最新人教版高中数学选修1-2《演绎推理》梳理探究2
最新人教版高中数学选修1-2《演绎推理》课前导引
2.1.2 演绎推理
课前导引
问题导入
在数学中,除了合情推理,我们更多使用的是一种由一般性的命题推演出特殊命题的推理方法,你能举几个例子吗?
答:所有金属都导电,铜是金属,所以铜能导电等.
知识预览
1.从____________________________________________________称为演绎推理.简言之,演绎推理是_________________的推理.
答案:一般性的命题推演出特殊性命题的推理方法一般到特殊
2.“三段论法”包含三个判断,其中第一段称为____________________________,第二段称为
,可表示为
______________
答案:大前提小前提结论一般性原理特殊对象
揭示一般原理与特殊对象的内在联系
3.合情推理的结论______________,有待进一步证明,演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论______________.
答案:是猜想的是正确的。
人教课标版高中数学选修1-2:《演绎推理》教案-新版
2.1.2演绎推理一、教学目标1.核心素养通过对演绎推理的学习,在数学体验中培养学生的抽象能力和逻辑推理的能力.2.学习目标(1)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.(2)结合生活中的实例,创设民主的学习氛围和生动的学习情景,鼓励,引导学生通过思考,质疑等丰富多彩的认知过程来获取数学知识(3)发展学习数学的兴趣,让学生乐于探究数与形变化的奥秘,体验数学探究的艰辛和喜悦,感受数学世界的奇妙和谐.(4)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.3.学习重点了解演绎推理的含义,能利用“三段论”进行简单的推理4.学习难点分析证明过程中包含的“三段论”形式.二、教学设计(一)课前设计1.预习任务任务1预习教材P30—P33思考:什么是演绎推理?演绎推理的模式是什么?2.预习自测1.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误答案:C2.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法()A.一般的原理原则B.特定的命题C.一般的命题D.定理、公式答案:A3.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤答案:D(二)课堂设计1.知识回顾现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树.从繁茂的阔叶树可以推知当时有温暖湿润的气候.所以南极大陆曾经在温湿的热带.被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立.西藏高原南端的喜马拉雅山横空出世,雄视世界.珠穆郎玛峰是世界第一高峰,登上珠峰顶,一览群山小.谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海.地质学家是怎么得出这个结论的呢?科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石.还发现了鱼龙的化石.地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋.科学家们研究喜马拉雅变迁所使用的方法,就是一种名叫演绎推理的方法.2.问题探究问题探究一什么是演绎推理●活动一1.什么是演绎推理?从一般性的原理出发,推出某个特殊情况下的结论的推理方法.●活动二2.演绎推理的一般模式分析喜马拉雅山所在的地方,曾经是一片汪洋推理过程:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里……大前提在喜马拉雅山上发现它们的化石……小前提喜马拉雅山曾经是海洋……结论三段论(1)大前提……已知的一般原理(2)小前提……所研究的特殊情况(3)结论……根据一般原理,对特殊情况作出的判断三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c.”其中,b⇒c 为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.先看下面的例子:把下列语句写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C,所以在一个标准大气压下把水加热到100°C 时,水会沸腾;(3)一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整除;(4)三角函数都是周期函数,αtan是周期函数;tan是三角函数,因此α(5)两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°解答如下:(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行小前提:冥王星是太阳系的大行星结论:冥王星以椭圆形轨道绕太阳运行(2) 大前提:在一个标准大气压下,水的沸点是100°C小前提:在一个标准大气压下把水加热到100°C时结论:水会沸腾(3)大前提:一切奇数都不能被2整除小前提:)12(100+是奇数结论:)12(100+不能被2整除(4)大前提:三角函数都是周期函数小前提:αtan是三角函数结论:αtan是周期函数(5)大前提:两条直线平行,同旁内角互补小前提:∠A与∠B是两条平行直线的同旁内角结论:∠A+∠B=180°问题探究二三段论推理的可靠性●活动一三段论推理一定是可靠的吗?只有“大前提、小前提”都正确的前提下,“结论”才正确.看下面的例子:(1)有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”.这个推理是否正确?为什么?显然这个推理不正确,原因是大前提不正确.(2)两条直线平行,同旁内角互补,如果∠A和∠B是两条平行线的同位角,那么∠A +∠B=180°显然这个推理不正确,原因是小前提不正确.问题探究三合情推理与演绎推理的区别●活动一归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、实验等获取经验;也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化、系统化.合情推理和演绎推理分别在这两个环节中扮演着重要角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程.但数学结论、证明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.问题探究四活学活用演绎推理●活动一把演绎推理写成三段论的形式把演绎推理写成三段论的形式必须弄清问题的大前提、小前提和结论.例1 将下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.【知识点:演绎推理】详解:(1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n=3n+2,n≥2时,a n-a n=3n+2-[3(n-1)+2]=3(常数).(小前提)-1通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(结论)点拔:注意“三段论”的基本形式,即:“大前提、小前提和结论”.三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c.”其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.●活动二三段论在几何中的应用例2 已知在梯形ABCD中,如图,AB=CD=AD,AC和BD是梯形的对角线,求证:AC平分∠BCD,DB平分∠CBA.【知识点:演绎推理】 详解:∵等腰三角形两底角相等,(大前提)△DAC 是等腰三角形,∠1和∠2是两个底角, (小前提) ∴∠1=∠2.(结论)∵两条平行线被第三条直线截得的内错角相等,(大前提)∠1和∠3是平行线AD 、BC 被AC 截得的内错角, (小前提) ∴∠1=∠3.(结论) ∵等于同一个角的两个角相等,(大前提)∠2=∠1,∠3=∠1,(小前提) ∴∠2=∠3,即AC 平分∠BCD .(结论)同理可证DB 平分∠CBA .例3 已知A ,B ,C ,D 四点不共面,M ,N 分别是△ABD 和△BCD 的重心,求证:MN ∥平面ACD .【知识点:演绎推理,三角形的重心,线线平行,线面平行】详解:如图所示,连接BM ,BN 并延长,分别交AD ,DC 于P ,Q 两点,连接PQ .因为M ,N 分别是△ABD 和△BCD 的重心, (小前提) 所以P ,Q 分别是AD ,DC 的中点. (结论)又因为BM MP =BN NQ ,(小前提)所以MN ∥PQ , (结论)又MN⊄平面ADC,PQ⊂平面ADC,(小前提)所以MN∥平面ACD.(结论)点拔:(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.●活动三三段论在代数中的应用例4 已知a,b,m均为正实数,b<a,用三段论形式证明ba<b+ma+m【知识点:演绎推理,不等式的性质】详解:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提) b<a,m>0,(小前提)所以,mb<ma.(结论)因为不等式两边同加上一个数,不等号不改变方向,(大前提) mb<ma,(小前提)所以,mb+ab<ma+ab,即b(a+m)<a(b+m).(结论) 因为不等式两边同除以一个正数,不等号不改变方向,(大前提)b(a+m)<a(b+m),a(a+m)>0,(小前提)所以,()()()()b a m a b ma a m a a m++<++,即b b ma a m+<+.(结论)点拔:使用三段论应注意的问题(1)应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论.(2)证明中常见的错误:①条件分析错误(小前提错).②定理引入和应用错误(大前提错).③推理过程错误等.●活动四三段论在应用中的易错问题例5 (1)定义在实数集R上的函数f(x),对任意x,y∈R,有f(x-y)+f(x+y)=2f(x)f(y),且f(0)≠0,求证:f(x)是偶函数.【知识点:演绎推理,奇、偶函数】证明:令x=y=0,则有f(0)+f(0)=2f(0)×f(0),因为f(0)≠0,所以f(0)=1,令x=0,则有f(-y)+f(y)=2f(0)f(y)=2f(y),所以f(-y)=f(y),因此,f(x)是偶函数.以上证明结论“f(x)是偶函数”运用了演绎推理的“三段论”,其中大前提是:___________________________.解析:通过两次赋值先求得“f(0)=1”,再证得“f(-y)=f(y)”,从而得到结论“f(x)是偶函数”.所以这个三段论推理的小前提是“f(-y)=f(y)”,结论是“f(x)是偶函数”,显然大前提是“若对于定义域内任意一个x,都有f(-x)=f(x),则f(x)是偶函数”.答案:若对于定义域内任意一个x,都有f(-x)=f(x),则f(x)是偶函数(2)所有眼睛近视的人都是聪明人,我近视得很厉害,所以我是聪明人.下列各项中揭示了上述推理是明显错误的是________.【知识点:演绎推理】①我是个笨人,因为所有的聪明人都是近视眼,而我的视力那么好.②所有的猪都有四条腿,但这种动物有八条腿,所以它不是猪.③小陈十分高兴,所以小陈一定长得很胖,因为高兴的人都长得很胖.④所有尖嘴的鸟都是鸡,这种总在树上待着的鸟是尖嘴的,因此这种鸟是鸡.解析:根据④中的推理可得:这种总在树上待着的鸟是鸡,这显然是错误的.①②③不符合三段论的形式.答案:④点拔:解本题的关键是透彻理解三段论推理的形式:大前提——小前提——结论,其中大前提是一个一般性的命题,即证明这个具体问题的理论依据.因此结合f(x)是偶函数的定义和证明过程容易确定本题答案.本题易误认为题目的已知条件为大前提而导致答案错误.3.课堂总结【知识梳理】比较:合情推理与演绎推理的区别与联系从推理形式上看,归纳是由部分到整体、个体到一般的推理;类比推理是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、实验等获取经验;也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化,系统化,合情推理和演绎推理分别在这两个环节中扮演着重要的角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.【难点突破】(1)检验假设和理论:演绎法对假说作出推论,同时利用观察和实验来检验假设.(2)逻辑论证的工具:为科学知识的合理性提供逻辑证明.(3)作出科学预见的手段:把一个原理运用到具体场合,作出正确推理.演绎推理是一种必然性推理,推理的前提是一般,推出的结论是个别,一般中概括了个别.事物有共性,必然蕴藏着个别,所以“一般”中必然能够推演出“个别”,而推演出来的结论是否正确,取决于:大前提是否真确,推理是否合乎逻辑.演绎法也有其局限,推理结论的可靠性受前提(归纳的结论)的制约,而前提是否正确在演绎范围内是无法解决的.归纳法和演绎法在认识论中的辩证关系:归纳法是由认识个别到认识一般;演绎法是由认识一般进而认识个别.4.随堂检测1.已知函数f(x)=x3+m·2x+n是奇函数,则()A.m=0B.m=0,或n=0C.n=0D.m=0,且n=0解:D【知识点:演绎推理,奇、偶函数】2.设a=(x,4),b=(3,2),若a∥b,则x的值是()A.-6B.8 3C.-8 3D.6解:∵a ∥b ,∴x 3=42,∴x =6. 故答案为D . 3.设n 是自然数,则18(n 2-1)的值( ) A .一定是零 B .不一定是偶数 C .一定是偶数D .是整数但不一定是偶数 答案:C解析:当n 为偶数时,18(n 2-1)=0为偶数;当n 为奇数时(n =2k +1,k ∈N),18(n 2-1)=18(4k 2+4k )·2=k (k +1)为偶数.所以18(n 2-1)的值一定为偶数.答案为C4.等差数列{a n }中,a n >0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,写出b 5,b 7,b 4,b 8的一个不等关系________. 答案:b 4+b 8>b 5+b 7解析:将乘积与和对应,再注意下标的对应,有b 4+b 8>b 5+b 7. (三)课后作业 基础型 自主突破1.“所有的金属都能导电,铁是金属,所以铁能导电,”此类推理类型属于( ) A .演绎推理 B .类比推理 C .合情推理 D .归纳推理 答案:A【知识点:演绎推理】“所有的金属都能导电”是大前提,“铁是金属”是小前提,“铁能导电”是结论.此类推理类型属于演绎推理,故选A .2.“e 是无限不循环小数,所以e 是无理数.”该命题是演绎推理中的三段论推理,其中大前提是( )A .无理数是无限不循环小数B .有限小数或有限循环小数为有理数C .无限不循环小数是无理数D.无限小数是无理数答案:C【知识点:演绎推理】解:大前提是无限不循环小数是无理数,选C.3.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段认推理()A.正确B.推理形式不正确C.不正确,两个“自然数”概念不一致D.不正确,两个“整数”概念不一致答案:A【知识点:演绎推理】解:大前提“凡是自然数都是整数”,正确;小前提“4是自然数”也正确;推理形式符合演绎推理,所以结论正确.4.