分式方程知识点归纳

合集下载

八年级数学《分式方程》知识点

八年级数学《分式方程》知识点

分式方程是中学数学的重要内容,它是求解方程的一类特殊方法。

因此,分式方程的知识点有以下几方面:
一、分式方程的概念
分式方程是指用一个分式的方式表示方程的一种方法,它是一种由分式组成的等式,它的左右两端都是分式,从而把求根的问题转换成分式的比较,并设法确定方程的根。

二、求解分式方程的步骤
1.将分式方程中的项相同的分式化简,并且把等式的左右两端分别化简成分数或最简分式。

2.将分式方程中间,求解未知数的方法就是将分式的左右两端乘以分母,使之成为整式,然后使整式等于0,再解出未知数。

3.有时会出现分式方程中的未知数不能解出的情况,此时可以将此分式方程化为一元一次不等式来求解。

三、分式方程的应用
分式方程在解决一些实际问题时有着重要作用,如求解收益、组成比例、比较等。

由此可见,掌握分式方程的方法对解决实际问题有着重要意义。

四、注意事项
1.求解分式方程时需要注意把等式的左右两端分别化简成分数或最简分式。

2.使用分式方程时,要注意看清题干的字眼,要分清求解的是方程还是不等式,然后采取不同的方法
3.求解分式方程时还要注意确保所求解的方程或不等式有解。

4.分式方程的解可以使用数学软件得出。

八年级分式方程数学知识点

八年级分式方程数学知识点

八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。

如:\frac{x+1}{2}=3,其中x为未知量。

二、分式方程的解法1. 化简分式,使其成为整式方程。

如:\frac{x+1}{2}=3化简为x+1=6。

2. 通分,消去分母。

如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。

3. 变形化简后求解。

如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。

三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。

如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。

2. 通分时应注意分母因式分解。

如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。

3. 将解代回原分式方程检验。

如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。

四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。

已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。

设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。

由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。

2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。

分式与分式方程

分式与分式方程

分式与分式方程一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB =,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。

(3)要会把互为相反数的因式进行变形,如:(x--y )2=(y--2)2二、分式的乘除法 【巩固训练】 1、要使分式51x -有意义,则x 的取值范围是( )(A)x ≠1 (B)x >1 (C)x <1 (D)x ≠-12、分式242x x -+的值为0,则x 的取值是A .2x =-B .2x =±C .2x =D .0x =3、函数y=中自变量x 的取值范围是( ) A . x >3 B .x <3 C .x ≠3 D . x ≠﹣34.式子有意义的x 的取值范围是( ) 5.分式的值为零,则x 的值为( )A . ﹣1B .0 C .±1 D . 16.当x= 时,分式无意义.7、使式子1+1 x -1有意义的x 的取值范围是 。

8、在函数3xy x =+中,自变量x 的取值范围是 . 9、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 10、化简:111x x x ---= . 11、化简212(1)211a a a a +÷+-+-的结果是( )A .11a - B .11a + C .211a - D .211a + 12、 化简:111x x x ---= . 13、化简的结果为( ) A . ﹣1 B . 1 C .D .14、化简+的结果为 .15、化简分式的结果是( )A .2B .C .D .-216.若m 为正实数,且13m m -=,221m m-则= 17分式方程2102x x-=-的根是( ) A .x =1 B .x =-1 C .x =2D .x =-218、分式方程xx 325=-的解是( )A .x =3B .x =3-C .x =34D .x =34-19、分式方程的解是( ) A . x =﹣2B .x =1 C . x =2 D . x =320、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 21.分式方程21311x x x+=--的解是_________________.22. 从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、先化简,再求值:,其中,.24.先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-2.25.先化简,再求值: (1)12a )111(2++÷+-a a a ,其中a=3-1.6.(2)244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=2-1.26、.先化简,再求值: 22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中27.解方程:.28.解分式方程:12422=-+-x xx .29.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.530、小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。

