多题一法专项训练(一) 配 方 法
专题14 解一元二次方程专项训练-重难点题型(学生版)
专题2.6 解一元二次方程专项训练-重难点题型【题型1 用指定方法解一元二次方程】【例1】用指定方法解方程:(1)(2x﹣3)2﹣121=0.(直接开平方法)(2)x2﹣4x﹣7=0.(配方法)(2)x2﹣5x+1=0.(公式法)(4)3(x﹣2)2=x(x﹣2).(因式分解法)【变式1-1】(2020秋•上栗县校级月考)按指定的方法解下列方程:(1)x2﹣6x﹣7=0(配方法)(2)2x﹣6=(x﹣3)2(因式分解法)(3)3x2﹣4x+1=0(公式法)(4)5(x+1)2=10(直接开平方法)【变式1-2】(2020秋•盱眙县校级月考)用指定方法解下列一元二次方程.(1)x2﹣36=0 (直接开平方法)(2)x2﹣4x=2(配方法)(3)2x2﹣5x+1=0(公式法)(4)(x+1)2+8(x+1)+16=0(因式分解法)【变式1-3】(2020春•诸城市期末)用指定的方法解下列方程(1)2x2+3x=1(配方法)(2)2x2+5x﹣3=0(公式法)(3)2y2﹣4√2y=0(因式分解法)(4)x2﹣5x﹣14=0(因式分解法)【题型2 选择适当方法解一元二次方程】【例2】(2020秋•宜兴市月考)用适当的方法解下列一元二次方程:(1)2(2x+1)2﹣18=0;(2)(x﹣5)=(x﹣5)2;(3)x2﹣5x﹣24=0;(4)(x+1)(x+8)=﹣12.【变式2-1】(2020秋•站前区校级期中)用适当方法解方程:(1)(x﹣1)2=9.(2)x2﹣4x﹣7=0.(2)x2+4x﹣5=0.(4)3x(x﹣2)=2(x﹣2).【变式2-2】(2020春•如东县校级月考)用适当的方法解下列方程:(1)2(x﹣1)2=18;(2)x2﹣2x=2x+1;(3)(3y﹣1)(y+1)=4;(4)x(2x+3)=2x+3.【变式2-3】(2020秋•河东区期中)用适当的方法解方程:(1)25y2﹣16=0;(2)y2+2y﹣99=0;(3)3x2+2x﹣3=0.(4)(2x+1)2=3(2x+1);【题型3 用换元法解一元二次方程】【例3】(2020秋•太原期末)解方程(x2﹣1)2﹣3(x2﹣1)=0时,我们将x2﹣1作为一个整体,设x2﹣1=y,则原方程化为y2﹣3y=0.解得y1=0,y2=3.当y=0时,x2﹣1=0,解得x=1或x=﹣1.当y=3时,x2﹣1=3,解得x=2或x=﹣2.所以,原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2.模仿材料中解方程的方法,求方程(x2+2x)2﹣2(x2+2x)﹣3=0的解.【变式3-1】解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为x1=2,x2=5.请利用这种方法求下列方程:(1)(2x+5)2﹣(2x+5)﹣2=0;(2)32x﹣4×3x+3=0.【变式阅读材料并回答下面的问题:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1看成为一个整体,然后设x2﹣1=y,则原方程化为y2﹣5y+4=0①,解得:y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=±√2;当y=4时,x2﹣1=4,∴x2=5,∴x=±√5∴原方程的根为:x1=√2,x2=−√2,x3=√5,x1=−√5.在由原方程得到方程①的解题过程中,利用换元法达到了解方程的目的,体现了转化的数学思想,请利用以上方法解方程:①x4﹣x2﹣6=0;②(x2+3)2﹣9(x2+3)+20=0.【变式3-3】阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x,y满足(2x2+2y2+3)(2x2+2y2﹣3)=27,求x2+y2的值.(2)若四个连续正整数的积为11880,求这四个连续正整数.【题型4 含绝对值的一元二次方程的解法】【例4】(西城区校级期中)阅读下面的例题:解方程:x2﹣|x|﹣2=0.解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍).(2)当x<0时,原方程化为x2+x﹣2=0,①解得:.②综上,原方程的根是.③请参照例题解方程x2﹣|x﹣3|﹣3=0,则此方程的根是.【变式4-1】(蚌埠月考)阅读下面的例题:解方程m2﹣|m|﹣2=0的过程如下:(1)当m≥0时,原方程化为m2﹣m﹣2=0,解得:m1=2,m2=﹣1(舍去).(2)当m<0时,原方程可化为m2+m﹣2=0,解得:m1=﹣2,m2=1(舍去).原方程的解:m1=2,m2=﹣2.请参照例题解方程:m2﹣|m﹣1|﹣1=0.【变式4-2】(綦江区校级月考)阅读理解下列材料,然后回答问题:解方程:x2﹣3|x|+2=0.解:(1)当x≥0时,原方程化为x2﹣3x+2=0,解得:x1=2,x2=1;(2)当x<0时,原方程化为x2+3x+2=0,解得:x1=﹣1,x2=﹣2;∴原方程的根是x1=2,x2=1,x3=﹣1,x4=﹣2.请观察上述方程的求解过程,试解方程x2﹣2|x﹣1|﹣1=0.【变式4-3】(富顺县校级期中)阅读下面例题的解题过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程:x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1∵x≥0,故x=﹣1舍去,∴x=2是原方程的解;当x<0时,原方程化为x2+x﹣2=0.解得:x1=﹣2,x2=1∵x<0,故x=1舍去,∴x=﹣2是原方程的解;综上所述,原方程的解为x1=2,x1=﹣2.解方程x2+2|x+2|﹣4=0.。
初中数学方程与不等式之一元二次方程专项训练及答案
初中数学方程与不等式之一元二次方程专项训练及答案一、选择题1.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D.【点睛】 本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.2.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6-B .4-C .2-D .2【答案】C【解析】【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解, ∴△=4(a −4)2−4a 2⩾0,解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a +2 ∵y 有整数解∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2,符合条件的a 的值的和是−2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.3.将方程()22230x x x m n --=-=化为的形式,指出,m n 分别是( )A .1和3B .-1和3C .1和4D .-1和4 【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】移项得x 2-2x=3,配方得x 2-2x+1=4,即(x-1)2=4,∴m=1,n=4.故选C .【点睛】用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】 由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x =【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.7.如图,AC ⊥BC ,:3:4AC BC =,D 是AC 上一点,连接BD ,与∠ACB 的平分线交于点E ,连接AE ,若83ADE S ∆=,323BCE S ∆=,则BC =( )A .3B .8C .3D .10【答案】B【解析】【分析】 过E 作,,EF BC EG AC ⊥⊥垂足分别为,,F G 由角平分线的性质可得:,EF EG =利用83ADE S ∆=,323BCE S ∆=可以求得,AD BC进而求得,CDE BCD S S ∆∆的面积,利用面积公式列方程求解即可.【详解】解:如图,过E 作,,EF BC EG AC ⊥⊥垂足分别为,.F GCE Q 平分,ACB ∠,EF EG ∴=:3:4AC BC =Q ,设3,4,AC x BC x == Q 83ADE S ∆=,323BCE S ∆=, 18132,,2323AD EG BC EF ∴•=•= 1,,4AD AD x BC ∴=∴= 2,CD AC AD x ∴=-=162,3CDE ADE S S ∆∆∴==163216.33BCD S ∆∴=+= 12416,2x x ∴••= 2,x ∴= (负根舍去)48.BC x ∴==故选B .【点睛】本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.下列方程中,有实数根的是( )A 0=B 1+=C 10=D x - 【答案】D【解析】【分析】根据二次根式的性质逐项分析即可.【详解】A .∵x 2+2≥2, 0≥≠,故不正确;B .∵x-2≥0且2-x≥0,∴x=20=,故不正确;C 0≥110≥≠,故不正确;D .∵x+1≥0,-x≥0,∴-1≤x ≤0.x -,∴x+1=x 2,∴x 2-x-1=0,∵∆=1+4=5>0,∴x 1=12-,x 2=12+(舍去),x -有实数根,符合题意.故选D .【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知识点是解答本题的关键.10.在解方程(x+2)(x ﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x ﹣2=5,得方程的根x 1=﹣1,x 2=7;乙同学说:应把方程右边化为0,得x 2﹣9=0,再分解因式,即(x+3)(x ﹣3)=0,得方程的根x 1=﹣3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是..( )A.甲错误,乙正确 B.甲正确,乙错误C.甲、乙都正确 D.甲、乙都错误【答案】A【解析】(x+2)(x﹣2)=5,x2-4=5,x2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x1=-3,x2=3,所以甲错误,乙正确,故选A.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.2(﹣)=B.22251196x(﹣)=1961225xC.2x(﹣)=1961225(﹣)=D.22251196x【答案】A【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x),第二次降价后的价格为225×(1﹣x)×(1﹣x),则225(1﹣x)2=196.故选A.【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是()A.8.5%B.9%C.9.5%D.10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为100(1-x)元,再经过一次下降后成本变为100(1-x)(1-x)元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x,根据题意得100(1-x)(1-x)=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D.13.若关于x的方程2230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.98m≤B.98m<C.98m>D.98m=【答案】B【解析】【分析】若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m 的取值范围.【详解】∵方程有两个不相等的实数根,a=2,b=-3,c=m,∴△=b2-4ac=(-3)2-4×2×m>0,解得98m<.故选:B.【点睛】此题考查根的判别式,解题关键在于掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .15.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m , ∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a、两根之积等于c a. 16.已知24b ac -是一元二次方程()200++=≠ax bx c a 的一个实数根,则ab 的取值范围为( )A .18ab ≥ B .18ab ≤ C .14ab ≥ D .14ab ≤ 【答案】B【解析】【分析】设u 的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于0即可得到ab≤18. 【详解】因为方程有实数解,故b 2-4ac≥0.24b ac =-24b ac =-,设 则有2au 2-u+b=0或2au 2+u+b=0,(a≠0),因为以上关于u 的两个一元二次方程有实数解,所以两个方程的判别式都大于或等于0,即得到1-8ab≥0,所以ab≤18. 故选B .【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:(b 2-4ac≥0).17.关于x 的方程(2-a)x 2+5x-3=0有实数解,则整数a 的最大值是( )A .1B .2C .3D .4 【答案】D【解析】【分析】由于关于x 的方程(2-a )x 2+5x-3=0有实数根,分情况讨论:①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a 的最大值.【详解】解:∵关于x 的方程(2−a )x 2+5x−3=0有实数根,∴①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2−a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2−a)≥0,解之得a≤4912, ∴整数a 的最大值是4.故选D.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握一元二次方程的性质与根的判别式.18.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k V -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D .【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.19.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为( )A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.20.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.。
解一元二次方程练习题(配方法公式法)
解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4ac≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0解一元二次方程练习题(因式分解法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
有理数专项训练(一)(通用版)(含答案)
有理数专项训练(一)(通用版)试卷简介:有理数混合运算中几个因数相乘、乘方和乘法分配律一、单选题(共15道,每道6分)1.计算的结果为( )A. B.C.2D.6答案:D解题思路:解答过程:原式=4+2=6故选D.试题难度:三颗星知识点:有理数混合运算2.计算的结果为( )A.4B.2C. D.答案:A解题思路:解答过程:故选A.试题难度:三颗星知识点:有理数混合运算3.计算的结果为( )A.13B.C. D.19答案:B解题思路:解答过程:故选B.试题难度:三颗星知识点:有理数混合运算4.计算的结果为( )A.-2B.-26C.-10D.8答案:C解题思路:解答过程:原式=-9-(-3-8+12)=-9+3+8-12=-10试题难度:三颗星知识点:有理数混合运算5.计算的结果为( )A.10B.26C.12D.28答案:D解题思路:解答过程:原式==6+1+21=28试题难度:三颗星知识点:有理数混合运算6.计算的结果为( )A.14B.-2C.-18D.-22答案:C解题思路:解答过程:原式=-8-8+18+10-30=-18试题难度:三颗星知识点:有理数混合运算7.计算的结果为( )A.5B.C.7D.答案:C解题思路:解答过程:故选C.试题难度:三颗星知识点:有理数混合运算8.计算的结果为( )A. B.C. D.答案:B解题思路:解答过程:故选B.试题难度:三颗星知识点:有理数混合运算9.计算的结果为( )A.39B.41C. D.答案:A解题思路:解答过程:故选A.试题难度:三颗星知识点:有理数混合运算10.计算的结果为( )A.-20B.20C.-85D.答案:B解题思路:解答过程:试题难度:三颗星知识点:有理数混合运算11.计算的结果为( )A. B.C. D.答案:C解题思路:解答过程:试题难度:三颗星知识点:有理数混合运算12.计算的结果为( )A.1B.6C.-6D.答案:A解题思路:解答过程:试题难度:三颗星知识点:有理数混合运算13.计算的结果为( )A.7B.11C.-3D.1答案:A解题思路:解答过程:试题难度:三颗星知识点:有理数混合运算14.计算的结果为( )A.-2B.-56C.-16D.2答案:C解题思路:解答过程:试题难度:三颗星知识点:有理数混合运算15.计算的结果为( )A.-11B.11C.-1D.-89答案:B解题思路:(1)考点:乘方运算,乘法分配率,有理数的除法(2)解题过程:解:原式=11(3)易错点:①搞不清楚和的指数管辖范围,中的指数不管“-”号,中的指数管“-”号;②应用乘法分配律计算时,系数乘以每一项;③括号前面有负号时,注意符号变化;④负号重复使用,式子中前面的负号误用两次,只能用一次,要么作为负号和4结合在一起,要么作为减号.试题难度:三颗星知识点:有理数混合运算。
