常微分方程A卷答案
《常微分方程》考试参考答案(A卷)
《常微分方程》考试参考答案(A卷)《常微分方程》考试参考答案(A 卷)一、填空题(每空2分,共30分)1、()dy y g dx x = ln y x c x=+ 2、()()dy f x y dx= 2x y e = 3、2222M N y x= 4、1212(,)(,)f x y f x y L y y -≤-5、存在不全为0的常数12,k c c c ,使得恒等式11()()0k k c x tc x t +=对于所有[,]t a b ∈ 都成立()0w t ≡6、412341011i i λλλλλ-===-==- 1234cos sin t t x c e c e c tc t -=+++7、322x xy y c -+=二、判断题(每题2分,共10分)1、√2、×3、×4、√5、√三、计算题(每题15分,共60分)1、解:231()dy y dx x x y +=+ 变量分离231y dx dy y x x =++ 两边积分2221(1)1211y x dx dx y x xλ+=-++ 2211ln 1ln ln 122y x x +=-+ 22ln(1)(1)2ln ||y x x ++=从而解得通解为:222(1)(1)x y cx ++=2、解:先求30dx x dt+=的通解:33dt t x ce ce --?== 利用常数变易法,令原方程解为3()t x c t e -= 解得:3223551()5dt t t t t t c t e e dt c e e dt c e dt c e c --?=+=+=+=+ ∴原方程的通解为:533211()55t t t t x e c e ce e --=+=+3、解:先求对应齐线性方程:(4)20x x x ''-+=的通解特征函数42()210F λλλ=-+= 123411λλ==-从而通解为:1234()()t t x c c t e c c t e -=+++ 现求原方程一个特解,这里:2()30f t t λ=-= 0λ=不是特征根,即原方程有形如:2x At Bt c =++的特解把它代入原方程有:2243A At Bt C t -+++=- 解得101A B C ===21x t =+ ∴原方程通解为:21234()()1t t x e c c t e c c t t -=+++++4、解:令cos sin y p t x t '==?=2cos dy pdx tdt == 原方程的通解为:11sin 242y t t c =++ 5、解:由111x y +≤≤得112011a b x y ==-≤≤-≤≤ 从而()(,)4222x y Rf M max f x y y y L y -∈?===-=≤=?∴11min(,)min(1,)44b h a M === 从而解存在区间为114x +≤ 231123221327()011()3311()[()]3311111139186342o o x x x y x x dx x x x x dx x x x x --====+=-+=---+?? 2(21)1(21)!24o ML y y h +-≤=+。
福师《常微分方程》期末试卷解析
福师《常微分方程》期末试卷解析一、选择题(共10题,每题2分,共20分)1. 答案:A解析:对常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。
2. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。
将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。
3. 答案:B解析:常微分方程dy/dx = ky是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = kdx,再进行积分,最后解出y。
4. 答案:D解析:常微分方程dy/dx = -y/x是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = -dx/x,再进行积分,最后解出y。
5. 答案:A解析:常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。
6. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。
将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。
7. 答案:B解析:常微分方程dy/dx = ky是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = kdx,再进行积分,最后解出y。
8. 答案:D解析:常微分方程dy/dx = -y/x是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = -dx/x,再进行积分,最后解出y。