推理:“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形.”中的小前提是()A.①B.③C.①②D.②答案:D【知识点:演绎推理】解:,其理由为“大前提:矩形是平行四边形;小前提:三角形不是平行四边形;结论:三角形不是矩形.”5.在△ABC中,E、F分别为AB、AC的中点,则有EF//BC.这个命题的大前提为()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边的一半C.EF为中位线D.EF//BC答案:A【知识点:演绎推理】解:大前提是一个一般性的结论,故选A6.下列说法正确的是( )A .类比推理是由特殊到一般的推理B .演绎推理是由特殊到一般的推理C .归纳推理是个别到一般的推理D .合情推理可以作为证明的步骤答案:C【知识点:演绎推理】解:归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤.故选C .7.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,因为∠A 和∠B 是两条平行直线被第三条直线所截得的同旁内角,所以∠A +∠B =180°B .我国地质学家李四光发现中国松辽地区和中细亚的地质结构类似,而中细亚有丰富的石油,由此,他推断松辽地区也蕴藏着丰富的石油C .由633,835,1037,1257,1477=+=+=+=+=+,得出结论:一个偶数(大于4)可以写成两个素数之和D .在数列{}n a 中,111111,2n n n a a a a --⎛⎫==+ ⎪⎝⎭(2n ≥),由此归纳出数列{}n a 的通项公式 答案:A【知识点:演绎推理】解:选项A 中“两条直线平行,同旁内角互补”是大前提,是真命题,该推理为三段论推理,选项B 为类比推理,选项C 、D 都是归纳推理.能力型 师生共研1.用三段论推理:“任何实数的平方大于0,因为a 是实数,所以20a >”.你认为这个推理( )A .大前提错误B .小前提错误C .推理形式错误D .是正确的答案:A【知识点:演绎推理】解:大前提“任何实数的平方大于0”错误,应该是“任何实数的平方大于或等于0”.故选择A .2.以下说法正确的个数是( )①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理;②农“瑞雪兆丰年”是通过归纳推理得到的;③由平面几何中圆的一些性质,推测出球的某些性质,这是运用了类比推理;④个位是5的整数是5的倍数,2 375的个位是5,因此,2 375是5的倍数,这是运用了演绎推理.A .0B .2C .3D .4答案:C【知识点:演绎推理】解:本题主要考查了几种推理与证明的判断.②③④都是正确的,对于①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是归纳推理,故选C .3.下列三句话按“三段论”模式排列顺序正确的是( )①函数cos ()y x x R =∈是三角函数;②三角函数是周期函数;③函数cos ()y x x R =∈是周期函数.A .①②③B .②①③C .②③①D .③②①答案:B【知识点:演绎推理】解:∵“三段论”的结构是“若S 是P ,Q 是S ,则Q 是P”,故选择B .4.商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a ,最高销售限价)(a b b >以及实数)10(<<x x 确定实际销售价格)(a b x a c -+=,这里x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得)(a c -是)(c b -和)(a b -的等比中项,据此可得,最佳乐观系数x 的值等于______.答案:215-【知识点:演绎推理,等比数列,等比中项】解:∵)(a b x a c -+=,即()c a x b a -=---,∴()()b c b a x b a -=---①∵)(a c -是)(c b -和)(a b -的等比中项,即2()()()b c b a c a --=-将①两边同乘以)(a b -,可得22()()()()b c b a b a x b a --=---,即222()()()c a b a x b a -=---②根据)(a b x a c -+=,可得()c a x b a -=-,则222()()c a x b a -=-③由②③可得,2222()()()x b a b a x b a -=---又b a >,∴210x x +-=,解得:x =,又01x <<,∴x = ∴最佳乐观系数x 的值等于215-. 探究型 多维突破1.对于三次函数)0()(23≠+++=a d cx bx ax x f ,给出定义)(''x f 是)(x f y =的导函数)('x f 的导函数,若方程0)(''=x f 有实数解0x ,则称点))(,(00x f x 为函数)(x f y =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.若三次函数12532131)(23-+-=x x x x f ,请你根据这一发现,求: (1)12532131)(23-+-=x x x x f 的对称中心为____________;(2)=++⋯+++)20192018()20192017()20193()20192()20191(f f f f f ____________. 答案:)1,21(;2018 【知识点:演绎推理,函数与导数】解:(1)2()3f x x x '=-+,()21f x x ''=-,令''()0f x =得,12x =,又1()12f =,故对称中心为)1,21(.(2)由(1)可得:()(1)2f x f x +-=,12320172018()()()()()201820192019201920192019f f f f f +++⋯++=. 2.如右图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.答案:见解析解析:【知识点:演绎推理,棱锥的概念,锥体的体积,线线垂直,线面垂直,点到平面的距离】(1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°,得BC ⊥DC .又PD ∩DC =D ,∴BC ⊥平面PDC .∵PC ⊂平面PDC ,∴BC ⊥PC ,即PC ⊥BC .(2)连接AC .设点A 到平面PBC 的距离为h ,∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°.从而由AB =2,BC =1,得△ABC 的面积S △ABC =1,由PD ⊥平面ABCD 及PD =1,得三棱锥P -ABC 的体积V =13S △ABC ·PD =13.∵PD ⊥平面ABCD ,DC ⊂平面ABCD ,∴PD ⊥DC ,又PD =DC =1.∴PC =PD 2+DC 2=2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =22,由V =13S △PBC ·h =13·22·h =13,得h =2.因此,点A 到平面PBC 的距离为2.(四)自助餐1.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°B .由平面三角形的性质,推测空间四面体的性质C .某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式 解:A【知识点:演绎推理】2.在演绎推理中,只要________是正确的,结论必定是正确的.答案:大前提和推理过程【知识点:演绎推理】3.关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称;②当x >0时,f (x )为增函数;③f (x )的最小值是lg2;④当-1<x <0,或x >1时,f (x )是增函数;⑤f (x )无最大值,也无最小值.其中正确结论的序号是________.答案:①③④【知识点:演绎推理,函数的性质】易知f(-x)=f(x),则f(x)为偶函数,其图象关于y轴对称,①正确.当x>0时,f(x)=lg x2+1 |x|=lg(x+1x).∵g(x)=x+1x在(0,1)上是减函数,在(1,+∞)上是增函数,∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,故②不正确,而f(x)有最小值lg2,故③正确,④也正确,⑤不正确.答案为①③④4.因为中国的大学分布在全国各地,大前提北京大学是中国的大学,小前提所以北京大学分布在全国各地.结论(1)上面的推理形式正确吗?为什么?(2)推理的结论正确吗?为什么?【知识点:演绎推理】解:(1)推理形式错误.大前提中的M是“中国的大学”它表示中国的所有大学,而小前提中M虽然也是“中国的大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误.(2)由于推理形式错误,故推理的结论错误.5.已知a,b,c是实数,函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1,证明|c|≤1,并分析证明过程中的三段论.证明∵|x|≤1时,|f(x)|≤1.x=0满足|x|≤1,∴|f(0)|≤1,又f(0)=c,∴|c|≤1.证明过程中的三段论分析如下:大前提是|x|≤1,|f(x)|≤1;小前提是|0|≤1;结论是|f(0)|≤1.6.如图,在空间四边形ABCD中,点E,F分别是AB,AD的中点,试用三段论的形式证明EF∥平面BCD.【知识点:演绎推理,三角形的中位线,线面平行的判定】证明:连接BD . ∵三角形的中位线平行于第三边,大前提而EF 是△ABD 的中位线,小前提∴EF ∥BD .结论∵如果不在平面内的一条直线和该平面内的一条直线平行,那么这条直线和这个平面平行,大前提而EF ⊄平面BCD ,BD ⊂平面BCD ,且EF ∥BD ,小前提∴EF ∥平面BCD .结论7.数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=n +2n S n ,(n =1,2,3,…).证明:(1)数列⎩⎨⎧⎭⎪⎫S n n 是等比数列; (2)S n +1=4a n .【知识点:演绎推理,数列的概念,等比数列】证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n (n =1,2,3,…),∴(n +2)S n =na n +1=n (S n +1-S n ),即nS n +1=2(n +1)S n ,∴S n +1n +1=2·S n n (n =1,2,3,…). 故数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公比为2的等比数.(2)由(1)知,S n +1n +1=2·S n n =4·S n -1n -1(n ≥2),则S n +1=4(n +1)·S n -1n -1=4a n (n ≥2). 又∵a 2=3S 1=3,∴S 2=a 1+a 2=4=4a 1. 故对任意的n ∈N *,有S n +1=4a n .数学视野类比推理虽然不能直接推动社会进步,但它在人们的认识中具有重要作用.它可以拓展人们的眼界,可以为人们改造和认识世界、推动社会进步提供一个有效的思维方法.1.类比推理是探索真理的重要逻辑形式类比推理是在已有知识的基础上进一步发展科学的一种有效的探索方法.在科学研究中具有开拓思路、提供线索、举一反三、触类旁通的作用,正如康德所说:“每当理智缺乏可靠的论证思路时,类比这个方法往往指引我们前进.”科学史上很多著名的发现是借助于类比推理而获得的.据历史记载,西拉克斯的国王为庆功谢神,命金匠打造了一顶纯金皇冠,要献给不朽的神.完工后,国王怀疑皇冠不纯,但在不毁坏皇冠的情况下找不到解决的方法,便请教好友阿基米德.这就是著名的皇冠问题.阿基米德苦思一段时间,也无所得.一日,他到澡堂洗澡,当他的身体进入浴池时,他敏锐地察觉到水位上升,由此受到启迪,产生联想,于是把在自己进入浴池中水位上升与求皇冠质量进行类比,发现了浮力原理这一共同规律,并解决了“皇冠问题”.在这之后,浮力原理被广泛应用于科学研究与生产生活之中.2.类比推理可以帮助人们提出科学假说类比推理是形成科学假说的重要推理形式.在科学史上,许多重要的科学假说都是利用类比推理的思维方法建立起来的.19世纪中叶,奥地利首都维也纳有一位医生,名叫奥恩布鲁格.有一次,他给一位病人看病,没有检查出什么严重疾病,但病人很快就死了.经过解剖尸体查看,发现胸膛积满脓水.医生想,以后再碰到这样的病人怎么诊断?忽然想起他父亲在经营酒店时,常用手指关节敲木质酒桶,听到卜卜的叩击声,就能估量出木桶中还有多少酒.他思考:人们的胸膛不是很像酒桶吗?他通过反复探索胸部疾病和叩击声音之间变化的关系,终于写出《用叩诊人体胸部发现胸膛内部疾病的新方法》的医学论文,发明了“叩诊”这一医疗方法.在上例中,奥恩布鲁格就是运用类比推理把“酒桶和装酒量”与“人的胸膛和胸腔积水”作类比:同是封闭的物体,内藏液体,叩击时能发出声音等,从而根据叩桶知酒量而推出叩胸知病情的结论.此外,在科学发展史上,惠更斯提出的光的波动假说,卢瑟福及其学生提出的原子结构的行星模型假说,也都是运用类比推理建立了巨大的功绩.3.类比推理为现代科学技术经常应用的仿生学提供了理论基础自然界的动植物,它们的生长都极为巧妙,它们是孕育出新事物、新方法绝无仅有的好样板.人类还在蒙昧的幼年时期,为了生存繁衍,便开始模仿大自然,利用类比的方法,从自然界万事万物身上吸取有利于自己生存的优点,用来武装自己,改变命运.20世纪30年代出现的仿生学,就是专门研究生物系统的结构和功能,并将生物的某些特征应用到我们的创造发明之中,以创造先进技术装置的新学科.人类对自然的模仿,正是建立在类比推理的理。
最新人教版高中数学选修1-2演绎推理
-1-
1.1 DNA重组技术的基本工具
首页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练. 2.掌握演绎推理的基本模式,并能运用 它们进行一些简单的推理. 3.了解合情推理和演绎推理之间的区别 和联系.
HONGDIANNANDIAN NANDIAN HONGDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
探究三
探究四
把演绎推理写成三段论的形式
三段论由大前提、小前提和结论组成;大前提提供一般原理,小前提提 供特殊情况,两者结合起来,体现一般原理与特殊情况的内在联系.在用三段 论写推理过程时,关键是明确命题的大、小前提. 【典型例题 1】 把下列演绎推理写成三段论的形式. (1)在一个标准大气压下,水的沸点是 100 ℃,所以在一个标准大气压下 把水加热到 100 ℃时,水会沸腾; (2)一切奇数都不能被 2 整除,2100+1 是奇数,所以 2100+1 不能被 2 整除; (3)三角函数都是周期函数,y=tan α 是三角函数,因此 y=tan α 是周期函 数.
-6-
1.1 DNA重组技术的基本工具
首 页 首页
重点难点 Z重点难点 J 基础知识 Z
ICHU ZHISHI
HONGDIANNANDIAN NANDIAN HONGDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
探究三
探究四
三段论在证明几何问题中的应用
1.数学证明主要是通过演绎推理来进行的,一个复杂的数学命题的推 理往往是由多个“三段论”构成的. 2.应用“三段论”解决问题时,首先要明确什么是大前提和小前提. 如果大前提是显然的,则可以省略.