分式必考知识点

分式必考知识点

分式是数学中的一个重要知识点,也是许多学生在学习数学过程中较为困惑的部分。

本文将从基础概念、分式的基本运算、简化分式以及分式方程等方面,逐步介绍分式的必考知识点。

一、基础概念1.分式的定义:分式是指一个整体被分为若干等份,每份的大小用分母表示,总份数用分子表示。

分子在上,分母在下,二者之间用一条水平线隔开,如:1/2。

2.分子和分母:在分式中,分子表示被分割的整体中的一份,分母表示整体被分割成的份数。

3.分式的值:分式的值等于分子除以分母的结果。

例如,1/2表示整体被分为2份,其中的1份。

二、基本运算1.分式的加减法:分式的加减法要求分母相同,通过找到分式的最小公倍数,将分式的分母转换为相同的数,然后对分子进行加减。

例如,1/3 +1/4 = 4/12 + 3/12 = 7/12。

2.分式的乘法:分式的乘法要求将分子与分母分别相乘。

例如,1/2 ×2/3 = (1 × 2)/(2 × 3) = 2/6 = 1/3。

3.分式的除法:分式的除法可以转化为乘法的倒数运算。

将除法转换为乘法,并将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。

例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。

三、简化分式1.约分:将分式的分子与分母同时除以它们的最大公约数,得到一个等价的最简分式。

例如,4/8可以约分为1/2,因为4和8的最大公约数是4。

2.整数部分化为分数:将整数转化为分数形式,分子为整数,分母为1。

例如,2可以表示为2/1。

四、分式方程1.分式方程的定义:分式方程是含有分式的等式。

分式方程的求解过程与一元一次方程类似。

2.分式方程的求解步骤:–对分式方程的两边进行通分,将分式方程转化为整式方程。

–将方程两边的分式化为最简分式。

–化简方程两边的整式,并合并同类项。

–通过移项和合并同类项,将方程化为一元一次方程。

–求解方程,得到未知数的值。

分式方程知识点归纳总结

分式方程知识点归纳总结

分式方程知识点归纳总结分式方程(也称有理方程)是含有分式的等式,其中分子和(或)分母中至少有一个包含一个或多个未知量。

解分式方程的过程是确定使得等式成立的未知量的值。

下面是分式方程的一些常见知识点的总结:1.分式的定义域:对于一个分式,需要注意其定义域,即分母不能为零。

当分母为零时,分式没有意义。

因此,在解分式方程时,需要排除使分母为零的解。

2.分式方程的简化:可以通过约分的方法,将分式方程进行简化。

约分是将分子和分母同时除以他们的最大公约数。

这样可以简化方程,使求解更易于处理。

3.分式方程的通分:当分式方程中出现了不同的分母时,可以通过通分的方式将分式方程转换为求解多项式方程。

通分是将所有分母进行相同因式的乘法,使所有分母都相同。

然后分别将分子相加或相减,并保持分母不变。

这样,就可以将分式方程转化为多项式方程。

4.分式方程的解的确定性:一般而言,分式方程的解并不唯一、因此,在解分式方程时,需要注意是否有解,以及解的个数。

当方程的分子和分母为多项式时,可以通过将方程转化为多项式方程的方式来求解。

而对于含有绝对值、根号等特殊函数的分式方程,可能存在特殊解或无解的情况。

5.分式方程的解法:求解分式方程的常用方法有以下几种:a.通过消去分母的方式来求解。

首先将方程中的每一个分式都通分,这样可以得到一个多项式方程。

然后通过求解得到的多项式方程,找到使方程成立的未知量的值。

b.通过移项和合并同类项的方式转化为多项式方程。

首先将方程中的每一个分式都移动到一个方程的一边,将所有未知量合并,并将同类项相加。

最终得到一个多项式方程,通过求解多项式方程来求解分式方程。

c.通过换元的方式转化为多项式方程。

首先令一个新的未知量等于原方程中的一个分式,将分式方程转化为一个多项式方程。

然后通过求解新的多项式方程,找到使方程成立的未知量的值。

最后,将得到的解代入原方程中,验证是否是原方程的解。

以上是分式方程的一些常见知识点的总结。

七年级分式方程数学知识点

七年级分式方程数学知识点

