七年级数学第一次月考试卷
七年级数学上册第一次月考试卷(附答案)
1. ﹣1 的相反数是( )3A.1B.﹣1C.3D.﹣33 32.某地连续四天每天的平均气温分别是1℃, ﹣1℃, 0℃, 2℃, 则平均气温中最低的是( )A.1℃B.﹣1℃C.0℃D.2℃3.将算式﹣5-(﹣3)+ (﹣4)写成省略加号的和的形式,正确的是( )A.5+3-4B.﹣5﹣3-4C.﹣5+3-4D.﹣5-3+44.一个数是11 0000,这个数用科学记数法表示为().A.11×104B.1.1×105C.1.1×104D.0.11×1065.下列式子成立的是( )A.﹣|﹣5|>4B.﹣3<|﹣3|C.﹣|﹣4|=4D. |﹣5.5|<56.下列四个图形中能围成正方体的是( )A. B. C. D.7.用一个平面截长方体,五棱柱,圆柱和圆锥,不能截出三角形的是( )A.长方体B.无棱柱C. 圆柱D. 圆锥8.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. |a |>|b|B.ab<0C.b-a>0D.a+b<0(第8 题图)(第9题图)9.一个几何体的三视图如图所示,这个几何体是( )A.三棱锥B.三棱柱C. 圆柱D.长方体10.用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③11.如图是小明收支明细,则小明当天的收支情况是( )A.收入128 元B.收入32 元C.支出128 元D.支出32 元(第11 题图)(第12 题图)12.a,b 在数轴上位置如图所示,把a ,﹣a,b ,﹣b 按照从小到大的顺序排列,正确的是( )A.﹣b<﹣a<a<bB.﹣a<﹣b<a<bC.﹣b<a<﹣a<bD.﹣b<b<﹣a<a13.如果水位升高2m 时记作+2m,水位下降2m 记作.14.一个正n 棱柱,它有18 条棱,则该棱柱有个面,个顶点.15.若( )-(﹣2)=3,则括号内的数是.16.小明同学到学到领n 盒粉笔,整齐摞在讲桌上,其三视图如图,则n 的值是.(第16 题图)17.若|a|=3 ,|b|=5,且a-b<0,则a+b 的值是.18.规定一种新运算,对于任意有理数a ,b 有a☆b=2a-b+1,请计算1☆[2☆(﹣3)]的值是.19.(12 分)计算:(1)(﹣11)+7-(﹣14)(2)(﹣5.3)+ (﹣3.2)-(﹣5.3)(3)﹣100÷4×(﹣1)520.(15 分)计算题.(1)(+8)-(﹣15)+ (﹣9)-(﹣12)(2)﹣3×2+ (﹣2)2-5(3)36×(﹣2+1 --5)9 3 1221.(6 分)如图是由6 个相同的小正方体组成的几何体,请在指定的位置画出从正面看,左面看,上面看到的这个几何体的形状图.22.(6 分)如图,数轴上有三个点 A ,B ,C ,完成下列问题.(1)A 点表示的数是 ,B 点表示的数是 ,C 点表示的数是(2)将点 B 向右移动 5 个单位长度到点 D ,D 点表示的数是 . (3)在数轴上找点 E ,使点 E 到 B ,C 两点距离相等, E 点表示的数是 (4)将点 E 移动 2 个单位长度后到 F ,点 F 表示的数是 ,23.(6 分) 一个长方形的长为4cm ,宽为 3cm ,将其绕它的一边所在的直线旋转一周,得到一 个立体图形.(1)得到的几何图形的名称为 ,这个现象用数学知识解释为 . (2)求此几何体的体积.24.(6 分)已知 a 是最大的负整数, b 是﹣2 的相反数, c 和 d 互为倒数,求 a+b -cd 的值.25.(9 分)当你把纸对折一次时,就得到 2 层,对折 2 次时,就得 4 层,照这样折下去. (1)计算当对折 5 次时,层数是 .(2)对折 n 次时,层数 m 和折纸的次数 n 的关系是 . (3)如果纸的厚度是 0.1mm ,对折 8 次时,总厚度是 .26.(9 分)某粮食仓库管理员统计 10 袋面粉的总质量,以 100 千克为标准,超过的记为正, 不足记为负,通过称量记录如下: +3 ,+4.5,﹣0.5,﹣2,﹣5,﹣1 ,+2 ,+1,﹣4 ,+1,请回 答下列问题.,.(1)第几袋面粉最接近100 千克.(2)面粉总计超过或不足多少千克.(3)这10 袋面粉总质量是多少千克.27.(9 分)某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示)(1)这天冷库的冷冻食品比原来增加了还是减少了,请说明理由.(2)根据实际情况,有两种方案:方案一:运进每吨冷冻食品费用500 元,运出每吨冷冻食品费用800 元.方案二:不管运进还是运出每吨冷冻食品费用都是600 元,从节约运费的角度考虑,选用哪一种方案比较合适.1. A2.B3.C4.B5.B6.C7.C8.D9.B10.B11.D12.C13.如果水位升高 2m 时记作+2m ,水位下降 2m 记作 ﹣2m .14.一个正 n 棱柱,它有 18 条棱,则该棱柱有 8 个面, 12 个顶点. 15.若( )-(﹣2)=3,则括号内的数是 1 .16.小明同学到学到领 n 盒粉笔,整齐摞在讲桌上,其三视图如图,则 n 的值是 7 .(第 16 题图)17.若|a|=3 ,|b|=5,且 a -b <0,则 a+b 的值是 8 或 2 .18.规定一种新运算, 对于任意有理数 a ,b 有 a ☆b=2a -b+1,请计算 1☆[2☆(﹣3)]的值是 ﹣ 5 . 三.解答题。
