2011届高三数学一轮复习课时教学桉(共22套).doc

合集下载

2011届高考数学第一轮复习课件之数列求和

2011届高考数学第一轮复习课件之数列求和

2 1 , cn= = 2( - (n+1)(n+2) n+ 1 + + +
1 ) n+ 2 + 则 Tn= c1+ c2+…+ cn 1 1 1 1 1 1 =2( - + - +…+ - ) 2 3 3 4 n+ 1 n+ 2 + + 1 1 n )= . =2( - = 2 n+ 2 n+ 2 + +
课堂互动讲练
【规律小结】 分组转化求和常见 规律小结】 类型及方法. 类型及方法. (1)an=kn+b,利用等差数列前 项 + ,利用等差数列前n项 和公式直接求解; 和公式直接求解; - (2)an=aqn-1,利用等比数列前 项 利用等比数列前n项 和公式直接求解; 和公式直接求解; (3)an=bn±cn,数列 n},{cn}是等 数列{b , 是等 比数列或等差数列, 比数列或等差数列,采用分组求和法求 {an}的前 项和. 的前n项和 的前 项和. 提醒:应用等比数列前n项和公式 提醒:应用等比数列前 项和公式 要注意公比q的取值 的取值. 时,要注意公比 的取值.
第4课时
数列求和
基础知识梳理
求数列的前n项和的方法 求数列的前 项和的方法 1.公式法 . (1)等差数列的前 项和公式 等差数列的前n项和公式 等差数列的前 n(a1+an) n(n-1) - na1+ d 2 S n= 2 = .
基础知识梳理
(2)等比数列前 项和公式 等比数列前n项和公式 等比数列前 ①当q=1时,Sn=na1; = 时
课堂互动讲练
【思路点拨】 (1)由已知条件寻 思路点拨】 由已知条件寻 的关系, 表示出 表示出c 找a1与d的关系,(2)表示出 n采用裂项 的关系 法. 【解】 (1)证明:设等差数列 证明: 证明 {an}的公差为 , 的公差为d, 的公差为 由S4+a2=2S3,得 4a1+6d+a1+d=6a1+6d, + = , , ∴a1=d, 则an=a1+(n-1)d=na1, - = ∴b1=2a1,b2=4a1,

2011届高三数学一轮复习教案---数列

2011届高三数学一轮复习教案---数列

数列1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和的公式,并能解决简单的实际问题.项和公式,并能解决简单的实际问题.数列基础知识定义项,通项数列表示法数列分类等差数列等比数列定义通项公式前n 项和公式性质特殊数列其他特殊数列求和数列纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列与函数、三角、解析几何、组合数的综合应用问题是命题热点.从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的“知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用.第1课时 数列的概念1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项.2.数列的通项公式一个数列{a n }的 与 之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3.在数列{a n }中,前n 项和S n 与通项a n 的关系为:=n a ⎪⎩⎪⎨⎧≥==21n n a n4.求数列的通项公式的其它方法⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法.⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明.⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式.⑴ -312⨯,534⨯,-758⨯,9716⨯…;⑵ 1,2,6,13,23,36,…;⑶ 1,1,2,2,3,3,解: ⑴ a n =(-1)n)12)(12(12+--n n n ⑵ a n =)673(212+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得)673(21)43)(1(211)]53(10741[12+-=--+=-++++++=n n n n n a n ⑶ 将1,1,2,2,3,3,…变形为,213,202,211+++,,206,215,204 +++∴4)1(1222)1(111++-++=-++=n n n n n a 变式训练1.某数列{a n }的前四项为0,2,0,2,则以下各式:① a n =22[1+(-1)n ] ② a n =n )(11-+③ a n =⎩⎨⎧)(0)(2为奇数为偶数n n 其中可作为{a n }的通项公式的是 ( )A .① B .①② C .②③ D .①②③解:D例2. 已知数列{a n }的前n 项和S n ,求通项.⑴ S n =3n -2⑵ S n =n 2+3n +1解 ⑴ a n =S n -S n -1 (n≥2) a 1=S 1解得:a n =⎩⎨⎧=≥⋅-)1(1)2(321n n n ⑵ a n =⎩⎨⎧≥+=)2(22)1(5n n n 变式训练2:已知数列{a n }的前n 项的和S n 满足关系式lg(S n -1)=n ,(n ∈N *),则数列{a n }的通项公式为 .解:,110101)1lg(+=⇒=-⇒=-n n n n n S S n S 当n =1时,a 1=S 1=11;当n≥2时,a n =S n -S n -1=10n -10n -1=9·10 n -1.故a n =⎪⎩⎪⎨⎧≥⋅=-)2(109)1(111n n n 例3. 根据下面数列{a n }的首项和递推关系,探求其通项公式.⑴ a 1=1,a n =2a n -1+1 (n≥2)⑵ a 1=1,a n =113--+n n a (n≥2)⑶ a 1=1,a n =11--n a nn (n≥2)解:⑴ a n =2a n -1+1⇒(a n +1)=2(a n -1+1)(n≥2),a 1+1=2.故:a 1+1=2n ,∴a n =2n -1.⑵a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=3n -1+3n -2+…+33+3+1=)13(21-n .(3)∵n n a a n n 11-=-∴a n =⋅--⋅-=⋅⋅⋅⋅⋅-----12111232211n n n n a a a a a a a a a n n n n n n nn n 112123=⋅⋅⋅-- 变式训练3.已知数列{a n }中,a 1=1,a n +1=22+n na a (n ∈N *),求该数列的通项公式.解:方法一:由a n +1=22+n n a a得21111=-+n n a a ,∴{n a 1}是以111=a 为首项,21为公差的等差数列.∴na 1=1+(n -1)·21,即a n =12+n 方法二:求出前5项,归纳猜想出a n =12+n ,然后用数学归纳证明.例4. 已知函数)(x f =2x -2-x ,数列{a n }满足)(log 2n a f =-2n ,求数列{a n }通项公式.解:na f n a n a n 222)(log 2log 2log 2-=-=-n a a nn 21-=-得nn a n -+=12变式训练4.知数列{a n }的首项a 1=5.前n 项和为S n 且S n +1=2S n +n +5(n ∈N *).(1) 证明数列{a n +1}是等比数列;(2) 令f (x)=a 1x +a 2x 2+…+a n x n ,求函数f (x)在点x =1处导数f 1 (1).解:(1) 由已知S n +1=2S n +n +5,∴ n≥2时,S n =2S n -1+n +4,两式相减,得:S n +1-S n =2(S n -S n -1)+1,即a n +1=2a n +1从而a n +1+1=2(a n +1)当n =1时,S 2=2S 1+1+5,∴ a 1+a 2=2a 1+6,又a 1=5,∴ a 2=11∴111+++n n a a =2,即{a n +1}是以a 1+1=6为首项,2为公比的等比数列.(2) 由(1)知a n =3×2n -1 ∵ )(x f =a 1x +a 2x 2+…+a n x n∴ )('x f =a 1+2a 2x +…+na n x n -1从而)1('f =a 1+2a 2+…+na n =(3×2-1)+2(3×22-1)+…+n(3×2n -1)=3(2+2×22+…+n×2n )-(1+2+…+n)=3[n×2n +1-(2+…+2n )]-2)1(+n n =3(n -1)·2n +1-2)1(+n n +61.根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与项数之间的关系,常用的方法有观察法、通项法,转化为特殊数列法等.2.由S n 求a n 时,用公式a n =S n -S n -1要注意n≥2这个条件,a 1应由a 1=S 1来确定,最后看二者能否统一.3.由递推公式求通项公式的常见形式有:a n +1-a n =f(n),nn a a 1+=f(n),a n +1=pa n +q ,分别用累加法、累乘法、迭代法(或换元法).第2课时 等差数列1.等差数列的定义: - =d (d 为常数).2.等差数列的通项公式:⑴ a n =a 1+ ×d ⑵ a n =a m + ×d3.等差数列的前n 项和公式:S n = = .4.等差中项:如果a 、b 、c 成等差数列,则b 叫做a 与c 的等差中项,即b = .5.数列{a n }是等差数列的两个充要条件是:⑴ 数列{a n }的通项公式可写成a n =pn +q(p, q ∈R)⑵ 数列{a n }的前n 项和公式可写成S n =an 2+bn (a, b ∈R)6.等差数列{a n }的两个重要性质:⑴ m, n, p, q ∈N *,若m +n =p +q ,则 .⑵ 数列{a n }的前n 项和为S n ,S 2n -S n ,S 3n -S 2n 成 数列.例1. 在等差数列{a n }中,(1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8.解:(1)方法一:⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧=+==+=38382904410141145115d a d a a d a a ∴a 60=a 1+59d =130. 方法二:3815451545=--=--=a a m n a a d m n ,由a n =a m +(n -m)d ⇒a 60=a 45+(60-45)d =90+15×38=130. (2)不妨设S n =An 2+Bn ,∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A ∴S n =2n 2-17n∴S 28=2×282-17×28=1092 (3)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a ∴15=2)10(61+a 即a 1=-5而d =31616=--aa ∴a 8=a 6+2 d =16S 8=442)(881=+a a变式训练1.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 解:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10=49)2(72)(75104-=+=+d a a a 例2. 已知数列{a n }满足a 1=2a ,a n =2a -12-n a a (n≥2).其中a 是不为0的常数,令b n =aa n -1.⑴ 求证:数列{b n }是等差数列. ⑵ 求数列{a n }的通项公式. 解:∵ ⑴ a n =2a -12-n a a (n≥2) ∴ b n =)(111112a a a a a a a aa n n n n -=-=---- (n≥2)∴ b n -b n -1=aa a a a a a n n n 11)(111=------ (n≥2)∴ 数列{b n }是公差为a1的等差数列. ⑵ ∵ b 1=aa -11=a 1 故由⑴得:b n =a 1+(n -1)×a 1=a n 即:aa n -1=a n 得:a n =a(1+n 1)变式训练2.已知公比为3的等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=,且11=a ,(1)判断{}n a 是何种数列,并给出证明; (2)若11+=n n n a a C ,求数列{}n C 的前n 项和解:1)1111333,13n n n na a a n n n a nb a a b ++-++===∴-=,即 {}n a 为等差数列。