配方法练习
专项训练一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1C.x2+8x+42=1 D.x2-4x+4=-113.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m 等于().A.1 B.-1 C.1或9 D.-1或94.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0C.(x-13)2=89D.(x-13)2=1095.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0C.(2x+1)2+3=0 D.(12x-a)2=a6.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2二、填空题1.方程x2+4x-5=0的解是________.2.代数式2221x xx---的值为0,则x的值为________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,•所以求出z的值即为x+y的值,所以x+y的值为______.1.如果x2+4x-5=0,则x=_______.4.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.三、综合提高题1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.2.如果x2-4x+y2,求(xy)z的值.3.用配方法解方程.(1)9y2-18y-4=0 (2)x24.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值.5.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.6.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?。
高三生物 遗传题解题方法
高三生物三轮复习资料02 遗传的方法前言: 一题多法,多题一法,融会贯通,学无定法,一、棋盘法1.低磷酸酯酶症是一种遗传病,一对夫妇均表现正常,他们的父母也均表现正常,丈夫的父亲不携带致病基因,而母亲是携带者,妻子的妹妹患有低磷酸酯酶症。
这对夫妇生育一个正常孩子是纯合子的概率是( )A.1/3 B.1/2C.6/11 D.11/122.某玉米品种含一对等位基因A和a,其中a基因纯合的植株花粉败育,即不能产生花粉,含A基因的植株完全正常。
现有基因型为Aa的玉米若干,每代均为自由交配直至F2,F2植株中正常植株与花粉败育植株的比例为( )A.1∶1 B.3∶1C.5∶1 D.7∶13、苦瓜植株中含一对等位基因D和d,其中D基因纯合的植株不能产生卵细胞,而d基因纯合的植株花粉不能正常发育,杂合子植株完全正常。
现有基因型为Dd的苦瓜植株若干做亲本,下列有关叙述错误的是()。
A: 如果每代均自交直至,则植株中d基因的频率为B: 如果每代均自交直至,则植株中正常植株所占比例为C: 如果每代均自由交配直至,则植株中D基因的频率为D: 如果每代均自由交配直至,则植株中正常植株所占比例为4、一杂合子植株自交时,含有隐性配子的花粉有的死亡率,则自交后代的基因型比例是( )A.B.C.D. 5、现用山核桃的甲(AABB)、乙(aabb)两品种作亲本杂交得F1,F1测交结果如下表,下列有关叙述不正确的是()A. F1产生的基因型为AB的花粉可能有50%不能萌发,不能实现受精B. F1自交得F2,F2的基因型有9种C. 将F1花粉离体培养,将得到四种表现型不同的植株D. 正反交结果不同,说明该两对基因的遗传不遵循自由组合定律6、人类某遗传病受一对基因(T、t)控制.3 个复等位基因、、i 控制ABO血型,位于另一对染色体上.A 血型的基因型有、,B血型的基因型有、,AB血型的基因型为,O血型的基因型为ii.两个家系成员的性状表现如图,Ⅱ-3和Ⅱ-5均为AB 血型,Ⅱ-4和Ⅱ-6均为O血型.请回答下列问题:(1)该遗传病的遗传方式为_________.Ⅱ-2基因型为Tt的概率为_____(2)Ⅰ-5个体有____种可能的血型.Ⅲ-1为Tt且表现A血型的概率为____.(3)如果Ⅲ-1与Ⅲ-2婚配,则后代为O 血型、AB血型的概率分别为________(4)若Ⅲ-1与Ⅲ-2生育一个正常女孩,可推测女孩为B血型的概率为____若该女孩真为B血型,则携带致病基因的概率为____________7、果蝇的体色有黄身(H)、灰身(h)之分,翅形有长翅(V)、残翅(v)之分。
化学方程式八种配平方法技巧和经典习题(精校)
常见化学方程式的配平的八种方法【摘要】对于化学反应方程式,配平方法很多,根据不同的反应可采用不同的方法,同一方程可用不同方法,要熟能生巧,就要多加练习。
化学反应方程式配平法1有机物反应,先看 H 右下角的数字,而无机物先看 O 的数字,一般是奇数的配2,假如不够可以翻倍2碳氢化合物的燃烧,先看 H、 C,再看 O,它的生成物一般为水和二氧化碳3配平的系数如果有公约数要约分为最简数4电荷平衡,对离子方程式在离子方程式中,除了难溶物质、气体、水外,其它的都写成离子形式, SO,( 1)让方程两端的电荷相等( 2)观察法去配平水、气体5还有一些不用配平,注意先计算再看是否需要配平【关键词】反应,方程式,配平,方法正确的化学方程式是计算的前提,而书写正确的化学方程式的关键是配平。
学生书写化学方程式时,对即在根据化学事实写出反应物和生成物的化学式,又要配平,还要注明反应条件及生成物的状态等往往顾此失彼。
为了使学生能较快地掌握化学方程式的配平技能,现就常见化学方程式的配平方法归纳如下:一、最小公倍数法具体步骤:(1)求出每一种原子在反应前后的最小公倍数;(2)使该原子在反应前后都为所求出的最小公倍数;(3)一般先从氧原子入手,再配平其他原子。
例:配平 Al + Fe 3O4→ Fe + Al 2O3第一步:配平氧原子Al + 3Fe 3O4→ Fe + 4Al 2O3第二步:配平铁和铝原子8Al + 3Fe 3O4→ 9Fe + 4Al 2O3第三步:配平的化学方程式:高温8Al + 3Fe3O49Fe + 4Al2O31、 Al + O 2—— Al 2O32、Al + Fe 3O4—— Fe + Al2O33、 Fe + O2—— Fe3O44、Al + MnO 2—— Mn + Al 2O35、 N2 + H2—— NH 36、Al + H 2SO4 —— Al 2( SO4)3 + H2二、观察法具体步骤:(1)从化学式较复杂的一种生成物推求有关反应物化学式的化学计量数和这一生成物的化学计量数;(2)根据求得的化学式的化学计量数,再找出其它化学式的倾泄计量数,这样即可配平。
配方法的应用专项训练题
配方法的应用专项训练题1.填空:x2﹣10x+=()2.2.x2++9y2=(x+)2.3.用配方法将二次三项式x2+4x﹣96变形,结果正确的是()A.(x+2)2﹣100B.(x﹣2)2﹣100C.(x+2)2﹣92D.(x﹣2)2﹣92 4.已知实数x.y满足x2+y2=x+6y﹣9.25,则x2+y2的值是.5.已知x2+y2﹣4x+6y+13=0,求xy=.6.若a,b,c是△ABC的三边长,且a2+b2+c2﹣10a﹣24b﹣26c=﹣338,则△ABC的周长是()A.26B.28C.30D.327.关于x的二次三项式x2+10x+a有最小值﹣10,则常数a的值为()A.12B.13C.14D.158.已知实数x、y满足9x2+y2+24x﹣6y+25=0和axy﹣3x=y,则a的值是()A.B.C.D.9.无论a,b为何值代数式a2+b2+6b+11﹣2a的值总是()A.非负数B.0C.正数D.负数10.不论x,y为什么数,代数式4x2+3y2+8x﹣12y+7的值()A.总大于7B.总不小于9C.总不小于﹣9D.为任意有理数11.已知A为多项式,且A=﹣2x2﹣y2+12x+4y+1,则A有()A.最大值23B.最小值23C.最大值﹣23D.最小值﹣23 12.已知x,y都为实数,则式子﹣3x2+3xy+6x﹣y2的最大值是()A.0B.2C.D.1213.已知等腰△ABC中的三边长a,b,c满足2a2+b2﹣4a﹣8b+18=0,则△ABC的周长是()A.6B.9C.6或9D.无法确定14.已知关于实数x的代数式x2(4﹣x2)有最大值,则实数x的值为时,代数式取得最大值.15.阅读材料:把形如x2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:x2﹣2x+4=x2﹣2x+1+3=(x﹣1)2+3;x2﹣2x+4=x2﹣4x+4+2x=(x﹣2)2+2x;x2﹣2x+4=x2﹣2x+4+x2=(x﹣2)2+x2;是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项)请根据阅读材料解决下列问题:(1)比照上面的例子,将二次三项式x2﹣6x+16配成完全平方式(直接写出两种形式);(2)已知a2+b2+c2﹣ab﹣6b﹣6c+21=0,求a﹣b+c的值;(3)已知2x+y=6,求当x、y分别取什么值时,x2+2xy+y2﹣3x﹣2y取最小值,最小值是多少?16.阅读材料;若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0.则2x+3y的值为;(2)已知△ABC的边长a、b、c是三个互不相等的正整数,且满足a2+b2﹣4a﹣6b+13=0,求c的值;(写出求解过程)(3)已知a﹣b=10,ab+c2﹣16c+89=0,则a+b+c的值为.17.阅读下面的解题过程,求y2﹣10y+30的最小值.解:∵y2﹣10y+30=y2﹣10y+25+5=(y2﹣10y+25)+5=(y﹣5)2+5,而(y﹣5)2≥0,即(y﹣5)2最小值是0.∴y2﹣10y+30的最小值是5.依照上面解答过程,求:(1)m2+2m+2020的最小值;(2)4﹣x2+2x的最大值.18.先阅读下面的内容,再解决问题:例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0,∴(m2+2mn+n2)+(n2﹣6n+9)=0,∴(m+n)2+(n﹣3)2=0,∴m+n=0,n﹣3=0,∴m=﹣3,n=3.问题:(1)若x2+2y2﹣2xy+6y+9=0,求x2的值;(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣4b+13+|3﹣c|=0,请问△ABC是怎样形状的三角形?19.【阅读材料】把形如ax2+bx+c的二次三项式(或其一部分)经过适当变形配成完全平方式的方法叫配方法,配方法在因式分解、证明恒等式、利用a2≥0求代数式最值等问题中都有广泛应用.例如:利用配方法将x2﹣6x+8变形为a(x+m)2+n的形式,并把二次三项式分解因式.配方:x2﹣6x+8=x2﹣6x+32﹣32+8=(x﹣3)2﹣1分解因式:x2﹣6x+8=(x﹣3)2﹣1=(x﹣3+1)(x﹣3﹣1)=(x﹣2)(x﹣4)【解决问题】根据以上材料,解答下列问题:(1)利用配方法将多项式x2﹣4x﹣5化成a(x+m)2+n的形式.(2)利用配方法把二次三项式x2﹣2x﹣35分解因式.(3)若a、b、c分别是△ABC的三边,且a2+2b2+3c2﹣2ab﹣2b﹣6c+4=0,试判断△ABC 的形状,并说明理由.(4)求证:无论x,y取任何实数,代数式x2+y2+4x﹣6y+15的值恒为正数.。
第21章一元二次方程(压轴必刷30题7种题型专项训练)(原卷版)-2024-2025学年九年级数学上
第21章一元二次方程(压轴必刷30题7种题型专项训练)一.解一元二次方程-配方法(共1小题)1.(2022秋•仙桃校级月考)小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为,,,.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.二.解一元二次方程-因式分解法(共1小题)2.(2021秋•高安市校级月考)阅读下面的例题:解方程:x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣3|﹣3=0,则此方程的根是.三.换元法解一元二次方程(共1小题)3.(2021秋•高州市月考)先阅读,再解题解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所原方程的解为x1=2,x2=5请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.四.根的判别式(共4小题)4.(2022秋•宝应县校级月考)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5.(2022春•雷州市月考)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.6.(2022秋•罗山县校级月考)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7.(2022秋•仪陇县月考)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.五.根与系数的关系(共5小题)8.(2021春•拱墅区月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.9.(2021秋•冷水滩区校级月考)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a、b是方程x2+15x+5=0的二根,则=(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知和是关于x,y的方程组的两个不相等的实数解.问:是否存在实数k,使得y1y2﹣=2?若存在,求出的k 值,若不存在,请说明理由.10.(2021春•崇川区校级月考)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.11.(2021秋•顺德区月考)已知方程a(2x+a)=x(1﹣x)的两个实数根为x1,x2,设.(1)当a=﹣2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.12.(2020秋•椒江区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2﹣n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.六.配方法的应用(共1小题)13.(2021秋•建瓯市校级月考)先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)七.一元二次方程的应用(共17小题)14.(2022秋•岳阳县校级月考)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?15.(2022春•宜秀区校级月考)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?16.(2022秋•中原区校级月考)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?17.(2022秋•南海区校级月考)在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,两条纵向,一条横向,横向与纵向互相垂直,(如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m2,问道路应为多宽?18.(2023春•莱芜区期中)如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.19.(2022春•拱墅区校级月考)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC 和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.20.(2021春•崇川区校级月考)某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)21.(2021秋•莲池区校级月考)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?22.(2022秋•佛山月考)如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为ts,△ADE的面积为S.(1)是否存在某一时刻t,使DE∥AB?若存在,请求出此时刻t的值,若不存在,请说明理由.(2)点D运动至何处时,S=S△ABC?23.(2022秋•胶州市校级月考)如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?24.(2022秋•沙坪坝区校级月考)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(2022秋•渝水区校级月考)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.(2022秋•宜兴市月考)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?27.(2022秋•宜阳县月考)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)花圃的面积为米2(用含a的式子表示);(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元?28.(2022秋•仙桃校级月考)已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.29.(2021秋•开州区校级月考)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.30.(2022秋•中原区校级月考)如图所示,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,P、Q 分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.点P停止运动时点Q也停止运动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?。