最新人教版高中数学选修1-2《合情推理与演绎推理》示范教案2
2.1.2 演绎推理整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提 所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m .(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线b 平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A 课堂小结 1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括 大前提——已知的一般原理; 小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB 平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.(设计者:李小青)。
人教版高中数学选修1-2第一章2.1.2演绎推理
新课导入(1)所有的金属都能够导电,观察铀是金属,所以铀能导电.(2)太阳系的行星以椭圆形轨道绕太阳运行,天王星是太阳系的行星,因此天王星以椭圆形轨道绕太阳运行. (3)一切奇数都不能被2整除,因为(2100+1)是奇数,所以(2100+1)不能被2整除.(5)两条直线平行,同旁内角互补.如果∠A 和∠B 是两条平行直线的同旁内角, 那么∠A+∠B=180°.(4)三角函数都是周期函数,α因为tan 三角函数, α 所以是tan周期函数. 观察 这些说法有什么共同点?探究思考都是以某些一般地判断为前提,得出一些个别的、具体的判断.你觉得这些说法正确吗?如果认为正确,那么这样的推论又是什么呢?这些说法的共同点是:教学目标【知识与能力】1.了解演绎推理的含义.2.能运用“三段论”进行简单的推理.【过程与方法】通过已学过的数学实例和生活中的实例,从中挖掘、提炼出演绎推理的含义和推理方法,使学生更好的掌握这种思维方法.【情感态度与价值观】使学生掌握这种思维方法,并能在今后的学习中有意识的使用它,以培养言之有理、论证有据的习惯.教学重难点重点了解演绎推理的含义,能利用“三段论”进行简单地推理.难点用“三段论”进行简单的推理.知识要点若推理都是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.现在可以知道,上面列举的例子都是演绎推理的例子且每个例子都有三段,称为“三段论”.所有的金属都能导电因为铜是金属,所以铜能够导电.大前提小前提结论(一般原理)(特殊情况)(所得结论)下面请同学们自己说出其余例子的“三段”. (2)太阳系的行星以椭圆形轨道绕太阳运行, 天王星是太阳系的行星,因此天王星以椭圆形轨道绕太阳运行;大前提 小前提 结论(3)一切奇数都不能被2整除, 因为(2100+1)是奇数, 大前提小前提所以(2100+1)不能被2整除.结论 (4)三角函数都是周期函数, α因为tan 三角函数, α所以是tan 周期函数. 大前提 小前提 结论(5)两条直线平行,同旁内角互补. 如果∠A 和∠B 是两条平行直线的同旁内角, 那么∠A+∠B=180°. 大前提 小前提 结论“三段论”是演绎推理的一般模式,那现在大家想想它的内容是什么?(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.“三段论”可以表示为大前提:M是P.小前提:S是M.结论: S是P.三段论推理的依据,用集合的观点来理解: 若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.例题1 如图:在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.A DE C M B证明:(1)因为有一个内角是直角的三角形是直角三角形, 在△ABC 中,AD ⊥BC,即∠ADB=900 大前提小前提所以△ABD 是直角三角形. 结论 同理△ABE 是直角三角形.(2)因为直角三角形斜边上的中线等于斜边的一半, 大前提 M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线, 小前提所以 DM= AB 12结论 同理 EM= AB 12所以 DM = EM.归纳由此可见,应用三段论解决问题时,首先应明确什么是大前提和小前提.但为了叙述简洁,如果大前提是显然的,则可以省略.自己试试看!如图:D,E,F 分别是BC,CA,AB 上的点,∠BFD= ∠A,DE ∥BA,求证:ED=AF. 练一练A B D C EF (1)同位角相等,两直线平行, ∠BFD 与∠A 是同位角,且∠BFD= ∠A ,证明:所以, DF ∥EA. 大前提小前提 结论(2)两组对边分别平行的四边形是平行四边形, DE ∥BA 且DF ∥EA, 所以,四边形AFDE 是平行四边形. (3)平行四边形的对边相等,ED 和AF 为平行四边形的对边, 所以,ED=AF. 大前提 小前提 结论大前提 小前提 结论 AB D CE F例题2分析证明函数f(x)= -x2+2x 在(-∞,1)上是增函数.证明本例所依据的大前提是:在某个区间(a,b)内,如果 y= ,那么函数y=f(x)在这个区间内单调递增.f(x)证明:根据“三段论”得,函数f(x)=-x 2+2x 在(-∞,1)上是增函数.小前提是f(x)=-x 2+2x 的导数在区间(-∞,1)内满足 >0,这是证明本题的关键. 'f (x) =-2x+2.当x ∈(-∞,1)时,有1-x>0,所以=-2x+2=2(1-x )>0.于是,f (x)'f (x)'还有其他的证明方法吗? 证明函数f(x)=-x2+2x 在(-∞,1)上是增函数.提示根据增函数的定义进行证明.继续解答……任取x1,x2 ∈(-∞,1]且x1<x2 , f(x1)-f(x2)=(-x12+2x1)-(x22+2x2) =(x2-x1)(x1+x2-2)因为x1<x2所以 x2-x1>0因为x1,x2≤1所以x1+x2-2<0因此f(x1)-f(x2)<0,即f(x1)<f(x2)证明:满足对于任意x1,x2∈D,若x1<x2,有f(x1)<f(x2)成立的函数f(x),是区间D上的增函数.大前提小前提所以函数f(x)=-x2+2x在(-∞,1)上是增函数.结论在演绎推理中,应用三段论解决问题时,怎样才能保证结论是正确的呢?想一想注意演绎推理是由一般到特殊的推理,这也决定了演绎推理的结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提和推理形式正确,结论就必然正确.例题3 因为指数函数y=a x 是增函数,而y=a x 是指数函数,所以是增函数. 结论大前提 小前提 (1)上面的推理形式正确吗?(2)推理的结论正确吗?为什么?解:上述推理的形式正确,但大前提是错误的(因为当0<a<1时,指数函数y=a x是减函数),所以所得的结论是错误的.记住反思通过本例的学习,使我们更深刻的理解了“在演绎推理中,只要前提和推理形式正确,结论就必然正确”.知识要点至此,我们学习了两种推理方式——合理推理与演绎推理.大家想想它们两者的区别与联系?自己总结归纳一下吧!区别:1.归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.2.从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.联系:1.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.2. 从认识事物的过程中所发挥的作用的角度考虑,演绎推理与合情推理又是紧密联系,相辅相成的.课堂小结1.演绎推理的概念:若推理都是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.2.“三段论”是演绎推理的一般模式,它的内容是:(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论-----据一般原理,对特殊情况做出的判断.3.在演绎推理中,只要前提和推理形式正确,结论就必然正确.4.合情推理和演绎推理的联系与区别:总的来说,从推理形式和推理所得结论的正确性上讲,二者有差异,从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.随堂练习1.指出下列推理中的错误,并分析产生错误的原因.(1)整数是自然数,大前提不正确.-3是整数,-3是自然数.(2)无理数是无限小数,(3) 凡金属都是导电的,水是导电的,所以,水是金属. 1(=0.333)3是无限小数, 是无理数.13大前提不正确,无理数是无限不循环小数. 小前提不正确,水不是金属.已知a,b,m均为正实数,b<a,求证: b b+m <.a a+m证:⎫⎬⎭b amb ma ab+mb ab+mam0<⇒<⇒<>⎫⎬⎭b(a+m)a(b+m)a(a+m)0b(a+m)a(b+m)a(a+m)a(a+m)b b+ma a+m⇒<>⇒<⇒<又2.习题答案 2.因为通项公式为 的数列{ },若 其中p 是非零常数,则{ }是等比数列.‥‥‥‥大前提 又因为cq≠0,则q≠0,且 n a n+1n a =p a n+1n+1n n a cq ==q.a cq练习(第81页)1.答案课上已给出.n a n a ‥‥‥‥小前提3.由AD>BD ,得到∠ACD>∠BCD 的推理是错误的.因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD>BD ”,而AD 与BD 不在同一个三角形中. 所以通项公式为 的数列{ }是等比数列.‥‥‥‥结论n n a =cq cq 0() n a。
最新人教版高中数学选修1-2《演绎推理》问题导学
2.1.2 演绎推理问题导学一、演绎推理的基本形式活动与探究1把下列演绎推理写成三段论的形式:(1)指数函数y=3x在R上是单调增函数;(2)∠A,∠B是等腰三角形的两底角,则∠A=∠B;(3)通项公式为a n=n的数列{a n}为等差数列.迁移与应用把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100 ℃时,水会沸腾;(2)一切奇数都不能被2整除;2100+1是奇数,所以2100+1不能被2整除;(3)三角函数都是周期函数,y=tanα是三角函数,因此y=tanα是周期函数.运用三段论时的注意事项:用三段论写演绎推理的过程,关键是明确大前提、小前提,大前提提供了一个一般性的原理,在演绎推理的过程中往往省略,而小前提指出了大前提下的一个特殊情况,只有将二者结合起来才能得到完整的三段论.一般地,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.二、演绎推理的正误判断活动与探究2下列几个推理是否正确?为什么?(1)因为整数是自然数(大前提),而3是整数(小前提),所以3是自然数(结论).(2)因为过不共线的三点有且仅有一个平面(大前提),而A,B,C为空间三点(小前提),所以过A,B,C三点只能确定一个平面(结论).(3)因为金属铜、铁、铝能够导电(大前提),而金是金属(小前提),所以金能导电(结论).迁移与应用1.有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b∥平面α,直线a⊂平面α,则直线b∥直线a”,结论显然是错误的,这是因为().A.大前提错误B.小前提错误C.推理形式错误D.非以上错误2.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理().A.小前提错B.结论错C.正确D.大前提错判断演绎推理的结论是否正确的方法:(1)看推理形式是否是由一般到特殊的推理,只有由一般到特殊的推理才是演绎推理.(2)看大前提是否正确.大前提往往是定义、定理、性质等,注意其中有无前提条件.(3)看小前提是否正确.注意小前提必须在大前提范围之内.(4)看推理过程是否正确,即看由大前提、小前提得到的结论是否正确.三、演绎推理的应用活动与探究3如图所示,在梯形ABCD中,AB=DC=DA,AC和BD是梯形的对角线.求证:AC平分∠BCD,BD平分∠CBA.迁移与应用如图,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥BA,求证:ED=AF,写出三段论形式的演绎推理.三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.答案:课前·预习导学【预习导引】1.(1)某个特殊情况下一般特殊(2)已知的一般原理所研究的特殊情况根据一般原理,对特殊情况做出的判断(3)S是P预习交流1(1)提示:①演绎推理的前提是一般性原理.演绎所得的结论是蕴含于前提之中的个别特殊事实,结论完全蕴含于前提之中.②在演绎推理中,前提和结论存在着必然的联系,只要前提是真实的,推理形式是正确的,那么结论也必然是正确的.(2)一条边的平方等于其他两条边平方和的三角形是直角三角形△ABC的边长为3,4,5,且32+42=52△ABC是直角三角形2.部分整体个别一般特殊特殊一般特殊不一定正确一定正确预习交流2提示:(1)联系:两个推理是相辅相成的,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路的发现,主要靠合情推理.(2)区别:合情推理的前提为真时,结论不一定为真;而演绎推理的前提为真时,结论必定为真.课堂·合作探究【问题导学】活动与探究1思路分析:对命题进行分析,找出大前提、小前提、结论,再利用三段论的形式写出来.解:(1)因为指数函数y=a x,在a>1时是R上的单调增函数,……………………大前提函数y=3x是指数函数且3>1,………………………………小前提所以指数函数y=3x在R上是单调增函数.……………………………………结论(2)因为等腰三角形两底角相等,………………………………大前提∠A,∠B是等腰三角形的两底角,………………………………小前提所以∠A=∠B.………………………………………………结论(3)因为数列{a n}中,当n≥2且n N*时,a n-a n-1=d为常数,则数列{a n}是等差数列,大前提通项公式a n=n,若n≥2且n N*时,a n-a n-1=n-(n-1)=1为常数,………………小前提所以通项公式为a n=n的数列{a n}为等差数列.……………………………………结论迁移与应用解:(1)在一个标准大气压下,水的沸点是100 ℃,………………大前提在一个标准大气压下把水加热到100 ℃,…………………………小前提水会沸腾.………………………………………………结论(2)一切奇数都不能被2整除,……………………………………大前提2100+1是奇数,……………………………………小前提2100+1不能被2整除,………………………………………………结论(3)三角函数都是周期函数,……………………………………大前提y=tan α是三角函数,…………………………………………小前提y=tan α是周期函数.………………………………………………结论活动与探究2思路分析:分析大前提、小前提和推理形式是否正确.解:(1)不正确.大前提错误,因为非负整数才是自然数.(2)不正确.小前提错误.因为若三点共线可确定无数个平面,只有不共线的三点才满足.(3)不正确.推理形式错误.因为演绎推理是从一般到特殊的推理,铜、铁、铝仅是金属的代表,是特殊事例,从特殊到特殊的推理不是演绎推理.迁移与应用1.A解析:由演绎推理的三段论可知答案应为A.2.C解析:在上述推理中,大前提、小前提都是正确的,推理的形式也符合三段论模式,因此结论也是正确的,这个推理是正确的.活动与探究3思路分析:理清图形中的线段关系,角度关系,由△ADC是等腰三角形,得∠1=∠2,再利用等量代换求证.证明:①等腰三角形两底角相等,………………………………大前提△DAC是等腰三角形,DA,DC是两腰,……………………………………小前提∠1=∠2.……………………………………结论②两条平行线被第三条直线所截,截得的内错角相等,…………………………大前提∠1和∠3是平行线AD,BC被AC截得的内错角,…………………………小前提∠1=∠3.………………………………………………结论③等于同一个量的两个量相等,……………………………………大前提∠2和∠3都等于∠1,……………………………………小前提所以∠2=∠3,………………………………………………结论即AC平分∠BCD.④同理BD平分∠CBA.迁移与应用证明:因为同位角相等,两条直线平行,…………………………大前提∠BFD与∠A是同位角,且∠BFD=∠A,………………………………………小前提所以FD∥AE.………………………………………………………………………结论因为两组对边分别平行的四边形是平行四边形,…………………………………大前提DE∥BA,且FD∥AE,………………………………………………………………小前提所以四边形AFDE为平行四边形.…………………………………………………结论因为平行四边形的对边相等,………………………………………………………大前提ED和AF为平行四边形AFDE的对边,…………………………………………小前提所以ED=AF.…………………………………………………………………………结论当堂检测1.下面说法正确的有().①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个答案:C解析:①③④正确,故选C.2.“因为指数函数y=a x是增函数(大前提),而13xy⎛⎫= ⎪⎝⎭是指数函数(小前提),所以1 3xy⎛⎫= ⎪⎝⎭是增函数(结论)”,上面推理的错误是().A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提错都导致结论错答案:A解析:指数函数y=a x,在a>1时是增函数,故大前提错误.3.下列推理是演绎推理的是().A.M,N是平面内两定点,动点P满足|PM|+|PN|=2a>|MN|,得点P的轨迹是椭圆B.由a1=1,a n=2n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积为πr2,猜想出椭圆22221x ya b+=的面积为πabD.科学家利用鱼的沉浮原理制造潜艇答案:A解析:B是归纳推理,C,D是类比推理,只有A是利用椭圆的定义作为大前提的演绎推理.4.在求函数y=a≥0,________.答案:[4,+∞)解析:log2x-2≥0,log2x≥2,∴x≥4.5.两条直线相交,对顶角相等,∠A和∠B是对顶角,则∠A=∠B.该证明过程中大前提是__________,小前提是__________,结论是__________.答案:两条直线相交,对顶角相等∠A和∠B是对顶角∠A=∠B解析:大前提:两条直线相交,对顶角相等.小前提:∠A和∠B是对顶角.结论:∠A=∠B.。
高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2
第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。
是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。
2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。
(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。
(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。
2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。
3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。
人教版高中数学选修1-2课件 《演绎推理》2
2.1 合情推理与演绎推理 2.1.2 演 绎 推 理
1
栏 目 链 接
2
1.结合已学过的数学实例和生活中的实例,体会演绎推理
的重要性,掌握演绎推理的基本模式,并能运用它们进行一些
简单推理.
栏
目
差异.2.通过具体实例,了解合情推理和演绎推理之间的联系和链接
3
栏 目 链 接
4
基础
11
2.合情推理与演绎推理的区别与联系
区别:从推理形式和推理所得的结论上讲,二者有差异.
栏 目 链 接
12
栏 目 链 接
13
题型一 “三段论”模式及其理解
例1 将下列的演绎推理写成“三段论”的形式.
(1)菱形的对角线相互垂直,正方形是菱形,所以正方形的对角
线相互垂直.
(2)奇数不能被 2 整除,(2100+1)是奇数,所以(2100+1)不能被 2 栏
∴MD∥AP,
又 MD⊄平面 APC,AP⊂平面 APC,
∴MD∥平面 APC.
(2)∵△PMB 为正三角形,且 D 为 PB 中点,
栏
∴MD⊥PB.
目
又由(1)知 MD∥AP,
链
∴AP⊥PB.
求 证 : ∠ACD > ∠BCD.① 证 明 : 在 △ABC 中 ,
∵CD⊥AB,AC>BC ②∴AD>BD ③∴∠ACD
栏
>∠BCD.则在上面证明过程中错误的是________(只 目
链
填序号).
