24个月的概率为0.2.(1)求这种灯管的平均使用寿命μ;(2)假设一间功能室一次性换上2支这种新灯管,使用12个月时进行一次检查,将已经损坏的灯管换下(中途不更换),设需要更换的灯管数为η,求η的分布列和数学期望. 19.(本小题满分12分)如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB ,AC 靠近B ,C 的三等分点,点G 为BC 边的中点,线段AG 交线段ED 于点F .将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB ,AC ,AG ,形成如图乙所示的几何体. (1)求证:BC ⊥平面AFG ;(2)求二面角D AE B --的余弦值.20.(本小题满分12分)已知常数0>p 且1=/p ,数列}{n a 的前n 项和)1(1n n a ppS --=,数列}{n b 满足121log -+=-n p n n a b b 且11=b .(1)求证:数列}{n a 是等比数列;(2)若对于在区间[0,1]上的任意实数λ,总存在不小于2的自然数k ,当k n ≥时,)23)(1(--≥n b n λ恒成立,求k 的最小值.21.(本小题满分13分)已知椭圆C :)0(12222>>=+b a by a x 的长轴长为4,离心率22=e(1)求椭圆的方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :3=x 分别交于M ,N 两点,求线段MN 的长度的最小值.22.(本小题满分13分)已知函数⎩⎨⎧≥<+++-=)1(ln )1()(23x x a x c bx x x x f ,的图象过点)2,1(-,且在点))1(,1(--f 处的切线与直线-x 015=+y 垂直. (1)求实数c b ,的值;(2)求)(x f 在e e ](,1[-为自然对数的底数)上的最大值;(3)对任意给定的正实数a ,曲线)(x f y =上是否存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形,且此三角形斜边的中点在y 轴上?参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 【解析】集合Q P *中的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)共6个,故Q P *的子集个数为6426=.2.C 【解析】由于复数z 的实部为a ,虚部为1,且20<<a ,故由21||a z +=得5||1<<z .3.B 【解析】由题可知“非p ”是真命题,所以p 是假命题,又因为“p 或q ”是真命题,所以q 是真命题.故选B . 4.D 【解析】依题意得+++++++31232221131211a a a a a a a 3332a a +72933322322212==++=a a a a .5.B 【解析】由三视图可知该几何体是圆锥沿轴截面截成两部分,然后把截面放在平面上,底面相对接的图形(如图).圆锥的底面半径为1,母线长为2,故圆锥的高=h 31222=-.易知该几何体的体积就是整个圆锥体的体积,即3331313122πππ=⨯⨯=h r . 6.C 【解析】由题知,第一次进入循环,满足1<4,循环后1=p ,1=s ,1=t ,2=k ;第二次进入循环,满足2<4,循环后2=p ,=s 1,2=t ,3=k ;第三次进入循环,满足3<4,循环后3=p ,2=s ,3=t ,4=k ,因为4=4,不满足题意,所以循环结束.输出p 的值为3,选C .7.A 【解析】因为()cos(2)cos f x x x x x π=-=,)(cos )cos()()(x f x x x x x f -=-=--=-,所以函数x x x f cos )(=为奇函数,排除B ,C ;又因为当20π<<x 时,=)(x f 0cos >x x ,故选择A .8.C 【解析】设球的球心O 到直线AB 、CD 的距离分别为d d 、',利用勾股定理可求出3='d ,2=d ,所以CD 可以经过M ,而AB 不会经过N ,所以①正确,②不正确;又5='+d d ,1=-'d d ,所以③④正确.故选C .9.A 【解析】 由题意可知,直线1)1(--=x k y 过定点)1,1(-.