9. 答案:A解析:常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。
10. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。
将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。
(完整版)常微分方程试题及答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
(X )2.微分方程的通解中包含了它所有的解。
15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。
② xy 2x dx y x 2y dy 0是可分离变量微分方程。
③ x? y 4是齐次方程。
y 2y 0是二阶常系数齐次线性微分方程。
6. ysiny 是一阶线性微分方程。
(X)7. y 3 3x yxy 不是一阶线性微分方程。
(O )8. y 2y 5y 0的特征方程为r 22r 5 0。
(9. dy 1 xy 2 xy 2是可分离变量的微分方程。
dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。
3. 1 e 2x 的通解是-e 2x C 1x C 2。
42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。
45. xy 2x 2yx 41是二 ______ 阶微分方程。
3.函数y 3sinx 4cosx 是微分方程y y 0的解。
(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。
(X )C (C 为任意常数)。
(0 )④xyy x 2 sinx 是一阶线性微分方程。
6 .微分方程y y阶微分方程。
1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。
A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。
9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2019-2019学年常微分方程(A)考试标准答案5页
安徽大学20 11 —20 12 学年第 一 学期《 常微分方程 》(A 卷)考试试题参考答案及评分标准一、 选择题(每小题5分,共20分)(1) (a);(2) (d);(3) (d);(4)(b);二、请判断下面各题是否正确,并简述理由(每小题5分,共15分)(1)正确 …………………………2分事实上,(),f x y 在H 上满足局部L -条件,因此方程满足初始条件的解存在且唯一 . ……5分(2)正确 …………………………2分事实上,作变换1x x ydt =⎰,则原方程可化为()111120x a t x dy y dt x '+⎡⎤⎣⎦+= …………………………4分 然后用常数变易法知可解 ……………5分(3)错误 …………………………2分事实上,二阶线性方程()()()12x a t x a t x f t '''++=与一类特殊的线性微分方程组()()()()()21010,,x Ax f t A f t a t a t f t ⎛⎫⎛⎫'=+== ⎪ ⎪--⎝⎭⎝⎭v v v v 矛盾. …………………5分三、计算题(每小题10分,共50分)(1)解:方程变形为()2222sin 1x y x x y x '+=++,令2u x y =+, 则2u y x ''=+, ………………5分可得22sin 1x u u x '=+,求解得()2csc cot 1u u C x -=+,………………7分由初始条件22y π⎛= ⎝⎭知,22C π=+。
……………………10分 (2)解:方程320dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭可写为32,dy y p xp p dx =+= 两边关于x 求导数,得到()2320p x dp pdx ++=当0p ≠时,计算11,2,,M N p x M N p x M p∂∂∂∂-∂∂===∂∂-因此()p p μμ== ……5分 上式两边乘以p 并积分之,得到4234p xp c += …………………………7分得到方程的通解为22334, 0212c x p p p c y p p ⎧=-⎪⎪≠⎨⎪=-⎪⎩ ……………9分 当0p =时,由方程可以直接得到0y =也是方程的解. ……………10分(3)解:作极坐标cos ,sin x r y r θθ== ……………2分2222220004222t t x y t r r f dxdy d rf dr rf dr πθπ+≤⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰ ……………5分 将原式两边关于t 求导数,得()()2488t f t tf t te πππ'-= ……………7分其通解为()()2244t f t t c e ππ=+ ……………9分 由初始条件()01f =求得特解为()()22441t f t t e ππ=+ ……………10分 (4)解:对应的齐次线性微分方程为90y y ''+=其通解为12sin 3cos3y c x c x =+ 当02x π≤≤时,求得9sin y y x ''+=有一特解为11sin 8y x =,于是其有121sin 3cos3sin 8y c x c x x =++ 由初始条件()()00,00y y '==代入,有特解为11sin 3sin 248y x x -=+。