氧传感器的功能及工作原理全解
氧传感器工作原理
氧探头工作原理氧探头又称氧化锆浓差电池,它的工作原理(见示意图)是:以高温氧化锆作固体电解质,在高温下若电解质两侧氧浓度不同时,便形成氧浓差电池。
浓差电池产生的电势与两侧氧浓度有关,如一侧氧浓度固定,即可通过测量浓差电势来测量另一侧的氧含量。
氧化锆固体电解质是在氧化锆(ZrO2)中掺入一定数量的氧化钙(CaO),经高温焙烧而成。
在氧化锆电介质的内外壁上用高温烧结(或压紧)的方法附上不易氧化的多孔性(网状)白金电极和电极(丝)引线。
经过上述掺杂和焙烧而成的氧化锆,其晶型为稳定的立方晶体,晶体中部分四价锆离子被二价钙离子所取代而形成氧离子空穴。
由于氧离子空穴的存在,在600-1200℃高温下,这种氧化锆材料就成为对氧离子有良好的传导性的固体电解质。
在氧化锆两侧氧浓度不等时,浓度大的一侧的氧原子在该侧的表面电极上结合两个电子形成氧离子(1/2 O2+2e- - O-),然后通过氧化锆材料晶格中的氧离子空穴向氧浓度低的一侧运动,当到达低浓度一侧时,便在该侧电极上释放两个电子并结合成氧分子放出(O- -1/2 O2+2e-),于是在高氧侧和低氧侧电极上分别造成正负电荷积累,产生电势,此电势阻碍这种迁移的进一步进行,直至达到平衡为止,从而形成氧浓差电池。
氧探头在可空气氛加热炉中使用的药店及常见故障1.在可控气氛加热炉中氧探头的使用要点(1)氧探头属于一种高精度、高灵敏的传感器,其核心元件氧化锆头是球状或管状结构陶瓷件,很容易受冲击破碎。
在新的氧探头使用前,应仔细检查氧探头是否受过碰撞,氧探头是否有弯曲,氧探头外管有无裂纹,探头部位氧化锆是否有裂纹或破裂、或有陶瓷装碎片;轻轻摇动氧探头,听听氧探头内部是否有响声。
如有响声,可能是氧探头的氧化锆已经破裂。
(2)氧探头在安装时要注意安装位置插入炉膛50-100mm,安装在炉气较稳定的区域内。
不要靠近各种渗剂的滴注口、分扇附近;不要安装在炉内口、角落、震动大的部位。
5线氧传感器工作原理
5线氧传感器工作原理
5线氧传感器是一种用于测量发动机排气氧含量的传感器。
它
主要由电极和电路组成,以下是其工作原理:
1. 氧传感器的电极为氧化锆陶瓷,其表面涂覆有铂层作为催化剂。
氧气分子可以通过氧化锆陶瓷的晶格结构,与内部的电极反应,产生一定的氧离子。
氧化锆陶瓷上的铂层则可以加快氧气的离子化速度。
2. 传感器外部的空气与发动机排气气体通过传感器的壳体进入,进而进入氧化锆陶瓷装置的表面。
氧化锆陶瓷与空气中的氧气发生化学反应,转化为氧离子。
3. 传感器电路会测量氧离子的数量,并将其转化为电压信号。
当氧气含量较高时,氧离子的数量也相应较高,电路会输出较高的电压;而当氧气含量较低时,氧离子的数量较少,电路输出较低的电压。
4. 传感器的输出电压信号将会被发动机控制模块读取和分析。
根据传感器输出的电压信号,控制模块可以调整发动机的燃油喷射量和点火时机,以保持最佳的燃烧效率和排放控制。
5. 这种氧传感器通过不断测量并反馈发动机排气中的氧气含量,帮助发动机控制系统实时调整燃油和空气的混合比例,从而有效地节省燃油,减少尾气排放,并提高发动机的性能和可靠性。
总结起来,5线氧传感器通过测量内部氧化锆陶瓷表面的氧离
子数量,并将其转化为电压信号来判断发动机排气的氧气含量,以实现燃油控制和排放控制。
后氧传感器工作原理
后氧传感器工作原理
后氧传感器是一种用于检测可燃气体和有毒气体浓度的仪器。
它的工作原理主要有以下几个步骤:
1. 传感器加热:后氧传感器里面有一个电加热器,在工作时会将气体传感器加热到一定温度,一般在300℃到600℃之间。
2. 氧气栅极:传感器里面还有一个氧气栅极,它和检测气体的电极相隔一定距离,形成一个电极间的电场。
3. 气体浓度检测:当可燃气体或有毒气体进入传感器时,会与传感器中的氧气进行反应。
如果气体中存在可燃物质或有毒物质,它们会与氧气反应,从而改变氧气栅极上的电势。
4. 电位变化:氧气栅极上的电位变化会导致传感器电路中的电压或电流发生变化。
5. 信号处理:传感器的输出信号会被传感器信号处理电路进行处理,通常是转换为相应的电压或电流信号。
6. 数据分析:处理后的信号会被连接的数据采集设备获取并分析。
根据传感器输出信号的大小,可以得出待测气体浓度的相关信息。
总的来说,后氧传感器通过加热传感器、检测气体与氧气的反应,以及信号处理和数据分析等步骤,来实现对可燃气体和有毒气体浓度的检测和监测。
宽带氧传感器工作原理
宽带氧传感器工作原理
宽带氧传感器工作原理:
宽带氧传感器是一种用于测量和监测燃烧过程中排放氧气浓度的设备。
其工作原理基于氧气的电化学反应。
以下是它的基本工作原理:
1. 氧气透过传感器:在宽带氧传感器内部,有一个由陶瓷和金属层组成的氧离子导体,它具有一种特殊的氧离子传输机制。
在工作状态下,氧气以分子形式通过传感器的陶瓷层,进入传感器内部。
2. 氧离子传输:当氧气进入传感器内部时,它被陶瓷层表面的贵金属催化剂分解成氧离子(O2-)。
这些氧离子在陶瓷层中
传输,并渗透到陶瓷的另一侧,也就是金属层。
3. 氧离子浓度差:在陶瓷层两侧的氧离子浓度存在差异,这是由于在金属层表面存在一个不可透过的膜层(例如稳流氧膜),阻止氧气进一步渗透。
因此,氧离子在陶瓷层内会沿着浓度梯度进行扩散。
4. 氧敏传感器信号:通过测量金属层上的氧离子浓度差异,宽带氧传感器可以生成相关的电信号。
这些信号在传感器的内部电路中被转换成数字或模拟信号。