2011届高三数学一轮复习精品课件:等比数列(必修5)

2011届高三数学一轮复习精品课件:等比数列(必修5)
当 q=-2 时,代入①得 a1=12, 通项公式 an=12×(-2)n-1.
课堂互动讲练
【误区警示】 (1)两边同除以1 -q2导致失解.
(2)忽略q<1从而增根.
课堂互动讲练
互动探究
例2题目条件不变,求Sn. 解:当 q=-1 时,a1=2. ∴Sn=2[1-1+(-1 1)n]=1- (-1)n; 当 q=-2 时,a1=12. ∴Sn=12[1-1+(-22)n]=16[1-(-2)n].
课堂互动讲练
考点三 等比数列的性质
在等比数列中常用的性质主要 有:
(1)对于任意的正整数m,n,p, q,若m+n=p+q,则am·an=ap·aq, 特别地,若m+n=2p,则am·an=ap2.
(2)对于任意正整数m,n,有an= amqn-m.
课堂互动讲练
(3) 若 数 列 {an} 是 等 比 数 列 , 则 {can}(c≠0),{|an|},{an2},{a1n}也是等 比数列,若{bn}是等比数列,则{an·bn} 也是等比数列.
等比数列(第1课时 )
基础知识梳理
1.等比数列的定义 一般地,如果一个数列从 第2项起,每 一项与它的前一项的比等于同一个常数, 那么这个数列叫做等比数列,这个常数叫 等比数列的 公比,公比通常用字母 q (q≠0) 表示.
基础知识梳理
2.等比数列的通项公式 比为q设,等则比它数的列通{a项n}a的n=首a项1q为n-a11.,公
(1)通项公式法:若数列{an}通项 公式可写成an=c·qn(c,q均为不为0的 常数,n∈N*),则{an}是等比数列.
(2)前n项和公式法:若数列{an}的 前n项和Sn=k·qn-k(k为常数且k≠0, q≠0,1),则{an}是等比数列.

2011届高考数学第一轮复习 7.5数列的前n项和学案(学生用) 新人教版.doc

2011届高考数学第一轮复习 7.5数列的前n项和学案(学生用) 新人教版.doc

7.5数列的前n 项和一、学习目标:1.熟练掌握等差数列与等比数列的求和公式;2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算; 3.熟记一些常用的数列的和的公式. 二、自主学习:【课前检测】1.(09年东城一模理15)已知递增的等比数列{}n a 满足28432=++a a a ,且23+a 是42,a a 的等差中项.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若12log +=n n a b ,n S 是数列{}n b 的前n 项和,求使424n S n >+成立的n 的最小值.2.在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项的和.3.已知在各项不为零的数列}{n a 中,),2(0,1*111N n n a a a a a n n n n ∈≥=-+=--。

(1)求数列}{n a 的通项;(2)若数列}{n b 满足1+=n n n a a b ,数列}{n b 的前n 项的和为n S ,求.n S【考点梳理】(一)前n 项和公式S n 的定义:S n =a 1+a 2+…a n 。

(二)数列求和的方法(共8种)1.公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比数列的 数列;4)常用公式:(1)1nk k ==∑12123(1)n n n ++++=+L ;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++L ; (3)31nk k ==∑33332(1)2123[]n n n +++++=L ;(4)1(21)nk k =-=∑2n 1)-(2n ...531=++++。

2.分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。

2011届高考数学第一轮热身复习教案新部编本: 数列

2011届高考数学第一轮热身复习教案新部编本: 数列

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第八章 数列A 组1.已知数列{}n a 满足条件)1a )(1n (a )1n (n 1n -+=-+,且6a 2=,设n a b n n +=,那么数列{}n a 的通项公式是 n n 2a 2n -=2、x=ab 是a 、x 、b 成等比数列的( D ) 条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要3、已知数列{a n }的前n 项和S n =a n-1(a 0,≠∈a R ),则数列{a n }( C )A.一定是等差B.一定是等比C.或是等差或是等比D.既非等差又非等比4、弹子跳棋共有60颗大小的球形弹子,现在棋盘上将它叠成正四面体形球垛,使剩下的弹子尽可能的少,那么剩余的弹子有 ( B )A. 0颗B.4颗C.5颗D.11颗5、某学生家长为缴纳该学生上大学时的教育费,于2003年8月20号从银行贷款a 元,为还清这笔贷款,该家长从2004年起每年的8月20号便去银行偿还确定的金额,计划恰好在贷款的m 年后还清,若银行按年利息为p 的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是 ( D ) A .m aB .1)1()1(11-++++m m p p apC .1)1(1-++m m p p apD .1)1()1(-++m m p p ap 6、已知{}n a 为等比数列,3,21==q a ,又第m 项至第n 项的和为720)(n m <,则=m 3 , =n 67、数列{}n a 对任意*N n ∈都满足422++⋅=n n n a a a ,且0,4,273>==n a a a , 则=11a 88、已知函数221)(xx x f +=,那么=++++++)41()4()31()3()21()2()1(f f f f f f f 72 9、一个项数为偶数的等比数列,首项是1,且所有奇数项之和是85,所有偶数项之和是170,则此数列共有___8 _项10、在各项为正数的等比数列{}n a 中,已知424311a a a a ⋅=+,且前n 2项的和等于它的前n 2项中偶数项之和的11倍,则数列{}n a 的通项公式=n a 2110n - 11、已知数列{}n a 中,3,6011+=-=+n n a a a ,那么||||||3021a a a +++Λ的值为 765 。

高中数学高三第一轮复习精品教案(1.1~4.10)Word版(打包共28份)

高中数学高三第一轮复习精品教案(1.1~4.10)Word版(打包共28份)

