高中数学 第三章 三角恒等变换 第一节 两角和与差的正弦、余弦和正切公式(第一课时)示范教案 新人教
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式疱工巧解牛知识•巧学 一、倍角公式1.公式的推导:倍角公式是和角公式的特例,只要在和角公式中令α=β,就可得出相应的倍角公式.sin(α+β)=sinαcosβ+cosαsinβ−−→−=βα令sin2α=2sinαcosα;cos(α+β)=cosαcosβ-sinαsinβ−−→−=βα令cos2α=cos 2α-sin 2α.由于sin 2α+cos 2α=1,显然,把sin 2α=1-cos 2α代入cos2α=cos 2α -sin 2α,得cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1. 同理,消去cos 2α,得cos2α=1-2sin 2α. tan(α+β)=αααβαβαβα2tan 1tan 22tan tan tan 1tan tan -=−−→−•-+=令. 综上,我们把公式叫做二倍角公式.2.二倍角公式中角α的范围由任意角的三角函数的定义可知S 2α、C 2α中的角α是任意的,但公式T 2α即tan2α=αα2tan 1tan 2-中的角是有条件限制的. 要使tan2α有意义,需满足1-tan 2α≠0且tanα有意义.当tanα有意义时,α≠2π+kπ(k∈Z );当1-tan 2α≠0,即tanα≠±1时,α≠±4π+kπ(k∈Z ).综上,可知要使T 2α有意义,需α≠±4π+kπ且α≠2π+kπ(k∈Z ).特别地,当α=2π+kπ(k∈Z )时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+kπ)=tan(π+2kπ)=tanπ=0. 学法一得 二倍角的切函数是用单角的切函数表示出来的,它的角α除了使解析式有意义外,还应使函数自身也有意义. 3.倍角公式中的倍角是相对的二倍角公式不仅仅可用于将2α作为α的2倍的情况,对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,4α是2α的二倍角,3α是23α的二倍角,2α是4α的二倍角,3α是6α的二倍角等. 在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例6cos6sin23sinααα=,6cos 26sin 6cos 3cos222αααα=-=-1=1-2sin26α;sin3α·cos3α=21 (2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;ααα3sin 4123cos 23sin 21=;︒-︒35tan 135tan 22=tan70°等. 4.倍角公式的几种变形形式(sinα±cosα)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 学法一得 我们常把1+co sα=2cos 22α,1-cosα=2sin 22α称为升幂换半角公式,利用该公式消去常数项,便于提取公因式化简三角函数式;把cos 2α=22cos 1α+,sin 2α=22cos 1α-称为降幂换倍角公式,利用该公式能使之降次,便于合并同类项化简三角函数式.倍角公式给出了α的三角函数与2α的三角函数之间的关系.对于该公式不仅要会正用,还应会逆用和变用.5.倍角公式与和角公式的内在联系只有理清公式的来龙去脉及公式的变形形式,才能及时捕捉到有价值的信息,完成问题的解答. 典题•热题知识点一 直接应用倍角公式求值 例1 求下列各式的值:(1)2sin15°sin105°;(2)︒-15sin 731432;(3)︒-︒5.22tan 15.22tan 2;(4)12cos24cos 24sin πππ. 解:(1)原式=2sin15°·sin(90°+15°)=2sin15°cos15°=sin30°=21.(2)原式=143(1-2sin 215°)=143cos30°=283323143=⨯. (3)原式=.2112145tan 215.22tan 15.22tan 2212=⨯=︒=︒-︒•. (4)原式=8121416sin 4112cos 12sin 21=⨯==πππ.方法归纳 倍角公式中的角是相对的,对它应该有广义上的理解,即112cos 2sin22++=n n nααα(n∈N *),12sin 2cos 2cos212+-=+n n nααα(n∈N *),1212tan 12tan 22tan++-=n n nααα (n∈N *).知识点二 利用倍角公式给值求值例2 已知x∈(2π-,0),cosx=54,则tan2x 等于( ) A.247 B.247- C.724 D.724- 思路分析:运用三角函数值在各个象限的符号及倍角公式求解. 解法一:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x . 由倍角公式sin2x=2sinxcosx=2524-,cos2x=2cos 2x-1=2×(54)2-1=257. 得tan2x=7242cos 2sin -=x x .解法二:∵x∈(2π-,0),cosx=54,∴sinx=53)54(1cos 122-=--=--x .∴tanx=43cos sin -=x x . ∴tan2x=724)43(1)43(2tan 1tan 222-=---⨯=-xx . 答案:D方法归纳 ①解好选择题的关键在于能否针对题目的特点,选择合理而适当的解法,最忌对任何题目都按部就班地演算求解,小题大做,应力求做到“小题小做”“小题巧做”. ②像这种从题目的条件出发,通过正确地运算推理,得出结论,再与选择肢对照确定选项的方法叫做定量计算法;像这样通过对题干和选择肢的关系进行观察、分析,再运用所学知识,通过逻辑推理作出正确选择的方法叫做定性分析法. 例3 已知sin(4π+α)sin(4π-α)=161,α∈(2π,π),求sin4α的值.思路分析:要求sin4α的值,根据倍角公式可知只需求出sin2α、cos2α的值或sinα、cosα的值即可.由于(4π+α)+(4π-α)=2π,可运用二倍角公式求出cos2α的值. 解:由题设条件得sin(4π+α)sin(4π-α)=sin(4π+α)cos[2π-(4π-α)] =sin(4π+α)cos(4π+α)=21sin(2π+2α)=21cos2α=61,∴cos2α=31.∵α∈(2π,π),∴2α∈(π,2π).又∵cos2α=31>0,∴2α∈(23π,2π).∴sin2α=322)31(12cos 122-=--=--α. ∴sin4α=2sin2α·cos2α=2×92431)322(-=⨯-. 例4 已知cos(4π+x)=53,47127ππ<<x ,求x x x tan 1sin 22sin 2-+的值.思路分析:由于结论中同时含有切、弦函数,所以可先对结论切化弦,化简后不难发现,只需求出sin2x 和tan(4π+x)的值即可,注意到2(4π+x)=2π+2x ,这样通过诱导公式就容易找到sin2x 同cos(4π+x)的关系了. 解:∵47127ππ<<x ,∴πππ2465<+<x .又∵cos(4π+x)=53>0,∴23π<4π+x <2π.∴sin(4π+x)=54)53(1)4(cos 122-=--=+--x π,345354)4cos()4sin()4tan(-=-=++=+x x x πππ.∵sin2x=-cos2(4π+x)=1-2cos 2(4π+x)=25725181=-, ∴原式=x x x x x x x x x x x xx x x sin cos )sin (cos 2sin sin cos cos sin 2cos 2sin cos sin 1sin 22sin 22-+=-•+•=-+7528)34(257)4tan(2sin tan 1tan 12sin -=-⨯=+•=-+•=x x x x x π.例5 在△ABC 中,已知AB=AC=2BC(如图3-1-10),求角A 的正弦值.图3-1-10思路分析:由于所给三角形是等腰三角形,所以可通过底角的三角函数值或顶角一半的三角函数值来求解.解:作AD⊥BC 于点D ,设∠BAD=θ,那么A=2θ.∵BD=21BC=41AB ,∴sinθ=41=AB BD . ∵0<2θ<π,∴0<θ<2π.于是cosθ=415)41(1sin 122=-=-θ. 故sinA=sin2θ=2sinθcosθ=815415412=⨯⨯. 巧解提示:作AD⊥BC 于点D ,∵BD=21BC=41AB,又∵AB=AC, ∴∠B=∠C.∴cosB=cosC=41=AB BD . ∵0<B <2π,∴sinB=415.又∵A+B+C=π,∴A=π-(B+C)=π-2B. ∴sinA=sin(π-2B)=sin2B=2sinBcosB=815414152=⨯⨯. 方法归纳 在△ABC 中,由于A+B+C=π,所以A=π-(B+C),222CB A +-=π.由诱导公式可知:sinA=sin(B+C);cosA=-cos(B+C);tanA=-tan(B+C);2cot2tan ;2sin 2cos ;2cos 2sinC B A C B A C B A +=+=+=. 任意变换A 、B 、C 的位置,以上关系式仍然成立. 例6 已知sin 22α+sin2αcosα-cos2α=1,α∈(0,2π),求sinα、tanα的值. 思路分析:已知是二倍角,所求的结论是单角;已知复杂,结论简单,因此可从化简已知入手,推出求证的结论.解:把倍角公式sin2α=2sinαcosα,cos2α=2cos 2α-1代入已知得 4sin 2αcos 2α+2sinαcos 2α-2cos 2α=0, 即2cos 2α(2sin 2α+sinα-1)=0, 即2cos 2α(2sinα-1)(sinα+1)=0.