5. 氧气浓度输出:通过分析传感器输出信号,可以计算出燃烧过程中氧气的浓度。
这个浓度值可以用来调整燃烧过程以提高效率,或作为环境监测的依据进行控制。
通过上述工作原理,宽带氧传感器可以实时、准确地测量氧气浓度,具有高精度和高灵敏度。
它在汽车、工业过程控制和环境监测等领域有着广泛的应用。
氧传感器工作原理
氧传感器工作原理氧传感器是一种用于测量环境中氧气浓度的装置,它在许多工业和科学应用中都起着至关重要的作用。
在汽车行业中,氧传感器被用于监测发动机排放中的氧气含量,以帮助调节燃油混合物的比例,从而提高燃烧效率和降低尾气排放。
在医疗设备中,氧传感器则用于监测患者的血氧饱和度,以确保他们得到足够的氧气供应。
本文将介绍氧传感器的工作原理,以帮助读者更好地理解这一关键装置的作用。
氧传感器的工作原理可以简单概括为通过测量氧气浓度来产生电信号。
这种传感器通常由氧离子导体和电极组成。
在一个氧气浓度不断变化的环境中,氧离子导体会吸收或释放氧气分子,并随之产生电子。
这些电子会在电极之间产生电流,其大小与环境中氧气浓度成正比。
通过测量这一电流信号的大小,就可以确定环境中氧气的浓度。
氧传感器的工作原理基于氧离子导体的特性。
氧离子导体通常是由氧化物材料构成的,如氧化锆或氧化镁。
这些材料在高温下具有良好的离子导电性,能够快速吸收或释放氧气分子,并产生相应的电子。
因此,氧传感器通常需要在较高的工作温度下运行,以确保氧离子导体的良好性能。
除了氧离子导体,氧传感器中的电极也起着至关重要的作用。
电极通常由稳定的材料构成,如铂或金属氧化物。
这些材料能够与氧离子导体形成良好的接触,并能够有效地传递电子。
通过电极之间的电子传输,就能够产生与氧气浓度相关的电流信号。
在实际应用中,氧传感器通常被安装在需要监测氧气浓度的环境中。
例如,在汽车尾气排放系统中,氧传感器被安装在排气管中,以监测尾气中的氧气含量。
当发动机运行时,氧传感器会不断地测量尾气中的氧气浓度,并将结果反馈给发动机控制单元。
控制单元根据这些数据来调节燃油混合物的比例,以确保燃烧效率和尾气排放达到最佳状态。
总的来说,氧传感器的工作原理基于氧离子导体和电极之间的相互作用。
通过测量氧气浓度来产生电信号,氧传感器在许多领域都发挥着重要的作用。
希望本文能够帮助读者更好地理解氧传感器的工作原理,以及其在各种应用中的重要性。
氧传感器的功能及工作原理全解
氧传感器的功能及工作原理全解氧传感器又称为氧气传感器,是一种用于检测发动机尾气中氧气浓度的电子设备。
它在汽车的排放控制系统中起着至关重要的作用。
功能氧传感器的主要功能是监测发动机排放中氧气浓度的变化,并将变化的信息反馈给车辆的电脑系统。
这些信息可用于调整车辆的燃油量、空气量、进气量等参数,以便使发动机保持最佳性能和最佳的排放水平。
当发动机在运行时,氧传感器会一直监测尾气排放中氧气的浓度。
高氧含量的尾气意味着排放物中燃料中有过剩的空气,因此需要减少燃料的供应。
而低氧含量的尾气则表明燃烧过程中缺少氧气,需要增加燃料的供应。
氧传感器的作用在于帮助控制系统及时检测到氧气的变化,从而使系统能够尽快地作出相应的调整。
工作原理氧传感器的工作原理基于两种材料(金属和电解质)之间的化学反应。
这两种材料形成了一个电池,称为氧气敏感元件。
当氧传感器被暴露在排气系统中时,其中的电解质吸收了一些氧气。
这些氧分子在电解质中与电极上的铂触媒结合,形成负离子。
这种化学反应产生电子并流过电路。
车辆的电脑读取这个电流,并将其转化为氧气在排气系统中的浓度。
氧传感器的另一个关键部分是热稳定性。
在传感器的头部,有一个加热元件,通常是一组电阻器。
这些元件在传感器中的电路内发生变化,产生热能,从而维持传感器的工作温度。
维持氧传感器头部温度的热元件使传感器能够快速响应氧气含量的变化,同时保持其工作性能。
小结氧传感器是汽车排放控制系统中不可或缺的一部分。
通过监测尾气中的氧气含量,它可以帮助电脑控制系统调整燃油、空气和进气等参数,从而保证发动机的最佳性能和排放水平。
其工作原理基于氧气在电解质中与铂触媒的化学反应,同时通过加热元件来维持传感器的工作温度。
由于氧传感器对减少排放和改善发动机性能至关重要,因此它必须经常维护和更换。
有关氧传感器的问题应及时修复,以确保车辆的顺畅运行和对环境的保护。
氧传感工作原理
氧传感工作原理
氧传感器是一种检测环境中氧气浓度的设备,常用于工业过程控制、空气质量检测等领域。
它的工作原理主要基于电化学原理。
氧传感器通常由两个电极构成:一个是参考电极,另一个是工作电极。
工作电极表面涂覆有催化剂,通常是氧化铂或氧化金。
参考电极则通常是银/银氧化银电极。
这两个电极之间隔着一
个电解质,常用的电解质是固体氧化物。
当氧气进入氧传感器时,它会与涂覆在工作电极上的催化剂发生反应,产生电流。
这个反应是氧气在催化剂上的还原过程,催化剂使氧气分子的两个氧原子分离,然后将其与电解质中的离子结合形成氧离子。
这些氧离子通过电解质传导到参考电极上,与参考电极的银离子发生氧化还原反应,产生电流。
这个电流的大小与环境中氧气的浓度成正比。
通过测量电流的大小,我们可以确定环境中氧气的浓度。
通常氧传感器的输出是一个电压信号或电流信号,我们可以通过转换电路将其转化为浓度值。
需要注意的是,氧传感器在使用过程中需要保持一定的温度。
因为传感器的反应速率与温度密切相关,过低或过高的温度都会影响传感器的测量准确性。
因此,氧传感器通常会与一个加热装置结合使用,以保持稳定的工作温度。