第一章集合与简易逻辑●网络体系总览●考点目标定位1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质.●复习方略指南本章内容在高考中以考查空集与全集的概念,元素与集合、集合与集合之间的关系,集合的交、并、补运算为重点,以上内容又以集合的运算为重点考查内容.逻辑联结词与充要条件这部分,以充要条件为重点考查内容.本章内容概念性强,考题大都为容易的选择题,因此复习中应注意:1.复习集合,可以从两个方面入手,一方面是集合的概念之间的区别与联系,另一方面是对集合知识的应用.2.主要是把握集合与元素、集合与集合之间的关系,弄清有关的术语和符号,特别是对集合中的元素的属性要分清楚.3.要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,二者相互对照可加深对双方的认识和理解.4.复习逻辑知识时,要抓住所学的几个知识点,通过解决一些简单的问题达到理解、掌握逻辑知识的目的.5.集合多与函数、方程、不等式有关,要注意知识的融会贯通.1.1 集合的概念与运算●知识梳理1.集合的有关概念2.元素与集合、集合与集合之间的关系(1)元素与集合:“∈”或“∉”.(2)集合与集合之间的关系:包含关系、相等关系.3.集合的运算(1)交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A且x∈B}.(2)并集:由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A与集合B的并集,记为A∪B,即A∪B={x|x∈A或x∈B}.(3)补集:一般地,设S是一个集合,A是S的一个子集(即A⊆S),由S中所有不属于A的元素组成的集合,叫做子集A在全集S中的补集(或余集),记为ðS A,即ðS A={x|x∈S且x∉A}.●点击双基1.(2004年全国Ⅱ,1)已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N 等于A.{x|x<-2}B.{x|x>3}C.{x|-1<x<2}D.{x|2<x<3}解析:M={x|x2<4}={x|-2<x<2},N={x|x2-2x-3<0}={x|-1<x<3},结合数轴,∴M∩N={x|-1<x<2}.答案:C2.(2005年北京西城区抽样测试题)已知集合A={x∈R|x<5-2},B={1,2,3,4},则(ðR A)∩B等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}解析:ðR A={x∈R|x≥5-2},而5-2∈(3,4),∴(ðR A)∩B={4}.答案:D3.(2004年天津,1)设集合P={1,2,3,4,5,6},Q={x∈R|2≤x≤6},那么下列结论正确的是A.P∩Q=PB.P∩Q QC.P∪Q=QD.P∩Q P解析:P∩Q={2,3,4,5,6},∴P∩Q P.答案:D4.设U是全集,非空集合P、Q满足P Q U,若求含P、Q的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是_______________.解析:构造满足条件的集合,实例论证.U={1,2,3},P={1},Q={1,2},则(ðU Q)={3},(ðU P)={2,3},易见(ðU Q)∩P=∅. 答案:(ðU Q)∩P5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x ⊆A },则A 、B 、C 之间的关系是___________________.解析:用列举法表示出B ={1},C ={∅,{1},{0},A },易见其关系.这里A 、B 、C 是不同层次的集合,C 以A 的子集为元素,同一层次的集合可有包含关系,不同层次的集合之间只能是从属关系.答案:B A ,A ∈C ,B ∈C ●典例剖析【例1】 (2004年北京,8)函数f (x )=⎩⎨⎧∈-∈,,M x xP x x其中P 、M 为实数集R 的两个非空子集,又规定f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.给出下列四个判断,其中正确判断有①若P ∩M =∅,则f (P )∩f (M )=∅ ②若P ∩M ≠∅,则f (P )∩f (M )≠∅ ③若P ∪M =R ,则f (P )∪f (M )=R ④若P ∪M ≠R ,则f (P )∪f (M )≠RA.1个B.2个C.3个D.4个 剖析:由题意知函数f (P )、f (M )的图象如下图所示.设P =[x 2,+∞),M =(-∞,x 1],∵|x 2|<|x 1|,f (P )=[f (x 2),+∞),f (M )=[f (x 1),+∞),则P ∩M =∅.而f (P )∩f (M )=[f (x 1),+∞)≠∅,故①错误.同理可知②正确.设P =[x 1,+∞),M =(-∞,x 2],∵|x 2|<|x 1|,则P ∪M =R .f (P )=[f (x 1),+∞),f (M )=[f (x 2),+∞), f (P )∪f (M )=[f (x 1),+∞)≠R ,故③错误.同理可知④正确. 答案:B【例2】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.解:A ={x |-2<x <-1或x >0}, 设B =[x 1,x 2],由A ∩B =(0,2]知x 2=2,且-1≤x 1≤0, ① 由A ∪B =(-2,+∞)知-2≤x 1≤-1. ②由①②知x 1=-1,x 2=2,∴a =-(x 1+x 2)=-1,b =x 1x 2=-2.评述:本题应熟悉集合的交与并的涵义,熟练掌握在数轴上表示区间(集合)的交与并的方法.深化拓展(2004年上海,19)记函数f (x )=132++-x x 的定义域为A ,g (x )= lg [(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围.提示:(1)由2-13++x x ≥0,得11+-x x ≥0,∴x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞).(2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0. ∵a <1,∴a +1>2a .∴B =(2a ,a +1). ∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2. 而a <1,∴21≤a <1或a ≤-2. 故当B ⊆A 时,实数a 的取值范围是(-∞,-2]∪[21,1). 【例3】 (2004年湖北,10)设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是A.P QB.Q PC.P =QD.P ∩Q =Q 剖析:Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立}, 对m 分类:①m =0时,-4<0恒成立;②m <0时,需Δ=(4m )2-4³m ³(-4)<0,解得m <0. 综合①②知m ≤0,∴Q ={m ∈R |m ≤0}. 答案:A评述:本题容易忽略对m =0的讨论,应引起大家足够的重视.【例4】 已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.剖析:如果目光总是停留在集合这一狭窄的知识范围内,此题的思维方法是很难找到的.事实上,集合符号在本题中只起了一种“化妆品”的作用,它的实际背景是“抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)有公共点,求实数m 的取值范围”.这种数学符号与数学语言的互译,是考生必须具备的一种数学素质.解:由⎩⎨⎧≤≤=+-=+-+),20(01,022x y x y mx x 得x 2+(m -1)x +1=0. ①∵A ∩B ≠∅,∴方程①在区间[0,2]上至少有一个实数解. 首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1.当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1知,方程①只有负根,不符合要求; 当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①有两个互为倒数的正根.故必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.综上所述,所求m 的取值范围是(-∞,-1].评述:上述解法应用了数形结合的思想.如果注意到抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)的公共点在线段上,本题也可以利用公共点内分线段的比λ的取值范围建立关于m 的不等式来解.深化拓展设m ∈R ,A ={(x ,y )|y =-3x +m },B ={(x ,y )|x =cos θ,y =sin θ,0<θ<2π},且A ∩B ={(cos θ1,sin θ1),(cos θ2,sin θ2)}(θ1≠θ2),求m 的取值范围.提示:根据题意,直线y =-3x +m 与圆x 2+y 2=1(x ≠1)交于两点, ∴22)3(1||-+m <1且0≠-3³1+m .∴-2<m <2且m ≠3. 答案:-2<m <2且m ≠3.●闯关训练夯实基础1.集合A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =2},则A ∩B 是 A.(1,-1)B.⎩⎨⎧-==11y xC.{(1,-1)}D.{1,-1}解析:⎩⎨⎧=-=+20y x y x ⇒⎩⎨⎧-==.1,1y x 答案:C2.(2004年上海,3)设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________.解析:∵A ∩B ={2},∴log 2(a +3)=2.∴a =1.∴b =2. ∴A ={5,2},B ={1,2}.∴A ∪B ={1,2,5}. 答案:{1,2,5}3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________. 解析:A B 说明A 是B 的真子集,利用数轴(如下图)可知a ≤1.a 1 2答案:a ≤14.已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为__________________. 解析:若a =0,则x =-21.若a ≠0,Δ=4-4a =0,得a =1. 答案:a =0或a =15.(2004年全国Ⅰ,理6)设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 A.(I A )∪B =IB.(I A )∪(I B )=IC.A ∩(I B )=∅D.(I A )∩(I B )=I B解析一:∵A 、B 、I 满足A ⊆B ⊆I ,先画出文氏图,根据文氏图可判断出A 、C 、D 都是正确的.B AI解析二:设非空集合A 、B 、I 分别为A ={1},B ={1,2},I ={1,2,3}且满足A ⊆B ⊆I .根据设出的三个特殊的集合A 、B 、I 可判断出A 、C 、D 都是正确的.答案:B6.(2005年春季北京,15)记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )=)1)(3(--x x 的定义域为集合N .求:(1)集合M 、N ;(2)集合M ∩N 、M ∪N .解:(1)M ={x |2x -3>0}={x |x >23};N ={x |(x -3)(x -1)≥0}={x |x ≥3或x ≤1}. (2)M ∩N ={x |x ≥3};M ∪N ={x |x ≤1或x >23}.培养能力7.已知A ={x ∈R |x 2+2x +p =0}且A ∩{x ∈R |x >0}=∅,求实数p 的取值范围. 解:∵A ∩{x ∈R |x >0}=∅,∴(1)若A =∅,则Δ=4-4p <0,得p >1; (2)若A ≠∅,则A ={x |x ≤0},即方程x 2+2x +p =0的根都小于或等于0. 设两根为x 1、x 2,则⎪⎩⎪⎨⎧≥=≤-=+≥-=.0,02,0442121p x x x x p Δ ∴0≤p ≤1.综上所述,p ≥0. 8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<41},且P ∩Q =Q ,求m 的取值范围.解:点集P 表示平面上以O 1(-2,3)为圆心,2为半径的圆所围成的区域(包括圆周);点集Q 表示平面上以O 2(-1,m )为圆心,21为半径的圆的内部.要使P ∩Q =Q ,应使⊙O 2内含或内切于⊙O 1.故有|O 1O 2|2≤(R 1-R 2)2,即(-1+2)2+(m -3)2≤(2-21)2.解得3-25≤m ≤3+25.评述:本题选题目的是:熟悉用集合语言表述几何问题,利用数形结合方法解题.探究创新9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.解:∵B ={x |1<x <2},若存在实数a ,使A ∩B =A ,则A ={x |(x -a )(x -a 2)<0}.(1)若a =a 2,即a =0或a =1时,此时A ={x |(x -a )2<0}=∅,满足A ∩B =A ,∴a =0或a =1.(2)若a 2>a ,即a >1或a <0时,A ={x |0<x <a 2},要使A ∩B =A ,则⎩⎨⎧≤≥212a a ⇒1≤a ≤2,∴1<a ≤2.(3)若a 2<a ,即0<a <1时,A ={x |a <x <a 2},要使A ∩B =A ,则⎩⎨⎧≥≤122a a ⇒1≤a ≤2,∴a ∈∅.综上所述,当1≤a ≤2或a =0时满足A ∩B =A ,即存在实数a ,使A ={x |x 2-(a +a 2)x + a 3<0}且A ∩B =A 成立. ●思悟小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.●教师下载中心 教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想. 拓展题例【例1】 设M 、N 是两个非空集合,定义M 与N 的差集为M -N ={x |x ∈M 且x ∉N },则M -(M -N )等于A.NB.M ∩NC.M ∪ND.M 解析:M -N ={x |x ∈M 且x ∉N }是指图(1)中的阴影部分.(1) (2)同样M -(M -N )是指图(2)中的阴影部分.答案:B【例2】 设集合P ={1,a ,b },Q ={1,a 2,b 2},已知P =Q ,求1+a 2+b 2的值. 解:∵P =Q ,∴⎪⎩⎪⎨⎧==22,b b a a ① 或⎪⎩⎪⎨⎧==.,22a b b a ② 解①得a =0或a =1,b =0或b =1.(舍去)由②得a =b 2=a 4,∴a =1或a 3=1.a =1不合题意, ∴a 3=1(a ≠1).∴a =ω,b =ω2,其中ω=-21+23i. 故1+a 2+b 2=1+ω2+ω4=1+ω+ω2=0.1.2 逻辑联结词与四种命题●知识梳理 1.逻辑联结词(1)命题:可以判断真假的语句叫做命题. (2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.(4)真值表:表示命题真假的表叫真值表. 2.四种命题 (1)四种命题原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p . (2)四种命题之间的相互关系这里,原命题与逆否命题,逆命题与否命题是等价命题.●点击双基1.由“p :8+7=16,q :π>3”构成的复合命题,下列判断正确的是 A.p 或q 为真,p 且q 为假,非p 为真 B.p 或q 为假,p 且q 为假,非p 为真 C.p 或q 为真,p 且q 为假,非p 为假 D.p 或q 为假,p 且q 为真,非p 为真解析:因为p 假,q 真,由复合命题的真值表可以判断,p 或q 为真,p 且q 为假,非p 为真.答案:A2.(2004年福建,3)命题p :若a 、b ∈R ,则|a |+|b |>1是|a +b |>1的充分而不必要条件;命题q :函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞),则 A.“p 或q ”为假 B.“p 且q ”为真 C. p 真q 假 D. p 假q 真 解析:∵|a +b |≤|a |+|b |,若|a |+|b |>1,不能推出|a +b |>1,而|a +b |>1,一定有|a |+|b |>1,故命题p 为假. 又由函数y =2|1|--x 的定义域为|x -1|-2≥0,即|x -1|≥2,即x -1≥2或x -1≤-2. 