化学方程式配平常用方法及专项练习
化学方程式配平方法简介一. 最小公倍数法适用条件:所配原子在方程式左右各只出现一次。
例如,KClO ₃→KCl+O ₂↑在这个反应式中右边氧原子个数为2,左边是3,则最小公倍数为6,因此KClO ₃前系数应配2,O2前配3,式子变为:2KClO ₃→2KCl+3O ₂↑,由于左边钾原子和氯原子数变为2个,则KCl 前应配系数2,短线改为等号,标明条件即可: 2KClO ₃====2KCl+3O ₂↑(反应条件为二氧化锰催化和加热。
“MnO ₂”写在等号上方;“加热”写在等号下方,可用三角形“△”代替) 例1. 配平:Fe O Al O Fe Al +−−→−+3243高温解析:先根据两边氧原子数的最小公倍数是12,可确定43O Fe 的系数为3,32O Al 的系数为4。
进一步确定铝的系数为8,铁的系数为9。
结果得Fe O Al O Fe Al 94383243++高温二. 奇数配偶法适用条件:方程式中所配元素的原子个数的奇数只出现一次。
这种方法适用于化学方程式两边某一元素多次出现,并且两边的该元素原子总数有一奇一偶,例如:C2H2+O2→CO2+H2O ,此方程式配平先从出现次数最多的氧原子配起。
O2内有2个氧原子,H2O 的系数应配2(若推出其它的分子系数出现分数则可配4),由此推知C2H2前2,式子变为:2C2H2+O2→CO2+2H2O ,由此可知CO2前系数应为4,最后配单质O2为5,把短线改为等号,写明条件即可: 2C 2H 2+5O 2==4CO 2+2H 2O e.g.(1)从化学式较复杂的一种生成物推求有关反应物化学式的化学计量数和这一生成物的化学计量数;(2)根据求得的化学式的化学计量数,再找出其它化学式的倾泄计量数,这样即可配平。
例如:Fe2O3 + CO ——Fe + CO2 观察: 所以,1个Fe2O3应将3个“O”分别给3个CO ,使其转变为3个CO2。
即 Fe2O3 + 3CO ——Fe + 3CO2 再观察上式:左边有2个Fe (Fe2O3),所以右边Fe 的系数应为2。
总复习《数与代数》 应用题(一)(专项训练)小学数学六年级下册 人教版
人教版小学数学六年级下册总复习《数与代数》单元专项训练——应用题(一)1.用一根绳子量一棵大树,绕树干5周还差2米,绕树干3周还剩10米,树干一周有多少米?(列方程解)2.中国农历中的“夏至”是一年中白昼最长、黑夜最短的一天。
这一天北京的黑夜时间是白天时间的60%。
白天黑夜分别是多少小时?,剩下的再3.建筑一条水泥路,甲队独做要12天,乙队独做要15天,乙队先独做工程的110由甲、乙两队合做,剩下的还要多少天修完?;如果乙、丙两队合做12天可以完成4.一项工程,如果甲队单独做5天可以完成全工程的13全工程。
三队合做多少天可以完成全工程?5.预防流感,既在饮食上要注意清淡,还可用药膳预防。
如果配制药膳48g,应准备葱白、萝卜、香菜各多少克?6.六年级植树350棵,五年级植树的棵数是六年级的57,且比四年级多23,四年级植树多少棵?7.张老师从上海乘飞机到北京,票价打八折后是960元。
航空公司规定:每位乘客,携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票。
(1)上海到北京飞机票的原价是多少元?(2)张老师带了26千克行李,应付行李费多少元?8.图书馆原有一些学生在看书,其中女生人数占60%,从图书馆走出9名女生后,这时图书馆里女生人数占611。
原来图书馆里有女生多少人?9.学校器材室要购买30个足球。
彭老师去了两个体育用品店咨询,足球的单价都是50元/个,但优惠方式不同。
A店是打九折出售,B店是“买5送一”。
请你帮彭老师算一下,去哪个店购买比较划算?10.甲、乙、丙三个工程队共同修完一条公路,甲队修了全长的30%,乙队修了30千米,丙队修了这条公路的一半。
这条公路全长多少米?11.两辆汽车分别从相距450千米的两地相对开出,2.5时后相遇。
已知两辆车的速度比是4∶12.一家商店的全部商品都按八折出售,王叔叔要购买原价6000元的揕影机一台、原价250元的储存卡一只。
王叔叔带了5000元,够吗?13.猎豹是陆地上跑得最快的动物,每秒大约跑30米,比小汽车的速度快50%。
一元二次方程的应用专项训练
一元二次方程的应用专项训练1. 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动距离等于底端向外滑动的距离,那么滑动的距离是多少?2. 用22厘米长的铁丝,折成一个面积为30平方厘米的长方形,求这个长方形的长和宽。
又问:能否折成面积是32平方厘米的长方形呢?为什么?3.游行队伍有8行12列,后又增加69人,使得队伍增加的行、列数相同,你知道增加了多少行或多少列吗?4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?5. 为一副长20CM 宽16CM的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的二分之一,镜框边的宽度应为多少?6.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?7.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,一个盒身和两个盒底配成一套罐头盒。
现在有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?8. 用含30%和75%的两种防腐药水,配置含药50%的防腐药水18kg,两种药水各需取多少?9. 一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自前进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多少时间?10.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?11. 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 为什么?12. 参加一次足球联赛的每两个队之间都进行两次比赛,共要比赛90场,共有多少个队参加比赛?13. 某种药品两次降价,价格降低了36%,求平均每次降价的百分率。
第1章一元二次方程(易错必刷30题12种题型专项训练)(原卷版)
第1章一元二次方程(易错必刷30题12种题型专项训练)一.一元二次方程的定义(共3小题)1.(2022秋•涟水县校级月考)下列关于x的方程中,肯定是一元二次方程的是()A.mx2+2x+1=0B.(m+1)x2+2x+1=0C.(m2+1)x2+2x+1=0D.(m2﹣1)x2+2x+1=02.(2022秋•东台市月考)关于x的方程(a﹣1)x2﹣3x+3=0是一元二次方程,则a的取值范围是.3.(2022秋•灌南县校级月考)关于x的方程是一元二次方程,则k的值是.二.一元二次方程的一般形式(共2小题)4.(2022秋•沭阳县校级月考)一元二次方程x2+4x﹣3=0的一次项系数、二次项系数、常数项的和是.5.(2022秋•句容市月考)一元二次方程(4x+1)(2x﹣3)=5x2+1化成一般式后a,b,c的值为()A.3,﹣10,﹣4B.3,﹣12,﹣2C.8,﹣10,﹣2D.8,﹣12,4三.一元二次方程的解(共3小题)6.(2022秋•连云区校级月考)下列关于x的方程中,有一个实数根为x=﹣2的方程是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=07.(2021•凉山州模拟)已知x是方程x2+2x﹣2=0的根,那么代数式(﹣x﹣2)÷的值是()A.﹣1B.+1C.﹣1或﹣﹣1D.﹣1或+18.(2022秋•江都区月考)关于x的一元二次方程(m﹣2)x2﹣2x+m2﹣m=0有一个根是1,则m的值是()A.﹣2B.2C.0D.±2四.解一元二次方程-直接开平方法(共1小题)9.(2022秋•秦淮区校级月考)如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是.五.解一元二次方程-配方法(共4小题)10.(2022秋•邗江区月考)用配方法解方程x2﹣6x﹣2=0的过程中,应将此方程化为()A.(x﹣3)2=11B.(x﹣3)2=7C.(x﹣6)2=38D.(x﹣6)2=3411.(2022秋•玄武区校级月考)把方程x2﹣2x﹣3=0化成(x+m)2=n的形式,则m+n的值是.12.(2022秋•镇江月考)用适当方法解下列方程:(1)4x2﹣1=0;(2)4y2﹣4y+1=0;(3)x2﹣6x﹣3=0;(4)x2﹣6x+9=(5﹣2x)2.13.(2022秋•云龙区校级月考)解下列方程:(1)x2+2x﹣4=0;(2)(x﹣1)(x+2)=18.六.解一元二次方程-因式分解法(共6小题)14.(2022秋•鼓楼区校级月考)解下列方程:(1)25(x+3)2﹣16=0;(2)x2﹣2x﹣15=0;(3)﹣3x2+2x=﹣8;(4)(x﹣2)2=(2x﹣1)(2﹣x).15.(2022秋•连云区校级月考)解方程:(1)x2﹣2x﹣1=0;(2)(x﹣3)2﹣4x(3﹣x)=0;(3)2x2﹣7x﹣2=0;(4)(2x+1)(x﹣3)=0.16.(2022秋•工业园区校级月考)解方程:(1)3x(x﹣1)=2(x﹣1);(2)2x2﹣4x+1=0;(3)4(x+3)2=25(x﹣2)2;(4)(x+2)2﹣3(x+2)﹣4=0.17.(2022秋•灌云县月考)解方程:(1)(2x﹣1)2﹣3=0;(2)2x2+4x﹣5=0(配方法);(3)2(x2﹣2)=7x(公式法);(4)(x﹣3)2+4x(x﹣3)=0.18.(2021秋•金坛区校级月考)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.19.(2021秋•镇江期中)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是.七.换元法解一元二次方程(共1小题)20.(2022春•江都区校级月考)若(a2+b2)2﹣3(a2+b2)﹣4=0,则代数式a2+b2的值为八.根的判别式(共1小题)21.(2021春•崇川区校级月考)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②B.①②④C.①②③④D.①②③九.根与系数的关系(共3小题)22.(2022秋•太仓市校级月考)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1,x2,且x12+x22=1,则m=.23.(2022秋•海安市月考)若t为实数,x2﹣4x+t﹣2=0的两个非负实数根为a,b,则代数式(a2﹣1)(b2﹣1)的最小值24.(2021秋•海陵区校级月考)已知关于x的一元二次方程x2﹣2(k+1)x+k2+k+3=0(k为常数).(1)若方程的两根为菱形相邻两边长,求k的值;(2)是否存在满足条件的常数k,使该方程的两解等于边长为2的菱形的两对角线长,若存在,求k的值;若不存在,说明理由.一十.一元二次方程的应用(共3小题)25.(2020秋•工业园区月考)如图,利用一面墙(墙EF最长可利用28米),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙).用砌60米长的墙的材料,当矩形的长BC为多少米时,矩形花园的面积为300平方米;能否围成480平方米的矩形花园,为什么?26.(2022秋•灌南县校级月考)近两年直播购物逐渐走进了人们的生活.某电商在抖音平台上对一款成本价为60元的商品进行直播销售,如果按每件100元销售,每天可卖出20件.通过市场调查,该商品售价每降低5元,日销售量增加10件,设每件商品降价x元.(1)每件商品降价x元时,日销售量为件;(2)求x为何值时,日销售能盈利1200元,同时又能尽快销售完该商品;(3)丽丽的线下实体商店也销售同款商品,标价100元.为了提高市场竞争力,促进线下销售,丽丽决定对该商品实行打折销售,使其销售价格不超过(2)中的售价,则该商品至少需打几折销售?27.(2022秋•铜山区校级月考)可以用如图所示的图形研究方程x2+ax=b2的解:在Rt△ABC中,∠C=90°,AC=,BC=b,以点A为圆心作弧交AB于点D,使AD=AC,则该方程的一个正根是()A.CD的长B.BD的长C.AC的长D.BC的长一十一.配方法的应用(共2小题)28.(2021秋•宜兴市月考)当x取何值时,代数式2x2﹣6x+7的值最小?并求出这个最小值.29.(2023•靖江市模拟)已知x、y为实数,且满足x2﹣xy+y2=2,记W=x2+xy+y2的最大值为M,最小值为m,则M+m=.一十二.高次方程(共1小题)30.(2021秋•滨海县月考)解某些高次方程或具有一定结构特点方程时,我们可以通过整体换元的方法,把方程转化为一元二次方程进行求解,从而达到降次或变复杂为简单的目的.例如:解方程(x2﹣3)2﹣5(3﹣x2)+2=0,如果设x2﹣3=y,∵x2﹣3=y,∴3﹣x2=﹣y,用y表示x后代入(x2﹣3)2﹣5(3﹣x2)+2=0得:y2+5y+2=0.应用:请用换元法解下列各题:(1)已知(x2+y2+1)(x2+y2+3)=8,求x2+y2的值;(2)解方程:;(3)已知a2+ab﹣b2=0(ab≠0),求的值.。
专题4 句子专项(一)(知识盘点+试题)-2022-2023学年五年级语文下册期末复习
专题4 句子专项训练之句式变换、病句修改一、学问盘点。
(一)句式变换。
1.把字句、被字句的变换。
【句式特点】把字句的主语是动作的执行者,被动句的主语是动作的被执行者。
【方法解析】找出陈述句中的两个称谓,(谁或什么)并确定它们之间的执行者与被执行者关系。
如:小明做完了作业。
(1)把字句:要强调执行者,就将句中执行者(例:小明)调到句首做主语,后面再加上“把”字和被执行者,即成把字句“小明把作业做完了”。
(2)被字句:要强调被执行者,就将句中的被执行者(例:小明)调到句首做主语,后面再加上“被”字和执行者,即成被字句“作业被小明做完了”。
2.陈述句与反问句的变换。
【句式特点】陈述句就是把要表达的思想内容平铺直叙的表达出来,不带有任何感情颜色。
而反问句则是通过反问的语气,把原来陈述的意思进一步强调。
【方法解析】1.把陈述句中表示确定或否定的词改成表示否定或确定的词。
2.加上语气助词“呢”、“吗”。
3.将原句中的句号改为问号。
4.为了加强语气,一般都要加上“莫非”、“怎么”等语气助词。
把反问句改为陈述句,其改法与陈述句改为反问句正相反,需要把反问句中表示确定或否定的词改成否定或确定的词,并去掉语气助词“呢”、“吗”等,再将问号改为句号。
如:不劳动连棵花也养不活,这是真理。
(陈述句)不劳动连棵花也养不活,莫非..这不.是真理吗.?.(反问句)反问句与陈述句相比,添加了语气助词“莫非”“吗”,加原句中需变换部分没有否定词,所以还添加了否定词“不”。
3.直接叙述与间接叙述的变换【句式特点】把某个人的话直接描写出来,叫直接叙述,把某人说的话改为第三者的转述,叫间接转述。
如:陈果说:“我再也不要吃那么多了!”(直接叙述)陈果说,他再也不要吃那么多了。
(间接叙述)两种句式相比较,可以看出直接叙述和间接叙述所表达的内容完全相同。
只是用直接叙述的方式表达,更能彰现说话人当时的语感、情态,使人物形象更具体生动,用间接叙述的方式来写,虽然表达的意思相同,但只能是一种理性的表达,读来不带有任何的感情颜色。
排列组合习题_(含详细答案)
圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法?解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C(种) (法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C(种)注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:69C详解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C种分法。
同类题二题面:求方程X+Y+Z=10的正整数解的个数。
答案:36.详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z 之值, 故解的个数为C92=36(个)。