综上所述,氧传感器基于电化学原理工作,通过催化剂和参考
电极之间的反应产生电流来检测环境中氧气的浓度。
它在许多应用中起到了重要的作用。
汽车氧传感器的作用与原理介绍
汽车氧传感器的作用与原理介绍汽车氧传感器(lambda sensor),就是在汽车上使用的可测量氧浓度的传感器检测装置,现已成为汽车上的标置。
氧传感器主要位于汽车发动机排气管上的,是电喷发动机控制系统中关键的传感部件,也是控制汽车尾气排放、降低汽车对环境污染、提高汽车发动机燃油燃烧质量的关键零件。
汽车氧传感器的位置汽车氧传感器数量及功用通常,汽车上有几个氧气传感器呢?答案是两个,一个前氧传感器和一个后氧传感器。
前氧传感器一般安装在三元催化器前部的排气歧管上,主要负责混合气的修正。
后氧传感器则安装在三元催化器后部的排气管上,主要用于检查三元催化的工作效果。
汽车氧传感器的原理现在汽车上主要运用的氧传感器有二氧化锆氧传感器、二氧化钛氧传感器及宽域型氧传感器三种,其中,运用最为广泛的是二氧化锆氧传感器。
下面以二氧化锆氧传感器为例,为您介绍汽车氧传感器的原理。
二氧化锆氧传感器由锆管(传感元件)、电极和防护套管等组成,如下图所示。
锆管是由含有少量钇的二氧化锆(ZrO2)制成的固态电解质元件,在锆管内、外两侧涂覆一层多孔性铂膜电极。
锆管内侧通大气,外侧与排气接触。
汽车二氧化锆氧传感器的构造简单来说,汽车氧传感器主要是由二氧化锆陶瓷以及内外表面的薄薄的一层铂组成。
内侧空间充满富氧的外界空气,外表面暴露在废气中。
传感器内装有加热电路,着车后加热电路工作使传感器快速达到正常工作所需的350℃左右,因此,汽车氧传感器也称为加热型氧传感器。
汽车二氧化锆氧传感器工作原理示意图氧传感器主要是利用陶瓷敏感元件来测量汽车排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,从而可通过监测和控制燃烧空燃比。
在监测到混合气的空燃比浓稀信号后,该信号输入汽车ECU,ECU根据该信号调整发动机的喷油量,实现闭环控制,进而使催化转换器更好地发挥净化作用,最终保证了有效的尾气排放。
具体来说,汽车氧传感器的工作原理类似于干电池,传感器中的氧化锆元素起到类似电解液的作用。
氧传感器报告 pdf
氧传感器报告一、引言随着汽车工业的飞速发展,汽车尾气排放对环境的影响日益严重。
为了满足日益严格的环保要求,提高发动机性能,以及为驾驶员提供更好的燃油经济性,对汽车排放物进行检测与控制至关重要。
而在这其中,氧传感器作为一种重要的排放物检测元件,发挥着不可替代的作用。
本报告将对氧传感器的原理、分类、应用以及发展趋势进行详细阐述。
二、氧传感器原理氧传感器是一种电化学器件,通过测量汽车尾气中的氧浓度并将其转换为电信号,从而实现对发动机燃烧效率的监测。
当发动机燃烧不完全时,尾气中的氧含量会相对较高;反之,当发动机燃烧效率较高时,尾气中的氧含量会相对较低。
因此,通过测量尾气中的氧含量,可以判断出发动机的燃烧效率。
三、氧传感器分类根据工作原理和安装位置的不同,氧传感器可分为开环式和闭环式两种。
开环式氧传感器主要用于检测发动机燃烧室中的氧气浓度,从而控制空燃比;而闭环式氧传感器主要用于检测排气管中的氧气浓度,从而控制汽车尾气的排放。
四、氧传感器应用氧传感器的应用主要集中在汽车排放控制领域。
通过安装氧传感器,可以实时监测汽车尾气的排放情况,并根据监测结果调整发动机的燃烧状态,从而实现降低汽车尾气排放的目标。
同时,氧传感器也是现代电控燃油喷射发动机的重要组件,它为发动机提供精确的空燃比反馈,进而提升发动机的经济性能和环保性能。
五、氧传感器发展趋势随着科技的进步和环保要求的提高,氧传感器的发展趋势主要体现在以下几个方面:一是向高精度、高可靠性方向发展;二是向小型化、集成化方向发展;三是向智能化、多功能化方向发展。
未来,随着新型材料的出现和应用,氧传感器的性能将得到进一步提升,其在汽车排放控制领域的应用也将更加广泛。
六、结论综上所述,氧传感器在汽车排放控制领域中发挥着重要作用。
本报告对氧传感器的原理、分类、应用及发展趋势进行了详细阐述。
希望通过对这些内容的了解和掌握,能帮助大家更好地认识和了解氧传感器在汽车排放控制领域的重要性和应用前景。
氧传感器的结构和工作原理
氧传感器的结构和工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1. 氧传感器的功用与类型排气中的氧传感器浓度可以反映空燃比的大小,所以在电子控制燃油喷射系统中广泛使用氧传感器。
氧传感器将检测到的氧气浓度反馈给ECU,ECU 根据此信号判断空燃比是否偏离理论值,若偏离则调节喷油量,使空燃比控制在理论允许的范围之内。
常见的氧传感器有二氧化锆和二氧化钛型氧传感器两种。
2. 二氧化锆氧传感器(1) 结构二氧化锆型氧传感器由二氧化锆管、起电极作用的衬套,以及防止二氧化锆管损坏和导入汽车的带孔护罩等构成,如图一所示。
图一二氧化锆氧传感器(2) 工作原理氧传感器安装于排气管上,二氧化锆的管内、外表面均涂有薄薄的一层铂,铂既起到电极的作用,又具有催化的作用。
二氧化锆管内侧通大气,并且保持氧浓度不变,外侧直接与氧浓度较低的排气相抵触。
工作时,在排气高温作用下,氧气发生分离,由于锆管内侧氧离子浓度高,外侧氧在两个表面电极有氧浓度差,氧离子就从浓度高的一侧向低的一侧流动,从而产生电动势,所以二氧化锆传感器实际为一种容量较小的化学电池,也称氧浓度差电池。