当这条直线的斜率为负值时,如图1所示,若不等式组表示一个三角形区域,则该直线的斜率)1,(--∞∈k ;当这条直线的斜率为正值时,如图2所示,1)1(--≤x k y 所表示的区域是直线1)1(--=x k y 及其右下方的半平面,这个区域和另外两个半平面的交集是一个无界区域,不能构成三角形.因此k 的取值范围是)1,(--∞.10.A 【解析】要把6个汉字及英文字母依次填入6个方格中,按照规则分为两类:一类是4个字横向2个字纵向,有26C 种填法;另一类是3个字横向3个字纵向,有36C 种填法:所以共有3520153626=+=+C C 种填法.11.B 【解析】 根据题意设),(11y x A ,),(22y x B .由FB AF λ=得),2(),2(2211y px y x p -=--λ,故21y y λ=-,即=λ21y y -.设直线AB 的方程为)2(34p x y -=,联立直线与抛物线方程,消元得02322=--p py y .故p y y 2321=+,=21y y 2p -,492)(122121221-=++=+y y y y y y y y ,即=+--21λλ49-.又1>λ,故4=λ. 12.D 【解析】由定义可知,⎩⎨⎧=++==++=66323*24222*1c b a c b a ,解得⎩⎨⎧+=-=226c b ca ,又对任意实数x ,都有x m x =*,即++-=+++-=c x c cm cxm m c cx m x 2()6()22(6*x m =)2恒成立,则⎩⎨⎧=+=-0)22(16m c c cm ,解得⎩⎨⎧=-=51m c 或⎪⎩⎪⎨⎧=-=061m c (舍). 第Ⅱ卷13.︒120【解析】由题意得⋅=+⋅=⋅+22||22)2(a b b a b b a 0,cos 2=+><a b a,所以21,cos ->=<,所以,的夹角为︒120.14.1【解析】二项展开式的通项为r r rr xkx C T )()(6261-+=rr r xk C 3126-=,令0312=-r ,得4=r ,故常数项为446k C ,由常数项小于120,即<446k C 120,得84<k .又k 是正整数,故1=k .15.),2()4,(+∞--∞ 【解析】由题意知,不等式+-|1|x 3||>+m x 恒成立,即函数|||1|)(m x x x f ++-=的最小值大于3,根据不等式的性质可得--≥++-)1(||||1|x m x x |1||)(+=+m m x ,故只要3|1|>+m 即可,所以31>+m 或31-<+m ,即得m 的取值范围是),2()4,(+∞--∞ .16. ),2(+∞【解析】不妨设双曲线的方程为)0,0(12222>>=-b a by a x ,焦点,(c F 0),渐近线x ab y =,则过点F 的直线方程为)(c x b ay --=,与双曲线联立,消去y 得02)(42244244=--+-b a c a a x a b α,由⎪⎩⎪⎨⎧<-->∆020444ab c a 得44a b >,即a b >,故2>e .三、17.【解析】(1)1)sin (cos cos 2)(+-=x x x x f 1sin cos 2cos 22+-=x x x)432sin(2222sin 2cos π++=+-=x x x .(4分) 因此,函数)(x f 的最小正周期为π.(6分) (2)由题易知)432sin(22)(π++=x x f 在区间]83,8[ππ上是减函数, 在区间]43,83(ππ上是增函数,(8分) 又2)8(=πf ,22)83(-=πf ,3)43(=πf ,(10分)所以,函数)(x f 在区间]43,8[ππ上的最大值为3,最小值为22-.(12分) 18.【解析】(1)因为),(~2σμξN ,8.0)12(=≥ξP ,2.0)24(=≥ξP ,所以2.0)12(=<ξP ,显然)24()12(≥=<ξξP P .(3分)由正态分布密度曲线的对称性可知,1822412=+=μ, 即这种灯管的平均使用寿命是18个月.(6分)(2)这种灯管的使用寿命少于12个月的概率为2.08.01=-. 由题意知,η的可能取值为0,1,2,(8分) 则64.08.02.0)0(22=⨯==C P η,⨯==1122.0)1(C P η32.08.01=,04.08.02.0)2(0222=⨯==C P η.(10分)所以η的分布列为所以4.004.0232.0164.00=⨯+⨯+⨯=ηE .(12分)19.