2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种.答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A66·A47种.详解:任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A66·A47种不同排法.同类题二题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选 C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A=6720种排法.(法2)[1]5个男生先排好:55A;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C CC种,综上:有55A (3216662CCC )=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种?答案:30。
解一元二次方程100题(提升练)--初中数学专项训练
解一元二次方程100题(提升练)1解方程:(1)3x-1.2=22-x 2=6(2)3x-22解下列一元二次方程:(1)x2-16=0(直接开平方法);(2)x2-4x+7=10(配方法).(3)2x2-3x-5=0(公式法);(4)3x2+5x-2=0(因式分解法).3解方程:(1)x2-2x-3=0.(2)x x-2=x-2.4解下列一元二次方程:(1)x2-3x=4;(2)2x-1.2=3x-15解方程:(1)x2-2x-1=0(2)x5x+2=65x+2(3)(2x-1)2-3=0(4)2x2+x-6=0.6解方程.(1)3x x+1;(2)2x2-3x-5=0. =2x+17解下列方程:(1)用配方法解方程:3x2-2x-1=0;(2)2y-1+4(因式分解法).2=31-2y8选择合适的方法解下列方程:(1)x2-4x-2=0;(2)2x x+3.=6x+39解下列方程:(1)x x+1(2)2x2-3x-1=0.=x+110解方程:(1)x x-2+x-2=0;(2)4x2-8x+1=0.11请选择适当的方法解下列一元二次方程:(1)(x-2)2-9=0(2)x2+2x=3(3)2x 2+4x -1=0(4)x -5 2=2x -1 5-x12解方程:(1)2x 2+4x -1=0;(2)2x x -1 =2x -1.13解方程:(1)x -2 2=1.(2)x x -3 +x =3.14用适当的方法解下列方程:(1)7x 2=21x ;(2)x 2-6x =-8:(3)2x 2-6x -1=0;(4)9x -2 2=4x +1 2.15解下列一元二次方程:(1)x 2-4x =1;(2)x -5 2-2x x -5 =0.16解方程:(1)(x -5)(3x -2)=10;(2)x 2+3x +1=0.17解方程:(1)3x2-2=4x(2)4x-32+x x-3=0 (3)x x-3=6-2x(4)2x2-7x+3=0 18解方程(1)x2-5x-1=0(2)xx-3-4x=119解下列方程:(1)3x-12=x+12(2)3x-52=10-2x (3)x-2x+5=18(4)-3x2-4x+4=020解下列方程:(1)3x2-7x=0(2)x2+3x-4=0(3)x-52=2x-5(4)(3-x)2+x2=521计算:(1)x2+2x+1=9;(2)2x2-x-6=0.22解分式方程:(1)2xx+3+1=72x+6(2)6x+1x-1-3x-1=123解方程(1)x2-2x-5=0(用配方法解)(2)2x x+1=x+124用适当的方法解下列一元二次方程(1)3x-12-27=0;(2)x2-8x-9=0(配方法).25解方程:(1)4x2=12x;(2)34x2-2x-12=026解方程:(1)3x2-5x-2=0;(2)x+42=5x+4.27用恰当的方法解方程.(1)-x2+3x+4=0;(2)3x2x-1=4x-2.28解下列方程:(1)(x+5)2=2x+34;(2)3t2-2t-1=0(用配方法).29用适当的方法解下列方程:(1)x x-1=x(2)x2+2x-2=030用适当的方法解下列方程:(1)x2+5x-1=0;(2)7x5x+2;=65x+2(3)3x2+2x=0;(4)x2-2x-8=0.31解方程:(1)x2-4x+3=0;(2)x-3+8=0.2-6x-332解方程:(1)x-52=16;(2)x2-4x+1=0.33解方程:(1)x2-2x-3=0.(2)(x+2)(3x-1)=10.34解方程(1)x(x-1)=2(x-1);(2)x2+4x+2=035用指定的方法解方程:(1)1x2-2x-5=0(用配方法)(2)x2=8x+20(用公式法)2(3)x-3=10(用适当的方法)3x-12+4x x-3=0(用因式分解法)(4)x+236用适当的方法解方程.(1)2x2+1=3x(2)x-322=3x-137解方程:(1)x x-2=x-2.(2)x2-2x-5=0;38解方程:(1)x2-8x=0.(2)2x-32+x2-9=0.(3)x+1=4x-10. 2=2x-1.(4)x2x-539用适当的方法解方程.(1)2x2+4x-3=0;(2)x x-2=4-x240用适当的方法解方程:(1)x2+x-6=0;(2)m2+5m+7=3m+11.41解方程:(1)x-3=x x-3(2)2x2-4x-5=042解方程:(1)x2+x-12=0;(2)x-1-6=0.2-5x-143用适当的方法解下列方程:(1)2x-2. 2-4=0.(2)x-32=2x3-x 44(1)解方程(用公式法):x+2=3x+2.2x-3(2)解方程(用因式分解法):2x-22=x-245解方程:(1)x2+3x-1=0;(2)3(x-1)2=x(x-1)46解方程(1)x2-2x-24=0(2)2x-3=3x x-3 47(1)x-3=0 (2)2x2+4x-6=0;(用配方法)2+4x x-348解下列一元二次方程:(1)x2+5x-24=0(2)3x2=22-x49解方程:(1)x2-4x=4;(2)x+2=12.x+150解方程:(1)x2+8x-1=0(2)x x-2+x-2=051用合适的方法解一元二次方程;(1)x2+8x=9(2)2x+6=(x+3)2=0(4)x2-22x+2=0(3)2x2-7x-1252解下列方程.(1)x(x+4)=-3(x+4)(2)2x2-5x+2=0(公式法)53解方程:(1)x2-4x-3=0;(2)3x x-2=0.-x-254用适当的方法解一元二次方程:(1)x2-2x-8=0;(2)3x x-2.=22-x 55(1)解方程:x2-6x+8=0.(2)解方程:3x2-5x+1=056(1)用配方法解方程:-x2+4x=3(2)解方程:4x2=9x57解方程:(1)2x2-3x+1=0;(2)2x-3+3x+3=6x2-9.58解下列方程:(1)(x-2)2=16;(2)y2-3y+2=0;(3)-2x2+4x+12=0;(4)3x2+6x+15=0.59按要求解下列方程:(1)x-62=16(直接开平方法);(2)x2-4x+2=0(配方法);(3)x2+3x-4=0(公式法);(4)2x+4=x+22(因式分解法).60解下列一元二次方程:(1)x2-2x-3=0;(2)x x+2=x+2.61用适当的方法解下列方程:(1)4x2x+3=82x+3(2)x2-2x-5=0(3)3x2+x-5=0(4)x2+6x+1-13=062解方程:(1)x²-2x-5=0;(2)x+4;2=2x+4 (3)x-1=6. 2-9=0;(4)x x+563计算(1)x-52=16(2)2x2-7x+6=064解方程:(1)x2-4x-4=0(2)x(x+4)=-3(x+4)65解下列方程:(1)x2-3x=0(2)x2+2x-1=066解方程:(1)x-12-25=0;(2)x2-4x-1=0.67解方程:(1)x2-2x+1=0;(2)x2-7x-8=0﹒68解方程(1)x2-1=0(2)2x2-5x+3=069用适当的方法解下列方程(1)x2-2x=2x+1;(2)x2x+3=2x+3.70(1)解方程2x x+1=0(2)解方程:3x2-2x-4=0+3x+171计算:(1)5x2-3x=0;(2)x2-4x+1=0.72解方程:(1)2x2-4x+1=0;(2)x2+2x-3=0.73用适当的方法解方程(1)72x-32=28(2)2x2-x-15=0(3)2x2+4x-5=0(4)2x+12+32x+1+2=074解方程(1)2x+12=121;(2)x2-12x+27=0;(3)2x+12=x2+2;(4)4x2-4=1x-2-1.75用适当的方法解下列方程.(1)x2-4x-1=0;(2)x-32=53-x.76解方程:(1)3x-52=x2-25;(2)x2-1=3x.77解方程:(1)y y-2=3y-2(2)x2+8x-9=078解方程:(1)x2-4x+1=0(用配方法)(2)3(x-2)2=x(x-2)(3)2x2-22x-5=0(4)(y+2)2=(3y-1)279解方程:(1)2x2-4x=1(配方法);(2)x x+4=3x+12.80解方程(1)x-2=82-5=0(2)x x+4(3)2x2-7x=4(4)2x-32=02-x+181解方程:(1)x+82-5x+8+6=0(2)3x(2x+1)=4x+2 82(1)x2-6x+5=0;(2)3x2-2x-1=0.83请选择适当的方法解下列一元二次方程:(1)2x2x+5;(2)x2+2x-5=0. 2x+5=x-1(1)2x+32-25=0.(2)2x2-7x-2=0.(3)x+2.(4)x2-2x-3=0. 2=3x+285解方程(1)x2-4x+1=0(2)5x-32+23-5x=086选择适当的方法解下列一元二次方程:(1)3x-4;(2)2x2+4x-3=0. 2=54-x87用配方法解下列方程(1)3x2-4x-2=0;(2)6x2-2x-1=0;(3)2x2+1=3x;(4)x-3=-5.2x+188解下列方程:(1)x2+25x+10=0(2)42y-522=93y-1(1)x2-4x=0;(2)x2+4x-4=0.90解下列分式方程.(1)x+14x2-4-xx-2=1-2xx+2.(2)13x-4-10x-3=4x-5-1x-1.91解方程:(1)x2-4x-7=0;(2)3x x-1=2x-2.92用适当的方法解下列方程:(1)x2-2x+1=0(2)x2-3x+2=093用适当的方法解下列方程:(1)3x2-2x=0;(2)x2-x-1=0.94解方程:(1)4x-32=x-3(2)2x2-4x-1=095解下列方程:(1)x2+2x-3=0(用配方法)(2)2x2+5x-1=0(用公式法)(3)2x-3=12 2=x2-9(4)x+1x-396用适当的方法解下列方程:(1)x x-2=2-x(2)2x2+3x-1=097解方程:(1)x2-5x-6=0;(2)3x x-1=4x-4.98解方程(1)x2-3x-9=0(2)x x+4=2x+899解方程:(1)x+22-4=0;(2)x2+5x+6=0.100解方程(1)x2-2x+2=0;(2)x2-3x-4=0.参考答案1(1)x 1=1+63,x 2=1-63;(2)x 1=43,x 2=2【分析】(1)利用直接开平方法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵3x -1 2=6,∴3x -1=±6,解得x 1=1+63,x 2=1-63;(2)解:∵3x -2 2=22-x ,∴3x -2 2+2x -2 =0,∴3x -2 +2 x -2 =0,即3x -4 x -2 =0,∴3x -4=0或x -2=0,解得x 1=43,x 2=2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.2(1)x 1=4,x 2=-4;(2)x 1=2+7,x 2=2-7;(3)x 1=52,x 2=-1;(4)x 1=13,x 2=-2【分析】按要求解一元二次方程即可.(1)解:x 2-16=0,x 2=16,解得x 1=4,x 2=-4;(2)解:x 2-4x +7=10,x 2-4x =3,x 2-4x +4=7,x -22=7,解得x 1=2+7,x 2=2-7;(3)解:2x 2-3x -5=0,a =2,b =-3,c =-5,∴x 1,2=--3 ±-32-4×2×-52×2,解得x 1=52,x 2=-1;(4)解:3x 2+5x -2=0,3x -1 x +2 =0,解得x 1=13,x 2=-2.【点拨】本题考查了解一元二次方程.解题的关键在于正确的运算.3(1)x 1=-1,x 2=3;(2)x 1=1,x 2=2【分析】(1)先把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可(1)解:x2-2x-3=0,x+1x-3=0,x+1=0,x-3=0,∴x1=-1,x2=3;(2)解:x x-2=x-2,x x-2-x-2=0,x-1x-2=0,x-1=0,x-2=0,x1=1,x2=2.【点拨】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.4(1)x1=4,x2=-1;(2)x1=1,x2=2+3 2【分析】(1)采用因式分解法解此方程,即可求解;(2)采用因式分解法解此方程,即可求解.(1)解:由原方程得:x2-3x-4=0,得x-4x+1=0,故x-4=0或x+1=0,解得x1=4,x2=-1,所以,原方程的解为x1=4,x2=-1;(2)解:由原方程得:2x-12-3x-1=0,得x-12x-1-3=0,故x-1=0或2x-2-3=0,解得x1=1,x2=2+3 2,所以,原方程的解为x1=1,x2=2+3 2.【点拨】本题考查了解一元二次方程,熟练掌握和运用解一元二次方程的方法是解决本题的关键.5(1)x1=1+2,x2=1-2;(2)x1=6,x2=-25;(3)x1=1+32,x2=1-32;(4)x1=32,x2=-2【分析】(1)方程运用配方法求解即可;(2)方程移项后运用因式分解法求解即可;(3)方程移项后运用直接开平方法求解即可;(4)方程运用因式分解法求解即可.解:(1)x2-2x-1=0x2-2x=1,x2-2x+1=2,x-12=2,x-1=±2,∴x1=1+2,x2=1-2;(2)x5x+2=65x+2x5x+2-65x+2=0,x-65x+2=0,x-6=0,5x+2=0,∴x1=6,x2=-25;(3)(2x-1)2-3=0 (2x-1)2=3,2x-1=±3,2x=1±3,∴x1=1+32,x2=1-32;(4)2x2+x-6=02x-3x+2=0,2x-3=0,x+2=0,x1=32,x2=-2.【点拨】本题主要考查了一元二次方程的解法,熟练掌握因式分解法,配方法和直接开平方法是解答本题的关键.6(1)x1=-1,x2=23;(2)x1=-1,x2=52【分析】(1)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(1)解:∵3x x+1=2x+1,∴3x x+1-2x+1=0,则x+13x-2=0,∴x+1=0或3x-2=0,解得x1=-1,x2=2 3;(2)解:∵2x2-3x-5=0,∴x+12x-5=0,∴x+1=0或2x-5=0,解得x1=-1,x2=5 2.【点拨】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.7(1)x1=1,x2=-13;(2)y1=-32,y2=1【分析】(1)直接利用配方法解方程得出答案;(2)直接利用十字相乘法解方程得出答案.(1)解:∵3x2-2x-1=0,∴x2-23x-13=0,∴x2-23x=13,∴x2-23x+19=49,∴x-132=49,∴x -13=±23,解得x 1=1,x 2=-13;(2)解:∵2y -1 2=31-2y +4,∴2y -1 2+32y -1 -4=0,∴2y -1 -1 2y -1 +4 =0,∴2y -1 -1=0或2y -1 +4=0,解得y 1=-32,y 2=1.【点拨】此题主要考查了一元二次方程的解法,正确掌握相关解一元二次方程的解法是解题关键.8(1)x 1=2+6,x 2=2-6;(2)x 1=-3,x 2=3【分析】(1)利用配方法得到(x -2)2=6,然后用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x +3=0或2x -6=0,然后解两个一次方程即可.解:(1)x 2-4x -2=0,x 2-4x =2,x 2-4x +4=6,(x -2)2=6,x -2=±6,所以x 1=2+6,x 2=2-6;(2)2x x +3 =6x +3 ,2x x +3 -6x +3 =0,x +3 2x -6 =0,x +3=0或2x -6=0,所以x 1=-3,x 2=3.【点拨】本题考查了配方法和因式分解法解一元二次方程,熟练掌握其方法步骤是解决此题的关键,因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9(1)x 1=-1,x 2=1;(2)x 1=3+174,x 2=3-174【分析】(1)移项后,利用因式分解法求解即可;(2)直接利用公式法求解即可.(1)解:x x +1 =x +1 ,x x +1 -x +1 =0,∴x +1 x -1 =0,∴x +1=0或x -1=0,解得:x 1=-1,x 2=1;(2)解:2x 2-3x -1=0,∴a =2,b =-3,c =-1,∴x =-b ±b 2-4ac 2a =--3 ±-3 2-4×2×-1 2×2=3±174,∴x 1=3+174,x 2=3-174.