当混合气稀(空燃比大)时,排气中的氧含量高,传感器元件内、外侧氧浓度差小,氧化锆元件内、外侧两电极之间产生的电压很低(接近于0V);当混合气浓(空燃比小)时,排气中几乎没有氧,传感器内、外侧氧浓度差很大,内、外侧电极之间产生的电压高(约1V)。
在理论空燃比附近,氧传感器输出电压信号值有一突变,如图二所示。
图二氧传感器的输出特性二氧化锆管内外涂有铂起催化作用,能使排气中氧气与一氧化碳、碳化氢等发生反应,减少排气中氧含量,使外侧铂表面的氧几乎不存在,提高了传感器的灵敏度。
氧传感器的输出特性与排气温度有关,二氧化锆式氧传感器的工作温度在300℃以上。
当排气温度低于一定值(约300℃)时,氧传感器的输出特性不稳定,因此氧传感器一般都安装在排气温度较高的位置。
六线宽域氧传感器工作原理
六线宽域氧传感器工作原理
1. 传感器结构,六线宽域氧传感器通常由两个主要部分组成,即氧离子传导体和电极。
氧离子传导体是一个固体电解质,常用的材料是氧化锆(ZrO2)。
电极则由负极(参比电极)和正极(工作电极)组成。
2. 工作原理,当传感器处于工作状态时,尾气中的氧气会通过传感器的外壳进入传感器内部。
在传感器内部,氧气分子与氧离子传导体发生反应。
3. 氧离子传导,在高温下,氧离子传导体会导电,而氧气在传感器内部的存在会导致氧离子在传感器内部移动。
这种氧离子的移动是通过氧离子传导体中的氧空位(缺失的氧离子)进行的。
4. 电极反应,在正极(工作电极)上,氧离子与尾气中的氧气发生氧化反应,生成氧气离子。
这些氧气离子会沿着氧离子传导体移动到负极(参比电极)。
5. 电流变化,当氧气浓度发生变化时,正极和负极之间的电位差会发生变化,从而导致电流的变化。
通过测量这个电流变化,可
以得出尾气中氧气浓度的信息。
6. 信号处理,传感器输出的电流信号会被连接的控制单元接收并进行处理。
根据电流信号的变化,控制单元可以调整发动机的燃油供给量,以实现尾气的控制和优化燃烧效率。
综上所述,六线宽域氧传感器通过测量尾气中氧气浓度的变化来提供反馈信号,以帮助控制系统进行尾气排放控制和燃烧优化。
这种传感器的工作原理基于氧离子传导和电极反应,通过测量电流变化来获得氧气浓度信息。
简述氧传感器的工作原理
简述氧传感器的工作原理氧传感器的工作原理是利用电化学反应的原理。
氧传感器由一个内置陶瓷或塑料隔膜的探头、两个电极和一个加热元件组成。
空气中的氧气通过探头进入氧传感器,与探头内的电极反应。
电极内的涂层催化氧气和电子的反应,产生一定数量的电信号。
然后,这个信号经由接线到仪器中进行分析,计算测量样品中的氧气浓度。
在使用过程中,加热元件可以用来改善氧传感器的性能,并保持探头内的温度在适宜范围内。
氧传感器可依据其用途来选择不同的型号。
例如,在汽车引擎控制系统中,它们可用于检测排放物中的氧含量,便于改善汽车的性能和燃油效率。
氧传感器是一种能够检测氧气浓度的传感器,其工作原理基于氧气和一定的电化学反应。
常见的氧传感器使用的是电化学氧气传感器。
电化学氧气传感器由一个阳极和一个阴极组成,它们之间放置有一个特殊的电解质,其中混入了可以导致电化学反应的化学物质。
当外部电源通过这个系统时,在阳极处就会发生氧化反应,也就是氧气被氧化成氧离子;而在阴极处会发生还原反应,这时氧离子会和电子结合,形成氧气。
这个反应会产生一些电流,而这个电流的强度正好代表着周围氧气的浓度。
这个电流的变化可以被检测出来,并通过相关的仪器进行信号处理,得出氧气的浓度。
因此,氧传感器的工作原理就是通过检测材料的氧化和还原反应来检测周围氧气的浓度。
氧传感器利用氧分子与电化学反应的原理来测量氧气在气体或液体中的浓度。
氧传感器通常采用氧离子电解型传感器,其主要组成部分是一个电解槽,其中有两个电极:一个参考电极和一个工作电极。
参考电极通过电解液与外部环境相隔离,保证了电化学反应的稳定性。
当氧气进入电解槽时,氧分子和水分子在工作电极上发生氧化反应,释放出电子。
这些电子会从工作电极流向参考电极,比较两个电极之间的电势差。
这个电势差的大小与氧气的浓度成正比,因此可以推算出氧气浓度。
一般情况下,氧传感器还会连接一个加热器,以保持电解液的温度稳定,提高测量的准确性。
氧传感器工作原理
氧传感器工作原理氧传感器是一种用于测量氧气浓度的设备,它在汽车、工业生产和环境监测等领域有着广泛的应用。
那么,氧传感器是如何工作的呢?接下来,我们将详细介绍氧传感器的工作原理。
首先,让我们来了解一下氧传感器的结构。
氧传感器通常由氧离子传导固体电解质、参比气室、工作电极和参比电极等部分组成。
其中,氧离子传导固体电解质是氧传感器的核心部件,它能够传递氧离子,并且只允许氧离子通过,而阻止其他气体的渗透。
工作电极和参比电极则是用来测量氧气浓度的关键部件。
当氧传感器工作时,参比气室和环境中的氧气通过氧离子传导固体电解质,进入到工作电极和参比电极之间的空间。
在这个空间中,氧气会与工作电极上的铂电极发生化学反应,产生电流。
而参比电极则用来补偿温度和压力的影响,以确保测量结果的准确性。
通过测量工作电极和参比电极之间的电流,氧传感器就能够准确地测量出环境中的氧气浓度。
当氧气浓度增加时,工作电极和参比电极之间的电流也会相应增加,反之则会减少。
这样,氧传感器就能够实时地监测环境中的氧气浓度,并将测量结果传输给控制系统,以便进行调节和控制。
除了测量环境中的氧气浓度外,氧传感器在汽车尾气处理系统中也有着重要的作用。