【解析】(1)在图甲中,由△ABC 是等边三角形,E ,D 分别为AB ,AC 的三等分点,点G 为BC 边的中点,易知DE ⊥AF ,DE ⊥GF ,DE//BC .(2分)在图乙中,因为DE ⊥AF ,DE ⊥GF ,AF FG=F ,所以DE ⊥平面AFG . 又DE//BC ,所以BC ⊥平面AFG .(4分) (2)因为平面AED ⊥平面BCDE ,平面AED 平面BCDE=DE , DE ⊥AF ,DE ⊥GF ,所以FA ,FD ,FG 两两垂直.以点F 为坐标原点,分别以FG ,FD ,FA 所在的直线为z y x ,,轴,建立如图所示的空间直角坐标系xyz F -.则)32,0,0(A ,)0,3,3(-B ,)0,2,0(-E ,所以)32,3,3(--=,,1,3(-=0).(6分) 设平面ABE 的一个法向量为),,(z y x =.则⎪⎩⎪⎨⎧=⋅=⋅00AB n ,即⎪⎩⎪⎨⎧=+-=--0303233y x z y x ,取1=x ,则3=y ,1-=z ,则)1,3,1(-=.(8分)显然)0,0,1(=为平面ADE 的一个法向量, 所以55||||,cos =⋅>=<n m .(10分) 又由图知二面角D AE B --为钝角,所以二面角D AE B --的余弦值为55-.(12分)20.【解析】(1)当2≥n 时,-----=-=-1(1)1(11ppa p p S S a n n n n )1-n a ,整理得1-=n n pa a .(3分)由)1(1111a p p S a --==,得=1a 0>p ,则恒有0>=n n p a ,从而p a an n =-1.所以数列}{n a 为等比数列.(6分)(2)由(1)知nn p a =,则12log 121-==--+n a b b n P n n ,所以=+-++-+-=---112211)()()(b b b b b b b b n n n n n 222+-n n ,(8分)所以)23)(1(222--≥+-n n n λ,则+-+-n n n 5)23(2λ04≥在]1,0[∈λ时恒成立.记45)23()(2+-+-=n n n f λλ,由题意知,⎩⎨⎧≥≥0)1(0)0(f f ,解得4≥n 或1≤n .(11分)又2≥n ,所以4≥n .综上可知,k 的最小值为4.(12分) 21.【解析】(1)由题意得42=a ,故2=a ,(1分)因为22==a c e ,所以2=c ,2)2(2222=-=b ,(3分) 所以所求的椭圆方程为12422=+y x .(4分) (2)依题意,直线AS 的斜率k 存在,且0>k ,故可设直线AS 的方程为)2(+=x k y ,从而)5,3(k M ,由⎪⎩⎪⎨⎧=++=124)2(22y x x k y 得+1(0488)22222=-++k x k x k .(6分)设),(11y x S ,则2212148)2(k k x +-=⨯-,得2212142k k x +-=,从而21214k ky +=, 即)214,2142(222kkk k S ++-,(8分)又由B(2,0)可得直线SB 的方程为22142202140222-+--=-+-kk x k ky , 化简得)2(21--=x ky , 由⎪⎩⎪⎨⎧=--=3)2(21x x k y 得⎪⎩⎪⎨⎧-==k y x 213,所以)21,3(k N -,故|215|||kk MN +=,(11分) 又因为0>k ,所以102152215||=∙≥+=kk k k MN , 当且仅当kk 215=,即1010=k 时等号成立,所以1010=k 时,线段MN 的长度取最小值10.(13分) 22.【解析】(1)当1<x 时,b x x x f ++-='23)(2,(2分)由题意,得⎩⎨⎧-=-'=-,5)1(,2)1(f f 即⎩⎨⎧-=+--=+-,523,22b c b 解得0==c b .(4分)(2)由(1),知⎩⎨⎧≥<+-=),1(ln ),1()(23x x a x x x x f (5分)①当11<≤-x 时,)23()(--='x x x f ,由0)(>'x f ,得320<<x ;由0)(<'x f ,得01<≤-x 或132<<x .所以)(x f 在)0,1[-和)1,32(上单调递减,在)32,0(上单调递增.因为2)1(=-f ,274)32(=f ,0)0(=f ,所以)(x f 在)1,1[-上的最大值为2.