接
解析:AD,BD不在同一个三角形中,③错误. 答案:③
9
栏 目 链 接
10
1.“三段论”的表示形式
和是 180°
·
高中数学选修1-2常考题型:演绎推理
演绎推理【知识梳理】1.演绎推理的概念从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.2.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.“三段论”可以表示为:大前提:M是P.小前提:S是M.结论:S是P.【常考题型】题型一、把演绎推理写成三段论的形式【例1】将下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.[解](1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n =3n +2,n ≥2时,a n -a n -1=3n +2-[3(n -1)+2]=3(常数).(小前提)通项公式为a n =3n +2(n ≥2)的数列{a n }为等差数列.(结论)【类题通法】三段论的推理形式三段论推理是演绎推理的主要模式,推理形式为“如果b ⇒c ,a ⇒b ,则a ⇒c .”其中,b ⇒c 为大前提,提供了已知的一般性原理;a ⇒b 为小前提,提供了一个特殊情况;a ⇒c 为大前提和小前提联合产生的逻辑结果.【对点训练】把下列推断写成三段论的形式:(1)y =sin x (x ∈R )是周期函数.(2)若两个角是对顶角,则这两个角相等,所以若∠1和∠2是对顶角,则∠1和∠2相等. 解:(1)三角函数是周期函数,………………大前提y =sin x (x ∈R )是三角函数,………………小前提y =sin x (x ∈R )是周期函数.………………结论(2)两个角是对顶角,则这两个角相等,………………大前提∠1和∠2是对顶角,………………小前提∠1和∠2相等.………………结论题型二、三段论在证明几何问题中的应用【例2】 已知A ,B ,C ,D 四点不共面,M ,N 分别是△ABD 和△BCD 的重心,求证:MN ∥平面ACD .[证明] 如图所示,连接BM ,BN 并延长,分别交AD ,DC 于P ,Q 两点,连接PQ .因为M ,N 分别是△ABD 和△BCD 的重心,所以P ,Q 分别是AD ,DC 的中点.又因为BM MP =BN NQ,所以MN ∥PQ ,又MN ⊄平面ADC ,PQ ⊂平面ADC ,所以MN ∥平面ACD .【类题通法】三段论在几何问题中的应用(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.【对点训练】已知在梯形ABCD 中,如图,AB =CD =AD ,AC 和BD 是梯形的对角线,求证:AC 平分∠BCD ,DB 平分∠CBA .证明:∵等腰三角形两底角相等,(大前提)△DAC 是等腰三角形,∠1和∠2是两个底角,(小前提)∴∠1=∠2.(结论)∵两条平行线被第三条直线截得的内错角相等,(大前提)∠1和∠3是平行线AD 、BC 被AC 截得的内错角,(小前提)∴∠1=∠3.(结论)∵等于同一个角的两个角相等,(大前提)∠2=∠1,∠3=∠1,(小前提)∴∠2=∠3,即AC 平分∠BCD .(结论)同理可证DB 平分∠CBA .题型三、演绎推理在代数中的应用【例3】 已知函数f (x )=a x +x -2x +1(a >1),求证:函数f (x )在(-1,+∞)上为增函数. [证明] 设x 1,x 2是(-1,+∞)上的任意两实数,且x 1<x 2,则f (x 1)-f (x 2)=ax 1+x 1-2x 1+1-ax 2-x 2-2x 2+1=ax 1-ax 2+x 1-2x 1+1-x 2-2x 2+1=ax 1-ax 2+3(x 1-x 2)(x 1+1)(x 2+1), ∵a >1,且x 1<x 2,∴ax 1<ax 2,x 1-x 2<0.又∵x 1>-1,x 2>-1,∴(x 1+1)(x 2+1)>0.∴f (x 1)-f (x 2)<0.∴f (x 1)<f (x 2).∴函数f (x )在(-1,+∞)上为增函数.【类题通法】使用三段论应注意的问题(1)应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论.(2)证明中常见的错误:①条件分析错误(小前提错).②定理引入和应用错误(大前提错).③推理过程错误等.【对点训练】已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +m a +m. 证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)b <a ,m >0,(小前提)所以,mb <ma .(结论)因为不等式两边同加上一个数,不等号不改变方向,(大前提)mb <ma ,(小前提)所以,mb +ab <ma +ab ,即b (a +m )<a (b +m ).(结论)因为不等式两边同除以一个正数,不等号不改变方向,(大前提)b (a +m )<a (b +m ),a (a +m )>0,(小前提)所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .(结论) 【练习反馈】1.“四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充该推理的大前提是( )A .正方形的对角线相等B .矩形的对角线相等C .等腰梯形的对角线相等D .矩形的对边平行且相等解析:选B 得出“四边形ABCD 的对角线相等”的大前提是“矩形的对角线相等”.2.“因为对数函数y =log a x 是增函数(大前提),而y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论).”上面推理错误的原因是( ) A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错解析:选A 大前提是错误的,因为对数函数y =log a x (0<a <1)是减函数.3.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义,即a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论的形式可知,结论是log 2x -2≥0.答案:log 2x -2≥04.用三段论证明函数f (x )=x +1x在(1,+∞)上为增函数的过程如下,试将证明过程补充完整:①________________________________………………大前提②________________________________………………小前提③________________________________……………………结论答案:①如果函数f (x )满足:在给定区间内任取自变量的两个值x 1,x 2,若x 1<x 2,则f (x 1)<f (x 2),那么函数f (x )在给定区间内是增函数.②任取x 1,x 2∈(1,+∞),x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)(x 1x 2-1)x 1x 2,由于1<x 1<x 2,故x 1-x 2<0,x 1x 2>1,即x 1x 2-1>0,所以f (x 1)<f (x 2).③函数f (x )=x +1x在(1,+∞)上为增函数. 5.将下列推理写成“三段论”的形式.(1)向量是既有大小又有方向的量,故零向量也有大小和方向;(2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等;(3)0.332·是有理数.解:(1)向量是既有大小又有方向的量.……………………大前提零向量是向量.……………………小前提零向量也有大小和方向.……………………结论(2)每一个矩形的对角线相等.……………………大前提正方形是矩形.……………………小前提正方形的对角线相等.……………………结论(3)所有的循环小数都是有理数.……………………大前提0.332·是循环小数.……………………小前提0.332·是有理数.……………………结论。
最新人教版高中数学选修1-2《合情推理与演绎推理》教材梳理
庖丁巧解牛知识·巧学一、合情推理1.推理的概念根据一个或几个已知的事实(或假设)得出一个判断,这种思维方式叫推理.推理一般由两部分组成:前提和结论.2.合情推理当前提为真时,结论可能为真的推理,叫做合情推理.合情推理中,当前提为真时,结论可能为真,也可能为假.归纳推理和类比推理是数学中常用的合情推理.一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如费马猜想就被大数学家欧拉推翻了.方法点拨合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向,其推理过程为3.归纳推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,或者由个别事实概括出一半结论的推理,叫做归纳推理(简称归纳).归纳推理是从部分到整体,从个别到一般的推理.应用归纳推理获得的新结论,一般只能作为猜想,虽然猜想是否正确还有待严格的证明,但是这个猜想可以为我们的研究提供一种方向.归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.由归纳推理得到的结论具有猜测的性质,结论是否真实,还需要经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.方法点拨归纳推理的前提与结论只具有或然性联系,其结论不一定正确.结论的正确性还需要理论证明或实践检验.其一般步骤为:通过观察个别情况发现某些相同性质;从已知的相同性质中推出一个明确表述的一般性命题.4.类比推理根据两类不同事物之间具有某些类似(或一致)性和其中一类对象的某些已知特征,推测另一类事物具有与这些类似(或相同)的性质的推理,叫做类比推理(简称类比).类比推理是由特殊到特殊的推理.运用类比推理常常是先要寻找合适的类比对象,我们可以从不同角度出发确定类比对象,基本原则是根据当前的实际,选择适当的类比对象.方法点拨类比推理的一般步骤为:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).二、演绎推理1.演绎推理根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理.演绎推理的特征是:当前提为真时,结论必然为真.演绎推理是由一般到特殊的推理.数学中的证明主要是通过演绎推理来进行的.常见的演绎推理包括:假言推理、三段论推理、关系推理、完全归纳推理等,演绎推理的一般形式是三段论推理.2.假言推理如果一个推理的规则能用符号表示为“如果p q,p真,则q真”,那么这种推理规则叫做假言推理.假言推理的本质是,通过判断结论的充分条件为真,判断结论为真.方法点拨假言推理的步骤可以概括为:确定命题p能够推出命题q;判断命题p是否为真,如果p为真,则q为真.3.三段论推理如果一个推理规则能用符号“如果b⇒c,a⇒b,则a⇒c”,那么这种推理规则叫做三段论推理.三段论推理都是由三个命题组成的,两个前提,一个结论;第一个命题称为大前提,它提供了一个一般性的原理;第二个命题叫小前提,它指出了一个特殊对象,这两个判断结合起来,揭示了一般原理与特殊对象的内在联系,从而得到第三个命题——结论.如在民事审判中,以现行有效的法律规定作为大前提,以经过法庭审理查明的事实作为小前提,按照三段论的推理规则,最后得出判决结论的方法,是增强判决书说理性的好方法.任何一个三段论推理都有而且仅有三个词项,每个词项在三个命题中重复出现一次.三段论推理可以表示为,大前提:M是P;小前提:S是M;结论:S是P.在三段论推理中,尽可能少地选择原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理法.公理化方法的精髓是:利用尽可能少的前提,推出尽可能多的结论.深化升华用集合的观点来分析,三段论的推理依据是:如果集合M中的每一个元素都具有属性P,且S是M的子集,那么集合S中的每一个元素都具有属性P.4.关系推理如果一个推理规则可以用符号表示为“如果a≥b,b≥c,则a≥c”,那么这种推理规则叫做关系推理.方法点拨关系推理的步骤:确定原式a和式子b存在关系a≥b;论证式子b和c存在关系b≥c,从而推出a≥c.5.完全归纳推理把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.误区警示在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明. 三、合情推理与演绎推理合情推理与演绎推理是常见的两种推理方式.从推理形式上看,合情推理是由局部到整体、个别到一般的推理(归纳),或是由特殊到特殊的推理(类比);而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确.方法点拨在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明.问题·探究问题1 如何理解归纳推理?导思:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,或者由个别事实概括出一般结论的推理,叫做归纳推理(简称归纳).归纳推理是从部分到整体,从个别到一般的推理.探究:归纳推理的基本形式是:∵A1具有性质F,A2具有性质F,…,A n具有性质F,(A1,A2,…,A n都属于A)∴A类事物都具有性质F.归纳推理的基础是对个别或部分对象的实验和观察,而缺乏对全体对象的考察,因而所得的结论具有偶然性,只能称之为归纳猜想,其正确与错误是需要严格论证的.例如:f(x)=(x-1)(x-2)…(x-100)+2.∵f(1)=2,f(2)=2,…,f(100)=2.∴由此归纳猜想f(n)=2(n ∈N *).但这一结果是错误的,事实上f(101)≠2,可见不完全归纳推理得出的结论不可靠,还需要进一步作出判断.问题2 类比平面向量和空间向量,列出它们相似(相同)的性质.导思:从平面向量和空间向量的定义、运算法则、运算律、数量积、共线共面以及向量基本定理等几个方面,来进行类比. 探究:(1)从定义的角度考虑平面向量是平面内既有大小又有方向的向量;空间向量是空间内既有大小又有方向的向量. (2)从运算法则的角度考虑两个平面向量相加的三角形法则和平行四边形法则在空间中仍成立.始点相同的三个不共面的向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则在空间的推广. (3)从运算律、数量积的角度考虑 平面向量和空间向量是相同的.运算律:①a +b =b +a (加法交换律);②(a +b )+c =a +(b +c )(加法结合律);③λ(a +b )=λa +λb (数乘分配律).数量积的性质:①a ·e =|a |c os 〈a ,e 〉(e 是单位向量);②a ⊥b a ·b =0;③|a |2=a ·a . 数量积的运算律:①(λa )·b =λ(a ·b );②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). (4)从向量共线,共面的角度考虑共线向量定理:向量b 与a (a ≠0)共线的充要条件是:有且只有一个实数λ,使得b =λa .共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x,y,使p=x a +y b .(5)从向量基本定理角度考虑平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线的向量,那么对于这一平面内任一向量a ,有且只有一对实数λ1,λ2,使得a =λ1e 1+λ2e 2,其中e 1,e 2表示平面向量的一组基底.空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对于空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫基向量. 典题·热题例1已知数列{a n }的第1项a 1=1,且a n+1=nna a +1(n=1,2,3, …),试归纳出这个数列的通项公式.思路解析:数列{a n }的通项公式是第n 项a n 与序号n 之间的对应关系,我们可以先根据已知条件算出数列{a n }的前几项,然后去归纳出一般性的公式.解:当n=1时,a 1=1;当n=2时,a 2=21111=+; 当n=3时,a 3=3121121=+;当n=4时,a 4=4131131=+;……通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出a n =n1. 方法归纳 归纳推理得出的一般性结论可能为真也可能为假,结论的正确性有待于进一步的证明,数列中的证明可以使用数学归纳法,也可以使用数列的基本通项公式及求和公式证明. 例2已知数列{a n }的前n 项和为S n ,a 1=32-且S n +nS 1+2=a n (n≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.思路解析:先化简递推关系式:n≥2时a n =S n -S n-1, ∴S n +n S 1+2=S n -S n-1, nS 1+S n-1+2=0. 解:当n=1时,S 1=a 1=32-. 当n=2时,21S =-2-S 1=34-,∴S 2=43-.当n=3时,31S =-2-S 2=45-,∴S 3=54-.当n=4时,41S =-2-S 3=56-,∴S 4=65-.猜想:S n =21++-n n (n ∈N *). 方法规纳 在归纳推理中,所得的结论的正确性常常要用数学归纳法来加以严格证明.例3如图,点P 为斜三棱柱ABC —A 1B 1C 1的侧棱BB 1上一点,PM ⊥B 1B 交AA 1于点M ,PN ⊥BB 1交CC 1于点N.(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF·EFcos ∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.思路解析:考虑到三个侧面的面积需要作出三个侧面的高,由已知条件可得△PMN 为三棱柱的直截面,选取三棱柱的直截面的三角形作类比对象. (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN. ∴BB 1⊥MN.又CC 1∥BB 1,∴CC 1⊥MN. (2)解:在斜三棱柱ABC-A 1B 1C 1中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ∙-+=.其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角. ∵CC 1⊥平面PMN ,∴上述的二面角的平面角为∠MNP. 在△PMN 中,PM 2=PN 2+MN 2-2PN·MN·cos ∠MNP⇒PM 2·CC 12=PN 2·CC 12+MN 2·CC 12-2(PN·CC 1)·(MN·CC 1)·cos ∠MNP, 由于11B BCC S =PN·CC 1,11A ACC S =MN·CC 1,11A ABB S =MP·BB 1, ∴αcos 21111111111222A ACCB BCC A ACC B BCC A ABB S S S S S ∙-+=.例4(2005广东高考)设平面内有n 条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n 条直线交点的个数,则f(4)= ______________;当n >4时,f(n)=______________.思路解析:通过观察不难发现每增加一条直线,交点增加的个数等于原来直线的条数. 由f(2)=0,f(3)=2,f(4)=5,f(5)=9,…可得每增加一条直线,交点增加的个数等于原来直线的条数. ∴f(3)-f(2)=2,f(4)-f(3)=3,f(5)-f(4)=4,…,f(n)-f(n-1)=n-1. 累加得f(n)=f(2)+2+3+4+…+n-1=212)]1(2)[2(=-+-n n (n+1)(n-2).答案:521(n+1)(n-2) 深化升华 本小题主要考查观察、分析、归纳推理、累加求通项公式等知识,是一个很灵活的题目,在解题的过程中要善于观察发现规律,通过规律来解决问题揭示本质. 例5用三段论证明,并指出每一步推理的大前提和小前提.如图所示,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E 的距离相等.思路解析:解答本题需要利用直角三角形斜边上的中线性质作为大前提. 证明:(1)∵有一个内角是直角的三角形是直角三角形,(大前提) 在△ABD 中,AD ⊥BC ,即∠ADB=90°,(小前提) ∴△ABD 是直角三角形.(结论) 同理,△ABE 也是直角三角形.(2)∵直角三角形斜边上的中线等于斜边的一半,(大前提)而M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线,(小前提)∴DM=21AB(结论). 同理,EM=21AB.∴DM=EM.方法归纳 “三段论”是演绎推理的一般模式,包括:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况作出的判断.例6求证函数y=1212+-x x 是奇函数,且在定义域上是增函数.思路解析:本题在证明过程中使用了三段论推理,假言推理等推理规则.证明:y=1221122)12(+-=+-+xx x . 所以f(x)的定义域为x ∈R . f(-x)+f(x)=(1-122+-x)+(1-122+x )=2-(122+x +122+-x )=2-(121+x +1222+∙x x) =2-12)12(2++xx =2-2=0, 即f(-x)=-f(x),所以f(x)是奇函数. 任取x 1,x 2∈R ,且x 1<x 2.则f(x 1)-f(x 2)=(1-1221+x )-(1-1222-x )=2(12112112+-+x x ) =2·)12)(12(221221++-x x x x . 由于x 1<x 2,从而12x<22x,12x-22x<0, 所以f(x 1)<f(x 2),故f(x)为增函数.例7(2005辽宁高考)已知椭圆2222by a x +=1(a >b >0)的左右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足|F 1|=2a.点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足2TF ∙=0,|2TF |≠0. (1)设x 为点P 的横坐标,证明|F 1|=a+x ac; (2)求点T 的轨迹C 的方程.思路解析:本题主要考查平面向量、椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力,其中数形结合是解析几何解决问题的常用方法.(1)证明:设点P 的坐标为(x,y),由P(x,y)在椭圆上,得|F 1|=2222222)()(x ab bc x y c x -++=++=22222222222)(22x a c a a cx x a c c b cx x a b a +=++=+++-.由x≥-a ,知a+x a c ≥-c+a >0.所以|F 1|=a+x ac. (2)解:设点T 的坐标为(x,y),当|PT |=0时,点(a ,0)和点(-a ,0)在轨迹上. 当|PT |≠0且|2TF |≠0时, 由|PT |·|2TF |=0,得PT ⊥2TF .又||=|2PF |,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,||=21|F 1|=a ,所以有x 2+y 2=a 2. 综上所述,点T 的轨迹方程是x 2+y 2=a 2.方法归纳 求轨迹时可以从两个方面来解:设动点的坐标,利用题目给出的条件整理得出方程;观察曲线的几何特征,直接由曲线的定义得出.。
人教版高中数学选修(1-2)-2.1《演绎推理》教学设计
2.1.2演绎推理(陈昌杰)一、教学目标1.核心素养通过对演绎推理的学习,在数学体验中培养学生的抽象能力和逻辑推理的能力.2.学习目标(1)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.(2)结合生活中的实例,创设民主的学习氛围和生动的学习情景,鼓励,引导学生通过思考,质疑等丰富多彩的认知过程来获取数学知识(3)发展学习数学的兴趣,让学生乐于探究数与形变化的奥秘,体验数学探究的艰辛和喜悦,感受数学世界的奇妙和谐.(4)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.3.学习重点了解演绎推理的含义,能利用“三段论”进行简单的推理4.学习难点分析证明过程中包含的“三段论”形式.二、教学设计(一)课前设计1.预习任务任务1预习教材P30—P33思考:什么是演绎推理?演绎推理的模式是什么?2.预习自测1.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误答案:C2.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法()A.一般的原理原则B.特定的命题C.一般的命题D.定理、公式答案:A3.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤答案:D(二)课堂设计1.知识回顾现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树.从繁茂的阔叶树可以推知当时有温暖湿润的气候.所以南极大陆曾经在温湿的热带.被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立.西藏高原南端的喜马拉雅山横空出世,雄视世界.珠穆郎玛峰是世界第一高峰,登上珠峰顶,一览群山小.谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海.地质学家是怎么得出这个结论的呢?科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石.还发现了鱼龙的化石.地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋.科学家们研究喜马拉雅变迁所使用的方法,就是一种。
人教新课标A版高二数学《选修1-2》2.1.2演绎推理
类比推理: 从特察 1+3=4=22 , 1+3+5=9=32 ,
1+3+5+7=16=42 ,
1+3+5+7+9=25=52 , …… 由上述具体事实能得到怎样的 结论?