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
广州大学2017-2018常微分方程试卷A答案
广州大学2017-2018学年第一学期考试卷参考答案及评分标准课程 常微分方程 考试形式(闭卷,考试)学院 系 专业 班级 学号 姓名_特别提醒:2017年11月1日起,凡考试作弊而被给予记过(含记过)以上处分的,一律不授予学士学位。
一、 填空(5*3分=15分)1. 方程(,)(,)0M x y dx N x y dy +=为恰当微分方程的充要条件是x Ny M ∂∂=∂∂. 2. 若()(1,2,,)i x t i n =为n 阶齐次线性方程1111()()()0n n n n n n d x d xdxa t a t a t x dt dtdt---++++=的基本解组,则该齐次线性方程的所有解可表为112212()()()(),,,,n n n x t c x t c x t c x t c c c =+++为任意常数。
3. 设n 阶常系数齐次线性方程11110n n n n n n d x d xdxa a a x dt dtdt---++++=的特征方程有一对k 重共轭复根i λαβ=±,则它们对应的方程的实值解是11cos ,cos ,,cos ,sin ,sin ,,sin t t k t t t k t e t te t t e t e t te t t e t ααααααββββββ--。
4. 常系数方程组()x Ax f t '=+的通解为0()()(),t tA t s A t x t e c e f s ds -=+⎰ 其中c 为任意常数列向量。
5. 定义微分算子dD dt=。
设()P D 是关于D 的一个n 次多项式,它的逆算子记为1()P D 。
则1()()t e v t P D λ= 1()()t e v t P D λλ+ 。
二、解下列方程(3*10分=30分) 1.1dy dx x y=+ 解:令x y u +=,则原方程化为 1du udx u+=分离变量,得(1)1udu dx u u=≠-+ 积分,得ln |1|u u x c -+=+ … … … (6分) 变量还原,得原方程的通解ln |1|y x y c =+++,c 为任意常数。
常微分方程试题答卷及参考答案
2010-2011学年第二学期常微分方程考试AB 卷答案理学院年级信息与计算科学专业 填空题(每题4分,共20分)1.形如)()('x Q y x P y +=()(),(x Q x P 连续)的方程是一阶线性微分 方程,它的通解为⎪⎭⎫ ⎝⎛⎰+⎰-⎰=c dx dxx P e x Q dx x P e y )()()(. 2.形如0y y '''-=的方程是3阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=.3.形如1111110n n nn n n n n d y d y dyx a x a x a y dx dxdx----++++=的方程为欧拉方程,可通过变换t x e =把它转化成常系数方程. 4.2(1)0,ydx x dy ++=满足初始条件:x =0,y =1的特解11ln 1y x=++5.5.微分方程0000(,),(),:,dyf x y y x y R x x a y y b dx==-≤-≤满足的解存在且唯一的条件是: (,)f x y 在R 上连续且满足利普希茨条件一、下列微分方程的解(每题5分,共30分) 1.dx dy =2)(1y x + 解:令x+y=u ,则dx dy =dxdu -1……………………….3 dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c (5)2.