故有x ∈(-∞,-1]∪[3,+∞).∴q 为真命题. 答案:D3.(2005年春季上海,15)设函数f (x )的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x ∈R ,有f (x )≤M ,则M 是函数f (x )的最大值;②若存在x0∈R,使得对任意x∈R,且x≠x0,有f(x)<f(x0),则f(x0)是函数f (x)的最大值;③若存在x0∈R,使得对任意x∈R,有f(x)≤f(x0),则f(x0)是函数f(x)的最大值.这些命题中,真命题的个数是A.0B.1C.2D.3解析:①错.原因:可能“=”不能取到.②③都正确.答案:C4.命题“若m>0,则关于x的方程x2+x-m=0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为___________________.解析:先写出其命题的逆命题、否命题、逆否命题,逐一判断.答案:25.(2005年北京西城区抽样测试题)已知命题p:函数y=log a(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则A.“p且q”为真B.“p或q”为假C. p真q假D. p假q真解析:解决本题的关键是判定p、q的真假.由于p真,q假(可举反例y=x+3),因此正确答案为C.答案:C●典例剖析【例1】给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有A.0个B.2个C.3个D.4个剖析:原命题和逆否命题为真.答案:B深化拓展若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0.否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.这是因为它和逆命题互为逆否命题,而逆命题是假命题.逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.因为原命题是真命题,它与原命题等价.评述:解答命题问题,识别命题的条件p与结论q的构成是关键.【例2】指出下列复合命题的形式及其构成.(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形;(3)有一个内角为60°的三角形是正三角形或直角三角形.解:(1)是非p形式的复合命题,其中p:若α是一个三角形的最小内角,则α>60°.(2)是p且q形式的复合命题,其中p:一个内角为90°,另一个内角为45°的三角形是等腰三角形,q:一个内角为90°,另一个内角为45°的三角形是直角三角形.(3)是p或q形式的复合命题,其中p:有一个内角为60°的三角形是正三角形,q:有一个内角为60°的三角形是直角三角形.【例3】写出命题“当abc=0时,a=0或b=0或c=0”的逆命题、否命题、逆否命题,并判断它们的真假.剖析:把原命题改造成“若p则q”形式,再分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理和规律.解:原命题:若abc=0,则a=0或b=0或c=0,是真命题.逆命题:若a=0或b=0或c=0,则abc=0,是真命题.否命题:若abc≠0,则a≠0且b≠0且c≠0,是真命题.逆否命题:若a≠0且b≠0且c≠0,则abc≠0,是真命题.●闯关训练夯实基础1.如果原命题的结论是“p且q”形式,那么否命题的结论形式为A.⌝p且⌝qB.⌝p或⌝qC.⌝p或⌝qD.⌝q或⌝p解析:p且q的否定为⌝p或⌝q.答案:B2.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题②“面积相等的三角形全等”的否命题③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题④“若A∩B=B,则A⊆B”的逆否命题A.①②B.②③C.①②③D.③④解析:写出满足条件的命题再进行判断.答案:C3.分别用“p或q”“p且q”“非p”填空.(1)命题“15能被3和5整除”是___________________形式;(2)命题“16的平方根是4或-4”是______________形式;(3)命题“李强是高一学生,也是共青团员”是___________________形式.答案:(1)p且q(2)p或q(3)p且q4.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是_______________.答案:若a≠0且b≠0,则ab≠05.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射击击中飞机”,试用p1、p2及联结词“或”“且”“非”表示下列命题:(1)两次都击中飞机;(2)两次都没击中飞机;(3)恰有一次击中飞机;(4)至少有一次击中飞机.解:(1)两次都击中飞机是p1且p2;(2)两次都没击中飞机是⌝p1且⌝p2;(3)恰有一次击中飞机是p1且⌝p2,或p2且⌝p1;(4)至少有一次击中飞机是p1或p2.培养能力6.(2004年湖北,15)设A、B为两个集合.下列四个命题:①A B⇔对任意x∈A,有x∉B;②A B⇔A∩B=∅;③A B⇔A B;④A B⇔存在x∈A,使得x∉B.其中真命题的序号是______________.(把符合要求的命题序号都填上)解析:A B⇔存在x∈A,有x∉B,故①错误;②错误;④正确.亦或如下图所示.③反例如下图所示.A B⇒A B.反之,同理.答案:④7.命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.分析:原命题中,a、b为实数是前提,条件是x2+ax+b≤0有非空解集(即不等式有解),结论是a2-4b≥0,由四种命题的关系可得出其他三种命题.解:逆命题:已知a、b为实数,若a2-4b≥0,则x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.8.写出下列命题非的形式:(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;(2)q:若x=3或x=4,则方程x2-7x+12=0.解:(1)函数f(x)=ax2+bx+c的图象与x轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.探究创新9.小李参加全国数学联赛,有三位同学对他作如下的猜测.甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,问:小李得了第几名?解:(1)假设小李得了第三名,则甲全猜对,乙全猜错,显然与题目已知条件相矛盾,故假设不可能.(2)假设小李得了第二名,则甲猜对一半,乙猜对一半,也与已知条件矛盾,故假设不可能.(3)假设小李得了第一名,则甲猜对一半,乙全猜错,丙全猜对,无矛盾.综合(1)(2)(3)知小李得了第一名.●思悟小结1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证).●教师下载中心教学点睛1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.要明确原命题、否命题、逆命题、逆否命题之间的关系.拓展题例【例1】写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x、y都是奇数,则x+y不是偶数,为假命题.原命题的否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.(2)命题的否定:xy=0则x≠0且y≠0,为假命题.原命题的否命题:若xy≠0,则x≠0且y≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题.原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.【例2】有A、B、C三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A盒子上的纸条写的是“苹果在此盒内”,B盒子上的纸条写的是“苹果不在此盒内”,C盒子上的纸条写的是“苹果不在A盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A盒内,则A、B两个盒子上的纸条写的为真,不合题意.若苹果在B盒内,则A、B两个盒子上的纸条写的为假,C盒子上的纸条写的为真,符合题意,即苹果在B盒内.同样,若苹果在C盒内,则B、C两盒子上的纸条写的为真,不合题意.综上,苹果在B盒内.1.3 充要条件与反证法●知识梳理1.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件.2.必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件.3.充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法.●点击双基1.ac 2>bc 2是a >b 成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a >b ac 2>bc 2,如c =0.答案:A2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ²b =a ²c ,乙:b =c ,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解析:命题甲:a ²b =a ²c ⇒a ²(b -c )=0⇒a =0或b =c .命题乙:b =c ,因而乙⇒甲,但甲乙.故甲是乙的必要条件但不是充分条件.答案:B3.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒ A >30°.∴“A >30°”是“sin A >21”的必要不充分条件. 答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6.答案:必要不充分条件5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A●典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是A.x <0B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3 剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0. 证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”.∵x =1是方程的根,将x =1代入方程,得a ²12+b ²1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ²12+b ²1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根.综合(1)(2)知命题成立.深化拓展求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件.证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044a aa Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例3】 下列说法对不对?如果不对,分析错误的原因.(1)x 2=x +2是x 2+x =x 2的充分条件;(2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里).评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2}{-1,2},所以(1)(2)两个结论都不对.●闯关训练夯实基础1.(2004年重庆,7)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴q p .答案:A2.(2003年北京高考题)“cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件 解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3.(2005年海淀区第一学期期末练习)在△ABC 中,“A >B ”是“cos A <cos B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.(2004年北京,5)函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件.分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)²p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)²p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n -1,a n =(p -1)²p n -1,1n n a a =p (n ≥2), ∴{a n }是等比数列.培养能力7.(2004年湖南,9)设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(ðU B )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5解析:∵ðU B ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8.已知关于x 的一元二次方程mx 2-4x +4=0, ①x 2-4mx +4m 2-4m -5=0. ②求使方程①②都有实根的充要条件.解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1;方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.探究创新10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0.●思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明.●教师下载中心教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证.拓展题例【例题】 指出下列命题中,p 是q 的什么条件.(1)p :0<x <3,q :|x -1|<2;(2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点.解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件.(3)p 是q 的充要条件.评述:依集合的观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.第二章函数●网络体系总览●考点目标定位1.理解函数的概念,了解映射的概念.2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.●复习方略指南基本函数:一次函数、二次函数、反比例函数、指数函数与对数函数,它们的图象与性质是函数的基石.求反函数,判断、证明与应用函数的三大特性(单调性、奇偶性、周期性)是高考命题的切入点,有单一考查(如全国2004年第2题),也有综合考查(如江苏2004年第22题).函数的图象、图象的变换是高考热点(如全国2004年Ⅳ,北京2005年春季理2),应用函数知识解其他问题,特别是解应用题能很好地考查学生分析问题、解决问题的能力,这类问题在高考中具有较强的生存力.配方法、待定系数法、数形结合法、分类讨论等,这些方法构成了函数这一章应用的广泛性、解法的多样性和思维的创造性,这均符合高考试题改革的发展趋势.特别在“函数”这一章中,数形结合的思想比比皆是,深刻理解和灵活运用这一思想方法,不仅会给解题带来方便,而且这正是充分把握住了中学数学的精髓和灵魂的体现.复习本章要注意:1.深刻理解一些基本函数,如二次函数、指数函数、对数函数的图象与性质,对数与形的基本关系能相互转化.2.掌握函数图象的基本变换,如平移、翻转、对称等.3.二次函数是初中、高中的结合点,应引起重视,复习时要适当加深加宽.二次函数与二次方程、二次不等式有着密切的联系,要沟通这些知识之间的内在联系,灵活运用它们去解决有关问题.4.含参数函数的讨论是函数问题中的难点及重点,复习时应适当加强这方面的训练,做到条理清楚、分类明确、不重不漏.5.利用函数知识解应用题是高考重点,应引起重视.。