类比下列平面图形的性质,写出空间图形的性质:
平面图形的性质 1.一条直线把平面分成两个部分 2.同一平面内两条直线无公共点,则它们互相平行 3.同一平面内垂直于同一条直线的两条直线平行 4.同一平面内平行于同一条直线的两条直线平行 5.正方形外接圆与内切圆的圆心重合 6. 正三角形外接圆与内切圆的圆心重合 空间图形的性质 一个平面把空间分成两个部分 同一空间内两个平面无公共点,则它们互相平行 同一空间内垂直于同一个平面的两条平面平行 同一空间内平行于同一个平面的两个平面平行 正方体外接球与内切球的球心重合
正四面体外接球与内切球的球心重合
二、新授课:
完成下列推理,它们是合情推理吗?
它们有什么特点? 1.所有的金属都能导电, 因为铜是金属, 所以铜能够导电. 2.一切奇数都不能被2整除,
一般性的原理
特殊情况 结论 一般性的原理 特殊情况 结论
因为2007是奇数,
所以2007不能被2整除.
案例分析2:
3是自然数, 3是整数. (3)自然数是整数, -3是自然数, -3是整数. 小前提错误
大前提错误
(2)整数是自然数, -3是整数, -3是自然数. (4)自然数是整数, -3是整数, -3是自然数. 推理形式错误
例2 在锐角三角形ABC中,AD⊥BC, BE⊥AC,D,E是垂足.求证AB的中点M到 D,E的距离相等. 证明:(1)∵有一个内角是直角的三角形是 大前提 直角三角形, 小前提 在△ABC中,AD⊥BC,即∠ADB=90o 结论 ∴△ABD是直角三角形. 同理△ABE是直角三角形 (2)∵直角三角形斜边上的中线等于斜边的一半, E C D
人教新课标版数学高二人教A选修1-2教案 2.1.2演绎推理
2.1.2演绎推理(教师用书独具)●三维目标1.知识与技能(1)让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异.(2)能运用演绎推理的基本方法“三段论”进行一些简单的推理.2.过程与方法(1)结合已学过的数学实例和生活中的实例,引出演绎推理的概念.(2)通过对实际例子的分析,从中概括出演绎推理的推理过程.(3)通过一些证明题的实例,让学生体会“三段论”的推理形式.3.情感、态度与价值观让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲.了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理,论证有据的思维习惯.●重点难点重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用“三段论”进行简单的推理.难点:利用三段论证明一些实际问题.通过比较合情推理与演绎推理的区别与联系,加深学生对概念的理解,在演绎推理的应用中要注意大前提、小前提的应用方法与技巧,注意推理形式的正确性.可将常见的证明题型分类研究,探究每种题型的特点,总结证明方法的特征,学以致用使所证问题化难为易.(教师用书独具)●教学建议建议本课运用自学指导法,通过创设问题情境,引导学生自学探究演绎推理与合情推理的区别与联系,了解演绎推理的作用和应用方式方法.教师指导重点应放在“三段论”的理解与应用上,师生共同研讨大前提、小前提、结论之间的关系,帮助学生分析大前提、小前提的作用及应用方法,引导学生挖掘证明过程包含的推理思路,明确演绎推理的基本过程,总结规律方法,使学生能举一反三、触类旁通.本部分的练习题不在“多”,而在“精”,关键在理解.●教学流程创设问题情境,引出问题,引导学生认识演绎推理的概念,了解演绎推理与合情推理的区别与联系.利用填一填的形式,使学生自主学习本节基础知识,并反馈了解,对理解有困难的概念加以讲解.引导学生在学习基础知识的基础上完成例题1,总结三段论的特点.通过变式训练,总结此类问题易犯的错误.师生共同分析探究例题2的证明方法:找出大前提、小前提,利用三段论给出证明.引导学生完成互动探究.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示.引导学生总结解题规律.课标解读 1.理解演绎推理的意义.(重点) 2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(难点)3.了解合情推理和演绎推理之间的区别和联系.演绎推理【问题导思】看下面两个问题:(1)一切奇数都不能被2整除,(22 012+1)是奇数,所以(22 012+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a是其中一个平面内的一条直线,那么a平行于另一个平面.1.这两个问题中的第一句都说的是什么?【提示】都说的是一般原理.2.第二句又说的是什么?【提示】都说的是特殊示例.3.第三句呢?【提示】由一般原理对特殊示例作出判断.1.演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论的推理.(2)特点:由一般到特殊的推理.2.三段论一般模式常用格式大前提已知的一般原理M是P小前提所研究的特殊情况S是M结论根据一般原理,对特殊情况做出的判S是P断把演绎推理写成三段论形式(1)向量是既有大小又有方向的量,故零向量也有大小和方向; (2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等; (3)0.332·是有理数;(4)y =sin x (x ∈R )是周期函数.【思路探究】 首先分析出每个题的大前提、小前提及结论,再写成三段论的形式.【自主解答】 (1)向量是既有大小又有方向的量, 大前提零向量是向量,小前提所以零向量也有大小和方向.结论 (2)每一个矩形的对角线都相等,大前提 正方形是矩形,小前提 正方形的对角线相等.结论(3)所有的循环小数都是有理数,大前提 0.332·是循环小数,小前提 0.332·是有理数.结论(4)三角函数是周期函数,大前提 y =sin x 是三角函数,小前提 y =sin x 是周期函数.结论用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可大前提与小前提都省略.在寻找大前提时,可找一个使结论成立的充分条件作为大前提.指出下列推理中的错误,并分析产生错误的原因:(1)整数是自然数,大前提-3是整数,小前提-3是自然数.结论(2)常数函数的导函数为0,大前提函数f(x)的导函数为0,小前提f(x)为常数函数.结论(3)无理数是无限不循环小数,大前提13(0.333 33…)是无限不循环小数,小前提13是无理数结论【解】(1)结论是错误的,原因是大前提错误.自然数是非负整数.(2)结论是错误的,原因是推理形式错误.大前提指出的一般原理中结论为“导函数为0”,因此演绎推理的结论也应为“导函数为0”.(3)结论是错误的,原因是小前提错误.13(0.333 33…)是循环小数而不是无限不循环小数.三段论在证明几何问题中的应用图2-1-4已知在梯形ABCD中(如图2-1-4),DC=DA,AD∥BC.求证:AC 平分∠BCD.(用三段论证明)【思路探究】观察图形→DC=DA⇒∠1=∠2→AD∥BC⇒∠1=∠3→∠2=∠3【自主解答】∵等腰三角形两底角相等,大前提△ADC是等腰三角形,∠1和∠2是两个底角,小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,大前提∠1和∠3是平行线AD、BC被AC截得的内错角,小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,大前提∠2=∠1,∠3=∠1,小前提∴∠2=∠3,即AC平分∠BCD.结论1.三段论推理的根据,从集合的观点来理解,就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.2.数学问题的解决和证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步推理的依据——大前提、小前提,注意前一个推理的结论可作为下一个三段论的前提.试用更简洁的语言书写本例的证明过程.【解】在△DAC中,∵DA=DC,∴∠1=∠2,又∵AD∥BC,∴∠1=∠3,∴∠2=∠3,即AC平分∠BCD.合情推理、演绎推理的综合应用图2-1-5如图2-1-5所示,三棱锥A-BCD的三条侧棱AB,AC,AD两两互相垂直,O为点A在底面BCD上的射影.(1)求证:O为△BCD的垂心;(2)类比平面几何的勾股定理,猜想此三棱锥侧面与底面间的一个关系,并给出证明.【思路探究】(1)利用线面垂直与线线垂直的转化证明O为△BCD的垂心.(2)先利用类比推理猜想出一个结论,再用演绎推理给出证明.【自主解答】(1)∵AB⊥AD,AC⊥AD,∴AD⊥平面ABC,∴AD⊥BC,又∵AO⊥平面BCD,AO⊥BC,且AD∩AO=A,∴BC⊥平面AOD,∴BC⊥DO,同理可证CD⊥BO,∴O为△BCD的垂心.(2)猜想:S2△ABC+S2△ACD+S2△ABD=S2△BCD.证明:连接DO并延长交BC于E,连接AE,由(1)知AD⊥平面ABC,AE⊂平面ABC,∴AD⊥AE,又AO⊥ED,∴AE2=EO·ED,∴(12BC·AE)2=(12BC·EO)·(12BC·ED),即S2△ABC=S△BOC·S△BCD.同理可证:S2△ACD=S△COD·S△BCD,S2△ABD=S△BOD·S△BCD.∴S2△ABC+S2△ACD+S2△ABD=S△BCD·(S△BOC+S△COD+S△BOD)=S△BCD·S△BCD=S2△BCD.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.但合情推理常常帮助我们猜测和发现新的规律,为我们提供证明的思路和方法,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).二者结合可以利用合情推理去发现问题,然后用演绎推理进行论证.已知命题:“若数列{a n}是等比数列,且a n>0,则数列b n=na1a2…a n(n∈N*)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.【解】类比等比数列的性质,可以得到等差数列的一个性质是:若数列{a n}是等差数列,则数列b n =a 1+a 2+…+a nn也是等差数列.证明如下:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a nn =na 1+n (n -1)d 2n=a 1+d 2(n-1),所以数列{b n }是以a 1为首项,d2为公差的等差数列.数形结合思想在演绎推理中的应用数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.若函数f (x )=log 2(x +1),且c >b >a >0,则f (a )a 、f (b )b 、f (c )c 的大小关系是( )A.f (a )a >f (b )b >f (c )cB.f (c )c >f (b )b >f (a )aC.f (b )b >f (a )a >f (c )cD .f (a )a >f (c )c >f (b )b【思路点拨】 作出函数f (x )=log 2(x +1)的图象―→找三点(a ,f (a )),(b ,f (b )),(c ,f (c ))―→结论的几何意义―→结论【规范解答】 作出函数f (x )=log 2(x +1)的图象如图所示,f (a )a 、f (b )b 、f (c )c 可看作三点与原点的连线的斜率.由图知A 项正确.【答案】 A运用数形结合思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.本题巧妙地应用了直线的斜率的几何意义,平凡中见神奇!1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数.以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确【解析】函数f(x)=sin(x2+1)不是正弦函数,故小前提不正确,故选C.【答案】 C2.三段论“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③这艘船是准时起航的.”中的小前提是()A.①B.②C.①②D.③【解析】本题中①为大前提,③为小前提,②为结论.【答案】 D3.“一切奇数都不能被2整除,35不能被2整除,所以35是奇数.”把此演绎推理写成三段论的形式为:大前提:_____________________________________________________________________ ___小前提:_____________________________________________________________________ ___结论:_____________________________________________________________________ ___【解析】根据题意可知,此三段论的大前提、小前提和结论分别为:不能被2整除的整数是奇数;35不能被2整除;35是奇数.【答案】不能被2整除的整数是奇数35不能被2整除35是奇数4.用三段论的形式写出下列命题:(1)Rt△ABC的内角和为180°;(2)通项公式a n=2n+3的数列{a n}是等差数列.【解】(1)三角形的内角和是180°,大前提Rt△ABC是三角形,小前提Rt△ABC的内角和为180°.结论(2)若n≥2时,a n-a n-1为常数,则{a n}是等差数列,大前提a n=3n+2,a n-a n-1=3,小前提则{a n}是等差数列.结论一、选择题1.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的( )A .大前提B .小前提C .结论D .三段论【解析】 结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.【答案】 B2.(2013·三亚高二检测)“指数函数y =a x (a >0且a ≠1)是R 上的增函数,而y =(12)x 是指数函数,所以y =(12)x 是R 上的增函数”,上述三段论推理过程中导致结论错误的是( )A .大前提B .小前提C .大、小前提D .推理形式【解析】 指数函数y =a x 在a >1时在R 上是增函数,当0<a <1时,在R 上是减函数,故上述三段论的证明中“大前提”出错.【答案】 A3.在不等边三角形中,a 为最大边.要想得到∠A 为钝角的结论,三边a ,b ,c 应满足的条件是( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2【解析】 ∵cos A =b 2+c 2-a 22bc <0, ∴b 2+c 2-a 2<0,∴a 2>b 2+c 2. 【答案】 C4.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,因为∠A 和∠B 是两条平行直线被第三条直线所截所得的同旁内角,所以∠A +∠B =180°B .我国地质学家李四光发现中国松辽地区和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油C .由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个素数的和D.在数列{a n}中,a1=1,a n=12(a n-1+1a n-1)(n≥2),由此归纳出{a n}的通项公式【解析】B、C、D选项是合情推理,A选项是演绎推理.【答案】 A5.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形【解析】大前提为矩形都是对角线相等的四边形.【答案】 B二、填空题6.在求函数y=log2x-2的定义域时,第一步推理中大前提是“当a有意义时,a≥0”;小前提是“log2x-2有意义”;结论是_____________________________________________________________________ ___.【解析】由log2x-2≥0得x≥4.【答案】“y=log2x-2的定义域是[4,+∞)”7.已知推理:因为△ABC的三边长依次为3,4,5,所以△ABC是直角三角形.若将其恢复成完整的三段论,则大前提是_____________________________________________________________________ ___.【解析】大前提:一条边的平方等于其他两条边平方和的三角形是直角三角形;小前提:△ABC的三边长依次为3,4,5,满足32+42=52;结论:△ABC是直角三角形.【答案】一条边的平方等于其他两条边的平方和的三角形是直角三角形图2-1-68.如图2-1-6所示,因为四边形ABCD是平行四边形,所以AB=CD,BC=AD.又因为△ABC和△CDA的三边对应相等,所以△ABC≌△CDA.上述推理的两个步骤中应用的推理形式是________.【答案】演绎推理三、解答题9.