七年级上第一次月考数学试卷【含答案】
七年级上第一次月考数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 任何一个自然数都可以分解为几个质数的乘积。
()2. 两个锐角相加一定大于90度。
()3. 长方体的六个面都是长方形。
()4. 分子和分母都是整数的分数叫做最简分数。
()5. 2的倍数都是偶数。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 两个因数相乘等于0,那么这两个因数至少有一个是______。
3. 等边三角形的三个角都是______度。
4. 如果一个数既是4的倍数,又是6的倍数,那么这个数至少是______。
5. 5的立方是______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 什么是三角形的高?如何计算?3. 请解释比例尺的意义。
4. 如何将一个分数化简为最简分数?5. 请简述长方体和正方体的区别。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。
3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,求这个长方体的表面积。
4. 如果一个数的3倍加上5等于26,求这个数。
5. 一个班级有40名学生,其中男生占3/5,求这个班级的女生人数。
人教版数学七年级上册第一次月考数学试卷及答案解析
人教版数学七年级上册第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.25.|﹣|等于()A.2B.﹣2C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)=.13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2=.15.若|x+2|+|y﹣3|=0,则xy=.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A符号不同,数也不同,故A不是相反数;B数的绝对值不同,故B不是相反数;C符号相同,故C不是相反数;D只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2B.﹣2C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)=﹣2.【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2.【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=9900.【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4)×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车212辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【考点】绝对值;数轴.【分析】本题应从绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.【解答】解:(1)数轴上表示2和5两点之间的距离是|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;(2)根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;(3)根据绝对值的定义有:|x﹣1|+|x+3|可表示为点x到1与﹣3两点距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点评】本题考查学生的阅读理解能力及知识的迁移能力.。
七年级上册数学第一次月考试卷【含答案】
七年级上册数学第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少?A. 3cmB. 10cmC. 23cmD. 17cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5cm,那么它的面积是多少平方厘米?A. 10cm²B. 15cm²C. 20cm²D. 25cm²5. 下列哪个角是锐角?A. 90°B. 100°C. 80°D. 120°二、判断题(每题1分,共5分)1. 2是最大的质数。
()2. 三角形的内角和总是等于180°。
()3. 0是偶数。
()4. 面积相等的两个图形一定是相似的。
()5. 对角线相等的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 100的因数有______个。