七年级分式方程数学知识点数学是一门需要持之以恒的学科,而分式方程更是数学中的重要知识点之一。

尤其是七年级的学生,对于分式方程的学习非常关键。

本文将详细介绍七年级分式方程数学知识点,帮助大家更好地掌握相关知识。

1.分式的定义分式就是分数形式的式子,它可以表示为a/b的形式,其中a、b为整数,且b不等于0。

其中,分子a称为分式的被除数,分母b称为分式的除数。

2.分式的简化分式的简化是指将分式化简成最简分式的形式。

最简分式是指分子、分母没有相同的因数,或者它们的最大公约数为1的分式。

要简化一个分式,我们需要先求出它的分子和分母的最大公约数,然后将分子、分母同时除以这个最大公约数即可。

3.分式方程的解法分式方程是指方程中含有分式的方程。

例如:x/3+2=5。

解决分式方程的方法有两种,一种是通分法,另一种是消元法。

通分法的步骤如下:(1)将方程中所有的分式通分;(2)将方程中变量的系数移到等式左侧,常数项移到等式右侧;(3)将等式左侧的分式进行合并;(4)移项得到最终解。

例如:解方程x/3+2=5/6,通分后得到2x/6+2=5/6,将等式左侧的分式进行合并得到2x/6+12/6=5/6,移项得到x=1/2。

消元法的步骤如下:(1)将方程中所有的分式化成通分式;(2)将方程中变量的系数移到等式左侧,常数项移到等式右侧;(3)将等式中含有同一个未知数的项合并;(4)移项得到最终解。

例如:解方程2/x+3/x=1,化分后得到(2+3)/x=1,移项得到x=5。

4.综合应用在实际应用中,分式方程的解法往往和其他数学知识点相结合,例如代数式、整式等。

我们可以通过代数式化简、整式化分的方法,将问题转化为分式方程,然后利用上述的解法进行解题。

例如:求解“一个工人一天可以干完1/5,另一个工人一天可以干完1/8,两个工人一起干完这项工作需要几天?”这个问题。

我们可以设两个工人一起干完这项工作需要x天,根据题意可得分式方程1/5x+1/8x=1,化分后得到13/40x=1,解得x=40/13。

分式方程知识点归纳

分式方程知识点归纳

分式方程知识点归纳分式方程是指含有分子和分母的方程,分子和分母分别为代数式或数字,并且方程中包含有未知数的方程。

下面将分式方程的知识点进行归纳,以便更好地理解和应用分式方程。

一、基本概念:1.分式方程的定义:含有未知数、带有分式形式的等式称为分式方程。

2.分式的定义:分式是由一个或多个代数式构成的比。

二、分式方程的解的性质:1.分式方程的等价方程:分式方程可以转化为多项式方程进行求解,这样可以得到等价的方程,两者的解是相同的。

2.分式方程的根的性质:一个分式方程的解,如果使得分式方程中的分子等于0,则该解就是方程的根。

三、分数的性质:1.分式的约分:分式的分子和分母同时除以它们的公因式,可以得到分式的约分式。

2.分式的通分:将不同分母的分式通过找到它们的最小公倍数,转化为具有相同分母的等价分式。

3.分数的四则运算:分数之间可以进行加减乘除的运算,需要注意分子和分母的相应运算。

四、分式方程的解法:1.乘法解法:对分式方程的两边同乘以一个使得方程中的分母消去的数,从而化简为一个多项式方程。

2.加减消去解法:对分式方程的两边同乘以使得方程中的分母消去的数,然后将方程中的分式整理为一个多项式,并进行求解。

3.代入解法:将分式方程中的一个未知数表示成另一个未知数的代数式,再代入到分式方程中,得到一个不含有代入的未知数的分式方程,进而进行求解。

4.通分解法:对分式方程的两边同时乘以方程中所有的分母的积,将分式方程化简为一个多项式方程进行求解。

五、分式方程的解的判定:1.当方程的分式的分子为0时,方程的解为0。

2.当方程的分式的分子和分母存在着相同的因式时,方程的解为使得分式方程中的分子等于0的值。

3.当分式方程的分母的值等于0时,方程没有解。

六、应用:分式方程在实际问题中的应用非常广泛,例如在物理学和金融学中,经常需要使用分式方程来解决实际问题。

比如计算财务利润率、财务收益率、物体的运动速度等。

七、常见的分式方程:1.一次方程:分式方程的分子和分母都是一次函数的方程。

分式和分式方程知识点总结及练习(供参考)

分式和分式方程知识点总结及练习(供参考)