在汽车尾气处理系统中,氧传感器可以监测排放气体中的氧气浓度,并根据测量结果来调节发动机的燃烧效率,从而降低排放物的排放量,保护环境。
总的来说,氧传感器是一种能够准确测量环境中氧气浓度的设备,它通过氧离子传导固体电解质、工作电极和参比电极等部件的协同作用,实现了对氧气浓度的高精度监测。
在汽车、工业生产和环境监测等领域,氧传感器都发挥着重要的作用,为保护环境和提高生产效率发挥着重要的作用。
通过以上的介绍,我们相信大家对氧传感器的工作原理有了更深入的了解。
希望本文对大家有所帮助,谢谢阅读!。
氧传感器的原理介绍
氧传感器的原理介绍氧化锆氧传感器是利用氧化锆陶瓷敏感元件测量各类加热炉或排气管道中的氧电势;由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比;保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。
氧传感器工作原理:氧传感器是利用稳定的二氧化锆陶瓷在650℃以上的环境中产生的氧离子导电特性而设计的。
在一定的温度条件下,如果在二氧化锆块状陶瓷两侧的气体中分别存在着不同的氧分压(即氧浓度)时,二氧化锆陶瓷内部将产生一系列的反应,和氧离子的迁移。
这时通过二氧化锆两侧的引出电极,可测到稳定的毫伏级信号,我们称之为氧电势。
它服从能斯特(Nernst)方程:式中E为氧传感器输出的氧电势(mv),Tk为炉内的温度(K),P1和P2分别为二氧化锆两侧气体的氧分压。
实际应用时,将二氧化锆的一侧通入已知氧浓度的气本(通常为空气),我们称之为参比气。
另一侧则是被测气体,就是我们要检测的炉内的气氛。
氧传感器输出的信号就是氧电势信号,通过能斯特方程我们就可以得到被测炉气氛中的氧分压和氧电势的关系。
参比气为空气时,可表示为:式中E为氧传感器输出氧电势;Tk为炉内的温度;P02为炉内的氧分压。
我们的氧传感器产品带有自加热装置,一般温度保证在700℃,这样TK数值基本是恒定的,从而通过上式可以直接测量出炉内氧分压浓度。
工程应用中采用标准气体来标定氧传感器输出氧电势E和氧分压浓度PO2的对应关系,这种方法也是目前公认的准确、直接的标定方法。
它是目前的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。
运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。
标签:氧传感器。
氧传感器的功能及工作原理全解
氧传感器的功能及工作原理氧传感器的功能测定发动机排气中氧气含量,确定汽油与空气是否完全燃烧。
电子控制器根据这一信息实现以过量空气系数λ=1为目的的闭环控制,以确保三元催化转化器对排气中、和三种污染物都有最大的转化效率。
工作原理氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用,其根本工作原理是:在一定条件下〔高温和铂催化〕,利用氧化锆骨外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。
大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。
特点抗铅;较少依赖于排气温度;起动后迅速进入闭环控制。
氧传感器的常见故障氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。
假如只是细微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器外表的铅,使其恢复正常工作。
但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。
积碳由于发动机燃烧不好,在氧传感器外表形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,不能及时地修正空燃比。
产生积碳,主要表现为油耗上升,排放浓度明显增加。
此时,假设将沉积物去除,就会恢复正常工作。
氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。
因此,处理时要特别小心,发现问题及时更换。
加热器电阻丝烧断对于加热型氧传感器,假如加热器电阻丝烧蚀,就很难使传感器到达正常的工作温度而失去作用。
氧传感器内部线路断脱氧传感器的常见故障及检查方法在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。
由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对、和的净化才能将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向发出反响信号,再由控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。
氧传感器的工作原理
氧传感器的工作原理氧传感器是一种用于检测空气或气体中氧气含量的装置。
它被广泛应用于汽车、工业和环境监测等领域。
在本文中,我们将介绍氧传感器的工作原理及其常见的类型。
工作原理氧传感器的工作原理基于氧气的还原反应。
其基本结构包括两个电极,一个是氧离子传递电极,另一个是参比电极。
当传感器置于气体环境中时,氧离子穿过氧离子传递电极并与气体中的氧气进行还原反应。