()()053243=+++xdy ydx y xdy ydx x解:两边同乘以y x 2得:()()0532*******=+++ydy x dx y x ydy x dx y x (3)故方程的通解为:c y x y x=+5324 (5)3.2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy=,则2p x y +=,两边对x 求导,得dxdp pp 21+= pp dx dp 21-=,……………………….3 解之得()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2, (4)且y=x+1也是方程的解,但不是奇解 (5)4.04)5(='''-x x解:特征方程0435=-λλ有三重根0=λ,42λ=,52λ=-............................3 故通解为54232221c t c t c e c e c x t t ++++=-. (5)5.4523x x x t ''''''--=+解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-= 齐线性方程的通解为x=5123t t c e c e c t -++ (3)又因为=λ0是特征根,故可以取特解行如2x At Bt =+代入原方程解得A=1425,B=25- (4)故通解为x=5212325t t c e c e c t t -++- (5)6.2ln 0,xy y y '-=初值条件:y(1)=e解:原方程可化为ln dy y ydx x=………………………1 分离变量可得ln dy dxy y x=…………………………………………………..3两边积分可得ln y cx =…………………………………………………..4将初值代入上式求得方程的解:ln 2y x = (5)二、求下列方程(组)的通解(每题10分,共30分)1.求一曲线,使其任一点的切线在OY 轴上的截距等于该切线的斜率. 解:设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:dyy xdx-……………………….3 由题意得dyy x x dx-=即11dy y dx x =- 也即ydx xdy dx -+=- 两边同除以2x ,得2ydx xdy dxx x-+=-………………….5 即()ln yd d x x=- (7)即ln y cx x x =+……………………….10 为方程的解。
常微分方程习题及答案
第十二章常微分方程(A)一、就是非题1.任意微分方程都有通解。
()2.微分方程的通解中包含了它所有的解。
()3.函数y=3sin x-4cos x就是微分方程y''+y=0的解。
()4.函数y=x2⋅e x就是微分方程y''-2y'+y=0的解。
()5.微分方程xy'-ln x=0的通解就是y=12(ln x)2+C(C为任意常数)。
(6.y'=sin y就是一阶线性微分方程。
()7.y'=x3y3+xy不就是一阶线性微分方程。
()8.y''-2y'+5y=0的特征方程为r2-2r+5=0。
()9.dydx=1+x+y2+xy2就是可分离变量的微分方程。
()二、填空题1.在横线上填上方程的名称①(y-3)⋅ln xdx-xdy=0就是。
②(xy2+x)dx+(y-x2y)dy=0就是。
③x dydx=y⋅lnyx就是。
④xy'=y+x2sin x就是。
⑤y''+y'-2y=0就是。
2.y'''+sin xy'-x=cos x的通解中应含个独立常数。
3.y''=e-2x的通解就是。
4.y''=sin2x-cos x的通解就是。
5.xy'''+2x2y'2+x3y=x4+1就是阶微分方程。
6.微分方程y⋅y''-(y')6=0就是阶微分方程。
7.y=1x所满足的微分方程就是。
)8.y '=9.2y的通解为。
x dx dy +=0的通解为。
y x5dy 2y 10.-=(x +1)2,其对应的齐次方程的通解为。
dx x +111.方程xy '-(1+x 2)y =0的通解为。
12.3阶微分方程y '''=x 3的通解为。
三、选择题1.微分方程xyy ''+x (y ')-y 4y '=0的阶数就是( )。
第四章常微分方程参考答案(1)
爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。
1.《常微分方程》在线考试答案
1、方程(xx2x)y""(xx2)y''(2xx2)yy0的通解为(AC)
A、yyc1eec
B、)yyc1eec2e
C、yyc1eec2x
D、yyc1eec2x
2、dyyxx1的一切积分曲线均正交的曲线方程是(BCD)
A、sinx
B、cosx
C、shx
D、chx
3、初值问题y""4yy0,y(0))0,y'(0))1的解是y(x))( )(其中其通解为y(x))c1sin2xxc2cos2x,c1,c2为任意常数)ABCD
15、设y1(x),y2(x),y3(x)是二阶线性非齐次微分方程y""P(x)y''Q(x)yyf(x)的三个线性无关解,c1,c2是任意常数,则微分方程的解为(A)
A、c1y11c2y22y3
B、c1y11c2y22(11c11c2)y3
C、c1y11c2y22(c11c2)y3
D、c1y11c2y22(11c11c2)y3
D、 xxyyc (c为常数)
6、微分方程(y2-6x)yy +2y=0的通解为(A)
A、2x-y2+cy3=0
B、2y-x3+cx3=0
C、2x-cy2+y3=0