②当e x ≤≤1时,x a x f ln )(=,当0≤a 时,0)(≤x f ;当0>a 时,)(x f 在],1[e 上单调递增.(7分)所以)(x f 在],1[e 上的最大值为a .所以当2≥a 时,)(x f 在],1[e -上的最大值为a ; 当2<a 时,)(x f 在],1[e -上的最大值为2.(8分)七彩教育网() 资源分享平台,无需注册,无需登录即可下载七彩教育网()上传资源获得现金奖励! (3)假设曲线)(x f y =上存在两点P ,Q 满足题意,则P ,Q 只能在y 轴两侧, 因为△POQ 是以O 为直角顶点的直角三角形,所以0=∙OQ OP ,不妨设)0))((,(>t t f t P ,则由△POQ 斜边的中点在y 轴上知,(t Q -)23t t +,且1≠t .所以0))((232=++-t t t f t .(*) 是否存在两点P ,Q 满足题意等价于方程(*)是否有解.若10<<t ,则23)(t t t f +-=,代入方程(*),得++-+-3232)((t t t t 0)2=t , 即0124=+-t t ,而此方程无实数解;当1>t 时,则t a t f ln )(=,代入方程(*),得0)(ln 232=+∙+-t t t a t ,即t t aln )1(1+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013届高三理科数学模拟试卷问 卷一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设a 是实数,且(34)(4)i ai ++是纯虚数,则a =( )A .163-B .163C .3-D .3 2.若x R ∈,那么1xx +为正数的充分不要条件是( )A .x >1B .x <0C .01<<-xD .1-<x 或0x >3.在△ABC 中,D 为AB 边上一点,若,2CB Y x +==,则X,Y 分别是A 3231,B. 3132,C.3231,-- D.3132,--4.以双曲线116922=-yx 的右焦点为圆心,且与其渐近线相切的圆的方程是 A .x 2+y 2-10x +9=0 B .x 2+y 2-10x +16=0 C .x 2+y 2+10x +16=0D .x 2+y 2+10x +9=05.函数()1||xxa y a x =>的图象的大致形状是( )6.某产品的成本费用x 与销售额y 的统计数据如下表根据上表可得回归方程a x byˆˆˆ+=中的b ˆ为9.4,据此模型预报成本费用为6万元时销售额为( ) A.72.0万元B .67.7万元C .65.5万元D .63.6万元7.设曲线2cos sin x y x -=在点,22π⎛⎫⎪⎝⎭处的切线与直线10x ay ++=垂直,则a =( )A .2B .2-C .1-D .18.若函数||3([,])x y x a b =∈的值域为[1,9],则a 2 + b 2 – 2a 的取值范围是A .[8,12]B .C .[4,12]D .[2,]二、填空题:本大题共8小题,考生作答7小题。

每小题5分共35分.(一)选做题(请考生在第9-119.如右图,过点P 的直线与圆O 相交于A ,B 两点. 若PA=1,AB=2,PO=3,则圆O 的半径等于_______. 10.若直线l :kx y =与曲线c :⎩⎨⎧=+=θθsin cos 2y x (θ为参数)有唯一的公共点,则实数k=______________.11.用0.618法寻找某实验的最优加入量时,若当前存优范围是[628,774],好点是718,则此时要做试验的加入点值是______________.(二)必做题(12~16题) 12. 72)(xx x -的展开式中,4x 的系数是______________.13.. 由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为______________.14.有5本不同的书,其中语文书3本,数学书2本, 若将其随机的并排摆放到书架的同一层上,则同一 科目的书都不相邻的概率______________.15.利用如图算法在平面直角坐标系上打印一系列点,则打印 的点既满足40y x -->,又在直线92y =下方的 有____ _ __个.16.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n ,b n ,c n )( 1 )请写出c n 的一个表达式,c n = ;BCP(2)若数列{c n }的前n 项和为M n ,则M 10 = .