∵α∈(0,2π),∴sinα+1≠0,cos 2α≠0. ∴2sinα-1=0,即sinα=21.又∵α∈(0,2π),∴α=6π.∴tanα=33.知识点三 利用倍角公式化简三角函数式例7 利用三角公式化简sin50°(1+3tan10°).思路分析:本题给我们的感觉是无从下手,很难看出有什么公式可直接利用.从角的角度去分析,10°、50°除了它们的和60°是特殊角外,别无特点;从函数名称的角度去分析,由于该式子有弦,有切,我们可从化切为弦入手去尝试解决,转化成弦函数.通分后出现asinθ+bcosθ的形式,由于3是一特殊角的三角函数值,可把它拼凑成两角和(差)的正、余弦展开式的形式逆用公式求值.若把50°转化成(60°-10°)从同一角入手,也可以求值. 解:原式=sin(60°-10°)(1+3tan10°)=(23cos10°-21sin10°)(1+3tan10°) =23cos10°+23cos10°tan10°-21sin10°-23sin10°tan10° =23cos10°+sin10°-23sin10°·tan10°=23(cos10°-︒︒10cos 10sin 2)+sin10° =︒︒︒+︒•=︒+︒︒•10cos 10cos 10sin 33220cos 2310sin 10cos 20cos 23 ︒︒+︒••=︒︒+︒•=10cos 20sin 2120cos 233322310cos 20sin 3320cos 23180sin 80sin 10cos 80sin 10cos 20sin 60cos 20cos 60sin =︒︒=︒︒=︒︒︒+︒︒=.巧解提示:原式=︒︒+︒•︒=︒︒+︒10cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin ︒︒︒+︒︒︒=10cos 10sin 30cos 10cos 30sin 50sin 2110cos 10cos 10cos 80sin 10cos 40sin 40cos 2=︒︒=︒︒=︒︒︒=.方法归纳 对于三角整式,基本思路是降次、消项和逆用公式;对三角分式,基本思路是分子与分母约分或逆用公式;对二次根式,要设法使被开方数升次,通过开方进行化简.另外,还可用切割化弦、变量代换、角度归一等方法.对于形如1±sinα、1±cosα的形式,我们可采取升幂换半角的形式,消去常数项1,通过提取公因式化简有理式或通过开方化简无理式. 例8 求cos20°cos40°cos60°cos80°的值. 解:由于cos60°=21,所以原式=21cos20°cos40°cos80° ︒︒︒︒︒•=20sin 80cos 40cos 20cos 20sin 21 ︒︒︒•=︒︒︒︒•=20sin 80cos 80sin 8120sin 80cos 40cos 40sin 41 16120sin 160sin 161=︒︒•=. 方法归纳 对于可化为cosαcos2αcos4α…cos2n-1α(n∈N 且n>1)的三角函数式,由于它们的角是以2为公比的等比数列,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简.巧解提示:此外,本题也可构造一对偶式求解. 设M=cos20°·cos40°·cos60°·cos80°, N=sin20°·sin40°·sin60°·sin80°, 则MN=161sin40°·sin80°·sin120°·sin160° =161sin20°·sin40°·sin60°·sin80° =161N ,∴M=161,即cos20°·cos40°·cos60°·cos80°=161. 知识点四 利用倍角公式证明三角恒等式例9 求证:θθθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+. 证明:原式等价于1+sin4θ-cos4θ=αθ2tan 1tan 2-(1+sin4θ+cos4θ), 即1+sin4θ-cos4θ=tan2θ(1+sin4θ+cos4θ). ① 而①式右边=tan 2θ(1+cos4θ+sin4θ)=θθ2cos 2sin(2cos 22θ+2sin2θcos2θ)=2sin2θcos2θ+2sin 22θ =sin4θ+1-cos4θ=左边.所以①式成立,原式得证. 例10 求证:︒=︒-︒10sin 3240cos 140sin 322. 思路分析:由于分母是三角函数值平方的形式,通分后转化成3cos 240°-sin 240°,按平方差公式展开得(3cos40°+sin40°)(3cos40°-sin40°),恰好是两个辅助角公式的形式,可运用三角函数的和差公式求值;此外,也可对它的分母降幂换倍角进行化简. 证明:左边=︒•︒︒-︒︒+︒=︒︒︒-︒40cos 40sin )40sin 40cos 3)(40sin 40cos 3(40cos 40sin 40sin 40cos 32222222)40cos 40sin 2()40sin 2140cos 23(2)40sin 2140cos 23(24︒︒︒-︒⨯︒+︒⨯=︒︒︒-︒︒︒︒+︒︒=80sin )40sin 60cos 40cos 60)(sin 40sin 60cos 40cos 60(sin 162︒︒-︒︒+︒=80sin )4060sin()4060sin(162 ︒=︒︒︒⨯=︒︒=︒︒︒=10sin 3210cos 10cos 10sin 21680sin 20sin 1680sin 20sin 100sin 162=右边, 所以原式成立.方法归纳 对于三角函数式的化简、求值和证明,可从角的角度、运算的角度或函数名称的角度去考虑,其中通过通分,提取公因式、约分、合并同类项等运算的手法去化简是非常必要的.例11 已知3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:cos(α+2β)=0.思路分析:从求证的结论看,cos(α+2β)的展开式中含有cosα、cos2β、sinα、sin2β这样的函数值.由已知条件结合倍角公式的特点,恰好能转化出cos2β、sin2β这样的函数值.证明:由3sin 2α+2sin 2β=1,得1-2sin 2β=3sin 2α,∴cos2β=3sin 2α. 又∵sin2β=23sin2α, ∴cos(α+2β)=cosαcos2β-sinαsin2β=cosα·3sin 2α-sinα·23sin2α=23sinαsin 2α-23sinαsin2α=0.方法归纳 首先观察条件与结论的差异,从解决某一差异入手.确定从结论开始,通过变换将已知条件代入得出结论;或通过变换已知条件得出结论;或同时将条件与结论变形,直到找到它们间的联系.如果上述方法都难奏效的话,可采用分析法;如果已知条件含有参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法,等等. 问题•探究 材料信息探究问题 倍角和半角公式:sinα=2tan12tan22αα+,cosα=2tan12tan 122αα+-,tanα=2tan12tan 22αα-,这组公式称为“万能公式”,那么“万能公式”是怎样来的?它真的是“万能”的吗?探究过程:万能公式是一组用tan2α来表示sinα、cosα和tanα的关系式. 这组公式可以利用二倍角公式推导,其中正切tanα=2tan 12tan22αα-,可以由倍角公式直接获得;正弦、余弦只要在倍角公式中添加分母,再分子、分母同除以cos 22α可得: 2tan 12tan22cos 2sin 2cos 2sin 22cos 2sin 2sin 222ααααααααα+=+==, 2tan 12tan 12cos 2sin 2sin 2cos 2sin 2cos cos 22222222ααααααααα+-=+-=-=. 这组“万能公式”为一类三角函数的求值提供了一座方便可行的桥梁,如要计算cosα或sin(α+β)的值,可以先设法求得tan2α或2tan βα+的值.由于公式中涉及角的正切,所以使用时要注意限制条件,即要保证式子有意义.探究结论:所谓的“万能”,是说不论角α的哪一种三角函数,都可以表示成tan 2α的有理式,这样就可以把问题转化为以tan 2α为变量的“一元有理函数”,即如果令tan 2α=t ,则sinα、cosα和tanα均可表达为关于t 的分式函数,这就实现了三角问题向代数问题的转化,为三角问题用代数方法求解提供了一条途径.如tan15°+cot15°=tan15°+=︒+︒=︒15tan 115tan 15tan 12430sin 2115tan 15tan 222=︒=+︒︒,就较方便的解决了问题.再如求函数2sin cos +=x x y 的值域.令t x =2tan ,则t∈R ,利用万能公式有sinx=212t t +,cosx=2211t t +-,所以=+++-=21211222tt t t y 222221t t t ++-,由此可以建立关于t 的一次或二次函数(2y+1)t 2+2yt+2y-1=0,进一步分类讨论可得函数的值域.。
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A必修4 (1)
类型二 逆用公式化简与求值
2 例2 (1)sin(70°-x)cos(25°-x)-cos(70°-x)sin(155°+x)= 2 .
解析 ∵(20°+x)+(70°-x)=90°, (25°-x)+(155°+x)=180°, ∴原式=cos(20°+x)cos(25°-x)-cos[90°-(20°+x)]·sin[180°
∴T=2ωπ=2π,值域[-2,2].
由-π2+2kπ≤x-π6≤π2+2kπ 得,递增区间[-π3+2kπ,23π+2kπ],k∈Z.