分式和分式方程知识点总结一、分式的基本概念 1、分式的定义 一般地,我们把形如BA的代数式叫做分式,其中 A ,B 都是整式,且B 含有字母。

A 叫做分式的分子,B 叫做分式的分母。

分式也可以看做两个整式相除(除式中含有字母)的商。

2.分式的基本性质分式的分子和分母同乘(或除以)一个不为0的整式,分式的值不变。

MB M A M B M A B A ÷÷=⨯⨯=。

其中,M 是不等于0的整式。

3.分式的约分把分式中分子和分母的公因式约去,叫做分式的约分。

4.最简分式分子和分母没有公因式的分式叫做最简分式。

利用分式的基本性质可以对分式进行化简 二、分式的运算 1、分式的乘除 分式的乘法法则分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。

分式的除法法则分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。

2、分式的加减同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减)。

异分母的分式加减法法则异分母的两个分式相加(减),先通分,化为同分母的分式,再加(减)。

分式的通分把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。

几个分式的公分母不止一个,通分时一般选取最简公分母分式的混合运算分式的混合运算,与数的混合运算类似。

先算乘除,再算加减;如果有括号,要先算括号里面的。

三、分式方程1、分式方程的定义分母中含有未知数的方程叫做分式方程。

2、分式方程的解使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。

3、解分式方程的步骤1.通过去分母将分式方程转化为整式方程,2.解整式方程3.将整式方程的根代入分式方程(或公分母)中检验。

4、分式方程的应用。

典型例题1.(2014•温州,第4题4分)要使分式有意义,则x 的取值应满足( ) A . x ≠2B . x ≠﹣1C . x =2D . x =﹣12.(2014•毕节地区,第10题3分)若分式的值为零,则x 的值为( ) A . 0B . 1C . ﹣1D . ±13. ( 2014•福建泉州,第10题4分)计算:+= .4. (2014•泰州,第14题,3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式+的值等于 . 5.(2014年山东泰安,第21题4分)化简(1+)÷的结果为 .6.(2014•襄阳,第13题3分)计算:÷= .7. ( 2014•广东,第18题6分)先化简,再求值:(+)•(x 2﹣1),其中x =.8. ( 2014•珠海,第13题6分)化简:(a 2+3a )÷.9. ( 2014•广西贺州,第19题(2)4分)(2)先化简,再求值:(a 2b +ab )÷,其中a =+1,b =﹣1.10 解方程: 730100-=x x. 11.解分式方程:+=1.12.解方程:=1.13. ( 2014•广东,第21题7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%. (1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14( 2014•广西贺州,第23题7分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度. 课后练习1.(2013湖北孝感,6,3分)化简xy x yy x x⎛⎫--÷⎪⎝⎭的结果是( ) A.1y B. x y y + C. x yy- D. y 2. (2013山东威海,8,3分)计算:211(1)1mm m+÷⋅--的结果是( ) A .221m m ---B .221m m -+-C .221m m --D .21m -3. (2013四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-2 4. (2013浙江丽水,7,3分)计算1a -1 – aa -1的结果为( ) A. 1+aa -1B. -a a -1C. -1D.1-a5. (2013江苏苏州,7,3分)已知2111=-b a ,则b a ab-的值是 A.21 B.-21C.2D.-2 6. ( 2013重庆江津, 2,4分)下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 7. (2013江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. 336D. 38. (2013山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x 1)的结果是( ) A .x1B .x -1C .x 1-xD .1-x x9. (2013广东湛江11,3分)化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D1 10.(2013浙江金华,7,3分)计算1a -1 – aa -1的结果为( ) A.1+a a -1 B. -aa -1C. -1D.1-a 二、填空题1. (2013浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2013福建福州,14,4分)化简1(1)(1)1m m -++的结果是 . 3. (2013山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。