把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100 ℃时,水会沸腾;(2)一切奇数都不能被2整除,(2100+1)是奇数,所以(2100+1)不能被2整除;(3)三角函数都是周期函数,y=tan α是三角函数,因此y=tan α是周期函数.【解】(1)在一个标准大气压下,水的沸点是100 ℃,大前提在一个标准大气压下把水加热到100 ℃,小前提水会沸腾.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提y=tan α是三角函数,小前提y=tan α是周期函数.结论10.如图2-1-7,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥BA,求证:ED=AF,写出三段论形式的演绎推理.图2-1-7【证明】因为同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以FD∥AE.结论因为两组对边分别平行的四边形是平行四边形,大前提DE∥BA,且FD∥AE,小前提所以四边形AFDE为平行四边形.结论因为平行四边形的对边相等,大前提ED和AF为平行四边形AFDE的对边,小前提所以ED=AF.结论11.已知函数f(x)=ax+bx,其中a>0,b>0,x∈(0,+∞),确定f(x)的单调区间,并证明在每个单调区间上的增减性.【解】设0<x1<x2,则f(x1)-f(x2)=(ax1+bx1)-(ax2+bx2)=(x2-x1)(ax1x2-b).当0<x1<x2≤ab时,则x2-x1>0,0<x1x2<ab ,ax1x2>b,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f (x )在(0,ab ]上是减函数,当x 2>x 1≥a b 时,则x 2-x 1>0,x 1x 2>a b ,a x 1x 2<b ,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在[ab,+∞)上是增函数.(教师用书独具)已知函数f (x )=a x+x -2x +1(a >1),求证:函数f (x )在(-1,+∞)上为增函数.【思路探究】 利用三段论证明,题目中的大前提是增函数的定义,小前提是y =f (x )在(-1,+∞)上符合增函数的定义.【自主解答】 设x 1,x 2是(-1,+∞)上的任意两实数,且x 1<x 2, 则f (x 1)-f (x 2)=ax 1+x 1-2x 1+1-ax 2-x 2-2x 2+1=ax 1-ax 2+x 1-2x 1+1-x 2-2x 2+1=ax 1-ax 2+3(x 1-x 2)(x 1+1)(x 2+1).∵a >1,且x 1<x 2,∴ax 1<ax 2,x 1-x 2<0.又∵x1>-1,x2>-1,∴(x1+1)(x2+1)>0.∴f(x1)-f(x2)<0.∴f(x1)<f(x2).∴函数f(x)在(-1,+∞)上为增函数.1.很多代数问题不论解答题,还是证明题都蕴含着演绎推理.2.在解题过程中常省略大前提,本例的大前提是增函数的定义,小前提是y=f(x)在(-1,+∞)上符合增函数的定义.如图所示,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.【解】(1)取AB中点E,连接DE,CE.(如图)∵△ADB为等边三角形,∴DE⊥AB.又∵平面ADB⊥平面ABC,且平面ADB∩平面ABC=AB,∴DE⊥平面ABC,∴DE⊥EC.由已知可得DE=32AB=3,EC=1.∴在Rt△DEC中,CD=DE2+CE2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当D在平面ABC内时,∵AC=BC,AD=BD,∴C、D都在AB的垂直平面分线上,∴CD⊥AB.②当D不在平面ABC内时,由(1)知AB⊥DE.又AC=BC,∴AB⊥CE.∵DE∩CE=E,∴AB⊥平面DEC.∵DC⊂面DEC,∴AB⊥CD.综上所述,总有AB⊥CD.。
人教课标版高中数学选修1-2:《推理与证明》章末回顾-新版
第二章推理与证明章末小结一、知识梳理1.思维导图2.知识梳理1.归纳推理和类比推理都是合情推理,归纳推理是由特殊到一般,由部分到整体的推理;类比推理是由特殊到特殊的推理.二者都能由已知推测未知,都能用于猜测,得出新规律,但推理的结论其正确性有待于去证明.2.演绎推理与合情推理不同,演绎推理是由一般到特殊的推理,是数学证明中的基本推理形式,只要前提正确,推理形式正确,得到的结论就正确.3.合情推理与演绎推理既有联系,又有区别,它们相辅相成,前者为人们探索未知提出猜想提供科学的方法,后者为人们证明猜想的正确性提供科学的推理依据.4.综合法、分析法、反证法都是数学证明的基本方法.综合法常用于由已知出发进行推理较易找到思路的问题;分析法常用于条件复杂,思考方向不明确的问题,但单纯用分析法证明的情形较少,通常是“分析找思路,综合写过程”;分析法的证明过程充分体现了转化的思想,而反证法则是正难则反思想的体现.另外用反证法证题时,原命题的反面不止一种情形时,要注意分类讨论.二、重难点突破1.进行类比推理时,可以从①问题的外在结构特征,②图形的性质或维数.③处理一类问题的方法.④事物的相似性质等入手进行类比.要尽量从本质上去类比,不要被表面现象迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.2.进行归纳推理时,要把作为归纳基础的条件变形为有规律的统一的形式,以便于作出归纳猜想.3.推理证明过程叙述要完整、严谨、逻辑关系清晰、不跳步.4.注意区分演绎推理和合情推理,当前提为真时,前者结论一定为真,后者结论可能为真!合情推理得到的结论其正确性需要进一步推证,合情推理中运用猜想时要有依据.5.用反证法证明数学命题时,必须把反设作为推理依据.书写证明过程时,一定要注意不能把“假设”误写为“设”,还要注意一些常见用语的否定形式.6.分析法的过程仅需要寻求某结论成立的充分条件即可,而不是充要条件.分析法是逆推证明,故在利用分析法证明问题时应注意逻辑性与规范性.一般地,用分析法书写解题步骤的基本格式是:要证:……,只需证……,只需证……,……,……显然成立,所以……成立.三、题型探究(一)合情推理与演绎推理运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳、类比的方法进行探索,提出猜想;最后用演绎推理的方法进行验证.例1观察下图中各正方形图案,每条边上有n(n≥2)个点,第n个图案中圆点的总数是S n.••••,• • •• •• • •,• • • •• •• •• • • •,…,n=2,S2=4;n=3,S3=8;n=4,S4=12;…,按此规律,推出S n与n的关系式为________.【知识点:归纳推理】详解:依图的构造规律可以看出:S2=2×4-4,S3=3×4-4,S4=4×4-4(正方形四个顶点重复计算一次,应减去).…猜想:S n=4n-4(n≥2,n∈N*).答案:S n=4n-4(n≥2,n∈N*)例2 若数列{a n }是等比数列,且a n >0,则有数列n b =b (n ∈N *)也为等比数列,类比上述性质,相应地,数列{}n c 是等差数列,则有数列n d =________也是等差数列. 【知识点:类比推理】 详解 :12n c c c n +++L 类比猜想可得12nn c c c d n+++=L 也成等差数列,若设等差数列{}n c 的公差为x ,则12nn c c c d n+++=L 11(1)2(1)2n n xnc x c n n -+==+-g可见{d n }是一个以c 1为首项,x 2为公差的等差数列,故猜想是正确的.答案:12nc c c n +++L .例3 已知函数1133()5x x f x --=,1133()5x x g x -+=(1)证明f (x )是奇函数,并求f (x )的单调区间;(2)分别计算(4)5(2)(2)f f g -g 和(9)5(3)(3)f f g -g 的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明.【知识点:函数的奇偶性,函数的单调性,指数的运算,不等式的性质】 详解:(1)证明:函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又11113333()()()()55x x x x f x f x -------==-=-,∴f (x )是奇函数.任取x 1,x 2∈(0,+∞),设x 1<x 2,1111113333112233121211331211()()()1555x x x x f x f x x x x x --⎛⎫-- ⎪-=-=-+ ⎪ ⎪⎝⎭g , ∵1133120x x -<,113312110x x +>g ,∴12()()0f x f x -<∴f (x )在(0,+∞)上单调递增.∴f (x )的单调递增区间为(-∞,0)和(0,+∞).(2)解析:计算得(4)5(2)(2)0f f g -=g ,(9)5(3)(3)0f f g -=g . 由此概括出对所有不等于零的实数x 有2()5()()0f x f x g x -=g . ∵221111222233333333332()5()()5055555x x x x x x x x x x f x f x g x -------+---=-=-=g g g∴该等式成立.点评:问题(1)的大前提为函数奇偶性和单调性的定义.问题(2)实际上是合情推理在高考中的体现,有一定的创新性. (二)直接证明与间接证明 1.综合法和分析法综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等.应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法综合起来使用. 例4 设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.【知识点:不等式的证明,综合法与分析法】 详解:证法一(综合法)∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4. 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥4,∴1a +1b +1ab ≥8.证法二(分析法) ∵a >0,b >0,a +b =1,∴要证1a +1b +1ab ≥8,只需证⎝ ⎛⎭⎪⎫1a +1b +a +bab ≥8,即证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b ≥4,即证a +b a +a +b b ≥4,即证b a +a b ≥2.由基本不等式可知,当a >0,b >0时,b a +ab ≥2成立,∴原不等式成立. 2.反证法反证法的理论基础是互为逆否命题的等价性,从逻辑的角度看,命题:“若p 则q ”的否定是“若p 则¬q ”由此进行推理,如果发生矛盾,那么就说明“若p 则¬q ”为假,从而可以导出“若p 则q ”为真,从而达到证明的目的,反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现,它所反映出的“正难则反”的解决问题的思想方法更为重要.例5 求证:两条相交直线有且只有一个交点.【知识点:反证法,两条直线的位置关系;数学思想:分类的思想】 详解:假设结论不成立,即有两种可能:①无交点;②不只有一个交点.(1)若直线a 、b 无交点,那么a ∥b 或a 与b 异面,与已知矛盾;(2)若直线a 、b 不只有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾. 综上所述,两条相交直线有且只有一个交点.点拔:结论本身是否定形式或关于唯一性的命题、存在性的命题时,常用反证法. 例6 已知0<a ≤3,函数3()f x x ax =-在区间[1,+∞)上是增函数,设当x 0≥1,f (x 0)≥1时,有00(())f f x x =.求证:f (x 0)=x 0.【知识点:反证法,函数的单调性;数学思想:分类的思想】 证明:假设f (x 0)≠x 0,则必有f (x 0)>x 0或f (x 0)<x 0.若f (x 0)>x 0≥1,由于f (x )在[1,+∞)上为增函数,则00(())f f x x >. 又00(())f f x x =,∴00()x f x >,与假设矛盾. 若00()1x f x >≥,则00()(())f x f f x >. 又00(())f f x x =,∴f (x 0)>x 0,也与假设矛盾.综上所述,当x 0≥1,f (x 0)≥1且00(())f f x x =时有f (x 0)=x 0.点拔: (1)对于f (f (x 0))的性质知之甚少,直接证明有困难,因而用反证法来证明,增加了反设这一条件,为我们利用函数的单调性创造了可能. (2)反设中有两种情况,必须逐一否定. 四.课后作业(一)选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.自然数是整数,4是自然数,所以4是整数.以上三段论推理( )A .正确B .推理形式不正确C .两个“自然数”概念不一致D .“两个整数”概念不一致 【知识点:演绎推理】解:A 三段论中的大前提、小前提及推理形式都是正确的. 2.用反证法证明命题“2+3是无理数”时,假设正确的是( ) A .假设2是有理数 B .假设3是有理数 C .假设2或3是有理数D .假设2+3是有理数【知识点:反证法】解析:D假设应为“2+3不是无理数”,即“2+3是有理数”.3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32…得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列【知识点:归纳推理,类比推理,演绎推理】解析:D A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.4.用反证法证明命题“已知x,y∈N*,如果xy可被7整除,那么x,y至少有一个能被7整除”时,假设的内容是()A.x,y都不能被7整除B.x,y都能被7整除C.x,y只有一个能被7整除D.只有x不能被7整除【知识点:反证法】解析:A用反证法证明命题时,先假设命题的否定成立,再进行推证.“x,y至少有一个能被7整除”的否定是“x,y都不能被7整除”.5.我们把1,4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如图).试求第n个正方形数是()A.n(n-1) B.n(n+1)C.n2D.(n+1)2【知识点:归纳推理】解:C观察前5个正方形数,恰好是序号的平方,所以第n个正方形数应为n2.6. 函数f(x)在[-1,1]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式正确的是( )A .f (cos α)>f (sin β)B .f (sin α)>f (sin β)C .f (cos α)<f (cos β)D .f (sin α)<f (sin β)【知识点: 函数的单调性,三角函数的单调性,演绎推理】解:A α,β是锐角三角形的两个内角,这就意味着α,β为锐角,另外第三个角π-(α+β)为锐角.所以0<α<π2,0<β<π2,π2<α+β<π,所以π2>β>π2-α>0.,所以0<cos β<cos(π2-α)=sin α<1, 1>sin β>sin(π2-α)=cos α>0,又因为f (x )在[-1,1]上为减函数,所以f (sin β)<f (cos α).故选A.7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0【知识点:不等式的性质,不等式的证明,演绎推理】解:D 法一:因为a +b +c =0,所以a 2+b 2+c 2+2ab +2ac +2bc =0, 所以ab +bc +ca =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ca =0,否则a 、b 异号,所以ab +bc +ca =ab <0,排除A 、B 、C ,选项D 正确.8.已知对正数a 和b ,有下列命题:①若a +b =1,则ab ≤12;②若a +b =3,则ab ≤32;③若a +b =6,则ab ≤3.根据以上三个命题提供的规律猜想:若a +b =9,则ab ≤( )A .2 B.92 C .4D .5【知识点:归纳推理】解:B 从已知的三个不等式的右边可以看出,其表现形式为12,32,62,所以,若a +b =9,则ab ≤92.9.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n =(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3),且法向量为m =(-1,-2,1)的平面的方程为( )A .x +2y -z -2=0B .x -2y -z -2=0C .x +2y +z -2=0D .x +2y +z +2=0【知识点:归纳推理】解:A 所求的平面方程为-1×(x -1)+(-2)×(y -2)+1×(z -3)=0.