解析答案
类型三 公式的变形应用 例 3 已知 sin(α+β)=12,sin(α-β)=13,求ttaann αβ的值.
解 ∵sin(α+β)=12,∴sin αcos β+cos αsin β=12.
=
cos 20°
=cosc2o0s°s2i0n°30°=sin 30°=12.
重点难点 个个击破
解析答案
(2)若 sin34π+α=153,cosπ4-β=35,且 0<α<π4<β<34π,求 cos(α+β)的值. 解 ∵0<α<π4<β<34π, ∴34π<34π+α<π,-π2<π4-β<0.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 两角和的余弦公式
思考 如何由两角差的余弦公式得到两角和的余弦公式?
答 用-β代换cos(α-β)=cos αcos β+sin αsin β便可得到.
公式 简记符号
cos(α+β)=
cos αcos β-sin αsin β Cα+β
使用条件
方法一
原式=2cosπ3sin
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式(二)课堂导学三点剖析1.二倍角公式在证明题中的应用【例1】 求证:x x cos 22sin (1+tanx·tan 2x )=tanx. 思路分析:本题的目标是把等式的左端统一成角x 的正切函数.可能用的公式有sin2x=2sinxcosx ,tan 2x =x x x x x x x sin cos 12cos 2sin 22sin 22cos 2sin2-==. 证法1:左端=x x x cos 2cos sin 2(1+xx x x sin cos 1cos sin -•) =sinx (1+xx cos cos 1-) =xx cos sin =tanx=右端. 证法2:左端=x x x x x x x x x x x x x x x cos sin 2tan 2cos cos 2sin cos 2cos sin 2)2tan(2tan tan cos 22sin =••=--• =x x cos sin =tanx=右端. 温馨提示证明恒等式就是要根据所证等式两端的特征(结构、名称、角度等)来选择最佳方法,本题就是抓住左右两端的次数差异作为突破口,使问题得以解决.2.二倍角公式在化简题中的应用【例2】 已知函数f (x )=cos 4x-2sinxcosx-sin 4x.(1)求f (x )的最小正周期;(2)若x∈[0,2π],求f (x )的最大值,最小值. 解:(1)因为f (x )=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x )(cos 2x-sin 2x )-sin2x =cos2x-sin2x=2cos (2x+4π),所以f (x )的最小正周期T=22π=π. (2)因为0≤x≤2π,所以4π≤2x+4π≤π45. 当2x+4π=4π时,cos (2x+4π)取得最大值22; 当2x+4π=π时,cos (2x+4π)取得最小值-1. 所以f (x )在[0,2π]上的最大值为1, 最小值为2-.温馨提示(1)将cos2x-sin2x 变形为sin (4π-2x ),也会有同样的结果; (2)像这类高次三角函数,首先利用倍角公式通过降幂化为y=Asin (ωx+φ)或y=Acos (ωx+φ)(A ,ω,φ均为常数,A >0)的形式,然后再求周期和最值.3.公式的综合、灵活运用【例3】 已知函数f (x )=3-sin 2x+sinxcosx (1)求f (625π)的值; (2)设α∈(0,π),f (2α)=41-23,求sinα的值 解:(1)∵sin 625π=21,cos 625π=23, ∴f(625π)=-3sin 2625π+sin 625πcos 625π=0 (2)f (x )=23cos2x-23+21sin2x ∴f(2α)=23cos α+21sin α-23=41-23, 16sin 2α-4sin α-11=0解得sin α=8531±. ∵α∈(0,π),∴sinα>0故sinα=8531+ 温馨提示要注意公式变形的重要性,不能死记公式,更不能只会正用,同时逆用、变形也要学会只有灵活运用公式,才能灵活解决问题各个击破类题演练1求证:3+cos4α-4cos2α=8sin 4α.证法1:∵左边=2+1+cos4α-4cos2α=2+2cos 22α-4cos2α=2(cos 22α-2cos2α+1)=2(cos2α-1)2=2(-2sin 2α)2=8sin 4α=右边.∴等式成立.证法2:右边=2×4sin 4α=2(1-cos2α)2=2(1-2cos2α+cos 22α)=2-4cos2α+2cos 22α =2-4cos2α+1+cos4α=3+cos4α-4cos2α=左边.∴等式成立.变式提升1 求证:.tan 14cos 4sin 1tan 24cos 4sin 12θθθθθθ-++=-+ 证明:左边=θθθtan 24sin )4cos 1(+- =θθθθθcos sin 22cos 2sin 22sin 22+=θθθθθsin sin cos 2)2cos 2(sin 2+ =2cos 2θ(sin2θ+cos2θ) 右边=θθθ2tan 14sin )4cos 1(-++ =θθθθθθ2222cos sin cos 2cos 2sin 22cos 2•-+ =θθθθθ2cos 2cos )2sin 2(cos 2cos 2•+ =2cos 2θ(sin2θ+cos2θ)∴左边=右边,故等式成立.类题演练2设函数f (x )=sin 2x+3sinxcosx+α, (1)写出函数f (x )的单调递增区间;(2)求f (x )的最小正周期.解:(1)f (x )=2322cos 1+-x sin2x+a =23sin2x-21cos2x+a+21 =sin (2x-6π)+a+21, 2k π-2π≤2x -6π≤2kπ+2π,k∈Z , k π-6π≤x≤kπ+3π,k∈Z , ∴f(x )的单调递增区间是[kπ-6π,kπ+3π],k∈Z (2)T=222πωπ==π, ∴f(x )的最小正周期为π.变式提升2已知函数y=sin2x-2(sinx+cosx )+a 2设t=sinx+cosx ,t 为何值时,函数y 取得最小值;解:∵t=sinx+cosx=2sin (x+4π),-2≤t≤2, ∴t 2=1+2sinxcosx=1+sin2x ,sin2x=t 2-1,∴y=t 2-1-2t+a 2=(t-1)2+a 2-2∵-2≤t≤2,∴当t=1时,函数y 取得最小值a 2-2类题演练3 已知α为第二象限角,且sinα=415,求12cos 2sin )4sin(+++ααπα的值. 解:∵sinα=415,α为第二象限角,∴cosα=-41. ∴sin2α=2sinαcosα=815-. ααπαπαααπα2cos 22sin 4sin cos 4cos sin 12cos 2sin )4sin(++=+++ =151230)41(28152241224152--=-⨯+-⨯-⨯ =.2151)115(2-=--变式提升3函数f (x )=sin 2(x+4π)-sin 2(x-4π)是( ) A.周期为π的偶函数 B.周期为π的奇函数C.周期为2π的偶函数D.周期为2π的奇函数解析:f (x )=2)22cos(12)22cos(1ππ---+-x x =22sin 122sin 1x x --+=sin2x.∴T=22 =π,f(x )为奇函数. 答案:B。
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、余弦、正切公式
3.1.3 二倍角的正弦、余弦、正切公式互动课堂疏导引导1.二倍角公式(1)二倍角公式的正弦、余弦、正切公式sin2α=2sin αcos α,(S 2α)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,(C 2α)tan2α=αα2tan 1tan 2-,(T 2α) 这组公式要记准、记熟、用活.下面给出这组公式的推导:∵sin(α+β)=sin αcos β+cos αsin β,当α=β时,有sin2α=2sin αcos α.∵cos(α+β)=cos αcos β-sin αsin β,当α=β时,有cos2α=cos 2α-sin 2α=2cos 2α-1(sin 2α=1-cos 2α)=1-2sin 2α(cos 2α=1-sin 2α).∵tan(α+β)=βαβαtan tan 1tan tan -+, 当α=β时,有tan2α=αα2tan 1tan 2-. 公式S 2α、C 2α中,α∈R ,公式T 2α中的α≠21k π+4π且α≠k π+2π (k∈Z ). 从上面的公式推导中可以看到二倍角公式是和角公式的特殊情况.(2)关于倍角公式应注意的几个问题:①推导思路:在正弦、余弦、正切的和角公式中,令两角相等,就得相应倍角公式.由此,倍角公式是和角公式的特例.②公式的适用范围:公式S 2α、C 2α中,角α可以为任意角,但公式T 2α只有当α≠2π+k π及α≠4π+2πk (k∈Z )时才成立,否则不成立.当α=2π+k π,k∈Z ,虽然tan α的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式.③对于“二倍角”要有广义理解,如4α是2α的2倍;α作为2α的2倍;2α作为4α的2倍;3α作为23α的2倍;3α作为6α的2倍等. 2.二倍角公式的变形(1)公式逆用2sin αcos α=sin2α,sin αcos α=21sin2α,cos α=ααsin 22sin 2,cos 2α-sin 2α=cos2α,αα2tan 1tan 2-=tan2α. (2)公式的逆向变换及有关变形1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,1+cos2α=2cos 2α,1-cos2α=2sin 2α,cos 2α=22cos 1α+,sin 2α=22cos 1α-. 活学巧用1.已知sin α+cos α=31,且0<α<π,求sin2α、cos2α、tan2α的值. 解析:方法一:∵sin α+cos α=31,∴sin 2α+cos 2α+2sin αcos α=91.∴sin2α=98-且sin αcos α=94-<0. ∵0<α<π,sin α>0,∴cos α<0.∴sin α-cos α>0.∴sin α-cos α=3172sin 1)cos (sin 2=-=-ααα. ∴cos2α=cos 2α-sin 2α=(sin α+cos α)(cos α-sin α)=31×(-317)=917-. tan2α=171782cos 2sin =αα. 方法二:∵sin α+cos α=31,平方得sin αcos α=94-, ∴sin α、cos α可看成方程x 2-31x 94-=0的两根, 解方程x 2-31x 94-=0,得x 1=6171+,x 2=6171-.∵α∈(0,π),∴sin α>0.∴sin α=6171+, cos α=6171-.∴sin2α=2sin αcos α=98-,cos2α=cos 2α-sin 2α=917-,tan2α=171782cos 2sin =αα. 答案:sin2α=98-,cos2α=917-,tan2α=17178. 2.已知函数f(x)=cos 4x-2sinxcosx-sin 4x.(1)求f(x)的最小正周期;(2)若x∈[0, 2π],求f(x)的最大值、最小值. 解析:f(x)=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x =cos2x-sin2x=2cos(2x+4π). (1)T=22π=π. (2)0≤x≤2π,0≤2x≤π,4π≤2x+4π≤45π,-1≤cos(2x+4π)≤22,∴-2≤2cos(2x+4π)≤1.∴f(x)max =1,f(x)min =-2.答案:(1)π;(2)f(x)max =1,f(x)min =-2.3.已知函数y=21cos 2x+23sinxcosx+1,x∈R .当函数y 取得最大值时,求自变量x 的集合. 解析:y=21cos 2x+23sinxcosx+1=41(2cos 2x-1)+41+43(2sinxcosx)+1 =21(cos2xsin 6π+sin2xcos 6π)+45=21sin(2x+6π)+45.y 取得最大值必须且只需2x+6π=2π+2k π,k∈Z ,即x=6π+k π,k∈Z .所以量x 的集合为{x|x=6π+k π,k∈Z }.。
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A版必修4
2
2
(2) 3 sin x cos x.