(用数字作答) 三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,已知向量(2,),(cos ,cos ),p c a b q B C =-=p q ⊥且.(1)求角B 的大小;(2)若b=ABC 面积的最大值.18.(本小题满分12分)如图是某三棱柱被削去一个底面后的直观图与侧视图、俯视图.已知 2CF AD =,侧视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.(Ⅰ)求该几何体的体积;(Ⅱ)求二面角B DE F --的余弦值.19.(本小题满分12分)某篮球职业联赛的总决赛在甲队与乙队间角逐,采用五局三胜制,即若一队先胜三场,则此队获胜,比赛结束,因两队实力相当,每场比赛获胜的可能性相等,据以往资料统计,第一场比赛组织者可获门票收入30万元,以后每场比赛门票收入都比上一场增加10万元,问:⑴组织者在此次总决赛中获得门票收入不少于180万元的概率是多少? ⑵用ξ表示组织者在此次总决赛中的门票收入,求ξ的数学期望?20.(本小题满分13分)某市电信宽带网用户收费标准如下表:(假定每月初均可以和电信部门约定上网方案)有限包月制(限(1)若某用户某月上网时间为T 小时,当T 在什么范围内时,选择甲方案最合算?请说明理由 (2)王先生因工作需要需在家上网,他一年内每月的上网时间T (小时)与月份n 的函数关系为T = f (n )=3237(112,)4n n n +≤≤∈N .若公司能报销王先生全年的上网费用,问公司最少为此花费多少元?21.(本小题满分13分)已知椭圆)0(1:22221>>=+ba by a x C 的离心率为33,直线2:+=x y l 与以原点为圆心、椭圆1C 的短半轴长为半径的圆相切。

(1)求椭圆1C 的方程;(2)设1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂侧视图俯视图直观图CAABFF EBCDA足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点S R ,在2C 上,且满足0=⋅RS QR ,求||QS 的取值范围。

22.(本小题满分13分)已知函数f (x ) = ln (2 + 3x ) 23.2x -(1)求f (x )在[0,1]上的最大值;(2)若对11[,],|ln |ln[()3]062x a x f x x '∀∈-++>不等式恒成立,求实数a 的取值范围; (3)若关于x 的方程f (x ) = –2x + b 在[0,1]上恰有两个不同的实根,求实数b 的取值范围.2013届高三理科数学模拟试解答题参考答案17.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,已知向量(2,),(cos ,cos ),p c a b q B C =-=p q ⊥且.(1)求角B 的大小;(2)若b=ABC 面积的最大值.【解析】(1)p q ⊥由,可得(2)cos cos 0p q c a B b c =-+=,由正弦定理:sin cos 2sin cos sin cos 0,sin()2sin cos .C B A B B C C B A B -+=+=从而(3分) 又B + C =π– A ,sin(C + B ) = sin A ,且sin A >0,故1cos ,(0,),23B B B ππ=∈∴=又(6分)(2)由余弦定理b 2 = a 2 + c 2 – 2ac cos B = a 2 + c 2 – ac ≥ac , 又b=ac ≤12 (9分)故11sin 1222ABCSac B =≤⨯= 因此当a = c=ABC 的面积最大且最大值为(12分)18.(本小题满分12分)如图是某三棱柱被削去一个底面后的直观图与侧视图、俯视图.已知 2CF AD =,侧视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.(Ⅰ)求该几何体的体积;(Ⅱ)求二面角B DE F --的余弦值.解:(Ⅰ)//CF P P PQ CB BE Q 取中点,过作交于,//PD QD AD CP AD CP =连结,,,且.ACPD 四边形为平行四边形,∴//AC PD ,∴//PDQ ABC 平面面.∴2--112sin 60223D EFPQ PDQ ABC V V V =+=⨯︒⨯+=三棱柱…………5分(Ⅱ)BC O EF R 取中点,中点,连结OA ,OR.。