2. 有理表达式(Rational Expression):包含分式的代数表达式。

二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。

例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。

例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。

2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。

3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。

例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。

四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。

2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。

3. 高次分式方程:含有未知数的最高次数大于一的分式方程。

五、解分式方程的步骤1. 确定最简公分母。

2. 去分母,将分式方程转化为整式方程。

3. 解整式方程,求得未知数的值。

4. 检验解的有效性。

5. 写出最终解。

六、应用题1. 理解题意,找出等量关系。

2. 列出分式方程。

中考数学知识点梳理第7讲分式方程

中考数学知识点梳理第7讲分式方程

中考数学知识点梳理第7讲分式方程分式方程是指含有分式(即含有未知数的分数形式)的方程。

解分式方程的关键是化简、消去分母,找到未知数的值。

1.分式方程的定义分式方程是指方程的一种形式,其中包含了未知数的分式,并要求找到满足方程的未知数的值。

2.分式方程的基本形式(1)真分式方程:分子次数小于分母次数的分式方程。

示例:$\dfrac{2x+3}{x-1}=3$(2)假分式方程:分子次数大于或等于分母次数的分式方程。

示例:$\dfrac{x^2+1}{x-1}=3$3.分式方程的解法(1)化简分式方程将分式方程中的分数进行通分、化简,使得方程的表达式更简洁。

示例:$\dfrac{x+2}{x-3}+\dfrac{1}{x-2}=\dfrac{2x+1}{x-3}$,通分后可得到$(x-2)(x-3)+(x-3)=(2x+1)(x-2)$。

(2)消去分母在化简后的方程中,通过乘以适当的数值,消去方程中的分母。

示例:在上述化简后的方程中,可以通过乘以$(x-2)(x-3)$来消去分母,得到$(x-2)(x-3)^2+(x-3)(x-2)=(2x+1)(x-2)(x-3)$。

4.分式方程的解的判断(1)求解方程将已化简且消去分母的方程转化为一元一次方程,并求解得到未知数的值。

示例:在上述方程中,将其展开并整理后,得到$x^3-3x^2-17x+23=0$,解得$x=1,x=2,x=10$。

(2)检验解将求得的解代入原方程中,检验是否满足分式方程。

示例:将$x=1$代入原方程中,有$\dfrac{2\cdot1+3}{1-1}=3$,左右两边相等,所以$x=1$是方程的解。

5.分式方程的注意事项(1)分母不为零分式中的分母不能为零,否则方程无意义。

示例:在$\dfrac{1}{x-1}=3$中,$x=1$是方程无意义。

(2)未知数的范围分式方程的解必须满足未知数的范围限制。

示例:在$\dfrac{x^2+1}{x-1}=3$中,$x=2$是方程无意义。

分式方程知识点总结

分式方程知识点总结

分式方程知识点总结一.分式方程、无理方程的相关概念:1.分式方程:分母中含有未知数的方程叫做分式方程。

2.无理方程:根号内含有未知数的方程。

(无理方程又叫根式方程 )3.有理方程:整式方程与分式方程的统称。

二.分式方程与无理方程的解法:1.去分母法:用去分母法解分式方程的一般步骤是:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。

在上述步骤中,去分母是关键,验根只需代入最简公分母。

2.换元法:用换元法解分式方程的一般步骤是:②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想;③三解:解这个分式方程,将得出来的解代入换的元中再求解;④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。

解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。

三.增根问题:1.增根的产生:分式方程本身隐含着分母不为 0 的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为 0,那么就会出现不适合原方程的增根。

2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为 0 。

解分式方程的思想就是转化,即把分式方程整式方程。

常见考法( 1 ) 考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;( 2) 分式方程的解法,是段考、中考考查的重点。

误区提醒( 1 ) 去分母时漏乘整数项;( 2) 去分母时弄错符号;( 3) 换元出错;( 4) 忘记验根。

分式与分式方程知识点总结

分式与分式方程知识点总结

分式与分式方程专题一、分式基本知识1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

(1)分式与整式最本质的区别:分式的分母必须含有字母,即未知数;分子可含字母可不含字母。

(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

(3)分式的值为零的条件:分子为零且分母不为零。

2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示 其中A 、B 、C 为整式(0≠C ) (1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3、分式的通分和约分:关键先是分解因式(1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

(2)最简分式:分子与分母没有公因式的分式(3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

(4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4、分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分C B C A B A ⋅⋅=CB CA B A ÷÷=鑫鹏学校母中的部分项的符号。

5、分式的运算:(1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

(2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(3)分式乘方法则:分式乘方要把分子、分母分别乘方。

(4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算(5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

分式方程知识点总结

分式方程知识点总结

分式方程知识点总结
一、定义与性质
定义:分母里含有未知数或含有未知数整式的有理方程,称为分式方程。

基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

二、运算与变形
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

乘方法则:分式乘方时,要将分子、分母各自乘方。

加减法则:同分母的分式相加减时,分母不变,把分子相加减;异分母的分式相加减时,先通分,转化为同分母分式,然后再加减。

约分与通分:分式可以约分,即根据分式的基本性质,把一个分式的分子与分母的公因式约去;分式也可以通分,即把分子、分母同时乘以适当的整式,将异分母的分式转化为同分母的分式。