D、 2y-cx3+x3=0
7、下列函数组在定义域内线性无关的是(D)
A、01 t
B、et
C、2et
D、e-t
8、若y11e,y22xe,则它们所满足的微分方程为(C)
C、 c1+(x-c2)2
D、 c1(x-c2)2
13、下列函数在定义域内线性无关的是(B)
《常微分方程》A卷及答案
第1页 共7页《常微分方程》A 卷 一、判断题(8分,每题2分)n 阶常微分方程的通解包2、函数y=C 1e是微分方程yH-y ,-2y = 0 的通解。
(W(t) HO,t 引a,b ]。
空(t) =6(t)C 。
A 三阶非线性方程C 四阶非线性方程下列方程中为齐次方程的是A y =xy7半(y)B xy' = y + xtan , xc y Jxy'+f(y)D cos ydx = cosxdyA 结点B 焦点C 中心D 鞍点安庆师范学院3、n 阶线性齐次微分方程的n 个解为(t),X 2(t),川,X n (t)在[a,b ]上线性无关的充要条件是得分 二、选择题(10分,每题2分)2微分方程y" + (y")-y= cosyn 阶齐次线性微分方程的所有解构成一个 B n+1n —1 )维线性空间。
D n +2 4、Lipschitz 条件是一阶微分方程初值问题存在唯一解的( A 充分条件 C 充分必要条件B 必要条件 D 既不是充分也不是必要条件)条件。
Idxi — = _y 5.方程< dt的奇点(0,0) I —L dt 的类型是三、填空题(12分,得分 每空 2 分)1、向量函数x 1(t),x 2(t)JH,x n (t)是线性方程组 X =A(t)X 的基本解组的充要条件是:含了它的所有解。
4、设①(t)为X ‘ = A(t)X 的基解矩阵,则甲(t)为其基解矩阵=存在n 阶常数矩阵C ,使三阶线性方程 四阶线性方程得分1、(1) ;(2)第2页共7页2、方程M (X, y )dx + N (X, y )dy = 0存在只与y 有关而与x 无关的积分因子的充分必要条件是3、 方程9丫 =、瓦的奇解是。
dx 74、 伯努利方程=P (x )y+Q (x )y n,(n 工0,1)通过变量替换 dx可化为线性方程。
■ 2I 5、欧拉方程x y" — xy' + y=O 的通解为四、求下列方程的通解(40分,每题10 分)1、xy ‘-2y =x 3 COSX.1 12、(sin y + ysi n x +—)dx +(x cosy-cos x + — )dy =0.x y3、(y 中 x)dx + (y - x)dy = 04、x 」1q .14 1丿五、计算与证明题(30分,每题10分)9丫 =x 2— y 通过点(1,0)的第二次近似解。
常微分方程(A)答案
《 常微分方程 》(A)答案:(省去了作题的详细步骤)一. 填空题(每小题3分, 共15分)1. );())()(()(121x y x y x y c x y +-=;2. 1||,<∈y R x ;3. tttee22,--; 4. n ; 5. ⎪⎪⎭⎫ ⎝⎛t t te te e 0.二.单项选择题(每小题3分, 共15分)1. A2.B3. C 4 . D 5. A 三. 求下列微分方程的解 ( 共36分) 1. 分离变量:2211xdx ydy -=- (3分)积分,得通解 ,arcsin arcsin c x y += (6分) 特解: 1±=y (7分)2. 令 ,1-=y z 则 (2分),2x z xdx dz --= (3分) ,422x x c z -= (5分) 得通解:4244x c x y -=.(6分)有特解: .0=y (7分) 3.令 ,2,2x y x N y x M -=+= (1分),2x N x Ny M -=∂∂-∂∂ 积分因子 .1)(2xx u = (4分) 通解: ,||ln 2c xyy x =-+ (7分) 4.02'3''=++x x x 的特征根:,2,121-=-=λλ 通解:.221t te c e c x --+=(3分)原方程特解设为:t C t B Atex tcos sin 1++=-, (5分)代入原方程,可得: .103,101,1-===C B A 即.cos 103sin 1011t t tex t-+=- (7分) 所求通解为:.cos 103sin 101221t t te e c e c y tt t -+++=--- (8分)5.令 ,'2yt y =- 代入原方程,可得: (2分).1'12t y t ty -=⇒+= (3分).11'2c t x dt ty dy dx +=⇒-==(5分) 故通解为:⎪⎩⎪⎨⎧+=+=t t y c t x 11 消去 ,t 得 .1c x c x y -+-= (6分)2±=y 为特解. (7分)四. 