化简得x +2y -z -2=0.10.下列不等式中一定成立的是( ) A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 【知识点:不等式的性质,不等式的证明,演绎推理】 解:C A 项中,因为x 2+14≥x ,所以lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x ;B 项中sin x +1sin x ≥2只有在sin x >0时才成立;C 项中由不等式a 2+b 2≥2ab 可知成立;D 项中因为x 2+1≥1,所以0<1x 2+1≤1.11.已知f (x )=sin x +cos x ,定义f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′(n ∈N *),经计算,f 1(x )=cos x -sin x ,f 2(x )=-sin x -cos x ,f 3(x )=-cos x +sin x ,…,照此规律,则f 100(x )=( )A .-cos x +sin xB .cos x -sin xC .sin x +cos xD .-sin x -cos x【知识点:归纳推理】解:C 根据题意, f 4(x )=[f 3(x )]′=sin x +cos x ,f 5(x )=[f 4(x )]′=cos x -sin x ,f 6(x )=[f 5(x )]′=-sin x -cos x ,…,观察知f n (x )的值呈周期性变化,周期为4,所以f 100(x )=f 96+4(x )=f 4(x )=sin x +cos x .12.请阅读下列材料:若两个正实数a 1,a 2满足a 21+a 22=1,求证:a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f(x)≥0,所以Δ≤0,即4(a1+a2)2-8≤0,所以a1+a2≤ 2.根据上述证明方法,若n个正实数a1,a2,…,a n满足a21+a22+…+a2n=n时,你能得到的结论是()A.a1+a2+…+a n≤2n B.a1+a2+…+a n≤n2C.a1+a2+…+a n≤n D.a1+a2+…+a n≤n【知识点:归纳推理】解:C构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x+n,因为对一切实数x,恒有f(x)≥0,所以Δ≤0;即4(a1+a2+…+a n)2-4n2≤0,所以a1+a2+…+a n≤n.(二)填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.“因为AC,BD是菱形ABCD的对角线,所以AC,BD互相垂直且平分.”补充以上推理的大前提是________.【知识点:演绎推理】解:菱形的对角线互相垂直且平分大前提是“菱形的对角线互相垂直且平分”.14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时:甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可以判断乙去过的城市为________.【知识点:反证法;数学思想:分类思想】解:A易知三人同去的城市为A,又甲去过城市比乙去过的城市多,且甲没去过B城,∴甲去过A城,C城,乙只去过A城.15.通过圆与球的类比,由“半径为R的圆的内接矩形中,以正方形的面积最大,最大值为2R2.”猜想关于球的相应命题为________.【知识点:类比推理】解:半径为R的内接六面体中以正方体的体积为最大,最大值为839R3. “圆中正方形的面积“类比为“球中正方体的体积”,可得结论.16.如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1,过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3……依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.【知识点:归纳推理】解:14 根据题意易得a 1=2,a 2=2,a 3=1,∴{a n }构成以a 1=2,q =22的等比数列,∴a 7=a 1q 6=2×⎝ ⎛⎭⎪⎫226=14. (三)解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=xx +2(x >0).如下定义一列函数:f 1(x )=f (x ),f 2(x )=f (f 1(x )),f 3(x )=f (f 2(x )),…,f n (x )=f (f n -1(x )),…,n ∈N *,那么由归纳推理求函数f n (x )的解析式.【知识点:归纳推理,函数的解析式】 解:依题意得,f 1(x )=xx +2,f 2(x )=x x +2x x +2+2=x 3x +4=x(22-1)x +22f 3(x )=x 3x +4x 3x +4+2=x 7x +8=x(23-1)x +23,…,由此归纳可得f n (x )=x(2n -1)x +2n(x >0).18.(本小题满分12分)已知A +B =π3,且A ,B ≠k π+π2(k ∈Z ).求证:(1+3tan A )(1+3tan B )=4.【知识点:演绎推理,诱导公式,两角和的正切】证明:由A +B =π3得tan(A +B )=tan π3,即tan A +tan B 1-tan A tan B =3,所以tan A +tan B =3-3tan A tan B.所以(1+3tan A )(1+3tan B )=1+3(tan A +tan B )+3tan A tan B =1+3(3-3tanA tanB )+3tan A tan B =4.故原等式成立.19.(本小题满分12分)把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立.(1)如果一条直线和两条平行线中的一条相交,则必和另一条相交;(2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.【知识点:类比推理,反证法,直线与平面平行的性质】解:(1)类比为:如果一个平面和两个平行平面中的一个相交,则必和另一个相交. 结论是正确的,证明如下:设α∥β,且γ∩α=a ,则必有γ∩β=b ,若γ与β不相交,则必有γ∥β.又α∥β,所以α∥γ,与γ∩α=a 矛盾,所以必有γ∩β=b .(2)类比为:如果两个平面同时垂直于第三个平面,则这两个平面互相平行,结论是错误的,这两个平面也可能相交.20.(本小题满分12分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS n n 2+c,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).【知识点:演绎推理,等差数列的前n 项和,等比 中项】证明:由题意得,S n =na +n (n -1)2d . 由c =0,得b n =S n n =a +n -12d .又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .21.(本小题满分12分)设函数f (x )=1x +2,a ,b 为正实数.(1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23; (2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.【知识点:不等式的证明,分析法,反证法】证明:(1)欲证f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,即证b a +2b +a b +2a ≤23,只要证a 2+b 2+4ab 2a 2+2b 2+5ab ≤23. 因为a ,b 为正实数,只要证3(a 2+b 2+4ab )≤2(2a 2+2b 2+5ab ),即a 2+b 2≥2ab , 因为a 2+b 2≥2ab 显然成立,故原不等式成立.(2)假设af (b )=a b +2≤12,bf (a )=b a +2≤12, 由于a ,b 为正实数,所以2+b ≥2a ,2+a ≥2b ,两式相加得:4+a +b ≥2a +2b ,即a +b ≤4,与条件a +b >4矛盾,故af (b ),bf (a )中至少有一个大于12.22.(本小题满分12分)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC=12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起图②中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值.【知识点:演绎推理,线面垂直的判定,面面垂直的性质,锥体的体积】(1)证明:在图①中,因为AB =BC =12AD =a ,E 是AD 的中点, ∠BAD =π2,所以BE ⊥AC ,即在图②中,BE ⊥A 1O ,BE ⊥OC ,从而BE ⊥平面A 1O C.又CD ∥BE ,所以CD ⊥平面A 1O C.(2)解:由已知,平面A 1BE ⊥平面BCDE ,且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 则A 1O 是四棱锥A 1-BCDE 的高.由图①知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2.从而四棱锥A 1-BCDE 的体积V =13×S ·A 1O =13a 2·22a =26a 3. 由26a 3=362,得a =6.。
人教版高中选修1—2数学2.1合情推理与演绎推理教案(2)
演绎推理教学目标:1. 知识与技能:了解演绎推理的含义。
2. 过程与方法:能正确地运用演绎推理进行简单的推理。
3. 情感、态度与价值观:了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。
教学设想:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.教学过程:学生探究过程:一.复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳。
类比――提出猜想二.问题情境。
观察与思考1所有的金属都能导电铜是金属,所以,铜能够导电2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.3.三角函数都是周期函数,tan α是三角函数,所以,tan α是周期函数。
提出问题:像这样的推理是合情推理吗?二.学生活动:1.所有的金属都能导电←————大前提铜是金属, ←-----小前提所以,铜能够导电←――结论2.一切奇数都不能被2整除←————大前提(2100+1)是奇数,←――小前提所以,(2100+1)不能被2整除.←―――结论3.三角函数都是周期函数, ←——大前提tan α是三角函数,←――小前提所以,tan α是周期函数。
←――结论三,建构数学演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.(小前提)是二次函数函数12++=x x y 1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论的基本格式M —P (M 是P ) (大前提)S —M (S 是M ) (小前提)S —P (S 是P ) (结论)3.三段论推理的依据,用集合的观点来理解:若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P.四、数学运用例1.把“函数21y x x =++的图象是一条抛物线”恢复成完全三段论.解:二次函数的图象是一条抛物线 (大前提)例2.已知m =2lg ,计算8.0lg解 :)0(lg lg >=a a n a n ---------大前提 32lg 8lg =————小前提2lg 38lg =————结论 )0,0(lg lg lg >>-=b a b a ba ——大前提 108lg 8.0lg =——-小前提 112lg 310lg 8lg 8.0lg -=-=-=m ——结论例3.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.解: (1)因为有一个内角是只直角的三角形是直角三角形, -----大前提在△ABC 中,AD ⊥BC,即∠ADB=90° —-小前提所以△ABD 是直角三角形 ——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提结论)的图象是一条抛物线(所以,函数12++=x x y因为 DM 是直角三角形斜边上的中线, ——小前提所以 DM=21AB ——结论 同理 EM=21AB 所以 DM=EM. 由此可见,应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙述简洁,如果大前提是显然的,则可以省略.再来看一个例子. 例4.证明函数2()2f x x x =-+在(,1)-∞内是增函数.分析:证明本例所依据的大前提是:在某个区间(a, b )内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增.小前提是2()2f x x x =-+的导数在区间(,1)-∞内满足'()0f x >,这是证明本例的关键.证明:'()22f x x =-+.当(,1)x ∈-∞时,有10x ->,所以'()222(1)0f x x x =-+=->.于是,根据“三段论”得,2()2f x x x =-+在(,1)-∞内是增函数.在演绎推理中,只要前提和推理形式是正确的,结论必定是正确的.还有其他的证明方法吗?思考:因为指数函数x y a =是增函数,——大前提 而1()2x y =是指数函数, ——小前提 所以1()2xy =是增函数. ——结论(1)上面的推理形式正确吗?(2)推理的结论正确吗?为什么?上述推理的形式正确,但大前提是错误的(因为当01a <<时,指数函数x y a =是减函数),所以所得的结论是错误的.思考: 合情推理与演绎推理的主要区别是什么?归纳和类比是常用的合情推理从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、将积累的知识加工、整理,使之条理化、实验等获取经验;也需要辨别它们的真系统化.合情推理和演绎推理分别在这两个环节中扮演着重要角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.课堂练习:1.用演绎法证明y=x2是增函数时的大前提是增函数的定义。
人教课标版高中数学选修1-2《演绎推理》方法探究