【点拨】本题考查了因式分解法和求根公式法解一元二次方程,熟练掌握因式分解的方法及求根公式是解题的关键.10(1)x 1=2,x 2=-1;(2)x 1=2+32,x 2=2-32【分析】(1)采用因式分解法解此方程,即可求解;(2)采用公式法解此方程,即可求解.(1)解:由原方程得:x -2 x +1 =0,∴x -2=0或x +1=0,解得x 1=2,x 2=-1,所以,原方程的解为x 1=2,x 2=-1;(2)解:∵a =4,b =-8,c =1,∴Δ=-8 2-4×4×1=64-16=48>0,∴x =8±432×4=2±32,解得x 1=2+32,x 2=2-32,所以,原方程的解为x 1=2+32,x 2=2-32.【点拨】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键.11(1)x 1=5,x 2=-1;(2)x 1=-3,x 2=1;(3)x 1=-2+62,x 2=-2-62;(4)x 1=5,x 2=2【分析】(1)利用直接开方法求解即可;(2)利用因式分解法求解即可;(3)利用公式法求解求解即可;(4)利用因式分解法求解即可.(1)解:(x -2)2-9=0∴(x -2)2=9直接开方得:x -2=3或x -2=-3,解得:x 1=5,x 2=-1;(2)x 2+2x =3x 2+2x -3=0,∴x +3 x -1 =0,解得:x 1=-3,x 2=1;(3)2x 2+4x -1=0,其中a =2,b =4,c =-1,∴Δ=b 2-4ac =24>0,∴x =-4±242×2=-2±62,,∴x 1=-2+62,x 2=-2-62;(4)x -5 2=2x -1 5-x移项得:x -5 2+2x -1 x -5 =0,∴x -5 (x -5+2x -1)=0,整理得:x -5 (3x -6)=0,解得:x 1=5,x 2=2.【点拨】题目主要考查解一元二次方程,熟练掌握解一元二次方程的方法步骤是解题关键.12(1)x1=-1+62,x2=-1-62;(2)x1=1+22,x2=1-22【分析】(1)利用配方法解一元二次方程即可得;(2)先去括号,再利用配方法解一元二次方程即可得.(1)解:2x2+4x-1=0,2x2+4x=1,x2+2x=12,x2+2x+1=12+1,即x+12=32,x+1=±62,x=-1±62,所以方程的解为x1=-1+62,x2=-1-62.(2)解:2x x-1=2x-1,2x2-2x=2x-1,2x2-4x=-1,x2-2x=-12,x2-2x+1=-12+1,即x-12=12,x-1=±22,x=1±22,所以方程的解为x1=1+22,x2=1-22.【点拨】本题考查了解一元二次方程,熟练掌握一元二次方程的常用方法(直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.13(1)x1=3,x2=1;(2)x1=3,x2=-1【分析】(1)利用直接开平方法解方程即可;(2)先移项,再利用因式分解法解方程即可.(1)解:x-22=1∴x-2=±1,当x-2=1时,x=3,当x-2=-1时,x=1,∴x1=3,x2=1;(2)解:x x-3+x=3移项得:x x-3+x-3=0,∴x-3x+1=0,∴x-3=0,x+1=0,∴x1=3,x2=-1.【点拨】本题考查解一元二次方程,熟练掌握直接开平方法和因式分解法是解题的关键.14(1)x1=0,x2=3;(2)x1=2,x2=4;(3)x1=3+112,x2=3-112;(4)x1=8,x2=45【分析】(1)将原方程转化为7x 2-21x =0,再利用因式分解法求解即可;(2)将原方程转化为x 2-6x +8=0,再利用因式分解法求解即可;(3)直接利用公式法求解即可;(4)两边开方,得到两个一元一次方程,再求出方程的解即可.(1)解:将原方程转化为7x 2-21x =0,∴7x x -3 =0,∴7x =0或x -3=0,解得:x 1=0,x 2=3;(2)解:将原方程转化为x 2-6x +8=0,∴x -2 x -4 =0,∴x -2=0或x -4=0,解得:x 1=2,x 2=4;(3)解:∵a =2,b =-6,c =-1,∴b 2-4ac =-6 2-4×2×-1 =36+8=44,∴x =-b ±b 2-4ac 2a =--6 ±442×2=6±2114,∴x 1=3+112,x 2=3-112;(4)解:将方程转化为3x -2 =±2x +1 ,∴3x -2 =2x +1 或3x -2 =-2x +1 ,解得:x 1=8,x 2=45.【点拨】本题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法,常用的方法有:直接开平方法、配方法、公式法、因式分解法.15(1)x 1=2+5,x 2=2-5;(2)x 1=5,x 2=-5【分析】(1)用配方法求解即可;(2)用因式分解法求解即可.(1)解:x 2-4x =1,x 2-4x +4=1+4,x -2 2=5,x -2=±5,∴x 1=2+5,x 2=2-5;(2)解:x -5 2-2x x -5 =0,x -5 x -5-2x =0,x -5=0或x -5-2x =0,x 1=5,x 2=-5.【点拨】本题考查解一元二次方程,熟练掌握一元二次方程的解法:直接开方法、配方法、公式法、因式分解法是解题的关键.16(1)x 1=0,x 2=173;(2)x 1=-3+52,x 2=-3-52【分析】(1)先化成一元二次方程的一般形式,再用因式分解法求解即可;(2)用公式法求解即可.(1)解:(x -5)(3x -2)=10,去括号得:3x2-2x-15x+10=10移项合并同类项得:3x2-17x=0,分解因式得:x(3x-17)=0,∴x=0或3x-17=0,解得:x1=0x2=17 3;(2)解:x2+3x+1=0,a=1,b=3,c=1,解得x=-3±32-42,∴x1=-3+52,x2=-3-52;【点拨】本题考查了因式分解法、公式法解一元二次方程.解题的关键在于对解一元二次方程方法的熟练掌握.17(1)x1=2+103,x2=2-103;(2)x1=125,x2=3;(3)x1=-2,x2=3;(4)x1=12,x2=3.【分析】(1)根据公式法求解即可;(2)根据因式分解法求解即可;(3)根据因式分解法求解即可;(4)根据因式分解法求解即可;(1)解:3x2-2=4x,3x2-4x-2=0,∴a=3,b=-4,c=-2,∴Δ=b2-4ac=-42-4×3×-2=40,∴x=-b±Δ2a =--4±402×3=2±103,∴x1=2+103,x2=2-103;(2)解:4x-32+x x-3=0,4x-3+xx-3=0,5x-12x-3=0,∴5x-12=0或x-3=0,∴x1=125,x2=3;(3)解:x x-3=6-2x,x x-3=-2x-3,x x-3+2x-3=0,x+2x-3=0,∴x+2=0或x-3=0,∴x1=-2,x2=3;(4)解:2x2-7x+3=0,2x-1x-3=0,∴2x-1=0或x-3=0,∴x1=12,x2=3.【点拨】本题考查解一元二次方程.根据方程的特点选择合适的方法解方程是解题关键.18(1)x 1=5+292,x 2=5-292;(2)x =12【分析】(1)公式法解一元二次方程;(2)将分式方程化为整式方程,再进行验根,即可得解.(1)解:∵x 2-5x -1=0,∴a =1,b =-5,c =-1,∴△=b 2-4ac =25+4=29>0,∴x =5±292,∴x 1=5+292,x 2=5-292;(2)解:去分母,得:x 2-4x -3 =x x -3 ,去括号,得:x 2-4x +12=x 2-3x ,移项,合并得:-x =-12,系数化1:x =12;检验:把x =12代入x x -3 ≠0,∴x =12是原方程的解.【点拨】本题考查解一元二次方程和分式方程.熟练掌握公式法解一元二次方程,以及解分式方程的步骤,是解题的关键.19(1)x 1=0,x 2=12;(2)x 1=5,x 2=133;(3)x 1=-7,x 2=4;(4)x 1=23,x 2=-2【分析】(1)利用直接开平方法求解即可;(2)移项后利用分解因式法求解即可;(3)原方程化为一般形式后再利用分解因式法求解;(4)原方程化为一般形式后再利用分解因式法求解.(1)解:∵3x -1 2=x +1 2,∴3x -1=±x -1 ,∴3x -1=x -1或3x -1=-x -1 ,解得x 1=0,x 2=12;(2)解:移项,得3x -5 2-10-2x =0,即3x -5 2+2x -5 =0,进一步可变形为x -5 3x -5 +2 =0,∴x -5=0或3x -5 +2=0,解得:x 1=5,x 2=133;(3)解:原方程可变形为x 2+3x -28=0,即为x +7 x -4 =0,∴x +7=0或x -4=0,解得:x 1=-7,x 2=4;(4)解:原方程即为3x 2+4x -4=0,∴3x -2 x +2 =0,∴3x -2=0或x +2=0,解得:x1=23,x2=-2.【点拨】本题考查了一元二次方程的求解,属于基本题目,熟练掌握一元二次方程的解法是解题的关键.20(1)x1=0,x2=73;(2)x1=1,x2=-4;(3)x1=5,x2=7;(4)x1=1,x2=2【分析】(1)提公因式因式分解,解方程即可;(2)因式分解法解方程即可;(3)先移项然后提公因式解方程即可;(4)先化成一元二次方程的一般式,然后进行因式分解,计算求解即可.(1)解:3x2-7x=0,x3x-7=0,解得,x1=0,x2=7 3;(2)解:x2+3x-4=0,x-1x+4=0,解得,x1=1,x2=-4;(3)解:x-52=2x-5,x-5x-5-2=0,解得,x1=5,x2=7;(4)解:(3-x)2+x2=5,9-6x+x2+x2=5,x2-3x+2=0,x-1x-2=0,解得,x1=1,x2=2;【点拨】本题考查了解一元二次方程.解题的关键在于选用合适的方法解方程.21(1)x1=2,x2=-4;(2)x1=2,x2=-3 2【分析】(1)用配方法解方程即可;(2)利用因式分解法解方程即可.(1)解:x2+2x+1=9x+12=9,x+1=±3∴x1=2,x2=-4;(2)解:2x2-x-6=0,2x+3x-2=0∴x1=2,x2=-32.【点拨】此题考查解一元二次方程,掌握解方程的步骤与方法,根据方程的特点,选择合适的方法解方程是解决问题的关键.22(1)x=16;(2)x=-4【分析】先把分式方程化为整式方程求解,然后检验即可.(1)解:2xx+3+1=72x+6去分母得:4x+2x+6=7,去括号得;4x+2x+6=7,移项得:4x+2x=7-6,合并同类项得:6x=1,系数化为1得:x=1 6,经检验,x=16是原方程的解,∴原方程的解为x=16;(2)解:6x+1x-1-3x-1=1去分母得:6-3x+1=x+1x-1,去括号得;6-3x-3=x2-1,移项,合并同类项得:x2+3x-4=0,解得x=1或x=-4,经检验,x=-4是原方程的解,x=1不是原方程的解,∴原方程的解为x=-4.【点拨】本题主要考查了解分式方程,解一元二次方程,熟知解分式方程的方法是解题的关键.23(1)x1=1+6,x2=1-6;(2)x1=-1,x2=1 2【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵x2-2x-5=0,∴x2-2x=5,∴x2-2x+1=6,即x-12=6,∴x-1=±6,解得x1=1+6,x2=1-6;(2)解:∵2x x+1=x+1,∴2x x+1-x+1=0,∴2x-1x+1=0,∴2x-1=0或x+1=0,解得x1=-1,x2=1 2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.24(1)x1=4,x2=-2;(2)x1=9,x2=-1【分析】(1)利用直接开平方的方法解方程即可;(2)利用配方法解方程即可.(1)解:∵3x-12-27=0,∴3x-12=27,∴x-12=9,∴x-1=±3,解得x1=4,x2=-2;(2)解:∵x2-8x-9=0,∴x2-8x=9,∴x2-8x+16=25,即x-42=25,∴x-4=±5,解得x1=9,x2=-1.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.25(1)x1=0,x2=3;(2)x1=4+223,x2=4-223【分析】(1)移项后提公因式求解即可;(2)去分母后用求根公式计算求解即可.(1)解:4x2=12x,4x x-3=0令x=0,x-3=0,解得x1=0,x2=3;(2)解:34x2-2x-12=0,3x2-8x-2=0,解得x=8±-82-4×3×-22×3=4±223,∴x1=4+223,x2=4-223【点拨】本题考查了因式分解法、公式法解一元二次方程.解题的关键在于掌握解一元二次方程的解法.26(1)x1=2,x2=-13;(2)x1=-4,x2=1【分析】(1)用公式法解一元二次方程即可;(2)先移项,然后再用因式分解法解一元二次方程即可.(1)解:由题意得,a=3,b=-5,c=-2,Δ=b2-4ac=-52-4×3×-2=49,∴x=5±72×3,∴x1=2,x2=-13;(2)解:移项得:x+42-5x+4=0,提公因式得:x+4x+4-5=0,∴x+4x-1=0,∴x+4=0或x-1=0,∴x1=-4,x2=1.【点拨】本题主要考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的一般方法,准确计算.27(1)x1=4,x2=-1;(2)x1=23,x2=12【分析】(1)利用因式分解法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.(1)解:-x2+3x+4=0,即x2-3x-4=0,x-4x+1=0,x-4=0或x+1=0,x=4或x=-1,故方程的解为x1=4,x2=-1.(2)解:3x2x-1=4x-2,3x2x-1-22x-1=0,3x-22x-1=0,3x-2=0或2x-1=0,x=23或x=1 2,故方程的解为x1=23,x2=12.【点拨】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(直接开平方法、配方法、因式分解法、公式法、换元法等)是解题关键.28(1)x1=-9,x2=1;(2)t1=1,t2=-1 3【分析】(1)整理后,利用因式分解法求解即可;(2)利用配方法求解即可.(1)解:(x+5)2=2x+34x2+8x-9=0,(x+9)(x-1)=0,∴x1=-9,x2=1;(2)3t2-2t-1=0,t2-23t=13,t2-23t+19=13+19,即t-132=49,∴t-13=±23,∴t1=1,t2=-13.【点拨】本题考查了解一元二次方程-因式分解法,配方法,熟练掌握解一元二次方程的方法是解题的关键.29(1)x1=0,x2=2;(2)x1=-1+3,x2=-1-3【分析】(1)方程移项后,利用因式分解法求出解即可;(2)方程运用配方支求解即可解:(1)x x-1=xx x-1-x=0x x-1-1=0x=0,x-1-1=0∴x1=0,x2=2(2)x2+2x-2=0x2+2x=2x2+2x+1=2+1x+12=3x+1=±3x1=-1+3,x2=-1-3【点拨】此题考查了解一元二次方程-因式分解法和配方法,熟练掌握运算法则是解本题的关键.30(1)x1=-5+292,x2=-5-292;(2)x1=-25,x2=67;(3)x1=-23,x2=0;(4)x1=-2,x2=4【分析】(1)利用公式法解方程即可;(2)先移项,然后利用因式分解法解方程即可;(3)利用因式分解法解方程即可;(4)利用因式分解法解方程即可.(1)解:∵x2+5x-1=0,∴a=1,b=5,c=-1,∴Δ=b2-4ac=52-4×1×-1=29>0,∴x=-b±b2-4ac2a =-5±292,解得x1=-5+292,x2=-5-292;(2)解:∵7x5x+2=65x+2,∴7x5x+2-65x+2=0,∴7x-65x+2=0,∴7x-6=0或5x+2=0,解得x1=-25,x2=67;(3)解:∵3x2+2x=0,∴x3x+2=0,∴x=0或3x+2=0,解得x1=-23,x2=0;(4)解:∵x2-2x-8=0,∴x-4x+2=0,∴x+2=0或x-4=0,解得x1=-2,x2=4.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.31(1)x1=1,x2=3;(2)x1=5,x2=7【分析】(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)将x-3看做整体,利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(1)解:∵x2-4x+3=0,∴x-1x-3=0,∴x-1=0或x-3=0,解得x1=1,x2=3;(2)解:∵x-32-6x-3+8=0,∴x-3-2x-3-4=0,即x-5x-7=0,∴x-5=0或x-7=0,解得x1=5,x2=7.【点拨】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.32(1)x1=9,x2=1;(2)x1=2+3,x2=2-3【分析】(1)利用一元二次方程直接开平方法即可求解.(2)利用一元二次方程公式法x=-b±b2-4ac2a即可求解.(1)解:x-52=16x-5=±4x=5±4∴x1=9,x2=1.(2)解:x2-4x+1=0x=--4±-42-4×1×12×1=2±3∴x1=2+3,x2=2-3.【点拨】此题考查了一元二次方程的解法,熟练掌握直接开平方法、公式法是解题的关键.33(1)x1=-1,x2=3;(2)x1=43,x2=-3【分析】(1)直接因式分解解方程即可;(2)先化成一般式的形式,然后因式分解解方程即可.(1)解:x2-2x-3=0,x+1x-3=0,x+1=0,x-3=0,解得,x1=-1,x2=3;(2)解:x+23x-1=10,3x2+5x-12=0,3x-4x+3=0,3x-4=0,x+3=0,解得,x1=43,x2=-3.