2011高考数学一轮复习精讲精练系列 立体几何教案(上册)

2011高考数学一轮复习精讲精练系列 立体几何教案(上册)

立体几何初步的直观图、能够画出空间两条直线、直线和平面的各种位置关系的图形,能根据图形想象它们的位置关系.2.了解空间两条直线、直线和平面、两个平面的位置关系.3.掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念;掌握直线和平面垂直的判定定理和性质定理;掌握三垂线定理及其逆定理.4.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念;掌握两个平面平行、垂直的判定定理和性质定理.5.了解多面体、凸多面体、正多面体的概念.6.了解棱柱,棱锥的概念;了解棱柱,棱锥的性质;会画其直观图.7.了解球的概念;掌握球的性质;掌握球的表面积、体积公式.直线、平面、简单几何体三个公理、三个推论 平面平行直异面直相交直公理4及等角定理 异面直线所成的角 异面直线间的距离 直线在平面内 直线与平面平直线与平面相空间两条直概念、判定与性质 三垂线定理 垂斜直线与平面所成的角空间直线 与平面空间两个平面棱柱两个平面平行两个平面相交 距离两个平面平行的判定与性质 两个平面垂直的判定与性质二面角定义及有关概念性质综合应用统化.首先,归纳总结,理线串点,可分为四块:A、平面的三个基本性质,四种确定平面的条件;B、两个特殊的位置关系,即线线,线面,面面的平行与垂直.C、三个所成角;即线线、线面、面面所成角;D、四个距离,即两点距、两线距、线面距、面面距.其次,平行和垂直是位置关系的核心,而线面垂直又是核心中的核心,线面角、二面角、距离等均与线面垂直密切相关,把握其中的线面垂直,也就找到了解题的钥匙.再次,要加强数学思想方法的学习,立体几何中蕴涵着丰富的思想方法,化空间图形为平面图形解决,化几何问题为坐标化解决,自觉地学习和运用数学思想方法去解题,常能收到事半功倍的效果.第1课时平面的基本性质公理1 如果一条直线上的在同一个平面内,那么这条直线上的都在这个平面内 (证明直线在平面内的依据).公理2如果两个平面有个公共点,那么它们还有其他公共点,这些公共点的集合是 (证明多点共线的依据).公理3经过不在的三点,有且只有一个平面(确定平面的依据).推论1经过一条直线和这条直线外的一点有且只有一个平面.推论2经过两条直线,有且只有一个平面.推论3 经过两条直线,有且只有一个平面.ABCD-A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于O ,AC 、BD 交于点M .求证:点C 1、O 、M 共线.证明:A 1A∥CC 1⇒确定平面A 1CA 1C ⊂面A 1C ⇒O∈面A 1C ⇒O∈A 1C面BC 1D∩直线A 1C =O ⇒O∈面BC 1D O 在面A 1C 与平面BC 1D 的交线C 1M 上∴C 1、O 、M 共线变式训练1:已知空间四点A 、B 、C 、D 不在同一平面内,求证:直线AB 和CD 既不相交也不平行.提示:反证法.例2. 已知直线l 与三条平行线a 、b 、c 都相交.求证:l 与a 、b 、c 共面.证明:设a ∩l =A b ∩l =B c ∩l =C a ∥b ⇒ a 、b 确定平面α ⇒l ⊂β A∈a , B∈bb ∥c ⇒b 、c 确定平面β 同理可证l ⊂β所以α、β均过相交直线b 、l ⇒ α、β重合⇒ c ⊂α ⇒a 、b 、c 、l 共面ARPQαC BA 变式训练2:如图,△ABC 在平面α外,它的三条边所在的直线AB 、BC 、CA 分别交平面α于P 、Q 、R 点.求证:P 、Q 、R 共线.证明:设平面ABC∩α=l ,由于P =AB∩α,即P =平面ABC∩α=l ,即点P 在直线l 上.同理可证点Q 、R 在直线l 上.∴P、Q 、R 共线,共线于直线l .例3. 若△ABC 所在的平面和△A 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证: (1) AB 和A 1B 1、BC 和B 1C 1分别在同一个平面内;(2) 如果AB 和A 1B 1,BC 和B 1C 1分别相交,那么交点在同一条直线上.证明:(1) ∵AA 1∩BB 1=0,∴AA 1与BB 1确定平面α,又∵A∈a ,B∈α,A 1∈α,B 1∈α,∴AB ⊂α,A 1B 1⊂α,∴AB、A 1B 1在同一个平面内同理BC 、B 1C 1、AC 、A 1C 1分别在同一个平面内(2) 设AB∩A 1B 1=X ,BC∩B 1C 1=Y ,AC∩A 1C 1=Z ,则只需证明X 、Y 、Z 三点都是平面A 1B 1C 1与ABC 的公共点即可.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:(1) E 、C .D 1、F 四点共面;OC 1 B 1A 1 A BC ABECDFA 1B 1C 1D 1(2) CE 、D 1F 、DA 三线共点.证明(1) 连结A 1B 则EF∥A 1B A 1B∥D 1C∴EF∥D 1C ∴E、F 、D 1、C 四点共面(2) 面D 1A∩面CA =DA∴EF∥D 1C 且EF =21D 1C∴D 1F 与CE 相交 又D 1F ⊂面D 1A ,CE ⊂面AC ∴D 1F 与CE 的交点必在DA 上∴CE、D 1F 、DA 三线共点.例4.求证:两两相交且不通过同一点的四条直线必在同一平面内.证明:(1) 若a 、b 、c 三线共点P ,但点p ∉d ,由d 和其外一点可确定一个平面α又a∩d=A ∴点A∈α ∴直线a ⊂α同理可证:b 、c ⊂α ∴a 、b 、c 、d 共面(2)若a 、b 、c 、d 两两相交但不过同一点∵a ∩b =Q ∴a 与b 可确定一个平面β又c ∩b =E ∴E∈β同理c ∩a =F ∴F∈β∴直线c 上有两点E、F在β上 ∴c ⊂β同理可证:d ⊂β 故a 、b 、c 、d 共面由(1) (2)知:两两相交而不过同一点的四条直线必共面变式训练4:分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线,为什么?解:假设AC 、BD 不异面,则它们都在某个平面α内,则A 、B 、C 、D ∈α.由公理1知AC α⊂≠,BD α⊂≠.这与已知AB 与CD 异面矛盾,所以假设不成立,即AC 、BD 一定是异面直线。