《演绎推理》方法探究一、演绎推理的判断1.三段论是演绎推理的一般模式,包括:①大前提---已知的一般原理;②小前提---所研究的特殊情况;③结论---根据一般原理,对特殊情况作出的判断.故三段论可以表示为:大前提:M 是;P小前提:S 是;M结论:S 是.P2.用集合来说明“三段论”,如图所示,若集合M 的所有元素都具有性质,P 集合S 为集合M 的一个子集,那么集合S 中所有的元素也都具有性质.P3.为了方便,在应用三段论推理时,若大前提是显然的,就可以省略,对于复杂的论证,常常采用一连串的三段论,一个三段论的结论作为下一个三段论的前提. 例1(★☆☆)下面的推理形式正确吗?推理的结论正确吗?为什么?(1)因为对数函数log a y x =是增函数,(大前提) 而13log y x =是对数函数,(小前提)所以13log y x =是增函数.(结论)(2)因为过不共线的三点有且仅有一个平面,(大前提)而A B C 、、为空间三点,(小前提)所以过A B C 、、三点只能确定一个平面.(结论)(3)因为金属铜、铁、铝能够导电,(大前提)而金是金属,(小前提)所以金能够导电.(结论)解题导引二、演绎推理的应用1.演绎推理的结论是否正确,取决于该推理的大前提、小前提和推理形式是否全部正确,因此,分析推理正确与否的实质就是判断大前提、小前提和推理形式是否正确.2.用三段论写演绎推理的过程,关键是明确大前提、小前提.大前提提供了一个一般性的原理,在演绎推理中往往省略,而小前提指出了大前提下的一个特殊情况,只有将二者结合起来才能得到完整的三段论.一般地,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.例2(★★☆)设0,a >()x x e a f x a e=+是R 上的偶函数. (1)求a 的值;(2)求证:()f x 在()0,+∞上是增函数.解题导引参考答案例1.答案:见解析解析:(1)推理形式是正确的,但大前提是错误的.因为对数函数log a y x =的单调性与底数a 的取值有关,若01,a <<则log a y x =为减函数;若1,a >则log a y x =为增函数,所以结论是错误的.(2)推理形式是正确的,但小前提是错误的.因为若A B C 、、三点共线,则可确定无数个平面,只有不共线的三点才满足题意,所以推理的结论是错误的.(3)推理形式是错误的,因为演绎推理是从一般到特殊的推理,而铜、铁、铝仅是金属的代表,是特殊事例,所以此推理是特殊到特殊的推理.而金能导电,所以推理的结论是正确的.导师点睛 判断演绎推理是否正确的方法:(1)看推理形式是不是从一般到特殊,只有从一般到特殊的推理才是演绎推理;(2)看大前提是否正确,大前提往往是定义、定理、性质等,注意其中有无前提;(3)看小前提是否正确,注意小前提必须在大前提范围之内;(4)看推理的结论是否正确,即看由大前提、小前提得到的结论是否正确. 例2.答案:见解析解析:(1)因为()f x 是R 上的偶函数,所以对于一切,x R ∈都有()()=f x f x -, 所以1,x x x x x x e a e a ae a e a e ae--+=+=+ 即110x x a e a e ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭对一切x R ∈成立, 10,a a∴-= 即21,1,a a =∴=± 又0, 1.a a >∴=(2)证明:由(1)知()1.x x f x e e =+任取()12,0,,x x ∈+∞且12,x x <则()()12121211x x x x f x f x e e e e -=-+-()211211x x x x e e e +⎛⎫=-- ⎪⎝⎭()121211211.x x x x x x x e e e e +-+-=-⋅ 120,x x <<21120,0,x x x x ∴->+>21121,1,x x x x e e -+∴>>211210,10,x x x x e e -+->-<()()()()12120,,f x f x f x f x ∴-<<即()f x ∴在()0,+∞上是增函数.导师点睛 应用三段论解决问题时,要充分挖掘题目外在条件和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的、严密的,这样才能得出正确的结论.。
人教课标版高中数学选修1-2《演绎推理》疑难点拨
《演绎推理》疑难点拨一、演绎推理的概念及特点1.概念从一般性的原理出发,推出某个特殊情况下的结论,这种推理我们称之为演绎推理.简言之,是由一般到特殊的推理.例如:一切奇数都不能被2整除,99是奇数,所以99不能被2整除.这个推理先从“一切奇数都不能被2整除”这个一般性原理出发,得到“99这个奇数不能被2整除”这一特殊情况下的结论.2.特点(1)演绎推理是由一般到特殊的推理;(2)演绎推理的结论不会超出前提所界定的范围,所以前提和结论的联系是必然的.只要前提和推理形式正确,结论就必然正确.例1(★★☆)下面几种推理过程是演绎推理的是( )A.两条直线平行,同旁内角互补,由此若1,2∠∠是两条平行直线被第三条直线所截得的同旁内角,则°12=180∠+∠B.某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出该校高三所有班都超过50人C.由平面三角形的性质,推测空间四面体的性质D.在数列{}n a 中,111111,2n n n a a a a --⎛⎫==+ ⎪⎝⎭()2,,n n N *≥∈由此归纳出{}n a 的通项公式二、“三段论”的一般模式1.大前提:已知的一般原理,例如数学中的公理、定理、性质等,物理中的定律、性质等.凡是经过实践检验是正确的命题都可以当作大前提;2.小前提:所研究的特殊情况,即在大前提范围内的某个特殊情形;3.结论:根据一般原理,对特殊情况作出的判断.“三段论”的具体形式为:大前提:M 是;P小前提:S 是;M结论:S 是.P例2(★★☆)用三段论的形式写出下列演绎推理.(1)菱形的对角线相互垂直,正方形是菱形,所以正方形的对角线相互垂直;(2)若两个角是对顶角,则这两个角相等,所以若两个角不相等,则这两个角不是对顶角;(3)0.332•是有理数;(4)()sin y x x R =∈是周期函数.三、合情推理与演绎推理的区别与联系归纳和类比是常用的合情推理.从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、实验等获取经验,也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化、系统化.合情推理和演绎推理在这些环节中扮演着重要角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.合情推理与演绎推理的区别与联系如下表:例3(★★☆)看下面一段发现数学公式的过程,指出各自运用了哪种推理方式.公式:()()()22221123121.6S n n n n n =+++⋅⋅⋅+=++ 1)首先列表计算、观察:运用_____推理;(2)从上表中的数据没有找到明显的规律,于是联想自然数之和公式:()()111231,2S n n n n =+++⋅⋅⋅+=+两者能否有关系呢? 运用_____推理;(3)再列表计算、对比:运用_____推理;(4)从上表中的数据没有看到明显的规律,再进一步列表计算:运用_____推理;(5)从上表发现了规律:()()121,3S n n S n += 于是猜想:()()()121,6n n n S n ++=运用_____推理. 解题导引参考答案例1.答案:A解析:两条直线平行,同旁内角互补,1,2∠∠是两条平行直线被第三条直线所截得的同旁内角,所以可推出乙°12=180∠+∠,故A 是演绎推理,而B ,D 是归纳推理,C 是类比推理.故选A.导师点睛 对于演绎推理的判断一定严格按照定义,由一般到特殊进行判断. 例2.答案:见解析解析:(1)菱形的对角线相互垂直,(大前提)正方形是菱形,(小前提)正方形的对角线相互垂直.(结论)(2)若两个角是对顶角,则这两个角相等,(大前提)两个角不相等,(小前提)则这两个角不是对顶角.(结论)(3)所有的循环小数都是有理数,(大前提)0.332•是循环小数,(小前提) 0.332•是有理数.(结论)(4)三角函数是周期函数,(大前提)()sin y x x R =∈是三角函数,(小前提) ()sin y x x R =∈是周期函数.(结论)导师点睛 用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.例3.答案:见解析解析:⑴演绎(2)类比(3)演绎(4)演绎(5)归纳导师点睛 合情推理离不开演绎推理,合情推理活动的目的、任务和方向必须借助于理论思维,依靠人们先前积累的一般性理论知识作指导,这本身就是一种演绎活动.并且合情推理得到的结论正确与否,必须借助于演绎推理去论证,从这个意义上说,没有演绎推理也就没有合情推理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学人教B 选修1-2第二章2.1.2 演绎推理1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能用其进行简单的推理.2.通过具体的实例,了解合情推理和演绎推理之间的联系和区别.1.演绎推理由概念的定义或一些真命题,依照一定的逻辑规则得到________的过程,通常叫做演绎推理.演绎推理的特征是:当前提为____时,结论必然为____.(1)演绎推理是以某一类事物的一般判断为前提,而作出关于该类事物中的个别特殊事物的判断的思维方式,因此,演绎推理是一种从一般到特殊的推理.(2)演绎推理的特征是:当前提为真时,只要推理规则正确,则结论必然为真,是一种必然性推理.即:由真命题a ,b ,遵循演绎推理规则得出命题q ,则q 必然为真.【做一做1】下面几种推理过程是演绎推理的是( )A .两条直线平行,同时和第三条直线相交,同旁内角互补.如果∠A 和∠B 是同旁内角,则∠A +∠B =180°B .由平面三角形的性质,推测空间四面体的性质C .某校高三年级共有10个班,其中一班51人,二班53人,三班52人,由此推测各班都超过50人D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式2.演绎推理的四种推理规则(1)假言推理:用符号表示这种推理规则就是“如果p ⇒q ,p 真,则q 真”.假言推理的本质是,通过验证结论的充分条件为真,判断结论为真.(2)三段论推理:用符号表示这种推理规则就是“如果M 是P ,S 是M ,则S 是P . (3)传递性关系推理:推理规则是“如果aRb ,bRc ,则____”.(4)完全归纳推理:把所有情况都考虑在内的演绎推理规则叫做完全归纳推理. 【做一做2】下面说法正确的有( ) ①演绎推理是由一般到特殊的推理; ②演绎推理得到的结论一定是正确的; ③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关. A .1个 B .2个 C .3个 D .4个1.合情推理与演绎推理的区别与联系有哪些? 剖析:2.演绎推理的特点是什么?剖析:(1)演绎推理的前提是一般性原理,演绎推理所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的,因而演绎推理是数学中严格证明的工具.(3)演绎推理是一种收敛性的思维方式,它较缺乏创造性,但却具有条理清晰、令人信服的论证特点,有助于科学的理论化和系统化.题型一 假言推理【例题1】已知函数f (x )=m ⎝⎛⎭⎫x +1x 的图象与函数h (x )=14⎝⎛⎭⎫x +1x +2的图象关于点A (0,1)对称.(1)求m 的值;(2)若g (x )=f (x )+a4x在区间(0,2]上为减函数,求实数a 的取值范围.分析:应用假言推理,根据对称性质,f (x )图象上的点关于点A (0,1)的对称点在h (x )的图象上,代入h (x )即可求得.反思:本题主要考查了假言推理的应用,假言推理的规则为“如果p ⇒q ,p 为真,则q 为真”.本题由题设条件入手,通过推理,求得参数的取值范围.题型二 三段论推理【例题2】已知:如图,在梯形ABCD 中,AB =DC =AD .AC 和BD 是它的对角线.求证:AC 平分∠BCD ,DB 平分∠CBA .分析:“三段论”中,大前提是已知的一般原理,小前提为所研究的特殊情况,结论则是根据一般原理对特殊情况作出的判断.反思:本题可写出六次三段论形式,但是事实上,每一次三段论的大前提并不需要写出,某一次三段论的小前提如果是它前面某次三段论的结论,也可以不写出.如本题的证明还可写成:因为DA =DC (省略大前提),所以∠1=∠2.因为AD ∥BC ,且被AC 截得的内错角为∠1和∠3(省略大前提),所以∠1=∠3.所以∠2=∠3,所以AC 平分∠BCD (省略大前提,小前提),同理可证DB 平分∠CBA .题型三 传递性关系推理【例题3】已知a >0,b >0,a +b =1,求证:a +12+b +12≤2. 分析:本题属于条件不等式的证明,直接用条件a +b =1来推理,方向不够明确,但只要注意所求证式子的特点,我们不难想到利用传递性关系推理进行证明.反思:解本题的关键在于找准突破口,选择合理的方法. 题型四 完全归纳推理【例题4】求证:当1≤n ≤4时,f (n )=(2n +7)·3n +9能被36整除(n ∈N +).分析:由于1≤n ≤4(n ∈N +),故n 只取1,2,3,4四个自然数,从而可以进行完全归纳推理.反思:完全归纳推理有两个规则:一是前提中被判断的对象必须是该类事物的全部对象;二是前提中的所有判断都必须是正确的.题型五 易错辨析易错点:在应用三段论推理来证明问题时,首先应明确什么是问题中的大前提和小前提.在应用三段论进行推理的过程中,大前提、小前提或推理形式任何一个出现错误,都可能导致结论错误.【例题5】如图,在△ABC 中,AC >BC ,CD 是AB 边上的高.求证:∠ACD >∠BCD .错解:证明:在△ABC 中,因为CD ⊥AB ,AC >BC ,所以AD >BD ,所以∠ACD >∠BCD .反思:应用三段论证明问题时,必须保证大前提、小前提及推理过程全部正确.1若a >0,b >0,则有( ) A .b 2a >2b -a B .b 2a <2b -aC .b 2a ≥2b -aD .b 2a≤2b -a2“因为四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,上述推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形3因为当a >0时,|a |>0;当a =0时,|a |=0;当a <0时,|a |>0,所以当a 为实数时,|a |≥0.此推理过程运用的是演绎推理中的__________推理.4补充下列三段论:(1)因为互为相反数的两个数的和为0,又因为a 与b 互为相反数且__________,所以b =8.(2)因为____________________________________________________________________,又因为e =2.718 28…是无限不循环小数,所以e 是无理数. 答案: 基础知识·梳理1.正确结论 真 真【做一做1】A 选项B 为类比推理,选项C ,D 为归纳推理,由演绎推理的定义知,选项A 正确.2.(3)aRc【做一做2】C ①③④正确.②错误的原因是演绎推理的结论要为真,必须前提和推理形式都正确.典型例题·领悟 【例题1】解:(1)设P (x ,y )为函数h (x )图象上的任一点,点P 关于点A 的对称点为Q (x ′,y ′),则有⎩⎪⎨⎪⎧x ′=-x ,y ′=2-y .∵点Q (x ′,y ′)在函数f (x )=m ⎝⎛⎭⎫x +1x 的图象上, ∴y ′=m ⎝⎛⎭⎫x ′+1x ′. 将x ′=-x ,y ′=2-y 代入上式, 得2-y =m ⎝⎛⎭⎫-x -1x . 整理,得y =m ⎝⎛⎭⎫x +1x +2. 又点P (x ,y )满足h (x )=14⎝⎛⎭⎫x +1x +2, 即y =14⎝⎛⎭⎫x +1x +2,∴m =14. (2)由(1)知,g (x )=14⎝⎛⎭⎫x +1x +a 4x =14⎝⎛⎭⎫x +1+a x . 设x 1,x 2是区间(0,2]上的任意两个实数,且x 1<x 2,则g (x 1)-g (x 2)=14(x 1-x 2)·x 1x 2-(1+a )x 1x 2>0对一切x 1,x 2∈(0,2]恒成立.∴x 1x 2-(1+a )<0对一切x 1,x 2∈(0,2]恒成立.∵x 1x 2的最大值为4, ∴1+a >4,∴a 的取值范围是(3,+∞).【例题2】证明:(1)等腰三角形的两底角相等,(大前提) △DAC 是等腰三角形,DA ,DC 是两腰,(小前提) ∠1=∠2.(结论)(2)两条平行线被第三条直线截出的内错角相等,(大前提) ∠1和∠3是平行线AD ,BC 被AC 截出的内错角,(小前提) ∠1=∠3.(结论)(3)等于同一个量的两个量相等,(大前提) ∠2和∠3都等于∠1,(小前提) ∠2=∠3.(结论) 即AC 平分∠BCD .(4)同理DB 平分∠CBA .【例题3】证明:∵a >0,b >0,且1=a +b ≥2ab , ∴ab ≤14.∴12(a +b )+ab +14≤1.∴⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤1. ∴2+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4, 即⎝⎛⎭⎫a +12+⎝⎛⎭⎫b +12+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4. ∴⎝⎛⎭⎫a +12+b +122≤4. ∴a +12+b +12≤2. 【例题4】证明:当n =1时,f (1)=(2+7)×3+9=36,能被36整除; 当n =2时,f (2)=(2×2+7)×9+9=108=36×3,能被36整除; 当n =3时,f (3)=(2×3+7)×27+9=360=36×10,能被36整除; 当n =4时,f (4)=(2×4+7)×81+9=1 224=36×34,能被36整除. 综上,当1≤n ≤4时,f (n )=(2n +7)·3n +9能被36整除(n ∈N +).【例题5】错因分析:上面的证明过程中,小前提由AD >BD 得出∠ACD >∠BCD 是错误的.因为只有在同一个三角形中才有大边所对的角较大这一结论.正解:证明:在△ABC 中,因为CD ⊥AB , 所以∠ACD +∠A =∠BCD +∠B =90°. 又因为AC >BC , 所以∠B >∠A ,所以∠ACD >∠BCD . 随堂练习·巩固1.C b 2-2ab +a 2≥0⇒b 2≥a (2b -a )⇒b 2a≥2b -a .2.B 由结论可得要证的问题是“对角线相等”,因此它应在大前提中体现出来. 3.完全归纳4.(1)a =-8 (2)无限不循环小数是无理数。