2. 一个等边三角形的每个内角是______度。
3. 两个质数相乘得到的一个数是______。
4. 一个长方形的长是8cm,宽是4cm,面积是______平方厘米。
5. 一个圆的半径是3cm,它的直径是______cm。
四、简答题(每题2分,共10分)1. 解释什么是因数和倍数。
2. 简述平行四边形的性质。
3. 什么是等腰三角形?给出一个例子。
4. 解释面积和周长的区别。
5. 简述圆的周长公式。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个三角形的两个内角分别是45°和90°,求第三个内角的度数。
3. 列出6的所有因数。
4. 一个圆的半径是4cm,求它的直径。
5. 如果一个数的因数有1、2、3、4、6,那么这个数是什么?六、分析题(每题5分,共10分)1. 画出一个边长为6cm的正方形,并标出它的对角线。
七年级数学第一次月考试卷
七年级数学第一次月测试卷(时间45分钟,总分值100分)学号: 姓名:___________一、 选择题〔每题3分,共30分〕1. 以下说法正确的个数是 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A. 1B.. 2C. 3D. 42. a,b 是有理数,它们在数轴上的对应点的位置如以下图所示:把a,-a,b,-b 根据从小到大的顺序排列 ( )A. -b <-a <a <bB.. -a <-b <a <bC. -b <a <-a <bD.-b <b <-a <a3. 以下说法正确的选项是 ( )①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比拟,绝对值大的反而小A. ①②B. ①③C. ①②③D. ①②③④4.以下运算正确的选项是 ( )A. 1)7275(7275-=+-=+-B. 3÷3135445=÷=⨯C. -7-2×5=-9×5=-45D. -(-3)2=-95.假设a+b <0,ab <0,那么 ( )A. a >0,b >0B. a <0,b <0C. a,b 两数一正一负,且正数的绝对值大于负数的绝对值D. a,b 两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为〔25±0.1〕kg,〔25±0.2〕kg, 〔25±0.3〕kg 的字样,从中任意拿出两袋,它们的质量最多相差〔 〕A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg7.假设ab≠0,那么bb a a 的取值不可能是〔 〕 A. 0 B. 1 C. 2 D. -28.绝对值大于2且小于5的所有的整数的和是〔 〕A. 7B. -7C. 0D. 59、2022年5月19日,国家邮政局特别发行万众一心,抗击“非典〞邮票,收入全部捐赠给卫生部门用以支持抗击“非典〞斗争,其邮票发行为12050000枚,用科学记数法表示正确的选项是( )A .1.205×107 B.1.20×108 C.1.21×107 D.1.205×10410.以下各对数中,数值相等的是〔 〕A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D.―(―3)2与―(―2)3二、填空题〔每题3分,共24分〕11.-351的相反数是 ,倒数是 ,绝对值是 . 12.比-3大的负整数是 ,比3小的非负整数是 .13.在数轴上,3和-5所对应的点之间的距离是________,到3和-5所对应的两点的距离相等的点所对应的有理数是_________,它的倒数是____________.14.比213-大而比312小的所有整数的和为 . 15.假设0<a <1,那么a,a 2,a1的大小关系是 . 16.多伦多与北京的时间差为 –12 小时〔正数表示同一时刻比北京时间早的时数〕,如果北京时间是10月1日14:00,那么多伦多时间是 . 17.1999年国家财政收入到达11377亿元,用四舍五入法保存两个有效数字的近似值为________亿元.18.a =3,b =2,且ab <0,那么a -b= .三.计算题〔每题3分,共24分〕19.⑴ -54×241÷〔-421〕×92 ⑵〔21-95+127〕×〔-36〕⑶ -4×7-〔-3〕×6+5 ⑷ -1-〔1-〔1-0.5×31〕〕×6⑸ -5a+0.3a -2.7a ⑹ )1(2)39(31++-y y⑺ ()()()54321132---⨯--- ⑻ 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭四、解做题〔共22分〕20.将以下各数填在相应的集合里.-3.8,-10,4.3,-∣-720∣,42,0,-〔-53〕整数集合:{ },分数集合:{ },正数集合:{ },负数集合:{ }.21.某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,缺乏的分数记为负数,记录如下:-7,-10,+9,+2,-1,+5,-8,+10,+4,+9 求他们的平均成绩.22.小虫从某点O出发在一直线上往返爬行,假定向右爬行的路程记整数为正数,向左爬行的路程记为负数,爬行的各段路程依次为〔单位:cm〕:+5,-3,+10,-8,-6,+12,-10.求:⑴小虫最后是否回到出发点O?⑵小虫离出发点O最远是多少厘米?⑶在爬行过程中,如果每爬行1厘米奖励一粒芝麻,那么小虫一共得到多少粒芝麻?五、附加题〔5分,全卷总分值不超过100分〕23、下表列出了国外几个城市与北京的时差〔带正号的数表示同一时刻比北京的时间早的时数〕.现在的北京时间是上午8∶00〔1〕求现在纽约时间是多少?〔2〕斌斌现在想给远在巴黎的姑妈打,你认为适宜吗?。