【点拨】本题考查了因式分解法解一元二次方程.解题的关键在于正确的进行因式分解.34(1)x1=1,x2=2;(2)x1=-2+2,x2=-2-2【分析】(1)先移项得到x(x-1)-2(x-1)=0,利用因式分解法把方程转化为x-2=0或x-1=0,然后解两个一次方程即可.(2)原方程运用配方法求解即可.解:(1)x(x-1)=2(x-1),x(x-1)-2(x-1)=0,(x-1)(x-2)=0,x-2=0或x-1=0,∴x1=1,x2=2(2)x2+4x+2=0x2+4x+4=2x+22=2x +2=±2∴x 1=-2+2,x 2=-2-2【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了用配方法解一元二次方程.35(1)x 1=2+14,x 2=2-14;(2)x 1=10,x 2=-2;(3)x 1=3,x 2=0.6;(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.解:(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=-8 2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点拨】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.36(1)x 1=1,x 2=12;(2)x 1=-1,x 2=1【分析】(1)利用求根公式直接求解即可;(2)先移项,然后利用平方差公式分解因式求解即可;(1)解:原方程可化为:2x 2-3x +1=0∴a =2,b =-3,c =1∴△=b 2-4ac =-3 2-4×2×1=1>0方程有两个不相等的实数根x =-b ±b 2-4ac 2a =3±12×2=3±14 ∴x 1=1,x 2=12(2)解:原方程移项,得x-32-3x-12=0因式分解,得-2x-24x-4=0于是得-2x-2=0或4x-4=0∴x1=-1,x2=1【点拨】本题考查了解一元二次方程,熟练掌握公式法、因式分解法解一元二次方程是解题的关键.37(1)x1=1,x2=2;(2)x1=1+6,x2=1-6;【分析】(1)移项,因式分解即可得到答案;(2)移项,配方,直接开平方即可得到答案;(1)解:移项得,x(x-2)-(x-2)=0,因式分解得,(x-2)(x-1)=0,∴x-1=0或x-2=0,解得:x1=1,x2=2,∴原方程的解是:x1=1,x2=2;(2)解:移项得,x2-2x=5,配方得,x2-2x+1=5+1,即(x-1)2=6,x-1=±6,∴x1=1+6,x2=1-6;【点拨】本题考查因式分解法解一元二次方程及配方法解一元二次方程,解题的关键是熟练掌握各种解法,选择适当的方法求解.38(1)x1=0,x2=8;(2)x1=3,x2=1;(3)方程无实数根;(4)x1=52,x2=2.【分析】(1)利用因式分解法即可解方程;(2)利用因式分解法即可解方程;(3)依次去括号,移项,合并同类项,得到x2=-2,根据平方的非负性可知,方程无解;(4)利用因式分解法即可解方程.(1)解:x2-8x=0,x x-8=0,令x=0或x-8=0,解得:x1=0,x2=8;(2)解:2x-32+x2-9=0,2x-32+x+3x-3=0,x-32x-3+x+3=0,x-33x-3=0,令x-3=0或3x-3=0,解得:x1=3,x2=1;(3)解:x+12=2x-1,x2+2x+1=2x-1,x2+2x+1-2x+1=0,x2+2=0,x2=-2,∵x2≥0,故原方程无实数根;(4)解:x2x-5=4x-10,x2x-5=22x-5,x2x-5-22x-5=0,2x-5x-2=0,令2x-5=0或x-2=0,解得:x1=52,x2=2.【点拨】本题考查的是解一元二次方程,熟练掌握一元二次方程的解法和步骤是解题关键.39(1)x1=-2+102,x2=-2-102;(2)x1=-1,x2=2【分析】(1)利用公式法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵2x2+4x-3=0,∴a=2,b=4,c=-3,∴Δ=b2-4ac=42-4×2×-3=40>0,∴x=-b±b2-4ac2a =-4±2104=-2±102,解得x1=-2+102,x2=-2-102;(2)解:∵x x-2=4-x2,∴x x-2=x+22-x,∴x x-2+x+2x-2=0∴x+x+2x-2=0,∴x+x+2=0或x-2=0,解得x1=-1,x2=2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.40(1)x1=2,x2=-3;(2)m1=5-1,m2=-5-1【分析】(1)利用因式分解法解方程即可;(2)先把方程化为一般式,然后利用公式法解方程即可.(1)解:∵x2+x-6=0,∴x+3x-2=0,∴x+3=0或x-2=0,解得x1=2,x2=-3;(2)解:∵m2+5m+7=3m+11,∴m2+2m-4=0,∴a=1,b=2,c=-4,∴Δ=b2-4ac=22-4×1×-4=20>0,∴m=-b±b2-4ac2a =-2±252,解得m1=5-1,m2=-5-1.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.41(1)x1=3,x2=1;(2)x1=2+142,x2=2-142【分析】(1)先移项,再把方程的左边提公因式分解因式,化为两个一次方程,解一次方程即可;(2)先求出根的判别式的值,再代入求根公式,用公式法解答.(1)解:∵x-3=x x-3,移项得:x-3-x x-3=0,∴x-31-x=0,∴x-3=0或1-x=0,解得:x1=3,x2=1;(2)解:∵2x2-4x-5=0,∴Δ=-42-4×2×-5=56,∴x=--4±562×2=2±142,x1=2+142,x2=2-142.【点拨】本题主要考查了解一元二次方程,熟练掌握利用因式分解法解一元二次方程和运用公式法解一元二次方程,是解本题的关键.42(1)x1=3,x2=-4;(2)x1=0,x2=7【分析】(1)利用十字相乘因式分解法直接求解即可得到答案;(2)先换元,令m=x-1,将x-12-5x-1-6=0转化为m2-5m-6=0,利用十字相乘因式分解法直接求解即可得到答案.(1)解:x2+x-12=0,∴x+4x-3=0,解得x1=3,x2=-4;(2)解:x-12-5x-1-6=0,令m=x-1,则m2-5m-6=0,∴m-6m+1=0,解得m=6或m=-1,∴x-1=-1或x-1=6,解得x1=0,x2=7.【点拨】本题考查解一元二次方程,根据具体的方程结构特征熟练运用一元二次方程的解法求解是解决问题的关键.43(1)x1=2+2,x2=-2+2;(2)x1=1,x2=3【分析】(1)利用直接开平方法求解即可.(2)利用因式分解法求解即可.(1)解:∵2x-22-4=0,∴x-22=2,即:x-2=±2解得:x1=2+2,x2=-2+2.(2)∵x-32=2x3-x,∴x-32+2x3-x=0,∴x-3+2xx-3=0,即3x-3x-3=0,【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.44(1)x1=1+172,x2=1-172;(2)x1=2,x2=52【分析】(1)先整理成一般式,再利用公式求解即可;(2)先整理成一般式,再利用因式分解求解即可.解:(1)整理,得:x2-x-4=0,∵a=1,b=-1,c=-4,∴Δ=-12-4×1×-4=17>0,则x=-b±b2-4ac2a=1±172,∴x1=1+172,x2=1-172.(2)方程化为:2x2-9x+10=0因式分解得,x-22x-5=0于是得2x-5=0或x-2=0即x1=2或x2=5 2.【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的方法,如公式法、因式分解法,是解题的关键.45(1)x1=-3+132,x2=-3-132;(2)x1=1或x2=32【分析】(1)原方程已经是一般形式,利用根的判别式判断根的情况,再利用求根公式求解即可;(2)找出公因式,利用提取公因式法分解因式,降次后再分别求解即可.解:(1)x2+3x-1=0解:由题意的:a=1,b=3,c=-1∵Δ=b2-4ac=32-4×1×-1=9+4=13∴x1=-b+b2-4ac2a =-3+132,x2=-b-b2-4ac2a=-3-132(2)3(x-1)2=x(x-1)解:移项因式分解得:x-13x-1-x=0化简得:x-12x-3=0∴x-1=0或2x-3=0∴x=1或x=32【点拨】本题主要考查一元二次方程的解法,熟练掌握求根公式和因式分解法解一元二次方程是解决本题的关键.46(1)x1=-4,x2=6;(2)x1=3,x2=2 3【分析】(1)利用十字相乘法将原方程化为两个一元一次方程求解即可解方程;(2)利用因式分解法求解即可解方程.(1)解:x2-2x-24=0,x+4x-6=0,x+4=0或x-6=0,(2)解:2x-3-3x x-3=0,x-32-3x=0,x-3=0或2-3x=0,解得:x1=3,x2=2 3.【点拨】本题考查了解一元二次方程,正确掌握一元二次方程的解法是解题关键.47(1)x1=3,x2=35;(2)x1=1,x2=-3.【分析】(1)利用提公因式法解方程;(2)利用配方法解方程.解:(1)(x-3)2+4x(x-3)=0,(x-3)(x-3+4x)=0,∴x-3=0或5x-3=0,∴x1=3,x2=35;(2)2x2+4x-6=0,x2+2x=3,x2+2x+1=3+1,即(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.【点拨】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.48(1)x1=-8,x2=3;(2)x1=-1+133,x2=-1-133.【分析】(1)利用因式分解法求解即可得到答案;(2)将原方程化为一般式根据求根公式求解即可得到答案;(1)解:因式分解可得,(x+8)(x-3)=0,即x-3=0或x+8=0,解得:x1=-8,x2=3;(2)解:原方程变形得,3x2+2x-4=0,即a=3,b=2,c=-4,∴Δ=b2-4ac=22-4×3×(-4)=52>0∴原方程有两个不相等的实数根,∴x=-b±Δ2a =-2±522×3=-2±2136,∴x1=-1+133,x2=-1-133.【点拨】本题考查解一元二次方程,解题的关键是熟练掌握各种解法及选择适当的方法.49(1)x1=2+22,x2=2-22;(2)x1=2,x2=-5【分析】(1)配方法解方程;(2)因式分解法解方程.∴x2-4x+4=4+4,∴x-22=8,∴x-2=±22,解得:x1=2+22,x2=2-22;(2)解:x+2x+1=12,整理的:x2+3x-10=0,∴x-2x+5=0,解得:x1=2,x2=-5.【点拨】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,是解题的关键.50(1)x1=-4+17,x2=-4-17;(2)x1=2,x2=-1【分析】(1)先利用配方法得到x+42=17,然后利用直接开平方法解方程.(2)利用因式分解法把原方程转化为x-2=0或x+1=0,然后解两个一次方程即可.(1)解:x2+8x-1=0,x2+8x=1,x2+8x+16=1+16,x+42=17,x+4=±17,x1=-4+17,x2=-4-17;(2)解:x x-2+x-2=0,x-2x+1=0,x-2=0或x+1=0,x1=2,x2=-1.【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.51(1)x1=-9或x2=1;(2)x1=-3或x2=-1;;(3)x1=7+534或x2=7-534;(4)x=2【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程一因式分解法,进行计算即可解答;(2)利用解一元二次方程一因式分解法,进行计算即可解答;(3)利用解一元二次方程一公式法,进行计算即可解答;(4)利用解一元二次方程一因式分解法,进行计算即可解答.(1)解:x2+8x=9x2+8x-9=0x+9x-1=0x+9=0或x-1=0x1=-9或x2=1;(2)解:2x+6=(x+3)22x+6-(x+3)2=02x+3-(x+3)2=0x+32-x-3=0x+3-1-x=0x+3=0或-x-1=0x 1=-3或x 2=-1;(3)解:2x 2-7x -12=0∵Δ=-7 2-4×2×-12 =49+4=53>0,∴x =7±534,∴x 1=7+534或x 2=7-534;(4)解:x 2-22x +2=0x -2 2=0x -2=0x =2.【点拨】本题考查了解一元二次方程一因式分解法,公式法,熟练掌握解一元二次方程一因式分解法是解题的关键.52(1)x 1=-3,x 2=-4;(2)x 1=12,x 2=2【分析】(1)原方程整理后,利用因式分解法解该一元二次方程即可;(2)直接用公式法解该一元二次方程即可.(1)解:x (x +4)=-3(x +4),x (x +4)+3(x +4)=0,(x +3)(x +4)=0,∴x 1=-3,x 2=-4;(2)解:2x 2-5x +2=0,∵a =2,b =-5,c =2,∴Δ=b 2-4ac =(-5)2-4×2×2=9>0,∴x =-b ±b 2-4ac 2a =-(-5)±92×2=5±34,∴x 1=12,x 2=2.【点拨】本题主要考查了因式分解法和公式法解一元二次方程,熟练掌握因式分解的方法及求根公式是解题的关键.53(1)x 1=2+7,x 1=2-7;(2)x 1=2,x 2=13【分析】(1)采用公式法解此方程,即可求解;(2)采用因式分解法解此方程,即可求解.(1)解:x 2-4x -3=0,∵a =1,b =-4,c =-3,∴Δ=b 2-4ac =16-4×1×-3 =16+12=28,∴x =-b ±b 2-4ac 2a =4±272=2±7,∴x 1=2+7,x 1=2-7,所以,原方程的解为x 1=2+7,x 1=2-7;(2)解:由原方程得:x -2 3x -1 =0,故x -2=0或3x -1=0,。
第17章一元二次方程(基础、常考、易错、压轴)分类专项训练(解析版)
第17章一元二次方程(基础、常考、易错、压轴)分类专项训练【基础】一、单选题1.(2022·上海·八年级期末)下列关于x 的方程一定有实数根的是( )A .0x a -=B .210ax -=C .10ax -=D .20x a -=【答案】A【分析】分别根据方程的解得定义,从a 的取值出发进行判断.【详解】解:A 、0x a -=有实数解x a =,故符合;B 、210ax -=,当a=0时,等式不成立,即方程无实数解,故不符合;C 、10ax -=,当a=0时,等式不成立,即方程无实数解,故不符合;D 、20x a -=,当a <0时,等式不成立,即方程无实数解,故不符合;故选A .【点睛】本题考查了方程的解,解题的关键是理解方程的解的定义,对a 值进行取值验证.2.(2022·上海松江·八年级期末)某果园今年栽种果树300棵,现计划扩大种植面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年(包括今年)的总栽种量为2100棵.若这个百分数为x ,则由题意可列方程为( )A .2300(1)2100x +=B .2300300(1)2100x ++=C .2300(1)300(1)2100x x +++-D .2300300(1)300(1)2100x x ++++=【答案】D【分析】先表示出各年栽种果树棵数,进而列出方程即可.【详解】解:设这个百分数为x ,今年栽种果树300棵,第二年栽种果树300(1+x )棵,第三年栽种果树300(1+x )2棵,根据题意列方程得,300+300(1+x )+300(1+x )2=2100,故选:D .【点睛】此题主要考查了一元二次方程的应用,分别表示出各年的栽种数量是解题关键.3.(2022·上海徐汇·八年级期末)下列方程中,没有实数根的是( )A .2310x x --=B .230x x -=C .2210x x -+=D .2230x x -+=【答案】D【分析】利用一元二次方程根的判别式,即可求解.【详解】解:A 、()()2341130D =--´-=> ,所以方程有两个不相等的实数根,故本选项不符合题意;B 、()234090D =--´=>,所以方程有两个不相等的实数根,故本选项不符合题意;C 、()22410D =--´=,所以方程有两个相等的实数根,故本选项不符合题意;D 、()224380D =--´=-<,所以方程没有的实数根,故本选项符合题意;故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++¹ ,当240b ac D =-> 时,方程有两个不相等的实数根;当240b ac D =-= 时,方程有两个相等的实数根;当240b ac D =-< 时,方程没有实数根是解题的关键.4.(2022·上海市刘行新华实验学校八年级阶段练习)关于x 的方程220x kx k -+-=,下列说法中正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【分析】计算出Δ=(-k )2-4×1×(k -2)=(k -2)2+4>0即可得出结论.【详解】解:Δ=(-k )2-4×1×(k -2)=(k -2)2+4>0,所以方程有两个不相等的实数根.故选:A .【点睛】本题主要考查根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.二、填空题5.