这个反应可以被表示为:O2 + 4e- -> 2O2-这里,O2代表氧气,e-代表电子,O2-代表氧离子。
氧离子被输送到参比电极上,与充满气体的环境下的氧气进行再次还原反应。
这个反应可以被表示为:2O2- -> O2 + 4e-这里,O2代表氧气,e-代表电子,O2-代表氧离子。
通过测量氧离子的浓度或电位差,我们可以计算出环境中氧气的浓度。
利用这种原理,氧传感器可以检测从空气到汽车尾气中氧气含量的变化,从而帮助我们更好地监测环境和汽车的性能。
氧传感器的类型氧传感器通常被分为两大类:广谱氧传感器和窄带氧传感器。
广谱氧传感器广谱氧传感器也称为非受控氧传感器,并且可以检测范围很广的氧气含量。
由于它们的灵敏度较低,它们能够检测的氧气范围通常非常广泛。
这种传感器通常用于监测高温应用或使用低品质燃料的汽车。
窄带氧传感器窄带氧传感器也称为受控氧传感器,可以检测范围较窄的氧气含量。
这种传感器通常用于现代汽车的排放系统中。
窄带氧传感器的工作原理是通过将电压应用于电极,从而控制电极中氧气的化学反应。
这种控制非常精确,可以使氧传感器在非常短的时间内检测氧气的变化,并根据这些变化调整发动机的燃料和空气混合比例。
结论氧传感器是一种在现代汽车和工业中广泛使用的传感器。
通过基于氧气的还原反应测量氧气的浓度或电位差,它能够实时检测这些信息并将其传递给发动机管理系统。
这种能力帮助汽车发动机更有效地运行,减少空气污染,并使我们对环境有更好的控制。
希望通过本文,您可以更好地理解氧传感器的工作原理和种类。
氧传感器的结构和工作原理精编版
1. 氧传感器的功用与类型排气中的氧传感器浓度可以反映空燃比的大小,所以在电子控制燃油喷射系统中广泛使用氧传感器。
氧传感器将检测到的氧气浓度反馈给ECU,ECU 根据此信号判断空燃比是否偏离理论值,若偏离则调节喷油量,使空燃比控制在理论允许的范围之内。
常见的氧传感器有二氧化锆和二氧化钛型氧传感器两种。
2. 二氧化锆氧传感器(1) 结构二氧化锆型氧传感器由二氧化锆管、起电极作用的衬套,以及防止二氧化锆管损坏和导入汽车的带孔护罩等构成,如图一所示。
图一二氧化锆氧传感器(2) 工作原理氧传感器安装于排气管上,二氧化锆的管内、外表面均涂有薄薄的一层铂,铂既起到电极的作用,又具有催化的作用。
二氧化锆管内侧通大气,并且保持氧浓度不变,外侧直接与氧浓度较低的排气相抵触。
工作时,在排气高温作用下,氧气发生分离,由于锆管内侧氧离子浓度高,外侧氧在两个表面电极有氧浓度差,氧离子就从浓度高的一侧向低的一侧流动,从而产生电动势,所以二氧化锆传感器实际为一种容量较小的化学电池,也称氧浓度差电池。
当混合气稀(空燃比大)时,排气中的氧含量高,传感器元件内、外侧氧浓度差小,氧化锆元件内、外侧两电极之间产生的电压很低(接近于0V);当混合气浓(空燃比小)时,排气中几乎没有氧,传感器内、外侧氧浓度差很大,内、外侧电极之间产生的电压高(约1V)。
在理论空燃比附近,氧传感器输出电压信号值有一突变,如图二所示。
图二氧传感器的输出特性二氧化锆管内外涂有铂起催化作用,能使排气中氧气与一氧化碳、碳化氢等发生反应,减少排气中氧含量,使外侧铂表面的氧几乎不存在,提高了传感器的灵敏度。
氧传感器的输出特性与排气温度有关,二氧化锆式氧传感器的工作温度在300℃以上。
当排气温度低于一定值(约300℃)时,氧传感器的输出特性不稳定,因此氧传感器一般都安装在排气温度较高的位置。
如图三所示。
图三氧传感器的安装位置为此,有些车上海装有排气温度传感器,当排气温度传感器的信号达到一定值后,控制单元才根据氧传感器的信号进行空燃比反馈修正。
lambda氧传感器的工作原理
lambda氧传感器的工作原理lambda氧传感器是一种用于测量和监测发动机尾气中氧气含量的重要设备。
其工作原理基于化学反应和电化学原理,具有高精度和高灵敏度的特点。
我们先了解一下氧气在发动机燃烧过程中的作用。
在发动机燃烧过程中,空气与燃料混合后进入燃烧室,经过点火后发生燃烧反应。
这个过程需要氧气的参与,氧气与燃料发生化学反应,产生能量和废气。
因此,氧气的含量对于燃烧过程的效率和废气排放有着重要影响。
lambda氧传感器的主要作用就是测量和监测发动机尾气中氧气的含量,以便调整燃油供应量,使燃烧过程更加高效和环保。
其工作原理可以分为两个步骤:氧离子传导和电化学反应。
当发动机运行时,lambda氧传感器的工作温度会升高。
当传感器达到工作温度后,氧离子开始在传感器的电解质层中传导。
在氧离子传导过程中,传感器的电解质层具有特殊的结构,可以选择性地传导氧离子。
这种选择性传导的特性使得传感器只能传导氧离子,而不会传导其他气体分子。
然后,氧离子传导到达传感器的电极层。
传感器的电极层由负极和正极组成,其中负极富含铂金属,正极则是一个氧气供应电极。
当氧离子传导到达电极层时,它们会与正极的氧气发生电化学反应。
这个反应会产生电流,并通过电路传输到发动机控制单元(ECU)。
根据电流的大小,ECU可以判断发动机尾气中氧气的含量。
当氧气含量较低时,反应速率较慢,电流较小;当氧气含量较高时,反应速率较快,电流较大。
ECU根据电流的变化来调整燃油喷射量,使氧气含量维持在一个适当的范围内,以保证发动机燃烧过程的效率和环保性。
需要注意的是,lambda氧传感器对于氧气含量的测量是基于比例关系的。
传感器会将氧气含量与理论空燃比进行比较,并输出一个lambda值。
当lambda值等于1时,表示理论空燃比,此时发动机燃烧最为完全和高效。