解:(1)1 cos x 3 sin x (2) 3 sin x cos x
2
2
sin 30 cos x cos 30 sin x
2( 3 sin x 1 cos x)
2
2
sin(30 x);
2(sin x cos 30 cos x sin 30 )
解:原式 sin(72 18 ) sin 90 1.
第十三页,共31页。
例1 已知 sin 3 , 是第四象限角,求 sin( ),
5
4
cos( )的值.
4
解:由sin=-
3 5
,
是第四象限角,得
cos 1 sin2 1 ( 3)2 4 , 55
于是有sin( ) sin cos cos sin
第七页,共31页。
探究(tànjiū)二:两角和与差的正弦公式
1.利用哪些公式可以实现正弦(zhèngxián)、余弦的互 化?
提示(tíshìs)i:n cos( ) 2
sin(
)
cos
2
(
)
第八页,共31页。
2.由两角和与差的余弦公式如何推导两角和与 差的正弦(zhèngxián)公式?
(2) 2 cos x 6 sin x.
解:(1)原式 (2 2 sin x 2 cos x)
2
2
2sin(x ).
4
(2)原式 2 (2 1 cos x 3 sin x)
2
2
2 2 sin( x).
6
第二十一页,共31页。
1.(2015·四川高考)下列函数中,最小正周期为π且图象关
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.1 两角差的余弦公
-1665,得 sin(α+ β )=6635,又 sin α=45,所以 cos α =35,
所以 cos β=cos[(α+ β )-α]= cos(α+ β )cos α+sin(α+ β )sin α= -1665×35+6635×45=230245.
[迁移探究] (变换条件)若把本例中的“α, β∈
cos(83°-23°)=cos 60°=12.
1 (2)2cos
105°+
3 2 sin
105°=
cos 60°cos 105°+sin 60°sin 105°=
cos(60°-105°)=cos(-45°)=
2 2.
答案:(1)B
(2)
2 2
归纳升华 两角差的余弦公式常见题型及解法
1.两特殊角之差的余弦值,利用两角差的余弦公式 直接展开求解.
2.cos 65°cos 35°+sin 65°sin 35°( ) A.cos 100° B.sin 100°
3
1
C. 2
D.2
解析:cos 65°cos 35°+sin 65°sin 35°=cos(65°-35°)
=cos 30°= 23.
答案:C
3.cos(-15°)的值是( )
6- 2 A. 2
0,π2”改为“α, β∈π2,π”,求 cos β 的值. 解:因为 α, β∈π2,π,所以 π<α+ β <2π, 由 cos(α+ β )=-1665,得 sin(α+ β )=-6635, 又 sin α=45,
所以 cos α=-35, 所以 cos β=cos[(α+ β )-α]= cos(α+ β)cos α+sin(α+ β )sin α= -1665×-35+-6635×45=-230245.
高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式第32课时二倍角的正弦余弦正切公式1作
1 2
sin22θ,又cos2θ=-34,∴sin22θ=1-cos22θ=176.
∴原式=1-12sin22θ=1-12×176=2352.
π 11.函数f(x)=sin22x-4π的最小正周期是 2 .
解析:f(x)=1-cos24x-π2=12-12sin4x, ∴T=24π=2π.
三、解答题(本大题共2小题,共25分.解答应写出文字说 明,证明过程或演算步骤)
一、选择题(每小题5分,共35分)
1.sin22°30′cos22°30′等于( A )
2 A. 4 C. 2
2 B. 2 D.1
2.已知α为第二象限角,sinα=35,则sin2α=( A )
A.-2245
B.-1225
12
24
C.25
D.25
解析:∵sinα=
3 5
且α为第二象限角,∴cosα=-
=sin88s0i°nc2o0s°80°=116·ssiinn12600°°=116.
13.(13分)已知cosα=17,cos(α-β)=1134,且0<β<α<2π.
(1)求tan2α的值.
(2)求β. 解:(1)由cosα=17,0<α<π2,
得sinα= 1-cos2α=
1-172=4
7
3 .
1-sin2α =
-45.
∴sin2α=2sinαcosα=-2245,故选A.
3.已知角α的终边与单位圆x2+y2=1交于点P cos2α等于( A )
12,y0
,则
A.-12
1 B.2
C.-
3 2
D.1
解析:点P12,y0在单位圆上,∴x=12,y=y0,r=1. ∴cosα=12,cos2α=2cos2α-1=-12.