(2022·上海市刘行新华实验学校八年级阶段练习)若方程3x 2-5x -2=0有一个根是a ,则6a 2-10a 的值为______【答案】4【分析】根据一元二次方程的解的定义,将x =a 代入方程3x 2-5x -2=0,列出关于a 的一元二次方程,通过变形求得3a 2-5a 的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x2-5x-2=0的一个根是a,∴3a2-5a-2=0,∴3a2-5a=2,∴6a2-10a=2(3a2-5a)=2×2=4.故答案是:4.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.6.(2022·上海·八年级期中)现代互联网技术的广泛应用,催生了快递行业的高速发展,某快递公司今年3月份和5月份完成投送的快递件数分别是20万件和24.2万件,假设该公司每月投送快递件数的增长率相等,那么该公司每月的增长率是_____.【答案】10%【分析】设该快递公司投递快递总件数的月平均增长率为x,根据今年3月份和5月份完成投递的快递总件数分别为20万件和24.2万件即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设该快递公司投递快递总件数的月平均增长率为x,由题意,得20(1+x)2=24.2,解得:x1=10%,x2=-210%(不合题意舍去).答:该快递公司投递快递总件数的月平均增长率为10%.故答案是:10%.【点睛】本题考查了一元二次方程的应用,解题的关键是:根据3月份与5月份完成投递的快递总件数之间的关系列出关于x的一元二次方程.7.(2022·上海市崇明区横沙中学八年级期末)方程22x x=的解是________.8.(2022·上海市罗星中学八年级期末)方程222x x x -=-的根是______.【答案】121,2x x ==【分析】根据因式分解法解一元二次方程即可求解.【详解】解:222x x x -=-,()()220x x x ---=,()()120x x --=,解得121,2x x ==.故答案为:121,2x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方程的方法是解题的关键.9.(2022·上海市罗南中学八年级阶段练习)用换元法解分式方程222232x x x x x x+=++时,如果设22x y x x=+,那么原方程化为关于y 的整式方程是_______________.10.(2022·上海市刘行新华实验学校八年级阶段练习)已知k 是方程2201810x x -+=的一个根,那么1kk +=______;2220182017k 1k k -++______.11.(2022·上海市崇明区横沙中学八年级期末)如果关于x的方程22(21)0x m x m--+=有两个不相等的实数根,那么m的取值范围是________.【答案】14m<##0.25m<12.(2022·上海市崇明区横沙中学八年级期末)如果m 是方程2340x x --=的一个根,那么代数式226m m -的值为________.【答案】8【分析】由方程的解的定义可知2340m m --=,即234m m -=.将226m m -变形为22(3)m m -,再整体代入求值即可.【详解】∵m 是方程2340x x --=的一个根,∴2340m m --=,∴234m m -=,∴22262(3)248m m m m -=-=´=.故答案为:8【点睛】本题考查一元二次方程的解的定义,代数式求值.利用整体代入的思想是解题关键.13.(2022·上海·八年级期末)疫情期间,某快递公司推出无接触配送服务,第一周的订单数是5万件,第三周的订单数比第一周增加2.8万件,如果设平均每周订单数的增长率为x ,那么符合题意的方程是 ___.【答案】5(1+x )2=5+2.8【分析】根据该快递公司第一周及第三周订单总件数,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每周订单数的增长率为x ,根据题意得:5(1+x )2=5+2.8,故答案为:5(1+x )2=5+2.8.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,找到等量关系是正确列出一元二次方程的关键.三、解答题14.(2022·上海·八年级专题练习)自“双减”政策推行以来,基层教师的工作时间持续增加,已知第一周平均工作时长为40小时,到第三周时,教师周工作时间为48.4小时,若这几周工作时间的增长率相同,求这个增长率.【答案】这个增长率为10%【分析】设这几周工作时间的增长率为x ,根据题意列方程求解即可.【详解】解:设这几周工作时间的增长率为x ,由题意可得:240(1)48.4x +=解得10.1x =,2 2.1x =-(舍去)答:这个增长率为10%【点睛】此题考查了一元二次方程的应用,解题的关键是理解题意找到等量关系,列出方程.15.(2022·上海·八年级专题练习)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【答案】销售单价为180元时,公司每天可获利32000元【分析】根据题意设降价后的销售单价为x 元,由题意得到1003005200[32000]x x -+-()()=,则可得到答案.【详解】解:设降价后的销售单价为x 元,则降价后每天可售出3005200[]x +-()个,依题意,得:1003005200[32000]x x -+-()()=,整理,得:2360324000x x +﹣=,解得:12180x x ==.180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【点睛】本题考查一元二次方程的实际应用,解题的关键是熟练掌握一元二次方程的实际应用.16.(2022·上海市罗南中学八年级阶段练习)已知2x =是关于x 的方程320x x ax --=的一个根,求a 的值并解此方程.【答案】1232021a x x x ====-,,,【分析】将2x =代入即可求出a 的值,再利用因式分解法求方程的解.【详解】解:将2x =代入320x x ax --=得:8420a --=,解得2a =,∴原方程为:3220x x x --=,∴(2)(1)0x x x -+=,∴123021x x x ===-,,.【点睛】本题考查方程的解,因式分解法解方程,熟练运用因式分解是解题的关键.17.(2022·上海市刘行新华实验学校八年级阶段练习)关于x 的一元二次方程()2104k kx k x +++=.(1)若该方程有两个不相等的实数根,求k 的取值范围;(2)若该方程有两个相等的实数根,求该方程的解.18.(2022·上海市刘行新华实验学校八年级阶段练习)解方程:2132-+=x x x 【答案】x 1=2,x 2=-0.5.【分析】先整理为一般式,再利用因式分解法求解可得.【详解】解:将方程整理为一般式为2x 2-3x -2=0,∵(x-2)(2x+1)=0,∴x-2=0或2x+1=0,解得x1=2,x2=-0.5.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(2022·上海市崇明区横沙中学八年级期末)解方程:21320 32x x-++-=20.(2022·上海·八年级专题练习)去年某商店第一季度营业额为120万元,第二季度的营业额比第一季度增长了25%,第三、第四季度营业额的增长率相同,且第四季度的营业额为216万元.求:(1)该店第二季度的营业额;(2)该店第三、第四季度营业额的增长率.(2)设该店第三、第四季度营业额的增长率为x ,150(1+x )2=216,解得x 1=0.2,x 2=﹣2.2(舍去),答:该店第三、第四季度营业额的增长率是20%.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.21.(2022·上海·八年级专题练习)如图,某建筑工程队在一堵墙边上用20米长的铁栏围成一个面积为60平方米的长方形仓库,已知可利用的墙长是11米,铁栅栏只围三边,且在正下方要造一个2米宽的门.问:以上要求所围成长方形的两条邻边的长分别是多少米?【答案】仓库的长与宽分别为10米和6米【分析】仓库的宽为x 米,则可以知道该仓库的长为:()2022222x x -+=-米,然后根据长方形面积公式列出方程求解即可.【详解】解:设仓库的宽为x 米,根据题意,可以知道该仓库的长为:()2022222x x -+=-米由题意可列出方程:()22260x x -=整理,得211300x x -+=,解方程,得15=x ,26x =,当5x =时,长=22212x -=,不合题意舍去,当6x =时,长=22210x -=,符合题意,答:仓库的长与宽分别为10米和6米.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够准确根据题意列出方程求解.22.(2022·上海·八年级专题练习)某纸箱厂要生产一批无盖纸盒,购进了长为20厘米,宽为16厘米的长方形硬纸板,将硬纸板的四个角剪掉四个小正方形(如图所示),剩下的部分正好做成无盖纸盒(不计损耗),若纸盒的底面面积为140平方厘米,则剪下的小正方形的边长是多少厘米?【答案】3厘米【分析】根据题意设小正方形的边长为x ,则底面为长为()202x -厘米,宽为()162x -厘米的长方形,根据其面积为140平方厘米,建立一元二次方程,解方程求解即可,并根据条件取舍结果.【详解】解:设设小正方形的边长为x ,根据题意得:()202x -()162x -140=解得123,15x x ==Q 宽为()162x -0>解得4x <3x \=答:剪下的小正方形的边长是3厘米【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.23.(2022·上海·八年级专题练习)制造一种产品,原来每件成本价500元,销售价625元,经市场预测,两个月后销售价将下降15.2%,为保证利润不变,必须降低成本,问平均每个月下降成本的百分比是多少?【答案】平均每个月下降成本的百分比是10%.【分析】设平均每个月成本下降x ,分别表示出下降后的售价及成本即可列出方程求解.【详解】解:设平均每个月成本下降x ,根据题意得:625(1-15.2%)-500(1-x )2=625-500,解得:x =-1.9(舍去)或x =0.1=10%,答:平均每个月下降成本的百分比是10%.【点睛】本题考查了一元二次方程的应用,解题的关键是表示出下降后的成本和售价,难度不大.24.(2022·上海·八年级期中)如图,在一块长为30米,宽为20米的长方形空地上,建两幢底部是长方形的小楼房,其余部分铺设草坪.要求这些草坪的宽都相等,并且两幢小楼房的底部面积的和与草坪的面积的比是1:3,求草坪的宽度.25.(2022·上海·八年级专题练习)如图,根据防疫的相关要求,学生入校需晨检,体温超标的同学须进入临时隔离区进行留观.我校要建一个面积为10平方米的长方形临时隔离区,隔离区的一面利用学校边墙(墙长4.5米),其它三面用防疫隔离材料搭建,与墙垂直的一边还要开一扇1米宽的进出口(不需材料),共用防疫隔离材料8米,求这个隔离区的长和宽分别是多少米?【答案】隔离区的长为4米和宽2.5米【常考】一、单选题1.(2021·上海·八年级期中)下列方程中,是一元二次方程的是( )A.ax2+bx+c=0B.4x21=0C.x2+4=0D.3x2+x+1x=02.(2021·上海·八年级期中)下列方程中,属于一元二次方程的是()A.2356x x-=B.120x-=C.224x y+=D.610x+=【答案】A【分析】根据一元二次方程的定义逐一判断即可,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程.二、填空题3.(2020·上海市格致初级中学八年级期中)某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.4.(2021·上海·八年级期中)若关于x 的方程()211270aa x x +-+-=是一元二次方程,则=a ___________.【答案】1-【分析】根据一元二次方程的定义得到由此可以求得a 的值.【详解】∵关于x 的方程(a ﹣1)xa 2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).三、解答题5.(2020·上海市格致初级中学八年级期中)用配方法解方程:x2=4.6.(2022·上海·八年级专题练习)解方程:2-=-x x31213二次方程,一定要注意舍去不合理的根.【易错】一.选择题(共4小题)1.(2021秋•崇明区校级期末)下列方程中,属于一元二次方程的是( )A.32x﹣1=0B.x+=3C.x2=(x﹣2)(x+1)D.(x﹣2)(x+2)+4=0【分析】根据一元二次方程的定义判断即可.【解答】解:A.32x﹣1=0,是一元一次方程,故A不符合题意;B.是分式方程,故B不符合题意;C.方程整理可得x+2=0,是一元一次方程,故C不符合题意;D.(x﹣2)(x+2)+4=0是一元二次方程,故D符合题意;故选:D.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.2.(2021秋•普陀区校级期中)若方程(m﹣1)x2+x=1是关于x的一元二次方程,则m的取值范围是( )A.m≠1B.m≥0C.m≥0且m≠1D.m为任何实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.结合二次根式有意义的条件,被开方数是非负数即可求得.【解答】解:根据题意得:解得:m≥0且m≠1.故选:C.【点评】本题主要考查两个知识点:一元二次方程的定义和二次根式有意义的条件,特别要注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.3.(2021春•浦东新区校级月考)若x=1是方程(k﹣1)x2+(k2﹣1)x﹣k+1=0的一个根,则k值满足( )A.k=±1B.k=1C.k=﹣1D.k≠±1【分析】方程的根就是能够使方程左右两边相等的未知数的值;利用这一知识点求出未知字母系数后,要善于观察未知数的系数;将x=1代入原方程即可解得k的值.【解答】解:把x=1代入方程(k﹣1)x2+(k2﹣1)x﹣k+1=0,可得k﹣1+k2﹣1﹣k+1=0,即k2=1,解得k=﹣1或1;但当k=1时k﹣1和k2﹣1均等于0,故应舍去;所以,取k=﹣1;故选:C.【点评】此题应特别注意求出未知字母系数的值后,要代入原方程看是否符合题意.4.(2021春•浦东新区月考)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.二.填空题(共4小题)5.(2021秋•普陀区校级月考)关于x的方程(m﹣3)x+(m﹣2)x+5=0是一元二次方程,则m的值为 ﹣3 .【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)只含有一个未知数.【解答】解:∵关于x的方程(m﹣3)x+(m﹣2)x+5=0是一元二次方程,∴,解得m=﹣3.故答案为:﹣3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.6.(2021秋•浦东新区校级月考)关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程,那么m的取值范围是 m≠﹣5 .【分析】根据一元二次方程的定义可得m+5≠0,再解不等式即可.【解答】解:由关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程,得m+5≠0,解得m≠﹣5.故答案为:m≠﹣5.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.7.(2021秋•宝山区校级月考)当m ≠2 时,关于x的方程mx2+4x=2x2﹣mx+6是一元二次方程.【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行解答即可.【解答】解:mx2+4x=2x2﹣mx+6,mx2+4x﹣2x2+mx﹣6=0,(m﹣2)x2+(m+4)x﹣6=0,∵关于x的方程mx2+4x=2x2﹣mx+6是一元二次方程,∴m﹣2≠0,解得m≠2.故答案为:≠2.【点评】本题考查了一元二次方程的定义,解题时,要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).8.(2022•普陀区二模)如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是 m<0 .【分析】根据负数没有平方根,即可解答.【解答】解:如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是:m<0,故答案为:m<0.【点评】本题考查了解一元二次方程﹣直接开平方法,熟练掌握负数没有平方根是解题的关键.三.解答题(共2小题)9.(2022春•宝山区校级月考)解关于x的方程:mx2+4=3(1﹣x2)(m≠﹣3).【分析】先把方程变形为x2=,然后讨论当m>﹣3时,方程没有实数解;当m<﹣3时,利用直接开平方法解方程,即可解答.【解答】解:mx2+4=3(1﹣x2),mx2+4=3﹣3x2,(m+3)x2=﹣1,x2=,当m>﹣3时,方程没有实数解;当m<﹣3时,x=±=±,∴m1=,m2=﹣.【点评】本题考查了一元二次方程的定义,解一元二次方程﹣直接开平方法,熟练掌握解一元二次方程﹣直接开平方法是解题的关键.10.(2021秋•虹口区校级期末)解关于x的方程:a2(x2﹣x+1)﹣a(x2﹣1)=(a2﹣1)x.【分析】按x的降幂排列整理方程,根据字母系数的取值分类讨论求解.【解答】解:整理方程得(a2﹣a)x2﹣(2a2﹣1)x+(a2+a)=0.