当lambda值大于1时,表示氧气含量过多,此时ECU会减少燃油供应量;当lambda值小于1时,表示氧气含量不足,此时ECU会增加燃油供应量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧传感器的功能及工作原理氧传感器的功能测定发动机排气中氧气含量,确定汽油与空气是否完全燃烧。
电子控制器根据这一信息实现以过量空气系数λ=1为目标的闭环控制,以确保三元催化转化器对排气中HC、CO和NOX三种污染物都有最大的转化效率。
工作原理氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用,其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆骨外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。
大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。
特点抗铅;较少依赖于排气温度;起动后迅速进入闭环控制。
氧传感器的常见故障氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。
如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。
但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。
积碳由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。
产生积碳,主要表现为油耗上升,排放浓度明显增加。
此时,若将沉积物清除,就会恢复正常工作。
氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。
因此,处理时要特别小心,发现问题及时更换。
加热器电阻丝烧断对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。
氧传感器内部线路断脱氧传感器的常见故障及检查方法在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。
由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。
目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。
而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。
氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。
因此,必须及时地排除故障或更换。
一、氧传感器的常见故障1.氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。
如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。
但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。
另外,氧传感器发生硅中毒也是常有的事。
一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。
修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。
2.积碳由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。
产生积碳,主要表现为油耗上升,排放浓度明显增加。
此时,若将沉积物清除,就会恢复正常工作。
3.氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。
因此,处理时要特别小心,发现问题及时更换。
4.加热器电阻丝烧断对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。
5.氧传感器内部线路断脱。
二、氧传感器的检查方法1.氧传感器加热器电阻的检查拔下氧传感器线束插头,用万用表电阻档测量氧传感器接线端中加热器接柱与搭铁接柱之间的电阻,其阻值为4-40Ω(参考具体车型说明书)。
如不符合标准,应更换氧传感器。
2.氧传感器反馈电压的测量测量氧传感器的反馈电压时,应拔下氧传感器的线束插头,对照车型的电路图,从氧传感器的反馈电压输出接线柱上引出一条细导线,然后插好线束插头,在发动机运转中,从引出线上测出反馈电压(有些车型也可以由故障检测插座内测得氧传感器的反馈电压,如丰田汽车公司生产的系列轿车都可以从故障检测插座内的OX1或OX2 端子内直接测得氧传感器的反馈电压)。
对氧传感器的反馈电压进行检测时,最好使用具有低量程(通常为2V)和高阻抗( 内阻大于10MΩ)的指针型万用表。
具体的检测方法如下:1)将发动机热车至正常工作温度(或起动后以2500r/min的转速运转2min);2)将万用表电压档的负表笔接故障检测插座内的E1或蓄电池负极,正表笔接故障检测插座内的OX1或OX2插孔,或接氧传感器线束插头上的号|出线;3)让发动机以2500r/min左右的转速保持运转,同时检查电压表指针能否在0-1V之间来回摆动,记下10s内电压表指针摆动的次数。