特征根:.2,121=-=λλ (2分)11-=λ 对应特征向量:⎪⎪⎭⎫ ⎝⎛-11;22=λ 对应特征向量:⎪⎪⎭⎫⎝⎛21;(4分) 基解矩阵: ⎪⎪⎭⎫ ⎝⎛-=Φ--t tt te e e e t 222)(, ⎪⎪⎭⎫⎝⎛-=Φ---t t t t e ee e s 221231)(, (6分) ⎪⎪⎪⎪⎭⎫⎝⎛--+-+--=ΦΦ=ΦΦ+ΦΦ=-----⎰⎰t t t t tt e e t t e e t t dss f s t dss f s t t t 22101013435cos 3sin 3235cos sin 2)()()()()()()0()0()()(ϕϕ (10分)五.,222)24(24242by by ax xy b a ax dtdV----+-= (2分) 取 ,2,1==b a 则 222),(y x y x V += 定正. (4分)42424422y y x x dtdV----= 定负, (6分) 故零解渐近稳定. (8分)六.),)(exp()'( ))(exp()''''()(0222⎰⎰-=++='xx xx dt t p qy y dt t p p yy yy y x f (4分)由于)(x y y =为非0解, 可得y 与'y 在区间],[b a 上任何点处不同时为0 (否则与解的唯一性矛盾), 又 ,0<q 故 )(0)('],,[x f x f b a x ⇒>∈∀在],[b a 上严格单增.(8分)七.作逐步逼近序列: ),()(0x f x =ϕ0,1,2,n ,)(),()()(01 =+=⎰+xx n n d x K x f x ξξϕξλϕ(2分)记 ⎰===≤≤≤≤baba b x a dx x f M x f x K M ,|)(| ),(|),(|max2,1ξξ由 ,|||)(),(||||)()(|21001M M d x K x x b aλξξϕξλϕϕ≤=-⎰以及数学归纳法可得)(|||)()(|1211-+-≤-n nn n n a b M M x x λϕϕ. (4分)取 ,)(1||1a b M -<λ则∑∞=--1121)(||n n nn a b M M λ收敛,故 )(x n ϕ在],[b a 上一致收敛. 设 ],,[),()(b a x x x n ∈→ϕϕ 则 )(x ϕ为连续解. (5分) 设 )(x ψ为另一连续解, )()(x x ϕψ≠. 记 ,0||max ],[>-=∈ψϕb a x Q 由,1)(||)(|| )(||||||||1111≥-⇒-≤⇒-≤-≤-⎰a b M a b Q M Q a b Q M dx M baλλλψϕλψϕ矛盾. 故 ),()(x x ϕψ= 即解唯一. (8分)。
数学系常微分方程期末试卷A及答案
(A)试卷说明:1、该门考试课程的考试方式:闭卷;2、 考试所用时间:120分钟。
3、 考试班级:数计学院数 11级一、填空题(每小题3分,本题共15分)1.方程x (y 2 1)dx y (x 2 1)dy 0所有常数解是2.方程y 4y 0的基本解组是3 .方程dy x 2 siny 满足解的存在唯一性定理条件的区域是 ___________________________ . 4•线性齐次微分方程组的解组 Y,X ),Y 2(X ), ,Y n (x )为基本解组的 _______________ 条件 是它们的朗斯基行列式 W (x ) 0 .5 .一个不可延展解的存在在区间一定是区间.、单项选择题(每小题3分,本题共15分)6 .方程—x 3 y 满足初值问题解存在且唯一定理条件的区域是( ).(A )上半平面 (B ) xoy 平面(C )下半平面(D )除y 轴外的全平面7. 方程dy y 1()奇解.dx(A )有一个(B )有两个(C )无(D )有无数个8. n 阶线性齐次微分方程基本解组中解的个数恰好是( )个. (A ) n(B ) n -1( C ) n +1(D ) n +2系院学计数考试本科考试科目常微分方程人题审师教课任号学一一名姓班试卷份数年月 日9、微分方程xlnx y y 的通解 ()B 、y c 1x l n x 1 D 、y GX In x 1c 2).(B )构成一个n 1维线性空间 (D )不能构成一个线性空间三、简答题(每小题6分,本题共30分) “解方程dy e x y12•解方程(x 2y )dx xdy 0A 、y c 1xln x c 2 C 、y xlnx10. n 阶线性非齐次微分方程的所有解((A )构成一个线性空间 C )构成一个n 1维线性空间dy y13.解方程1dx x14•解方程e y dx (xe y 2y)dy 0d x dx15•试求 3 2x 0的奇点类型及稳定性dt2dt四、计算题(每小题10分,本题共20分)1 X16.求方程y y _e的通解217.求下列方程组的通解dxdt dy dt2x y五、综合能力与创新能力测试题(每小题10分,本题共20分)18.在方程y p(x)y q(x)y 0中,p(x), q(x)在(,)上连续,求证:若p(x)恒不为零,则该方程的任一基本解组的朗斯基行列式W(x)是(,)上的严格单调函数.19 .在方程y p(x)y q(x)y 0中,已知p(x),q(x)在(,)上连续.