(1)当a2﹣a≠0,即a≠0,1时,原方程为一元二次方程,[ax﹣(a+1)][(a﹣1)x﹣a]=0,x1=,x2=;(2)当a2﹣a=0时,原方程为一元一次方程,当a=0时,x=0;当a=1时,x=2.【点评】考查运用分类讨论的思想解字母系数的方程,难度适中.【压轴】一.填空题(共2小题)1.(2021•上海模拟)对于实数a,b,定义运算“*”:a*b=.例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1*x2= 3或﹣3 .【分析】首先解方程x2﹣5x+6=0,再根据a*b=,求出x1*x2的值即可.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2,①当x1=3,x2=2时,x1*x2=32﹣3×2=3;②当x1=2,x2=3时,x1*x2=3×2﹣32=﹣3.故答案为:3或﹣3.【点评】此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.2.(2021秋•浦东新区期中)已知关于x的方程x2﹣(a+2)x+a﹣2b=0的判别式等于0,且x=是方程的根,则a+b的值为 .【分析】由Δ=[﹣(a+2)]2﹣4×(a﹣2b)=0得一关于a,b的方程,再将x=代入原方程又得一关于a,b的方程.联立两个方程组成方程组,解方程组即可求出a、b的值.【解答】解:由题意可得:Δ=[﹣(a+2)]2﹣4×(a﹣2b)=0,即a2+8b+4=0,再将x=代入原方程得:2a﹣8b﹣3=0,根据题意得:两方程相加可得a2+2a+1=0,解得a=﹣1,把a=﹣1代入2a﹣8b﹣3=0中,可得b=,则a+b=.故填空答案为.【点评】此题考查了根的判别式,以及方程的解的定义,把求未知系数的问题转化为解方程组的问题.二.解答题(共6小题)3.(2021秋•奉贤区校级期中)关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0,其根的判别式的值为1,求m的值及该方程的解.【分析】由一元二次方程的Δ=b2﹣4ac=1,建立m的方程,求出m的解后再化简原方程并求解.【解答】解:由题意知,m≠0,Δ=b2﹣4ac=[﹣(3m﹣1)]2﹣4m(2m﹣1)=1∴m1=0(舍去),m2=2,∴原方程化为:2x2﹣5x+3=0,解得,x1=1,x2=3/2.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.4.(2021秋•徐汇区校级期中)如果关于x的方程mx2﹣2(m+2)x+m+5=0没有实数根,试判断关于x的方程(m﹣5)x2﹣2(m﹣1)x+m=0的根的情况.【分析】根据题意:要使方程mx2﹣2(m+2)x+m+5=0没有实数根,必有Δ<0,解可得m的取值范围,将其代入方程(m﹣5)x2﹣2(m﹣1)x+m=0的Δ公式中,判断Δ的取值范围,即可得出答案.【解答】解:①∵当m≠0时,方程mx2﹣2(m+2)x+m+5=0没有实数根,∴Δ=[﹣2(m+2)]2﹣4m(m+5)=4(m2+4m+4﹣m2﹣5m)=4(4﹣m)<0.∴m>4.对于方程(m﹣5)x2﹣2(m﹣1)x+m=0.当m=5时,方程有一个实数根;当m≠5时,Δ1=[﹣2(m﹣1)]2﹣4m(m﹣5)=12m+4.∵m>4,∴Δ1=12m+4>0,方程有两个不相等的实数根.②当m=0时,方程mx2﹣2(m+2)x+m+5=0有实数根,不符合题意,答:当m=5时,方程(m﹣5)x2﹣2(m﹣1)x+m=0有一个实数根;当m>4且m≠5时,此方程有两个不相等的实数根.【点评】主要考查一元二次方程根与系数之间的关系及根的情况的判断公式的使用;要求学生熟练掌本题易错点是忽视对第二个方程是否是一元二次方程进行讨论,这个方程可能是一元一次方程.5.(2022春•金山区校级期中)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是 60 吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?【分析】(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元作为等量关系可列出方程求解.【解答】解:(1)45+×7.5=60;(2分)(2)设当售价定为每吨x元时,由题意,可列方程(x﹣100)(45+×7.5)=9000.(2分)化简得x2﹣420x+44000=0.解得x1=200,x2=220.(6分)当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.【点评】本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.6.(2021秋•徐汇区校级期末)已知关于x的一元二次方程有两个不相等的实数根,求k的取值范围.【分析】一元二次方程有两个不相等的实数根,则Δ=b2﹣4ac>0,结合一元二次方程的定义,求出k 的取值范围.【解答】解:由题意得:1﹣2k≠0即k≠,k+1≥0,即k≥﹣1Δ=b2﹣4ac=(﹣2)2﹣4×(1﹣2k)×(﹣1)=8﹣4k>0,综合所述,得﹣1≤k<2且,【点评】1、一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根2、切记不要忽略一元二次方程二次项系数不为零这一隐含条件.7.(2021秋•金山区校级期中)如图,某工程队在工地互相垂直的两面墙AE、AF处,用180米长的铁栅栏围成一个长方形场地ABCD,中间用同样材料分割成两个长方形.已知墙AE长120米,墙AF长40米,要使长方形ABCD的面积为4000平方米,问BC和CD各取多少米?【分析】设BC=x米,则CD=(180﹣2x)米,然后根据长方形的面积公式列出方程求解即可.【解答】解:设BC=x米,则CD=(180﹣2x)米.由题意,得:x(180﹣2x)=4000,整理,得:x2﹣90x+2000=0,解得:x=40或x=50>40(不符合题意,舍去),∴180﹣2x=180﹣2×40=100<120(符合题意).答:BC=40米,CD=100米.【点评】本题考查了一元二次方程的应用,解题的关键是用x表示CD的长,然后根据长方形的面积公式列出方程.8.(2020秋•浦东新区校级期中)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;。
初中语文语法专项训练题(附答案)
初中语文语法专项训练题(附答案)知识清单】汉语词性分类一、实词:名词、动词、形容词、数量词、代词。
1.名词是用来表示人或事物的词语,包括指人的和指物的。
例如:XXX、农民、工人、日、风、山等。
名词也可以表示时间、处所和方位,如春天、北京、上、下等。
2.动词是用来表示动作、行为、心理活动或存在变化等的词语。
例如:走、坐、听、看、爱、恨、是等。
动词还可以表示可能意愿必要、趋向等。
动词的语法特点:一些动词可以重叠,表示“动作短暂”或“尝试”的意思,是时态的表示法。
单音节动词重叠形式是“AA”,如看——看看、想——想想;双音节动词重叠形式是“ABAB”,如研究——研究研究、批评——批评批评。
动词“是”用在名词前边是动词,表示主语“等于什么”或“属于什么”,如“XXX就是周树人”、“牛是反刍动物”等。
而用在动词、形容词前边,表示肯定,含有“的确”、“实在”的意思,可以看作副词,如“我是懂了”、“他是勇敢”等。
动词“有”只能当动词用,不能当副词用,如“请问,这里有钢笔卖吗?”、“XXX在不在?”等。
1.修正格式错误和删除有问题的段落后:XXX教过你吗?受伤没有?助动词可以作谓语,如“这样做可以不可以”、“完全可以”。
但它们经常用在动词、形容词前作状语,表示动作者的主观意愿和表示可能性、必要性等。
例如“我们一定要坚持原则”、“春天到了,天气应该暖和了”。
趋向动词可以单独作谓语,如“月亮下去了,太阳还没有出来”。
还经常用在别的动词或形容词后表示趋向。
作趋向补语,如“拿一本书”、“拿出来一本书”、“拿一本书来”。
形容词是表示人和事物的形状、性质或表示动作、行为的性质状态的词。
例如:表性质的有好、坏、伟大、勇敢、优秀、聪明、老实、鲁莽、大方、软、硬、苦、甜、冷、热、坚固、平常;表形状的有长、短、大、小、粗、细、红、绿、平坦、整齐、雪白、笔直、绿油油、血淋淋、骨碌碌、黑不溜秋;表状态的有快、慢、生动、熟练、轻松、清楚、马虎、干脆;表数量的有许多、好些、全部、全、整、多、少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多题一法专项训练(一) 配 方 法方法概述适用题型 配方法是对数学式子进行一种定向变形(配成“完全平方”的技巧,通过配方找到已知和未知的联系从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”,“配”与“凑”的技巧,从而完成配方.在高考中配方法常适用的类型有以下几种: (1)二次函数的最值问题 (2)同角三角函数基本关系式中平方关系 (3)平面向量的数量积的应用 (4)余弦定理 (5)圆的方程 (6)等比数列的性质一、填空题1.在正项等比数列{a n }中,a 1·a 5+2a 3·a 5+a 3·a 7=25,则a 3+a 5=________.解析:∵a 1a 5=a 23,a 3a 7=a 25,∴a 23+2a 3·a 5+a 25=25.即(a 3+a 5)2=25. 又a n >0,∴a 3+a 5=5.答案:52.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是________.解析:∵y =x 2-2x +3=(x -1)2+2,∴函数图像的对称轴为x 0=1,最小值为2,要使最大值为3,最小值为2,则1≤m ≤2. 答案:[1,2] 3.(2013·浙江高考改编)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.解析:由椭圆可求出|AF 1|+|AF 2|,由矩形求出|AF 1|2+|AF 2|2,再求出|AF 2|-|AF 1|即可求出双曲线方程中的a ,进而求得双曲线的离心率.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形,所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22, 因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.答案:624.函数y =log 12(-2x 2+5x +3)的单调递增区间是________. 解析:令u =-2x 2+5x +3=-2(x -54)2+498, 又u >0,知-12<x <3, ∴由y =log 12u 为减函数, 故递增区间为[54,3). 答案:[54,3) 5.已知sin 4α+cos 4α=1,则sin α+cos α的值为________.解析:∵sin 4α+cos 4α=1,∴(sin 2α+cos 2α)2-2sin 2αcos 2α=1.∴sin αcos α=0.又(sin α+cos α)2=1+2sin αcos α=1,∴sin α+cos α=±1.答案:±16.已知二次函数y =f (x )=x 2-2ax +a 在区间[0,3]上的最小值为-2,则a 的值为________.解析:f (x )=(x -a )2+a -a 2,对称轴为x =a ,按a 是否在[0,3]中分三种情况讨论.(1)当a <0时,y min =f (0)=a =-2,适合;(2)当0≤a ≤3时,y min =f (a )=a -a 2=-2,解得a =2或-1,但-1∉[0,3],∴a =2;(3)当a >3时,y min =f (3)=9-5a =-2,解得a =115,但115<3,故舍去. 综上所述,a =±2.答案:±27.(2013·浙江高考)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 解析:因为|x ||b |=|x |(x e 1+y e 2)2=|x |x 2+y 2+2xy (e 1·e 2)=|x |x 2+y 2+3xy =11+⎝⎛⎭⎫y x 2+3⎝⎛⎭⎫y x=1⎝⎛⎭⎫y x +322+14≤2,当且仅当y x =-32时取“=”,故|x ||b |的最大值为2. 答案:28.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为________.解析:设长方体长,宽,高分别为x ,y ,z ,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:⎩⎪⎨⎪⎧2(xy +yz +xz )=11,4(x +y +z )=24. 长方体所求对角线长为:x 2+y 2+z 2=(x +y +z )2-2(xy +yz +xz )=62-11=5. 答案:59.设方程x 2+kx +2=0的两实根为p ,q ,若⎝⎛⎭⎫p q 2+⎝⎛⎭⎫q p 2≤7成立,则实数k 的取值范围为________.解析:方程x 2+kx +2=0的两实根为p ,q ,由根与系数的关系得:p +q =-k ,pq =2,⎝⎛⎭⎫p q 2+⎝⎛⎭⎫q p 2=p 4+q 4(pq )2=(p 2+q 2)2-2p 2q 2(pq )2= [(p +q )2-2pq ]2-2p 2q 2(pq )2=(k 2-4)2-84≤7, 解得-10≤k ≤10.又Δ≥0,∴k ≥22或k ≤-2 2.∴k 的取值范围是-10≤k ≤-22或22≤k ≤10.答案:[-10,-22]∪[22,10]二、解答题 10.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b .(1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.解:(1)由2a sin B =3b 及正弦定理a sin A =b sin B, 得sin A =32.因为A 是锐角,所以A =π3. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =36.∴(b +c )2-3bc =36又b +c =8,所以bc =283.由三角形面积公式S =12bc sin A , 得△ABC 的面积为12×283×32=733. 11.2011年8月世界大学生运动会在深圳举行,某特许专营店销售运动会纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向运动会管理处交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2 000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x (元).(1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值.解:(1)依题意y =⎩⎪⎨⎪⎧ [2 000+400(20-x )](x -7),0<x ≤20,[2 000-100(x -20)](x -7),20<x <40, ∴y =⎩⎪⎨⎪⎧400(25-x )(x -7),0<x ≤20,100(40-x )(x -7),20<x <40. 此函数的定义域为(0,40).(2)y =⎩⎪⎨⎪⎧400[-(x -16)2+81],0<x ≤20,100[-⎝⎛⎭⎫x -4722+1 0894],20<x <40. 当0<x ≤20,则当x =16时,y max =32 400(元).当20<x <40,则当x =472时,y max =27 225(元). 综上可得当x =16时,该特许专营店获得的利润最大为32 400 元.12.(2014·惠州调研)如图,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线x =±a 和y =±b 所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线l :y =x 2+m (m ∈R )与椭圆M 有两个不同的交点P ,Q ,直线l 与矩形ABCD 有两个不同的交点S ,T ,求|PQ ||ST |的最大值及取得最大值时m 的值.解:(1)e =c a =32,∴a 2-b 2a 2=34, ①矩形ABCD 面积为8,即2a ·2b =8, ②由①②解得:a =2,b =1,∴椭圆M 的标准方程是x 24+y 2=1. (2)由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +m , 得5x 2+8mx +4m 2-4=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-85m ,x 1x 2=4m 2-45, 由Δ=64m 2-20(4m 2-4)>0,得-5<m < 5.|PQ |=2·(-85m )2-4·4m 2-45=4255-m 2. 当直线l 过A 点时,m =1,当直线l 过C 点时,m =-1.①当-5<m <-1时,S (-m -1,-1),T (2,2+m ),|ST |=2(3+m ),|PQ ||ST |=455-m 2(3+m )2=45-4t 2+6t -1=45 -4(1t -34)2+54. 其中t =m +3,由此知当1t =34,即t =43,m =-53∈(-5,-1)时,|PQ ||ST |取得最大值255. ②由对称性可知,若1<m <5,则当m =53时,|PQ ||ST |取得最大值255. ③当-1≤m ≤1时,|ST |=22,|PQ ||ST |=255-m 2, 由此知,当m =0时,|PQ ||ST |取得最大值255. 综上可知,当m =±53和0时,|PQ ||ST |取得最大值255.。