在正常情况下,随着反馈控制的进行,氧传感器的反馈电压将在0.45V上下不断变化,10s内反馈电压的变化次数应不少于8次。
如果少于8次,则说明氧传感器或反馈控制系统工作不正常,其原因可能是氧传感器表面有积碳,使灵敏度降低所致。
对此,应让发动机以2500r/min的转速运转约2min,以清除氧传感器表面的积碳,然后再检查反馈电压。
如果在清除积碳可后电压表指针变化依旧缓慢,则说明氧传感器损坏,或电脑反馈控制电路有故障。
4)检查氧传感器有无损坏拔下氧传感器的线束插头,使氧传感器不再与电脑连接,反馈控制系统处于开环控制状态。
将万用表电压档的正表笔直接与氧传感器反馈电压输出接线柱连接,负表笔良好搭铁。
在发动机运转中测量反馈电压,先脱开接在进气管上的曲轴箱强制通风管或其他真空软管,人为地形成稀混合气,同时观看电压表,其指针读数应下降。
然后接上脱开的管路,再拔下水温传感器接头,用一个4-8KΩ的电阻代替水温传感器,人为地形成浓混合气,同时观看电压表,其指针读数应上升。
也可以用突然踩下或松开加速踏板的方法来改变混合气的浓度,在突然踩下加速踏板时,混合气变浓,反馈电压应上升;突然松开加速踏板时,混合气变稀,反馈电压应下降。
如果氧传感器的反馈电压无上述变化,表明氧传感器已损坏。
另外,氧化钛式氧传感器在采用上述方法检测时,若是良好的氧传感器,输出端的电压应以2.5V为中心上下波动。
否则可拆下传感器并暴露在空气中,冷却后测量其电阻值。
若电阻值很大,说明传感器是好的,否则应更换传感器。
5)氧传感器外观颜色的检查从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。
如有破损,则应更换氧传感器。
通过观察氧传感器顶尖部位的颜色也可以判断故障:①淡灰色顶尖:这是氧传感器的正常颜色;②白色顶尖:由硅污染造成的,此时必须更换氧传感器;③棕色顶尖:由铅污染造成的,如果严重,也必须更换氧传感器;④黑色顶尖:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。
氧传感器的测试方法1.如何测试一个氧传感器的效率首先明确几个名词用语。
上流动系统指所有的传感器、执行器、发动机控制电脑及氧传感器以上的发动机系统。
换言之,上流动系统是所有产生排气及有助于加热氧传感器的机械和电子部件。
上流动系统包括发动机,连同所有的帮助系统--进气系统,排气再循环EGR、空气等、传感器、执行器、发动机控制电脑和(PCM)和电路。
下流动系统是指位于氧传感器后面的不运动的废气系统部件--也就是催化反应及它的内部的全部工作内容和排气系统。
其次,为了区别当今发动机管理系统不同的闭环控制系统,这里不使用一般的闭环控制系统、怠速控制闭环系统、废气再循环闭环控制系统等等。
一般解码器显示的闭环是燃料反馈的系统闭环控制,这里所讲的闭环则不是单指燃料反馈控制系统的闭环控制。
这是因为有一些汽车当燃料反馈控制系统不正常时,它的控制电脑(PCM)仍然告诉解码器说系统是处在闭环控制状态。
在氧传感器平衡(O2FB)测试中第一步就是测量氧传感器的输出信号。
这样做有几个原因,首先看原因,然后再看试验步骤。
氧传感器工作在一个有关排气系统通过的极端恶劣的环境之中,一个不需加热的氧传感器寿命为30000至50000英哩,而加热氧传感器寿命比不加热氧感器延长寿命长20000英哩。
任何一种氧传感器的时效,都是慢慢地失去的,开始它的响应速度变慢,能够产生的输出信号幅度变低,在失效的最后阶段,它产生一个不变化的信号或根本没有信号输出,这时就会出现故障码,随后发动机检查灯或故障指示灯就亮了。
除了由于使用年限和行驶里程导致氧传感器正常的失效外,氧传感器还有可能因汽油中含铅或冷却液中的硅胶腐蚀而导致提前失败,渗漏头垫破裂也使许多氧传感器失效。
但是,使氧传感器提前失效的首要原因是发动机在较浓的混合比状态下运行时所造成碳阻塞,还有各种潜在原因都可能成为使氧传感器失效的祸首,例如燃油压力过高,喷油嘴坏损或控制电脑传感器损坏以及操作不当等。
在把握一件事情的核心以前,为了检查时能稳妥一些,先暂停一下,讲一个问题,在诊断燃料反馈控制系统(FFCS)之前,经常被告之,应起动发动机直至它进入“闭环”状态。
也有许多汽车修理文章也这样写到:“起动发动机在2500rpm下运转2-3分钟,直到氧传感器产生可变电压”,这恐怕是个误导。
许多技术人员认为氧传感器自己会产生可变电压,而事实是发动机要在稳定的转速和负荷下氧传感器在读废气及由废气导致的电压信号,发动机控制电脑(PCM)通过喷油脉冲宽度变化或混合比控制命令来改变排气成份。
氧传感器安装在排气流中报告它的读数,它只是一个报告者。
如果只是因为氧传感器电压偏离,并不意味就必须更换氧传感器,这只是因为测试氧传感器只是O2FB试验的第一步,如果排气的成份不变化,不管怎样“运转加热发动机”,氧传感器的电压也不会变。
当诊断汽车时,如果发现氧传感器的输出电压不正常或根本不变,那可能有两个原因,一个是由于氧传器本身的问题造成的,而不是对排气成份正确性测量的问题,另一个可能是由于上流动系统故障造成的,而不是混合比改变的问题,这是因为上流动系统中的一些部件有故障。
现在回到要接触到的事情的要害,“要害”就是氧传感器信号在燃料反馈控制系统中的地位,在汽车示波器的显示屏上,氧传感波形,就相当于医院手术室里的电起搏器(EKG),事实上,在医院的急救室里,最主要的判断设备就是起搏器(EKG),它所以看到病人脉搏的波形。