三、分式方程的解法
去分母:方程两边同时乘以最简公分母,将分式方程化为整式方程。

注意,当分母是多项式时,先分解因式,再找出最简公分母。

解整式方程:通过移项、合并同类项、系数化为1等步骤,求出整式方程的解。

验根:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解;若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解。

注意,解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根。

四、分式方程的应用
分式方程在多个领域都有广泛的应用,如金融和经济领域中的运输和速率问题、货币兑换、利润和成本计算;科学领域中的浓度计算问题、反应速率计算;数学领域中的比例问题等。

通过掌握这些知识点,可以更好地理解和应用分式方程,解决各种实际问题。

如需更深入的学习,建议查阅数学教材或咨询数学老师。

七年级数学下册-分式方程及分式应用题

七年级数学下册-分式方程及分式应用题

分式方程及分式应用题【知识点归纳】知识点一、分式方程1分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.2解分式方程:基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

《1》理解分式方程的有关概念例1 指出下列方程中,分式方程有( )①21123x x -=5 ②223x x -=5x 2-5x=0x +3=0 A .1个 B .2个 C .3个 D .4个【点评】根据分式方程的概念,看方程中分母是否含有未知数.《2》掌握分式方程的解法步骤(注意分式方程最后要验根。

(易错点))例2 解方程:100307x x =-.例3. 解关于x 的方程x a b c x b c b x c ab a bc --+--+--=>30(),, 解:原方程化为:x a b c x b c b x c ab---+---+---=1110即x a b c c x b c a a x c a b b---+---+---=0∴---++=>>>∴++≠∴---=∴=++()()x a b c a b c a b c a b cx a b c x a b c11100011100 ,,说明:本题中,常数“3”是一个重要的量,把3拆成3个1,正好能凑成公因式x a b c ---。

若按常规在方程两边去分母,则解法太繁,故解题中一定要注意观察方程的结构特征,才能找到合适的办法。

例4. 解关于x 的方程。

ax x a bx x b a b x a x b ab ()()()()()()+++=+++≠0解:去括号:ax a x bx b x a b x a b x ab a b 222222+++=+++++()()()()()()()a b x a b x ab a b abx ab a b ab x a b222202+-+=+-=+≠∴=-+说明:解含字母系数的方程,在消未知数的系数时,一定要强调未知数的系数不等于0,如果方程的解是分式形式,必须化成最简分式或整式。

分式方程知识点归纳

分式方程知识点归纳

分式方程知识点归纳1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。

2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。

5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。

例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。

例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

考点06 分式方程(原卷版)

考点06 分式方程(原卷版)

考点六分式方程知识点整合1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.考向一解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程;③解整式方程;④验根.考向二分式方程的解。