2011届高考数学专题复习教案1

2011届高考数学专题复习教案1

【课 题】:合情推理 【上课时间】:【学习目标】:1. 结合已经学过的数学实例和生活实例,了解合情推论的含义,能利用归纳和类比等方法进行简单的推理,体会并认识合情推论在数学发现中的作用。

2. 正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物,分析问题,发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。

【教学重,难点】:归纳推理的具体含义及其应用,用类比进行推理,作出猜想。

【教学过程】:一、自主学习1、 归纳推理的定义:____________________________________________________.2、 归纳推理的思维过程:________________________________.3、 类比推理的定义:_________________________________________________________.4、 类比推理的思维过程:________________________________.二、练习:1.观察下列等式,并从中归纳出一般的结论(1)2121=,326121=+,431216121=++,432011216121=+++ 猜想: (2)三角形的内角和是180°,凸四边形的内角和是001802360⨯=,凸五边形的内角和是001803540⨯=,---,猜想:凸多边形的内角和是_______________________.(3)当n=0时, 1111n n 2=+-; 当n=1时,1111n n 2=+-;当n=2时,1311n n 2=+-; 当n=3时,1711n n 2=+-;当n=4时,2311n n 2=+-; 当n=5时,3111n n 2=+-;因为31,23,17,13,11,11都是质数。

猜想:通过这三个例子说明:根据一个或几个事实(或假设)得出一个新判断的思维方式 显然这种结论_____________正确。

高三数学一轮复习学案修改版

高三数学一轮复习学案修改版

2011版高三数学一轮精品复习学案:函数、导数及其应用2.7导 数【高考目标定位】一、变化率与导数、导数的计算 1、考纲点击(1)了解导数概念的实际背景 (2)理解导数的几何意义;(3)能根据导数定义求函数y=c,y=x,y=x 2,y=x 3,y=1x,y ; (4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数。

2、热点提示(1)导数的几何意义是高考考查的重点内容,常以选择题、填空题的形式出现,有时也出现在解答题中;(2)导数的运算每年必考,一般不单独考查,在考查导数应用研究的同时考查导数的运算。

二、导数在研究函数中的应用与生活中的优化问题 1、考纲点击(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);(2)了解函数在某点取得极值域的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。

(3)会利用导数解决某些实际问题。

2、热点提示(1)在高考中,重点考查利用导数研究函数的单调性,求单调区间、极值、最值,以及利用导数解决生活中的优化问题。

有时在导数与解析几何、不等式、平面向量等知识交汇点处命题。

(2)多以解答题的形式出现,属中、高档题目。

【考纲知识梳理】一、变化率与导数、导数的计算 1、函数y=f(x)从x 1到x 2的平均变化率 函数y=f(x)从x 1到x 2的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,21()()y f x f x ∆=-则平均变化率可表示为y x∆∆。

2、函数y=f(x)在x=x 0处导数 (1)定义称函数y=f(x)在x=x 0处的瞬时变化率0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆为y=f(x)在x=x 0处导数,记作 0000000()()()|,()lim limx x x x f x x f x yf x y f x x x =∆→∆→+∆-∆'''==∆∆或即 (2)几何意义函数f(x)在点x 处的导数0()f x '的几何意义是在曲线y=f(x)上点(0x ,0()f x ')处的切线的斜率。

2011年高考数学一轮复习精品学案(人教版A版)§9.4解析几何初步--教师用

2011年高考数学一轮复习精品学案(人教版A版)§9.4解析几何初步--教师用

课后检测一.选择题:1. 原点在直线l 上的射影是P (-2,1),则直线l 的方程是( ) A .x +2y =0 B .x +2y -4=0 C .2x -y +5=0 D .2x +y +3=0 [解析] C .[221,=∴-=⊥l OP k k l OP ]2. 已知点的集合),,{(z y x A =},0|||||R z a y a x ∈=-+-,则,( ) A .A 中的每个点到x 轴的距离相等 B .A 中的每个点到y 轴的距离相等 C .A 中的每个点到z 轴的距离相等 D .A 中的每个点到xo y 平面的距离相等[解析] C .[点集A 是一条平行于z 轴的直线]3. 若直线02=++m y x 按向量)2,1(--=a 平移后与042:22=-++y x y x C 相切,则实数m 的值等于( )A 3或13B 3或-13C -3或7D -3或-13[解析]D.[直线02=++m y x 按向量)2,1(--=a 平移后,方程为052=+++m y x =⇒=+∴m m 55|8|-3或-13]4. (山东省济南市2008年2月高三统一考试)已知圆C :4)2()(22=-+-y a x 及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a 等于( )A .2 B.32- C.12-± D.12+[解析] C[易知圆心C(a,2)到直线的距离为1,12|32|=+-∴a ,12-±=∴a ]5. 若直线x k y l )1(2:1-=-和直线2l 关于直线1+=x y 对称,那么直线2l 恒过定点A .(2,0)B .(1,-1)C .(1,1)D .(-2,0)[解析] C[直线1l 经过定点)2,0(P ,)2,0(P 关于直线1+=x y 的对称点为(1,1),直线2l 恒过定点(1,1)]6. 已知过点)1,1(P 作直线l 与两坐标轴正半轴相交,所围成的三角形面积为2,则这样的直线l 有( )A . 1条B .2条C .3条D .0条 [解析]A.[设直线l 的方程为1=+b yax ,则⎩⎨⎧==+4ab abb a ,b a ,∴ 是方程0442=+-x x 的根,只有一解2==b a ]7. 已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是( )A (x-5)2+(y+7)2=25B (x-5)2+(y+7) 2=17 或(x-5)2+(y+7)2=15C (x-5)2+(y+7)2=9D (x-5)2+(y+7) 2=25 或(x-5)2+(y+7)2=9 [解析] D [分内切和外切两种情况];8. 直线0)1()1(=+++y b x a 与圆222=+y x 的位置关系是 ( ) A.相离 B.相切 C.相交或相切 D.不能确定 [解析] D[圆心O 到直线0)1()1(=+++y b x a 的距离22||ba b a d ++=,b a ab b a b a ,2)()(222∴=+-+ 同号时1||22>++=ba b a d ;0=ab 时,1||22=++=ba b a d ;b a ,异号时,1||22<++=ba b a d ,]二.填空题: (本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分)9. 已知两点(2,0),(0,2)A B -,点C 是圆2220x y x +-=上任意一点,则ABC ∆面积的最大值是 . 解析:23+.[直线AB 的方程为2+=x y ,圆心到直线AB 的距离为223,C 到直线AB的距离的最大值为2223+, ABC ∆面积的最大值是 23+]10. 点(4,a )在两条平行线033,063=++=-+y x y x 之间,则a 的取值范围是[解析])6,15(--[直线4=x 与两条平行线033,063=++=-+y x y x 分别交于点)15,4(),6,4(--,615-<<-∴a ]11. 已知圆16)4()7(22=++-y x 与圆16)6()5(22=-++y x 关于直线l 对称 ,则直线l 的方程是 .[解析] 0156=--y x [依题意得,两圆的圆心)4,7(-A 与)6,5(-B 关于直线l 对称,故直线l 是线段AB 的垂直平分线,直线l 的方程为0156=--y x ]. 12. 已知0232=-+y x ,则22y x +的最小值为 [解析]134[22y x +的最小值是原点到直线0232=-+y x 的距离的平方,134)132(222==+∴y x ]13. 一条光线从点)3,2(P 射出,经x 轴反射,与圆1)2()3(22=-++y x 相切,则反射光线所在直线的方程是 . [解析] 0134=++y x 或0643=++y x[依题意得,点P 关于x 轴的对称点)3,2('-P 在反射光线所在的直线上,故可设反射光线所在直线的方程为)2(3-=+x k y ,即032=---k y kx .由反射光线与圆相切得11552=++k k ,解得34-=k 或43-=k ,∴反射光线所在直线的方程是)2(343--=+x y 或)2(433--=+x y ,即0134=++y x 或0643=++y x ]14. 若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 . [解析] }2,0,25,512{--[∵圆4)(22=+-y m x 的圆心为)0,(1m O ,半径21=r ,圆9)2()1(22=-++m y x 的圆心为)2,1(2m O -,半径32=r ,且两圆相切,∴2121r r O O +=或1221r r O O -=,∴5)2()1(22=++m m 或1)2()1(22=++m m ,解得512-=m 或2=m ,或0=m 或25-=m ,∴实数m 的取值集合是}2,0,25,512{--]15.过点)2,1(P 向圆)5(222<=+r r y x 引两条切线PB PA ,,B A ,为切点,则三角形PAB 的外接圆面积为[解析]45π[OA PA ⊥ ,OB PB ⊥,故O 、A 、B 、P 四点共圆,所以三角形PAB 的外接圆就是四边形OAPB 的外接圆,直径为OP=5, 外接圆面积为45π]三.解答题:16. (华南师大附中2007—2008学年度高三综合测试)已知与曲线轴分别交相线的直线x l y x y x C 0122:22=+--+、y 轴于)0,(a A 、O b a b B ),2,2(),0(>>两点为原点。