则OA BC ⊥,∴OA BCFE ⊥平面,OA OR ⊥。

又∵OR BC ⊥,以O 为原点,OB,OR,OA 所在直线分别为,,x y z 轴,建立空间直角坐标系,则()(()()B 1,0,0D 02E 130F -140,,,,,,,()1111DEF ,,n x y z =设平面的法向量为111100n EF n EF n DE n DE ⎧⎧⊥⋅=⎪⎪∴⎨⎨⊥⋅=⎪⎪⎩⎩()(EF=-2,1,0DE=11111-2+0+0x y x y =⎧⎪∴⎨=⎪⎩()1113121,2,3z x y ===∴=1令得,n()222ABED ,,x y z =2设平面的法向量为n侧视图直观图CAABFFEB CDA()(2222222230BE BE 0BE=0,3,0,DE=+00y n n x y n DE n DE =⎧⎧⎧⊥⋅=⎪⎪⎪∴∴∴⎨⎨⎨=⊥⋅=⎪⎪⎪⎩⎩⎩ ()22221303,0,1z x y ===∴=令得,n 2322⋅===1212n n ,n 2,n ,122cos ,4222n n ⋅∴<>===⨯1212n n n n ,显然二面角B DE F --的平面角为钝角, 所以二面角B DE F --的余弦值为…………………………………12分 19.(本小题满分12分)某篮球职业联赛的总决赛在甲队与乙队间角逐,采用五局三胜制,即若一队先胜三场,则此队获胜,比赛结束,因两队实力相当,每场比赛获胜的可能性相等,据以往资料统计,第一场比赛组织者可获门票收入30万元,以后每场比赛门票收入都比上一场增加10万元,问:⑴组织者在此次总决赛中获得门票收入不少于180万元的概率是多少?⑵用ξ表示组织者在此次总决赛中的门票收入,求ξ的数学期望?解:⑴每场比赛的门票收入构成等差数列{a n },其中a 1=30,d =10,S n =5n 2+25n令S n ≥180,即5n 2+25n ≥180,解得n ≥4或n ≤-9(舍) ∴n =4或54,45,5n n =⎧⎨≥⎩若则需打场比赛,某队必须第4场胜,且前3场中胜2场若则需打5场比赛,某队必须第场胜,且前4场中胜2场4522341132222434P C C ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭∴为…………………………………6分⑵ξ120 180 250P14 38 38∴E ξ=133120180250191.25488⨯+⨯+⨯=…………………………………………12分20.(本小题满分13分)某市电信宽带网用户收费标准如下表:(假定每月初均可以和电信部门约定上网方案)有限包月制(限(1)若某用户某月上网时间为T 小时,当T 在什么范围内时,选择甲方案最合算?并说明理由 (2)王先生因工作需要需在家上网,他一年内每月的上网时间T (小时)与月份n 的函数关系为T = f (n )=3237(112,)4n n n +≤≤∈N .若公司能报销王先生全年的上网费用,问公司最少会为此花多少元? 【解析】(1)当T ≤30时,选择丙方案合算;当T >30时,由30 + 3 (T – 30)≤50,得30<T ≤2363,此时选择丙方案合算;(2分)当2363≤T ≤60时,选择乙方案合算;(4分)当T >60时,由50 + 3 (T – 60)≤70,得60<T ≤2663,此时选择乙方案合算;当T ≥2663,选择甲方案合算.(6分) 综上可得,当T 2(66,)3∈+∞时,选择甲方案合算.(7分)(2)因为3(1)(),4f n f n +-=所以{f (n )}为首项f (1) = 60,公差d =34的等差数列,且每月上网时间逐月递增.令32372866,9439n T n +=≥≥得,可知前9个月选择乙方案,最后3个月选择甲方案上网花费最少.(9分)此时,一年的上网总费用为991132379[503(60)]370450(1)44n n n n ==++-+⨯=+-+∑∑21045081210741(=++=元)即一年内公司最少会为王先生花费上网费741元(13分)21解: (1)由33=e 得2232b a =,又由直线2:+=x y l 与圆222b y x =+相切,得2=b ,3=a ,∴椭圆1C 的方程为:12322=+y x 。

相关文档
最新文档