分式方程知识点归纳总结

分式方程知识点归纳总结

分式方程知识点归纳总结分式方程(fractional equations)是含有一个或多个分式的方程。

解分式方程的方法与解普通方程的方法相似,但在处理分式时需要额外注意。

以下是分式方程的一些常用知识点的归纳总结。

1.分式方程的定义:分式方程是含有一个或多个分式的方程,其中分式可以是单个分式,也可以是多个分式的组合。

2.分式方程的定义域:在求解分式方程之前,首先需要确定方程的定义域。

分式方程中的分母不能为0,因此需要排除使得分母为0的数值。

3.清除分母的方法:当分式方程中存在分母时,可以通过乘以分母的公倍数来清除分母。

要注意在清除分母后所得到的方程仍然保持等价关系。

4.分式方程的乘除法原则:分式方程中的分式可以通过乘除法原则进行运算。

即可以通过乘以一个数或除以一个数来改变方程两边的比例关系。

5.分式方程的加减法原则:分式方程中的分式可以通过加减法原则进行运算。

即可以通过加上一个数或减去一个数来改变方程两边的比例关系。

6.分式方程的倒数原理:分式方程中的分式的倒数可以用来求解方程。

当一个分式与它的倒数相加时,结果为17.分式方程的转化:有时候,可以通过将分式方程转化为普通方程来求解。

这可以通过清除分母或将分式转化为分数来实现。

8.分式方程的校验:在解分式方程时,需要对所得到的解进行校验,以确定是否满足原始方程。

9.解分式方程的常见步骤:解分式方程的一般步骤是先对方程进行整理,然后通过乘法、除法、加法、减法等原则对方程进行运算,最后校验所得到的解是否满足原始方程。

10.特殊类型的分式方程:-线性分式方程:分子和分母都是一次函数的分式方程。

-二次分式方程:分子或分母含有二次函数的分式方程。

-变比分式方程:分子和分母是由未知数构成的变比或常数的乘积的分式方程。

总结:分式方程是含有一个或多个分式的方程,解分式方程的方法包括清除分母、乘除法原则、加减法原则、倒数原理、转化为普通方程、校验等。

解分式方程的一般步骤是整理方程、运用原则对方程进行运算,最后校验解答是否正确。

八年级数学《分式方程》知识点

八年级数学《分式方程》知识点

一、基本概念
1.分式:分子和分母都是多项式的数叫做分式。

2.分式方程:含有一个或多个未知数的分式等式叫做分式方程。

二、分式方程的解
1.分式方程的解:使得方程两边分式等价的数叫做分式方程的解。

2.适合分式方程的解:使得分式方程的任意代入都可以使分式方程成立的解叫做适合分式方程的解。

三、分式方程的解的判定
1.分式方程的解的判定方法:将找到的解代入方程,若等式两边可以变成同一个数,则该解为分式方程的解。

2.分式方程的解的验证方法:将方程两边合并,并对两边进行化简,最后验证等式是否成立。

四、分式方程的解的性质
1.分式方程的根的性质:若一个数是分式方程的根,则这个数的相反数也是该方程的根。

2.分式方程的根的性质的应用:利用分式方程的根的性质,可以通过已知根推出其他根。

五、分式方程的解的求解
1.解分式方程的一般步骤:先合并同类项,再化简,最后通过代数运算求解未知数。

2.解分式方程的具体方法:可以通过交叉相乘、通分和消分的方法来解决不同类型的分式方程。

六、分式方程的应用
1.代入法解分式方程:利用推导和分项代入法,将问题转化为分式方程,然后再用分式方程的解来解决问题。

2.混合运算解分式方程:先利用等式性质将分子展开,再通过合并同类项化简,最后求解分式方程得到解。

总结:。

分式方程知识点总结♂

分式方程知识点总结♂

分式方程知识点总结♂一般来说,分式方程可以写成形如$\frac{M(x)}{N(x)} = P(x)$的形式,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

分式方程的解是满足方程的$x$的值,即找出使等式成立的$x$的值。

下面我们就来总结一下关于分式方程的一些知识点。

一、分式的定义和性质1. 分式是指形如$\frac{m}{n}$的数,其中$m$和$n$是整数,$n$不等于0。

分式可以表示数的比值,包括有理数和实数。

2. 分式的性质:分式有一些基本的性质,比如分式的加减乘除法原则,以及分式的化简和通分规则等。

这些性质是处理分式方程时必须掌握的基础知识。

二、分式方程的基本概念1. 分式方程的定义:分式方程是指方程中含有分式的方程,通常以$\frac{M(x)}{N(x)} = P(x)$的形式出现,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