2011年高考数学一轮复习精品学案(人教版A版)§9.7--抛物线--答案

2011年高考数学一轮复习精品学案(人教版A版)§9.7--抛物线--答案

§9.7 抛物线1.抛物线的标准方程、类型及其几何性质 (0>p ):标准方程 px y 22=px y 22-=py x 22=py x 22-=图形▲y xO▲yxO▲y xO▲yxO焦点 )0,2(pF )0,2(p F - )2,0(p F )2,0(p F - 准线 2p x -= 2p x = 2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,00,≥∈y R x 0,≤∈y R x对称轴 x 轴y 轴顶点 (0,0)离心率1=e2.抛物线的焦半径、焦点弦①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p ,=B A y y 2p -,||AB =p x x B A ++1.答案 ⎪⎭⎫⎝⎛a 161,0; 2.答案 4; 3.答案 y 2=8x; 4.答案 4; 5.答案 2例1 解 将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部.设抛物线上点P 到准线l :x =-21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小,最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 坐标为(2,2).例2解 ①若抛物线开口方向向下,设抛物线方程为x 2=-2py(p >0),这时准线方程为y =2p , 由抛物线定义知2p-(-3)=5,解得p =4, ∴抛物线方程为x 2=-8y,这时将点A (m,-3)代入方程,得m =±26.②若抛物线开口方向向左或向右,可设抛物线方程为y 2=2ax (a ≠0),从p =|a|知准线方程可统一成x =-2a的形式,于是从题设有⎪⎩⎪⎨⎧==+9252am m a, 解此方程组可得四组解⎪⎩⎪⎨⎧==29111m a ,⎪⎩⎪⎨⎧-=-=29122m a ,⎪⎩⎪⎨⎧==21933m a ,⎪⎩⎪⎨⎧-=-=21944m a . ∴y 2=2x,m =29;y 2=-2x,m =-29;y 2=18x,m =21;y 2=-18x,m =-21.例3(1)证明 由题意设A ⎪⎪⎭⎫ ⎝⎛p x x 2,211,B ⎪⎪⎭⎫ ⎝⎛p x x 2,222,x 1<x 2, M ()p x 2,0-. 由x 2=2py 得y =px 22,则y ′=p x ,所以k MA =p x 1,k MB =p x 2. 2分因此,直线MA 的方程为y +2p =p x 1(x -x 0),直线MB 的方程为y +2p =px2(x -x 0). 所以,px 221+2 p =p x 1 (x 1-x 0),①px 222+2 p =p x 2(x 2-x 0).② 5分由①、②得221x x +=021x x x -+,因此,x 0=221x x +,即2x 0=21x x +. 所以A 、M 、B 三点的横坐标成等差数列. 8分(2)解 由(1)知,当x 0=2时,将其代入①、②,并整理得:x 21-4x 1-4p 2=0,x 22-4x 2-4 p2=0,所以,x 1、x 2是方程x 2-4x -4 p 2=0的两根, 10分因此,x 1+x 2=4,x 1x 2=-4 p 2,又k AB =12212222x x px p x --=p x x 221+=p x 0,所以k AB =p 2.12分由弦长公式得:|AB|=21k +212214)(x x x x -+=241p+21616p +.又|AB|=410,所以p =1或p =2,因此所求抛物线方程为x 2=2y 或x 2=4y. 16分1.答案2172.解 设抛物线的方程为y 2=2 p x(p >0),其准线为x =-2p.设A (x 1,y 1),B(x 2,y 2), ∵|AF|+|BF|=8,∴x 1+2p +x 2+2p=8,即x 1+x 2=8-p. ∵Q (6,0)在线段AB 的中垂线上,∴|QA|=|QB|.即(x 1-6)2+y 12=(x 2-6)2+y 22,又y 12=2px 1,y 22=2px 2,∴(x 1-x 2)(x 1+x 2-12+2p)=0.∵AB 与x 轴不垂直,∴x 1≠x 2, 故x 1+x 2-12+2p =8- p -12+2 p =0, 即p =4.从而抛物线的方程为y 2=8x.3.解 (1)由题意可得直线l 的方程为y =21x +45, ① 过原点垂直于l 的直线方程为y =-2x.② 解①②得x =-21.∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上, ∴-2p =-21×2, p =2.∴抛物线C 的方程为y 2=4x. (2)设A(x 1,y 1),B(x 2,y 2),N(x,y),由题意知y =y 1. 由OA ·OB + p 2=0,得x 1x 2+y 1y 2+4=0, 又y 12=4x 1,y 22=4x 2,解得y 1y 2=-8,③ 直线ON :y =22x y x ,即y =24y x. ④ 由③、④及y =y 1得点N 的轨迹方程为x =-2(y ≠0). 1.答案x 2=8y; 2.答案2a ;3.答案29; 4.答案相等; 5.答案-43; 6.答案6; 7.答案3+22; 8.答案319.解 因为一直角边的方程是y =2x, 所以另一直角边的方程是y =-21x.由⎪⎩⎪⎨⎧==px y x y 222,解得⎪⎩⎪⎨⎧==p y p x 2,或⎩⎨⎧==00y x (舍去), 由⎪⎩⎪⎨⎧=-=px y xy 2212,解得⎩⎨⎧-==p y p x 48,或⎩⎨⎧==00y x (舍去),∴三角形的另两个顶点为⎪⎭⎫⎝⎛p p,2和(8 p,-4p ).∴22)4()82(p p p p ++-=213.解得p =54,故所求抛物线的方程为y 2=58x.10.解由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p =2c.抛物线方程为y 2=4cx.∵抛物线过点⎪⎭⎫⎝⎛6,23,∴6=4c·23.∴c =1,故抛物线方程为y 2=4x.又双曲线2222b y a x -=1过点⎪⎭⎫⎝⎛6,23, ∴22649ba-=a 2+b 2=c 2=1.∴221649a a --=1.∴a 2=41或a 2=9(舍). ∴b 2=43,故双曲线方程为4x 2-342y =1. 11.(1)解 由已知得2 p =8,∴2p=2,∴抛物线的焦点坐标为F (2,0),准线方程为x =-2. (2)证明 设A (x A ,y A ),B (x B ,y B ),直线AB 的斜率为k =tan α,则直线方程为y =k(x -2), 将此式代入y 2=8x,得k 2x 2-4(k 2+2)x +4k 2=0,故x A +x B =22)2(4k k +,记直线m 与AB 的交点为E (x E ,y E ),则x E =2B A x x +=22)2(2kk +,y E =k(x E -2)=k 4, 故直线m 的方程为y -k 4=-k 1⎪⎪⎭⎫ ⎝⎛+-2242k k x ,令y =0,得点P 的横坐标x P =2242k k ++4, 故|FP|=x P -2=22)1(4k k +=α2sin 4,∴|FP|-|FP|cos2α=α2sin 4(1-cos2α)=αα22sin sin 24⋅=8,为定值.12.解 (1)设M (x,y )为轨迹上任意一点,A (0,b ),Q(a,0)(a ≥0), 则AM =(x,y -b ),MQ =(a -x,-y), ∵AM =-23MQ ,∴(x ,y -b )=-23(a -x ,-y ),∴⎪⎪⎩⎪⎪⎨⎧=---=y b y x a x 23)(23,从而⎪⎪⎩⎪⎪⎨⎧-==yb x a 2131.∴A ⎪⎭⎫ ⎝⎛-y 21,0,且PA =⎪⎭⎫ ⎝⎛-2,3y , AM =⎪⎭⎫ ⎝⎛y x 23,. ∵PA ·AM =0,∴⎪⎭⎫ ⎝⎛-2,3y ·⎪⎭⎫ ⎝⎛y x 23,=0,即3x -43y 2=0,∴y 2=4x,故M 点的轨迹方程为y 2=4x. (2)轨迹C 的焦点为F (1,0),准线为l:x =-1,对称轴为xm 的方程为y =k(x -1)(k ≠0), 由⎪⎩⎪⎨⎧=-=xy x k y 4)1(2⇒ky 2-4y -4k =0,设G (x 1,y 1),H(x 2,y 2),则由根与系数的关系得,y 1y 2=-4, 又由已知OE =(-1,y 1),OH =⎪⎪⎭⎫⎝⎛222,4y y , ∴(-1)×y 2-y 1×422y =-y 2-421y y ·y 2=-y 2+y 2=0,∴OE ∥OH ,故O ,E ,H 三点共线.。

2011年高考数学一轮复习精品学案(人教版A版)§9.8圆锥曲线的综合问题--学生用

2011年高考数学一轮复习精品学案(人教版A版)§9.8圆锥曲线的综合问题--学生用

§9.8圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。

(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。

3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 .★热点考点题型探析★考点1直线与圆锥曲线的位置关系题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21]B .[-2,2]C .[-1,1]D .[-4,4]4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点.(1)求曲线C 的方程;(2)求m 的取值范围.题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程.2011年高考数学一轮复习精品学案(人教版A 版) 信心、专心、恒心§9.8圆锥曲线的综合问题 3 页 共 12 页 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。