高中数学第三章三角恒等变换第1节两角和与差的正弦、余弦和正切公式(第3课时)二倍角的正弦、余弦、正切公
高中数学第三章三角恒等变换第1节两角和与差的正弦、余弦和正切公式(第3课时)二倍角的正弦、余弦、正切公式课下能力提升(二十四)(含解析)新人教A 版必修4课下能力提升(二十四)[学业水平达标练]题组1 化简求值 1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B.cos 215°-sin 215° C .2sin 215° D.sin 215°+cos 215° 解析:选B cos 215°-sin 215°=cos 30°=32. 2.cos 275°+cos 215°+cos 75°cos 15°=( ) A.62 B.32 C.54 D .1+34解析:选C 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=1+14=54.3.求值:sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°.解:∵sin 50°(1+3tan 10°) =sin 50°cos 10°+3sin 10°cos 10°=sin 50°2sin 40°cos 10°=1,cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°, ∴sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2. 题组2 条件求值4.若tan α=3,则sin 2αcos 2α的值等于( ) A .2 B .3 C .4 D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 5.已知sin 2α=23,则sin 2⎝ ⎛⎭⎪⎫α+π4=( )A.16B.12C.23D.56解析:选D sin 2⎝ ⎛⎭⎪⎫α+π4=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π42=1+sin 2α2=56.6.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=55,则tan ⎝ ⎛⎭⎪⎫2α+π4=( )A .-43 B.34 C .7 D .-17解析:选D 因为α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=55,所以cos α=-255,所以tan α=-12,由二倍角公式得tan 2α=2tan α1-tan 2α=-43,tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+11-tan 2α=-17. 7.已知角α在第一象限且cos α=35,则1+2cos ⎝⎛⎭⎪⎫2α-π4sin ⎝ ⎛⎭⎪⎫α+π2=( )A.25B.75C.145 D .-25解析:选C 因为cos α=35且α在第一象限,所以sin α=45.所以cos 2α=cos 2α-sin 2α=-725,sin 2α=2sin αcos α=2425,原式=1+2⎝⎛⎭⎪⎫cos 2αcos π4+sin 2αsin π4cos α=1+cos 2α+sin 2αcos α=145.8.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.解:(1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)sin 2α=2sin αcos α=-2425.cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725. 题组3 倍角公式的综合应用9.函数f (x )=2cos 2x +sin 2x 的最小值是________. 解析:f (x )=1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )的最小值为1- 2. 答案:1- 210.已知0<x <π2,sin 2 x 2+3sin x 2cos ⎝ ⎛⎭⎪⎫π+x 2=-110,求tan ⎝⎛⎭⎪⎫2x +π3的值.解:∵sin 2x 2+3sin x2cos ⎝ ⎛⎭⎪⎫π+x 2=1-cos x 2-3sin x 2cos x2=12-⎝ ⎛⎭⎪⎫32sin x +12cos x =12-sin ⎝⎛⎭⎪⎫x +π6,∴由已知得12-sin ⎝⎛⎭⎪⎫x +π6=-110,∴sin ⎝⎛⎭⎪⎫x +π6=35.∵0<x <π2,结合sin ⎝⎛⎭⎪⎫x +π6=35易知π6<x +π6<π2.∴cos ⎝ ⎛⎭⎪⎫x +π6=45,∴tan ⎝⎛⎭⎪⎫x +π6=34.∴tan ⎝ ⎛⎭⎪⎫2x +π3=2tan ⎝ ⎛⎭⎪⎫x +π61-tan 2⎝⎛⎭⎪⎫x +π6=2×341-916=247. [能力提升综合练]1.sin 65°cos 25°+cos 65°sin 25°-tan 222.5°2tan 22.5°=( )A.12B .1 C. 3 D .2 解析:选B 原式=sin 90°-tan 222.5°2tan 22.5°=1-tan 222.5°2tan 22.5°=1tan 45°=1.2.已知sin 2α=23,则tan α+1tan α等于( )A .1B .2C .4D .3解析:选D tan α+1tan α=sin αcos α+cos αsin α=112sin 2α=3.3.已知cos 2x2cos ⎝ ⎛⎭⎪⎫x +π4=15,则sin 2x =( )A .-2425B .-45 C.2425 D.255解析:选A ∵cos 2x2cos ⎝ ⎛⎭⎪⎫x +π4=15,∴cos 2x -sin 2x cos x -sin x =15,∴cos x +sin x =15,∴1+sin2x =125,∴sin 2x =-2425.4.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎪⎫π2-x 满足f ⎝ ⎛⎭⎪⎫-π3=f (0),当x ∈⎣⎢⎡⎦⎥⎤π4,11π24时,f (x )的值域为( )A .[1,2]B .[2, 3 ]C .[3,2]D .[2,2]解析:选D f (x )=a 2sin 2x -1+cos 2x 2+1-cos 2x2=a2sin 2x -cos 2x ,因为f ⎝ ⎛⎭⎪⎫-π3=f (0),所以a =23, 所以f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6, x ∈⎣⎢⎡⎦⎥⎤π4,11π24时,2x -π6∈⎣⎢⎡⎦⎥⎤π3,3π4,f (x )∈[2,2].故选D. 5.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.解析:设A 是等腰△ABC 的顶角,则cos B =23,sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫232=53. 所以sin A =sin(180°-2B )=sin 2B =2sin B cos B =2×53×23=459. 答案:4596.已知cos 2α=13,π<2α<2π,求1+sin α-2cos 2α23sin α+cos α的值.解:原式=sin α-cos α3sin α+cos α,又∵cos 2α=13,∴2cos 2α-1=13,∴cos 2α=23,3π2<2α<2π,∴3π4<α<π,∴⎩⎪⎨⎪⎧cos α=-63,sin α=33,∴原式=5+427.7.设函数f (x )=53cos 2x +3sin 2x -4sin x cos x . (1)求f ⎝⎛⎭⎪⎫5π12;(2)若f (α)=53,α∈⎝ ⎛⎭⎪⎫π2,π,求角α. 解:f (x )=53cos 2x +3sin 2x -4sin x cos x =53cos 2x +53sin 2x -2sin 2x -43sin 2x =53-2sin 2x -23(1-cos 2x ) =33-2sin 2x +23cos 2x =33-4⎝ ⎛⎭⎪⎫sin 2x ×12-cos 2x ×32=33-4⎝⎛⎭⎪⎫sin 2x cos π3-cos 2x sin π3=33-4sin ⎝ ⎛⎭⎪⎫2x -π3. (1)f ⎝⎛⎭⎪⎫5π12=33-4sin ⎝⎛⎭⎪⎫5π6-π3=33-4sin π2=33-4.(2)由f (α)=53,得sin ⎝ ⎛⎭⎪⎫2α-π3=-32, 由α∈⎝ ⎛⎭⎪⎫π2,π,得2α-π3∈⎝ ⎛⎭⎪⎫2π3,5π3,∴2α-π3=4π3,α=5π6.。
三角恒等变换两角和与差的正弦余弦正切公式
三角恒等变换两角和与差的正弦余弦正切公式三角恒等变换是数学中用于简化三角函数之间关系的一组等式,其中最常见的是两角和与差的公式。
这些公式允许我们在求解复杂的三角函数问题时,将其转化为更简单的形式。
在本文中,我们将讨论三角恒等变换中的两角和与差的正弦、余弦和正切公式。
1.两角和与差的正弦公式:正弦是一个周期函数,其周期为2π。
两角和与差的正弦公式可以表示为:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)这个公式可通过欧拉公式得到,欧拉公式为:e^(ix) = cos(x) + isin(x)当x=a和x=b时,有:e^(ia) = cos(a) + isin(a)e^(ib) = cos(b) + isin(b)将这两个方程相乘,则得到:e^(ia)e^(ib) = (cos(a) + isin(a))(cos(b) + isin(b))利用乘法展开,则有:e^(ia)e^(ib) = (cos(a)cos(b) - sin(a)sin(b)) + i(cos(a)sin(b) + sin(a)cos(b))将该方程的实部和虚部分别与常数i相乘,则得到:i(e^(ia)e^(ib)) = i((cos(a)cos(b) - sin(a)sin(b)) +i(cos(a)sin(b) + sin(a)cos(b)))移项后得到:e^(i(a+b)) = (cos(a)cos(b) - sin(a)sin(b)) + i(cos(a)sin(b)+ sin(a)cos(b))可以观察到,右侧的实部与虚部分别等于sin(a + b)和cos(a + b),因此有:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)这就是两角和与差的正弦公式。
2.两角和与差的余弦公式:余弦是一个周期函数,其周期也为2π。
高中数学第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.2两角和与差的正弦、余弦、正切(第2
要点 1 和角正切公式 tan(α+β)=1t-anαtan+α ttaannββ . 要点 2 差角正切公式 tan(α-β)=1t+anαtan-α ttaannββ .
要点 3 公式的变形 tanα +tanβ =tan(α+β)(1-tanα tanβ ); tanα -tanβ =tan(α-β)(1+tanα tanβ ). 要点 4 公式 T(α±β)中的符号(±)规律可简记为“分子同,分母 反”
这两项.
解析 由题意,得
cos(α+β)=cosαcosβ-sinαsinβ=13,① cos(α-β)=cosαcosβ+sinαsinβ=15,② ①+②,得 2cosαcosβ=185,∴cosαcosβ=145. ①-②,得 2sinαsinβ=-125,∴sinαsinβ=-115. ∴tanαtanβ=csoinsααscionsββ=-4115=-14.
=tan 3 [1-tan( 6 -θ)tan( 6 +θ)]+ 3tan( 6 -θ)tan( 6 +θ)
π
π
π
π
= 3- 3tan( 6 -θ)tan( 6 +θ)+ 3tan( 6 -θ)tan( 6 +θ)= 3.
②原式= 33(tan20°+tan40°)+tan40°·tan20°
= 33tan60°(1-tan20°tan40°)+tan40°tan20°
1- 3tan75° (5) 3+tan75° .