求证:该方程的任一非零解在xoy平面上不能与x轴相切.12-13-2学期期末考试《常微分方程》A 参考答案及评分标准(数学与计算机科学学院)制卷____ 审核 _____________、填空题(每小题3分,本题共15分)1. y 1, x 12. sin 2x, cos2x3. xoy 平面 4 .充分必要5 .开、单项选择题(每小题3分,本题共15分)6. D7. C8. A 9. D 10. D三、简答题(每小题6分,本题共30分)11•解分离变量得e y dy e xdx等式两端积分得通积分e y e x C12.解方程化为业1 2》 dx x令y xu ,贝Uu x-du ,代入上式,得 dx dxdu x 1 u dx 分量变量,积分,通解为u Cx 1原方程通解为y Cx 2 x13.解 对应齐次方程 d ' 的通解为dx xy Cx(2 分)令非齐次方程的特解为y C (x )x(3 分)(3分)(6分)(2分)(4分)(5分)代入原方程,确定出// \ 1 c (X )-X再求初等积分得C (x ) ln x C因此原方程的通解为y Cx + xl nx14 •解: 由于卫 e y —,所以原方程是全微分方程.y x取(X 0, y 。
常微分方程A卷及答案
安 庆 师 范 学 院《常微分方程》A 卷 一、判断题(8分,每题2分)1、阶常微分方程的通解包含了它的所有解。
( )2、函数221c x e c y +=是微分方程02=-'-''y y y 的通解。
( )3、阶线性齐次微分方程的个解12(),(),,()n x t x t x t 在],[b a 上线性无关的充要条件是()0,[,]W t t a b ≠∈。
( )4、设)(t Φ为X t A X )(='的基解矩阵,则)(t ψ为其基解矩阵存在阶常数矩阵,使C t t )()(Φ=ψ。
( )二、选择题(10分,每题2分)1、 微分方程24()cos y y y y ''''''+-=是( )。
A 三阶非线性方程 B 三阶线性方程C 四阶非线性方程D 四阶线性方程2、 下列方程中为齐次方程的是 ( )。
A ()y xy y ϕ''=+B tany xy y x x '=+C ()y xy f y '''=+D cos cos ydx xdy = 3、阶齐次线性微分方程的所有解构成一个( )维线性空间。
AB 1n +C 1n -D 2n +4、Lipschitz 条件是一阶微分方程初值问题存在唯一解的( )条件。
A 充分条件B 必要条件C 充分必要条件D 既不是充分也不是必要条件 5. 方程dx y dt dy x dt⎧=-⎪⎪⎨⎪=⎪⎩的奇点(0,0)的类型是 ( )。
A 结点 B 焦点 C 中心 D 鞍点三、填空题(12分,每空2分)1、向量函数12(),(),,()n X t X t X t 是线性方程组()X A t X '=的基本解组的充要条件是:(1);(2)。
2、方程(,)(,)0M x y dx N x y dy+=存在只与有关而与无关的积 分因子的充分必要条件是。
常微分方程练习试卷及答案
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008—2009年第一学期常微分方程期中A 卷答案1、求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解: 这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y y d 12⎰-x x d 11,求积分得 121ln 1ln 21C x y+-=-,1222)1ln(1ln C x y +-=-,1222e)1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e 12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .2、求微分方程31-++-=y x y x dxdy 的通解.解:法一: 解方程组⎩⎨⎧=-+=+-0301y x y x 得2,1==y x ,令⎩⎨⎧+=+=21Y y X x 代入原方程得YX Y X dXdY +-=,再令XY u =即uX Y =,则有du uu uXdX 2211--+=,两边积分得122ln 12ln ln c u u X+-+-=,即122)12(c u u X =-+,代回原变量整理得1222c XXY Y=-+122)1()2)(1(2)2(c x y x y =----+-此外,容易验证0122=-+u u 即222=-+XXY Y也是方程的解,因此原方程的通解为c x y x xy y =---+26222,其中c 为任意常数.或由YX Y X dXdY +-=得0)22(0)()(22=-+⇒=-=+X YXY d dX X Y dY Y X 得1222c XXY Y=-+法二:原方程可化为 0)1()3=+---+dx y x dy y x ( 即0)1()3(=+--++dx x dy y ydx xdy 亦即0)21()321()(22=+--+x x d y y d xy d所以原方程的通解为c x x y y xy 212132122=---+即c x y x xy y =---+26222.3、求微分方程x xy y x cos e 22=-'的通解. 