2. 分式方程的解:分式方程的解是指满足方程的$x$的值,即找出使等式成立的$x$的值。

对于分式方程,解的求解方法通常需要进行化简、通分、消元等操作。

三、分式方程的解法1. 分式方程的解法一般分为以下几种方法:(1)通分法:将分式方程中的分母进行通分,使得方程中的分母相同,从而化简方程。

(2)消元法:通过消去分式方程中的分母,将分式方程化简为一般的代数方程,然后求解。

(3)换元法:通过引入新的未知数或代换,将分式方程化简为一般的代数方程,然后求解。

2. 在实际问题中,分式方程的解法可能会涉及到不同的数学方法和技巧,需要根据具体的问题进行分析和处理。

四、分式方程的应用1. 分式方程在代数学、数学分析、几何学等领域具有广泛的应用。

它常常用于描述各种物理、经济、工程等实际问题中的关系和规律。

2. 在解决实际问题时,我们可以将实际问题转化为分式方程,利用代数运算和方程的解法来求解问题,从而得到问题的答案。

五、分式方程的教学与学习1. 在教学中,分式方程应该与分数、代数方程等知识紧密结合,引导学生深入理解分式方程的概念和性质,掌握分式方程的基本解法。

分式方程总结知识点

分式方程总结知识点

分式方程总结知识点其中,a、b、c代表有理数,b不等于0,a和b不是互为相反数,c不等于0。

分式方程的含义是表示一个等式,其中分子和分母的比值为c。

解分式方程的过程就是找出满足该等式的未知数的值。

分式方程的解法可以分为以下几种情况:一、通分法解分式方程通分法是解分式方程的一种基本方法,它通过找到一个使得分子和分母同时乘以这个数后,分子分母能整除的数。

例如,对于分式方程\[ \frac{2}{x} + \frac{3}{2x} = 1 \]我们可以通过通分法求解:首先,求出分母的最小公倍数,这里为2x。

然后将所有分数都乘以2x:\[ 2 \times 2x = 4x, 3 \times x = 3x \]得到:\[ \frac{4x}{2x} + \frac{3x}{2x} = 1 \]再进行化简,得到\[ \frac{4x + 3x}{2x} = 1 \]最终解得\[ \frac{7x}{2x} = 1 \]从中可得在此分式方程中,x=2。

二、通解法解分式方程通解法是解分式方程的另一种常见方法,其前提是寻找到一个分式方程的通解形式。

例如,对于分式方程\[ \frac{x+1}{x-1} = \frac{2}{3} \]我们可以通过通解法求解:首先,我们将分式方程变形为\[ 3(x+1) = 2(x-1) \]然后将此等式展开并化简,得\[ 3x + 3 = 2x - 2 \]继续化简,得\[ x = -5 \]我们可以发现,这里的解x=-5并不是一个通解,因为在我们寻找通解时,我们应该得到x 的一组解。

所以,我们继续进一步变形原方程。

在这里,我们可以取x=k, 进行另一次转换,求通解。

\[ 3(k+1) = 2(k-1) \]得\[ 3k+3 = 2k-2 \]继续化简,得\[ k = -5 \]所以,我们可以得到通解为x=-5。

分式方程的解法是一个非常复杂同时也是非常具有挑战性的一部分。

需要我们对分数的运算非常熟练,同时也对不同的解法有深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程知识点归纳
1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B
A 叫做分式。

1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。

2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

3) 分式的值为零的条件:分子为零且分母不为零
2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、
分母乘除的不是同一个整式的错误。

3.分式的通分和约分:关键先是分解因式
1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

2) 最简分式:分子与分母没有公因式的分式
3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4.分式的符号法则
分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

用式子表示为
注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。

5.条件分式求值
1)整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,
从而可避免局部运算的麻烦和困难。

例:已知,则求2)参数法:当出现连比式或连等式时,常用参数法。

C
B C A B A ⋅⋅=C B C A B A ÷÷=
例:若,则求
6.分式的运算:
1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

3)分式乘方法则:分式乘方要把分子、分母分别乘方。

4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算
5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减
7.整数指数幂.1)任何一个不等于零的数的零次幂等于1,即)0(10≠=a a ; 2)任何一个不等于零的数的-n 次幂(n 为正整数),等于这个数的n 次幂的倒数,即n n a
a
1=-()0≠a 注:分数的负指数幂等于这个分数的倒数的正整数指数幂。

即 3)科学计数法:把一个数表示为a ×10n (1≤∣a ∣<10,n 为整数)的形式,称为科学计数法。

注:(1)绝对值大于1的数可以表示为a ×10n 的形式,n 为正整数;
(2)绝对值小于1的数可以表示为a ×10-n 的形式,n 为正整数.
(3)表示绝对值大于10的n 位整数时,其中10的指数是1-n
(4)表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
4)正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)
(1)同底数的幂的乘法:n m n m a
a a +=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n
b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷(a ≠0);(5)商的乘方:n n
n b
a b a =)(();(b ≠0) 8.分式方程:含分式,并且分母中含未知数的方程——分式方程。

1)增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。

2)分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.
bc
ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n
n b a a b )()(=-
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

3)烈分式方程解实际问题
(1)步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

(2)应用题基本类型;
a.行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
b.数字问题在数字问题中要掌握十进制数的表示法.
c.工程问题基本公式:工作量=工时×工效.
D.顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.
一、植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
二、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数三、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
四、追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
五、流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
六、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
七、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-X%)。

相关文档
最新文档