2011届高考数学专题复习教案15

2011届高考数学专题复习教案15

一轮复习学案 §2.10. 指数运算与对数运算 姓名☆学习目标:1.理解分数指数幂的概念,掌握有理数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质.重点:运用指数、对数的运算性质进行求值、化简、证明,指数及对数方程的解法☻基础热身:(1).已知2349a =(a>0) ,则23log a = .(2).方程9131=-x 的解是 .方程233log (10)1log x x -=+的解是 .(3).设函数11()2x x f x +--=,求使()f x ≥的x 取值范围.☻知识梳理:指数运算:1. n 次方根的定义:若 (n >1且n ∈N *),则x 叫a 的n 次方根.2. n 次方根的性质:若 x n=a (n >1且n ∈N *),则x =⎪⎩⎪⎨⎧=±+=kn a k n a nn2,12,(k ∈N *)其中n a 叫 ,n 叫 ,a 叫 .3. 根式的运算性质:10.(na )n = . 20.nna=⎪⎩⎪⎨⎧为偶数为奇数n n ,;,4. 正数的分数指数幂的意义:若a >0, m , n ∈N *, 且n >1,则10. =nma;20. ==-nm a30. 0的正分数指数幂等于 ; 0的负分数指数幂 .5. 有理指数幂的运算性质:若Q s r a ∈>,,0, 则10.=⋅sra a ; 20.=sr a )(; 30.=⋅rb a )(.对数运算:1 对数的定义(指数式与对数式的互化):log a N =b ⇔.其中 a ∈ , N ∈2 重要性质:10 负数与零 ; 20log a 1= ,log a a = . 30=ba a log ;40对数恒等式=Naalog3. 对数的运算法则:若a >0,a ≠1,M >0,N >0,则10 log a (MN )= ; 20 log a MN= ; 30 log a M n = (n ∈R) .4.对数换底公式:log a N = log m Nlog m a(a >0,a ≠1,m >0 ,m ≠1,N >0)两个常用推论(a 、b >0且均不为1):1log log a b b a ⋅=; 20log n ma b=.☆ 案例分析:例1. 已知31=+-x x ,求下列各式的值:.)2(;)1(23232121--++xx xx ⑶2323--xx ; ⑷ 22121)(--xx .例2. 计算:① 53log12.0- ② log 43·log 92-log 21432例3. (1)2.1lg 10lg38lg 27lg-+=(2)2151515log 5log 45(log 3)⋅+=(3)已知()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.例4. 设1x >,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值.参考答案:基础热身:例11111112211222222(1)()2()235x xx x xxx x----+=+∙+=++=+=1122x x-∴+=1112230,x x x x x--+=>+=又由得所以52)13(5]1))[((])21())[(()())2(121212212122121213213212323=-=-++=-+∙-+=++------xx x x x x x x xx xx xx=(⑶ ∵1232)(1212122121=-=+-=----xxx x x x ,∴12121±=+-xx ;⑷ 4)13(1))((1212121212323±=+⨯±=++-=-----x x x x xx xx例2. ①.15; ②.1-;例3. (1)23; (2)1; (3)2.例4.解:令 log x t y =,∵1x >,1y >,∴0t >由2log 2log 30x y y x -+=得2230t t-+=,∴22320t t +-=,∴(21)(2)0t t -+=,∵0t >,∴12t =,即1log 2x y =,∴12y x =,∴222244(2)4T x y x x x =-=-=--,∵1x >,∴当2x =时,m in 4T =-。

2011届高考数学第一轮复习 7.4等差与等比的综合学案 (老师版)新人教版

2011届高考数学第一轮复习 7.4等差与等比的综合学案 (老师版)新人教版

7.4等差数列与等比数列性质的综合应用一、学习目标:等差数列与等比数列性质的综合应用 二、自主学习: 【课前检测】1.x=ab 是a 、x 、b 成等比数列的( D )条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要 2.等比数列}{n a 中,233,9a a ==,若243=k a ,则k 等于( C )(A )4 (B )5 (C )6 (D )42直面考点:1)等比数列的定义;2)等比数列的通项公式。

略解:6k 22433q a a 3a a q 51-k 2-k 2k 23=⇒====⇒==3.若数列{}n a (N n ∈*)是等差数列,则有数列12nn a a a b n+++=(N n ∈*)也为等差数列,类比上述性质,相应地:若数列n {c }是等比数列,且n c >0(Nn ∈*),则有n d =N n ∈*)也是等比数列.4.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43. 说明:2121n n n n a S b T --=. 【考点梳理】1.基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。

转化为“基本量”是解决问题的基本方法。

解读:“知三求二”。

2.等差数列与等比数列的联系1)若数列{}n a 是等差数列,则数列}{n aa 是等比数列,公比为da ,其中a 是常数,d 是{}n a 的公差。

(a>0且a ≠1);2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且0,1a a >≠,q 是{}n a 的公比。

3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。

3.等差与等比数列的定义、通项公式、求和公式重要性质比较三、合作探究:例1 (2010陕西文16)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.解:(Ⅰ)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得121d+=1812dd++,解得d=1,d=0(舍去),故{a n}的通项a n=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.变式训练1 (2010北京文16)已知{a n }为等差数列,且36a =-,60a =。

2011届高考数学第一轮复习 7.6数列的通项求法学案(老师版) 新人教版

2011届高考数学第一轮复习 7.6数列的通项求法学案(老师版) 新人教版

7.6数列的通项求法主编:肖胜军 审稿:曹建芳一、学习目标:掌握求数列通项公式的常用方法二、自主学习:【课前检测】1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =。

求数列{}n a 的通项公式。

解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n 。

求数列{}n a 的通项公式。

解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 3.已知数列{}n a 中,11a =,21(0a a a =-≠且1)a ≠,其前n 项和为n S ,且当2n ≥时,1111n n n S a a +=-.(Ⅰ)求证:数列{}n S 是等比数列;(Ⅱ)求数列{}n a 的通项公式。

解:(Ⅰ)当2n ≥时,11+111111n n n n n n nS a a S S S S +-=-=---, 化简得211(2)n n n S S S n -+=≥,又由1210,0S S a =≠=≠,可推知对一切正整数n 均有0n S ≠,∴数列{}n S 是等比数列.(Ⅱ)由(Ⅰ)知等比数列{}n S 的首项为1,公比为a ,∴1n n S a -=.当2n ≥时,21(1)n n n n a S S a a --=-=-,又111a S ==,∴21,(1),(1),(2).n n n a a a n -=⎧=⎨-≥⎩ 【考点梳理】通项公式的求法(7种方法)1.定义法与观察法(合情推理:不完全归纳法):直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目;有的数列可以根据前几项观察出通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习必备:第01课时:第一章 集合与简易逻辑—集
合的概念
一.课题:集合的概念
二.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌
握集合问题的常规处理方法. 三.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合
思想的运用. 四.教学过程: (一)主要知识:
1.集合、子集、空集的概念;
2.集合中元素的3个性质,集合的3种表示方法;
3.若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有
21
n
-
例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,
2
{(,)|1}F x y y x ==+,{|1}G x x =≥,则 ( D

()A P F
= ()B Q E = ()C E F = ()D Q G =
解法要点:弄清集合中的元素是什么,能化简的集合要化简.
例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .
解:∵P Q =且0Q ∈,∴0P ∈.
(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠; (2)若0xy =,则0x =或0y =.
当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠; 当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,
由P Q =得2
2
0y y y y y -=⎧⎪=-⎨≠⎪⎩ ① 或2
20
y y y y y -=-⎧⎪=⎨≠⎪⎩ ②
由①得1y =-,由②得1y =,
∴{01x
y ==-或{
01
x y ==,此时{1,1,0}P Q ==-.
例3.设集合1{|,}24
k M x x k Z ==
+∈, 1{|,}42
k N x x k Z ==
+∈,则( B

()A M N
= ()B M N ⊂≠ ()C M N ⊇ ()D M N φ=
解法一:通分;
解法二:从1
4
开始,在数轴上表示.
例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.
解:(1)若A φ=,则240a ∆=-<,解得22a -<<;
(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意; (3)若2A ∈,则22210a ++=,解得52
a =-,此时5
{2,}2
A =,不合题意;
综上所述,实数m 的取值范围为[2,2)-.
例5.设2()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==,
A B (2)如果{1,3}A =-,求B .
解答见《高考A 计划(教师用书)》第5页.
(四)巩固练习:
1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N
M
⊆,则适合条件的实
数m 的集合P 为1
{0,2,}3
-;P 的子集有 8 个;P 的非空真子集有 6 个.
2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为
2,4-.
3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 . 4.设数集3
{|}4M x m x m =≤≤+,1{|}
3
N x n x n =-
≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}
|x a x b ≤≤的“长度”,那么集合
M N 的长度的最小值是
112

五.课后作业:。

相关文档
最新文档