【解析】 (1)原式=tan(45°+30°)+tan(45°-30°)
=11+-ttaann3300°°+11-+ttaann3300°°
1+ =
33+1-
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.1 两角差的余弦公
3.1.1 两角差的余弦公式更上一层楼基础•巩固1cos345°的值等于( ) A.462- B.426- C.462+ D.462+- 思路分析:cos345°=cos(-15°+360°)=cos(-15°)=cos15°=cos(45°-30°) =cos45°cos30°+sin45°sin30°=42621222322+=⨯+⨯. 答案:C2.cos75°cos15°-sin75°sin195°的值为( ) A.0 B.21 C.23 D.21- 思路分析:原式=cos75°cos15°-sin75°sin(180°+15°)=cos75°cos15°+sin75°sin15°=cos(75°-15°)= cos60°=21. 答案:B3.已知cos α=135,α∈(23π,2π),则cos(α-4π)的值等于( ) A.2625 B.1322- C.2627- D.1323 思路分析:∵cos α=135,α∈(23π,2π),∴sin α=1312)135(1cos 122=--=--α. ∴cos(α-4π)=cos αcos 4π+sin αsin 4π=262722)1312(22135-=⨯-+⨯. 答案:C 4.已知cos α=53,cos(α+β)=135-,α∈(0,2π),α+β∈(0,π),则cos β的值是( ) A.6563- B.6533- C.6533 D.6563 思路分析:∵cos α=53,α∈(0,2π), ∴sin α=54. 又∵cos(α+β)=135-,α+β∈(0,π),∴sin(α+β)=1312)135(1)(cos 122=--=+-βα. ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α653354131253)135(=⨯=⨯-=. 答案:C5.已知sin(6π+α)=41,则cos α+3sin α的值为( ) A.41- B.21 C.2 D.-1 思路分析:cos α+3sin α=2(21cos α+23sin α)=2cos(3π-α)=2sin [2π-(3π-α)] =2sin(6π+α)=21412=⨯. 答案:B综合•应用6.y=sin α-cos(6π-α)的最大值为__________. 思路分析:y=sin α-cos(6π-α)=sin α-cos 6πcos α+sin 6πsin α )32cos(3)cos 21sin 23(3cos 23sin 23πααααα+=-=-=. 所以函数的最大值是3.答案:37.已知sin α=1715,cos β=135-,且α、β都是第二象限角,求cos(α-β)的值. 解:由sin α=1715,α为第二象限角,∴cos α=178)1715(1sin 122-=--=--α. 又由cos β=-135,β为第二象限角, ∴sin β=1312)135(1cos 122=-=-β. ∴cos(α-β)=cos αcos β+sin αsin β=22122013121715)135()178(=⨯+-⨯-. 回顾•展望8.已知cos α=71,cos(α+β)=1411-,且α、β∈(0,2π),求cos β的值. 解:由cos α=71,α∈(0,2π),∴sin α=734)71(1cos 122=-=-α. 又cos(α+β)=1411-,0<α+β<π, ∴sin(α+β)=1435)1411(1)(cos 122=--=+-βα. ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=219849981160143571)1411(==-⨯+⨯-9.(2006天津统考) ︒︒-︒20cos 20sin 10cos 2 思路分析:这道题里出现的10°、20°角直观上看似没有联系,但是两者的和角是30°这个特殊角,所以把10°等价代换成30°-20°继而就可以用两角差的公式化简. 解:︒︒-︒-︒=︒︒-︒20cos 20sin )2030cos(220cos 20sin 10cos 2 320cos 20sin 20sin 20cos 3=︒︒-︒+︒= 10.(2006陕西高考) cos43°cos77°+sin43°cos167°的值为__________.思路分析:cos43°cos77°+sin43°cos167° =cos43°cos77°+sin43°sin77°=cos120°=21-. 答案:21-。
高中数学第三章三角恒等变换第1节两角和与差的正弦余弦和正切公式第3课时二倍角的正弦余弦正切公式教案含解
第3课时二倍角的正弦、余弦、正切公式[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P132~P134的内容,回答下列问题.(1)在公式C(α+β),S(α+β)和T(α+β)中,若α=β,公式还成立吗?提示:成立.(2)在上述公式中,若α=β,你能得到什么结论?提示:cos 2α=cos2α-sin2α,sin 2α=2sin αcos α,tan 2α=2tan α1-tan2α. 2.归纳总结,核心必记[问题思考](1)S 2α,C 2α,T 2α中角α的取值范围分别是什么?提示:S 2α,C 2α中α∈R ,T 2α中α≠k π+π2且α≠k π2±π4.(2)能应用tan α表示sin 2α,cos 2α吗?提示:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α.[课前反思](1)二倍角的正弦公式: ;(2)二倍角的余弦公式: ;(3)二倍角的正切公式: .知识点1化简求值讲一讲1.求下列各式的值:(1)sin π12cos π12;(2)1-2sin 2750°;(3)2tan 150°1-tan 2150°;(4)1sin 10°-3cos 10°; (5)cos 20°cos 40°cos 80°.[尝试解答] (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3. (4)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4.(5)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.类题·通法化简求值的四个方向三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.练一练1.化简:(1)11-tan θ-11+tan θ;(2)2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.解:(1)原式=1+tan θ-1-tan θ1-tan θ1+tan θ=2tan θ1-tan 2θ=tan 2θ. (2)原式=cos 2α2tan ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π2-π4-α=cos 2α2tan ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α =cos 2αsin ⎝ ⎛⎭⎪⎫2×π4-2α=cos 2αcos 2α=1.知识点2条件求值讲一讲2.(1)已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos2α+π4的值; (2)已知α∈⎝ ⎛⎭⎪⎫-π2,π2,且sin 2α=sin ⎝ ⎛⎭⎪⎫α-π4,求α.[尝试解答] (1)∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝ ⎛⎭⎪⎫α+π4>0,∴3π2<α+π4<7π4.∴sin ⎝ ⎛⎭⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin ⎝ ⎛⎭⎪⎫2α+π2=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4 =2×⎝ ⎛⎭⎪⎫-45×35=-2425,sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=1-2cos 2⎝⎛⎭⎪⎫α+π4=1-2×⎝ ⎛⎭⎪⎫352=725.∴cos ⎝⎛⎭⎪⎫2α+π4=22cos 2α-22sin 2α=22×⎝ ⎛⎭⎪⎫-2425-725=-31250. (2)∵sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π4-1,sin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫π4-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫π4+α,∴原式可化为1-2cos 2⎝ ⎛⎭⎪⎫α+π4=-cos ⎝ ⎛⎭⎪⎫α+π4,解得cos ⎝ ⎛⎭⎪⎫α+π4=1或cos ⎝ ⎛⎭⎪⎫α+π4=-12.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α+π4∈⎝ ⎛⎭⎪⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12.类题·通法解决条件求值问题的方法解决条件求值问题,要注意寻找已知式与未知式之间的联系,有两个观察方向: (1)有方向地将已知式或未知式化简,使关系明朗化;(2)寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.练一练2.(1)已知cos α=13,则cos 2α等于( )A.13B.23 C .-79 D.79(2)设α是第四象限角,已知sin α=-35,则sin 2α,cos 2α和tan 2α的值分别为( )A .-2425,725,-247 B.2425,725,247C .-2425,-725,247 D.2425,-725,-247(3)已知tan α+1tan α=52,α∈⎝ ⎛⎭⎪⎫π4,π2,求cos 2α和sin ⎝⎛⎭⎪⎫2α+π4的值.解析:(1)cos 2α=2cos 2α-1=29-1=-79.(2)因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=725,tan 2α=sin 2αcos 2α=-247.(3)由tan α+1tan α=52,得sin αcos α+cos αsin α=52, 则2sin 2α=52,即sin 2α=45.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以2α∈⎝ ⎛⎭⎪⎫π2,π,所以cos 2α=-1-sin 22α=-35,sin ⎝ ⎛⎭⎪⎫2α+π4=sin 2α·cos π4+cos 2α·sin π4=45×22-35×22=210. 答案:(1)C (2)A知识点3倍角公式的综合应用讲一讲3.已知向量a =(sin A ,cos A ),b =(3,-1),a ·b =1,且A 为锐角. (1)求角A 的大小;(2)求函数f (x )=cos 2x +4cos A sin x (x ∈R )的值域. [尝试解答] (1)由题意得a ·b =3sin A -cos A =1, 2sin ⎝ ⎛⎭⎪⎫A -π6=1,sin ⎝ ⎛⎭⎪⎫A -π6=12. 由A 为锐角得A -π6=π6,所以A =π3.(2)由(1)知cos A =12,所以f (x )=cos 2x +2sin x =1-2sin 2x +2sin x =-2⎝⎛⎭⎪⎫sin x -122+32. 因为x ∈R ,所以sin x ∈[-1,1], 因此,当sin x =12时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是⎣⎢⎡⎦⎥⎤-3,32.类题·通法二倍角公式的灵活运用(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. (2)公式的变形用:公式间有着密切的联系,这就要求思考时融会贯通,有目的的活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2, 1+cos 2α=2cos 2α,cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.练一练3.已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎪⎫π2,π,且f (α)=22,求α的值.解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x=cos 2x sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎪⎫4x +π4,所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22, 所以sin ⎝⎛⎭⎪⎫4α+π4=1. 