解:法一: 原方程对应的齐次方程02d d =-xy xy 分离变量,得x x yy d 2d =,两边积分,得x x yy ⎰⎰=d 2d ,C x y ln ln 2+=,即2e xC y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e2C x y x+= (C 为任意常数).法二: 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y x x xx x=)d ecos e(e222C x x xxx+⋅⎰-=)d cos (e2C x x x+⎰=)(sin e 2C x x +(C 为任意常数).4、求微分方程0)ln (ln =-+dy y x ydx y 的通解.解:法一:如果把y 看成函数,则原方程可表示为0ln ln =-+yx y y dxdy它不是以x 为自变量的线性方程。
如把x 看成y 的函数,则原方程可表示为: yx y y dydx 1ln 1=+,它是线性微分方程,其通解为:)ln21(ln 12c y y x +=.法二:yMyM xN1-=∂∂-∂∂,积分因子y1化为全微分方程5、求微分方程0d )e 1(d e =++y x x yy 的通解. 解:xy x N eyy x M y∂∂==∂∂),(),(, 方程是全微分方程,解法一:凑微分得: 0)de d e (d =++y yx x y , ,0)e (d d =+y x y 0)e (d =+yx y , 积分得通解: C x y =+y e (C 为任意常数). 解法二:)(e d )e 1(d ),(),(x c x y y x y y x N y x u yy ++=+==⎰⎰,),,(),(y x M y x u x = yyx yx c x c x y e )(e))(e(='+=++故 ,0)(='x c 取 0)(=x c , 得通解c x y y=+e.解法三:取())0,0(,00=y x , 原方程的通积分为00=+⎰⎰x yydx e dy ,即通解为:C xey y=+(C 为任意常数).6、求微分方程()02=++xdy dx y x 的通解. 解:这里 x N y x M =+=,2 ,xN yM ∂∂≠∂∂,xNxN yM 1=∂∂-∂∂ 方程有积分因子x edxx =⎰=1μ两边乘以μ得:方程()022=++dy x dx y x x 是全微分方程故方程的通解为:1233C y x x=+,即:C y x x =+233(C 为任意常数).7、求微分方程22y y x y '+'=的通解.解:令 y p '=, 方程化为 22p xp y +=, 两边对 x 求导得: p p x p p '++=)(22,即得变量 x 和 p 的微分方程 0d )(2d =++p p x x p , 当 0≠p 时, 凑微分得0d 2)(d 12=+p p xp p积分因子为 p , 积分得 c p xp=+3232, c 是任意常数. 所以得以p 为参数的参数形式的通解:⎪⎪⎩⎪⎪⎨⎧-=+=-=32232222p p c p xp y p p c x 而当 p=0 时, 代入原方程得特解 0≡y . 它不包括在通解中. 8、求方程yy y 2'1''2+=的解.解:方程不显含自变量x ,令)(y p y =', 则dydp pdxdy dy dp dxdp y ===''代入方程得 yp dydp p212+=, 分离变量得ydy ppdp 212=+,解得y C P 121=+,即11-±=y C dxdy , 故方程的通解为21112C x y C C +±=-(21,C C 为任意常数).9、解积分方程)()(20x y x dt t ty x+=⎰解:两边对x 求导得y x xy '+=2,分离变量得xdx y dy =-2,解得2212xcey +=又由题意得0)0(=y 得2-=c ,所以积分方程的解为22122xey -=.10、 假设方程),(d d y x f xy =在全平面上满足解的存在惟一性定理条件,且)(1x y ,)(2x y 是定义在区间I 上的两个解.求证:若)(01x y <)(02x y ,I x ∈0,则在区间I 上必有)(1x y <)(2x y 成立.证明: 仅证0x x ≥方向,(反之亦然).假设存在0x x ≥,使得)(1x y >)(2x y ()(1x y =)(2x y 不可能出现,否则与解惟一矛盾 令)(x y =)(1x y -)(2x y ,那么)(0x y =)(01x y -)(02x y < 0, )(x y =)(1x y -)(2x y > 0由连续函数介值定理,存在),(0*x x x ∈,使得)(*x y =)(*1x y -)(*2x y = 0 即 )(*1x y =)(*2x y这与解惟一矛盾.。