因为α∈⎝ ⎛⎭⎪⎫π2,π, 所以4α+π4∈⎝ ⎛⎭⎪⎫9π4,17π4,即4α+π4=5π2.故α=9π16.[课堂归纳·感悟提升]1.本节课的重点是二倍角的正弦、余弦、正切公式,难点是公式的应用. 2.要掌握二倍角公式的三个应用 (1)解决化简求值问题,见讲1; (2)解决条件求值问题,见讲2; (3)倍角公式的综合应用,见讲3. 3.要牢记二倍角公式的几种变形 (1)sin 2x =cos ⎝⎛⎭⎪⎫π2-2x =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x=2cos 2⎝ ⎛⎭⎪⎫π4-x -1=1-2sin 2⎝ ⎛⎭⎪⎫π4-x ;(2)cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x=2sin ⎝⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ; (3)cos 2x =sin ⎝⎛⎭⎪⎫π2+2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x .课下能力提升(二十四)[学业水平达标练]题组1 化简求值 1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B.cos 215°-sin 215° C .2sin 215° D.sin 215°+cos 215° 解析:选B cos 215°-sin 215°=cos 30°=32. 2.cos 275°+cos 215°+cos 75°cos 15°=( ) A.62 B.32 C.54 D .1+34解析:选C 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=1+14=54.3.求值:sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°.解:∵sin 50°(1+3tan 10°) =sin 50°cos 10°+3sin 10°cos 10°=sin 50°2sin 40°cos 10°=1,cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°, ∴sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2. 题组2 条件求值4.若tan α=3,则sin 2αcos 2α的值等于( ) A .2 B .3 C .4 D .6 解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 5.已知sin 2α=23,则sin 2⎝ ⎛⎭⎪⎫α+π4=( )A.16B.12C.23D.56解析:选D sin 2⎝ ⎛⎭⎪⎫α+π4=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π42=1+sin 2α2=56.6.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=55,则tan ⎝ ⎛⎭⎪⎫2α+π4=( )A .-43 B.34 C .7 D .-17解析:选D 因为α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=55,所以cos α=-255,所以tan α=-12,由二倍角公式得tan 2α=2tan α1-tan 2α=-43,tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+11-tan 2α=-17. 7.已知角α在第一象限且cos α=35,则1+2cos ⎝⎛⎭⎪⎫2α-π4sin ⎝ ⎛⎭⎪⎫α+π2=( )A.25B.75C.145 D .-25解析:选C 因为cos α=35且α在第一象限,所以sin α=45.所以cos 2α=cos 2α-sin 2α=-725,sin 2α=2sin αcos α=2425,原式=1+2⎝⎛⎭⎪⎫cos 2αcos π4+sin 2αsin π4cos α=1+cos 2α+sin 2αcos α=145.8.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.解:(1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)sin 2α=2sin αcos α=-2425.cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725. 题组3 倍角公式的综合应用9.函数f (x )=2cos 2x +sin 2x 的最小值是________. 解析:f (x )=1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )的最小值为1- 2. 答案:1- 210.已知0<x <π2,sin 2 x 2+3sin x 2cos ⎝ ⎛⎭⎪⎫π+x 2=-110,求tan ⎝⎛⎭⎪⎫2x +π3的值.解:∵sin 2x 2+3sin x2cos ⎝ ⎛⎭⎪⎫π+x 2=1-cos x 2-3sin x 2cos x2=12-⎝ ⎛⎭⎪⎫32sin x +12cos x =12-sin ⎝⎛⎭⎪⎫x +π6,∴由已知得12-sin ⎝⎛⎭⎪⎫x +π6=-110,∴sin ⎝⎛⎭⎪⎫x +π6=35.∵0<x <π2,结合sin ⎝⎛⎭⎪⎫x +π6=35易知π6<x +π6<π2.∴cos ⎝ ⎛⎭⎪⎫x +π6=45,∴tan ⎝⎛⎭⎪⎫x +π6=34.∴tan ⎝ ⎛⎭⎪⎫2x +π3=2tan ⎝ ⎛⎭⎪⎫x +π61-tan 2⎝⎛⎭⎪⎫x +π6=2×341-916=247. [能力提升综合练]1.sin 65°cos 25°+cos 65°sin 25°-tan 222.5°2tan 22.5°=( )A.12B .1 C. 3 D .2 解析:选B 原式=sin 90°-tan 222.5°2tan 22.5°=1-tan 222.5°2tan 22.5°=1tan 45°=1.2.已知sin 2α=23,则tan α+1tan α等于( )A .1B .2C .4D .3解析:选D tan α+1tan α=sin αcos α+cos αsin α=112sin 2α=3.3.已知cos 2x2cos ⎝ ⎛⎭⎪⎫x +π4=15,则sin 2x =( )A .-2425B .-45 C.2425 D.255解析:选A ∵cos 2x2cos ⎝ ⎛⎭⎪⎫x +π4=15,∴cos 2x -sin 2x cos x -sin x =15,∴cos x +sin x =15,∴1+sin2x =125,∴sin 2x =-2425.4.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎪⎫π2-x 满足f ⎝ ⎛⎭⎪⎫-π3=f (0),当x ∈⎣⎢⎡⎦⎥⎤π4,11π24时,f (x )的值域为( )A .[1,2]B .[2, 3 ]C .[3,2]D .[2,2]解析:选D f (x )=a 2sin 2x -1+cos 2x 2+1-cos 2x2=a2sin 2x -cos 2x ,因为f ⎝ ⎛⎭⎪⎫-π3=f (0),所以a =23, 所以f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6, x ∈⎣⎢⎡⎦⎥⎤π4,11π24时,2x -π6∈⎣⎢⎡⎦⎥⎤π3,3π4,f (x )∈[2,2].故选D. 5.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.解析:设A 是等腰△ABC 的顶角,则cos B =23,sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫232=53. 所以sin A =sin(180°-2B )=sin 2B =2sin B cos B =2×53×23=459. 答案:4596.已知cos 2α=13,π<2α<2π,求1+sin α-2cos 2α23sin α+cos α的值.解:原式=sin α-cos α3sin α+cos α,又∵cos 2α=13,∴2cos 2α-1=13,∴cos 2α=23,3π2<2α<2π,∴3π4<α<π,∴⎩⎪⎨⎪⎧cos α=-63,sin α=33,∴原式=5+427.7.设函数f (x )=53cos 2x +3sin 2x -4sin x cos x . (1)求f ⎝⎛⎭⎪⎫5π12;(2)若f (α)=53,α∈⎝ ⎛⎭⎪⎫π2,π,求角α. 解:f (x )=53cos 2x +3sin 2x -4sin x cos x =53cos 2x +53sin 2x -2sin 2x -43sin 2x =53-2sin 2x -23(1-cos 2x ) =33-2sin 2x +23cos 2x =33-4⎝ ⎛⎭⎪⎫sin 2x ×12-cos 2x ×32=33-4⎝ ⎛⎭⎪⎫sin 2x cos π3-cos 2x sin π3 =33-4sin ⎝ ⎛⎭⎪⎫2x -π3. (1)f ⎝⎛⎭⎪⎫5π12=33-4sin ⎝ ⎛⎭⎪⎫5π6-π3=33-4sin π2=33-4.(2)由f (α)=53,得sin ⎝ ⎛⎭⎪⎫2α-π3=-32, 由α∈⎝ ⎛⎭⎪⎫π2,π,得2α-π3∈⎝ ⎛⎭⎪⎫2π3,5π3,∴2α-π3=4π3,α=5π6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章第一节两角和与差的正弦、余弦和正切公式第一课时本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.变换是数学的重要工具,也是数学学习的主要对象之一.在本册第一章,学生接触了同角三角函数公式.在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.本章内容安排按两条线进行,一条明线是建立公式,学习变换;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中.因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识.突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和(差)角公式,而且还特别关注公式推导过程中体现的数学思想方法.例如,在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用.另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,2α是α的二倍,4α是2α的二倍,这里蕴含着换元的思想”等,都是为了加强思想方法而设置的.两角和与差的正弦、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点”,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规律和通性通法上.教师在教学中,要注意控制好难度.因为近几年的高考中对三角部分的考查难度降低,但教材中部分习题却有一定难度,因此教师要把握好难度.整体设计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程.本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导;方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路 1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45°=22,cos30°=32,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢?③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C (α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何? ⑤如何正用、逆用、灵活运用C (α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cos α-cos β的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=32,而cos α-cos β=cos60°-cos30°=1-32,这一反例足以说明cos(α-β)≠cos α-cos β.让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cos α-cos β,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?如图1,设角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠POx =α-β.过点P 作PM 垂直于x 轴,垂足为M ,那么OM 就是角α-β的余弦线,即OM =cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM .过点P 作PA 垂直于OP 1,垂足为A ,过点A 作AB 垂直于x 轴,垂足为B ,过点P 作PC 垂直于AB ,垂足为C .那么,OA 表示cos β,AP 表示sin β,并且∠PAC =∠P 1Ox =α.于是,OM =OB +BM =OB +CP =OA cos α+AP sin α=cos βcos α+sin βsin α.所以,cos(α-β)=cos αcos β+sin αsin β.图1教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α、β,它们的终边与单位圆O 的交点分别为A 、B ,则OA →=(cos α,sin α),OB →=(cos β,sin β),∠AOB =α-β.图2由向量数量积的定义有OA →·OB →=|OA →||OB →|·cos(α-β)=cos(α-β),由向量数量积的坐标表示有OA →·OB →=(cos α,sin α)(cos β,sin β)=cos αcos β+sin αsin β,于是,cos(α-β)=cos αcos β+sin αsin β.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cos θ=cos(α-β),若θ∈[0,π],则OA →·OB →=cos θ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且OA →·OB →=cos(2π-θ)=cos θ=cos(α-β).由此可知,对于任意角α、β都有 cos α-β=cos αcos β+sin αsin βC α-β此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C (α-β).有了公式C (α-β)以后,我们只要知道cos α、cos β、sin α、sin β的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C (α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“-”右“+”.或让学生进行简单填空,如:cos(A -B )=________,cos(θ-φ)=________等.因此,只要知道了sin α、cos α、sin β、cos β的值就可以求得cos(α-β)的值了.问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=32, cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β.讨论结果:①~⑤略.应用示例思路1例1利用差角余弦公式求cos15°的值. 活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C (α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究.解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=22×32+22×12=6+24. 方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45°=12×22+22×32=6+24. 点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两变式训练1.不查表求sin75°,sin15°的值.解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=22×32+22×12=6+24. sin15°=1-cos 215°=1-6+242=8-26×216=6-24. 点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C (α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2已知sin α=45,α∈(π2,π),cos β=-513,β是第三象限角,求cos(α-β)的值.活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sin α、cos α、sin β、cos β的值,然后利用公式C (α-β)即可求解.从已知条件看,还少cos α与sin β的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符号.本例可由学生自己独立完成.解:由sin α=45,α∈(π2,π),得 cos α=-1-sin 2α=-1-452=-35. 又由cos β=-513,β是第三象限角,得 sin β=-1-cos 2β=-1--5132=-1213. 所以cos(α-β)=cos αcos β+sin αsin β=(-35)×(-513)+45×(-1213)=-3365. 点评:本题是直接运用公式C (α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角变式训练已知sin α=45,α∈(0,π),cos β=-513,β是第三象限角,求cos(α-β)的值. 解:①当α∈[π2,π)时,由sin α=45,得cos α=-1-sin 2α=-1-452=-35, 又由cos β=-513,β是第三象限角,得 sin β=-1-cos 2β=-1--5132=-1213. 所以cos(α-β)=cos αcos β+sin αsin β=(-35)×(-513)+45×(-1213)=-3365. ②当α∈(0,π2)时,由sin α=45,得 cos α=1-sin 2α=1-452=35, 又由cos β=-513,β是第三象限角,得 sin β=-1-cos 2β=-1--5132=-1213. 所以cos(α-β)=cos αcos β+sin αsin β=35×(-513)+45×(-1213)=-6365. 点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cos α的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.思路2例1计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°;(3)sin x sin(x +y )+cos x cos(x +y ).活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角-15°,思考它可以拆分为哪些特殊角的差,如-15°=15°-30°或-15°=45°-60°,然后套用公式求值即可.也可化cos(-15°)=cos15°再求值.让学生细心观察(2)(3)可知,其形式与公式C (α-β)的右边一致,从而化为特殊角的余弦函数. 解:(1)原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =22×32+22×12=6+24. (2)原式=cos(15°-105°)=cos(-90°)=cos90°=0.(3)原式=cos[x -(x +y )]=cos(-y )=cos y .点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础.例2已知cos α=17,cos(α+β)=-1114,且α、β∈(0,π2),求cos β的值. 活动:教师引导学生观察题目中的条件与所求,让学生探究α、α+β、β之间的关系,也就是寻找已知条件中的角与所求角的关系.学生通过探究、讨论不难得到β=(α+β)-α的关系式,然后利用公式C (α-β)求值即可.但还应提醒学生注意由α、β的取值范围求出α+β的取值范围,这是很关键的一点,从而判断sin(α+β)的符号进而求出cos β.解:∵α、β∈(0,π2),∴α+β∈(0,π). 又∵cos α=17,cos(α+β)=-1114, ∴sin α=1-cos 2α=437, sin(α+β)=1-cos 2α+β=5314. 又∵β=(α+β)-α,∴cos β=cos(α+β)cos α+sin(α+β)sin α=(-1114)×17+5314×437=12. 点评:本题相对于例1难度大有提高,但是只要引导适当,学生不难得到β=(α+β)-α的关系式,继而运用公式解决.但值得注意的是α+β的取值范围确定,也是很关键变式训练1.求值:cos15°+sin15°.解:原式=2(22cos15°+22sin15°)=2(cos45°cos15°+sin45°sin15°) =2cos(45°-15°)=2cos30°=62. 2.已知sin α+sin β=35,cos α+cos β=45,求cos(α-β)的值. 解:∵(sin α+sin β)2=(35)2,(cos α+cos β)2=(45)2, 以上两式展开两边分别相加,得2+2cos(α-β)=1,∴cos(α-β)=-12.课本本节练习.解答:1.(1)cos(π2-α)=cos π2cos α+sin π2sin α=sin α. (2)cos(2π-α)=cos2πcos α+sin2πsin α=cos α.2.210. 3.153-834. 4.27-3512. 课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变形用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本习题3.1 A 组2、3、4、5.设计感想1.本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题→猜想→探索推导→记忆→应用”.它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程.同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性.2.纵观本教案的设计,学生发现推导出公式C (α-β)后就是应用,同时如何训练公式的正用、逆用、变形用也是本节的重点难点.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法.这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体.学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.备课资料一、当α、β为锐角时,cos(α+β)=cos αcos β+sin αsin β的向量证明方法. 证明:如图3所示,在直角坐标系中作单位圆O ,并作角α与-β,设角α的终边与单位圆交于点P 1,-β角的终边与单位圆交于点P 2,则图3 OP 1→=(cos α,sin α),OP 2→=(cos(-β),sin(-β)),OP 1→与OP 2→的夹角为α+β,∵OP 1→·OP 2→=|OP 1→||OP 2→|cos(α+β),cos αcos(-β)+sin αsin(-β)=1·1·cos(α+β),cos(α+β)=cos αcos β-sin αsin β.二、备用习题1.若-π2<α<β<π2,则α-β一定不属于的区间是( ) A .(-π,π) B .(-π2,π2) C .(-π,0) D .(0,π) 答案:D2.不查表求值:(1)sin80°cos55°+cos80°cos35°;(2)cos80°cos20°+sin100°sin380°.答案:解:(1)原式=sin80°sin35°+cos80°cos35°=cos(80°-35°)=cos45°=22. (2)原式=cos80°cos20°+sin80°sin20°=cos(80°-20°)=cos60°=12. 3.已知sin θ=15,θ∈(π2,π),求cos(θ-π3)的值. 答案:解:∵sin θ=15,θ∈(π2,π), ∴cos θ=-1-sin 2θ=-1-125=-265.∴cos(θ-π3)=cos θcos π3+sin θsin π3=-265×12+15×32=3-2610. 4.已知sin α=23,α∈(π2,π),cos β=-34,β∈(π,3π2),求cos(α-β)的值. 答案:解:∵s in α=23,α∈(π2,π), ∴cos α=-1-sin 2α=-1-49=-53. ∵cos β=-34,β∈(π,3π2), ∴sin β=-1-cos 2β=-1-916=-74. cos(α-β)=cos αcos β+sin αsin β =-53×(-34)+23×(-74) =35-2712. 5.已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,求证:cos(α-γ)=-12. 答案:证明:∵sin α+sin β+sin γ=0,∴sin α+sin γ=-sin β. ① ∵cos α+cos β+cos γ=0,∴cos α+cos γ=-cos β. ②①2+②2,得sin 2α+cos 2α+sin 2γ+cos 2γ+2cos αcos γ+2sin αsin γ=sin 2β+cos 2β. ∴2(cos αcos γ+sin αsin γ)=-1,即cos(α-γ)=-12.。