七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
七年级数学第一次月考试卷及答案
七年级第一学期第一次月考试卷与试题解析一.选择题(共10小题,满分30分)1.(3分)|﹣3|的相反数是(B)A.3B.﹣3 C.D.﹣2.(3分)如果向东走80m记为+80m,那么向西走60m记为(A)A.﹣60m B.|﹣60|m C.﹣(﹣60)m D.m3.(3分)计算2﹣(﹣3)的结果等于(C)A.﹣1 B.1C.5D.64.(3分)数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为(B)A.8B.﹣2 C.﹣5 D.25.(3分)某市某日的气温是﹣2℃~6℃,则该日的温差是(A)A.8℃B.6℃C.4℃D.一2℃6.(3分)计算2﹣|﹣3|结果正确的是(C)A.5B.1C.﹣1 D.﹣57.(3分)若两个数的和为正数,则这两个数(A)A.至少有一个为正数B.只有一个是正数C.有一个必为0 D.都是正数8.(3分)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d 的值为(C)A.1B.3C.1或﹣1 D.2或﹣19.数a,b在数轴上的位置如图所示,则a+b是(C)A.正数B.零C.负数D.都有可能10.(3分)有理数a,b在数轴上的对应点的位置如图所示,则(B)A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b<0二.填空题(共10小题,满分30分,每小题3分)11.(3分)(2014•江西模拟)﹣1+3=2.12.(3分)(2007•遵义)计算:1﹣2=﹣1.13.(3分)(2012•岳阳)计算:|﹣2|=2.14.(3分)(2013•晋江市)化简:﹣(﹣2)=2.15.(3分)写出一个比﹣1大的负有理数是﹣0.4(答案不唯一).16.(3分)(2010•邯郸一模)若a、b互为相反数,则3a+3b+2=2.17.(3分)某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).18.(3分)(2012•德州)﹣1,0,0.2,,3中正数一共有3个.19.(3分)(2007•崇安区一模)一只昆虫从点A处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A点相距8米.20.(3分)(2008•贵阳)符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f(2008)=1.三.解答题(共5小题,满分40分)21.(7分)计算:9+(﹣7)+6+(﹣5)考点:有理数的加法.分析:原式结合后,相加即可得到结果.解答:解:原式=(9+6)+[(﹣7)+(﹣5)]=15﹣12=3.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22.(7分)计算:(﹣2)+5﹣4﹣(﹣3)﹣3.考点:有理数的加减混合运算.分析:原式利用减法法则变形,然后利用加法的交换结合律,计算即可得到结果解答:解:(﹣2)+5﹣4﹣(﹣3)﹣3=(﹣2)+5+(﹣4)+3+(﹣3)=[(﹣2)+(﹣4)]+[3+(﹣3)]+5=(﹣6)+5=﹣1点评:此题考查了有理数的加减混合运算,熟练掌握运算法则,及用运算律是解本题的关键.23.(8分)计算:.考点:有理数的加减混合运算.分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.解答:解:原式=﹣﹣﹣+=﹣1﹣=或.点评:在进行有理数的加减混合运算时,第一步是运用减法法则将减法转化成加法;第二步根据加法法则进行计算.24.(9分)已知|a|=3,|b|=5,且a<b,求a﹣b的值.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.解答:解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.点评:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.25.(9分)小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?考点:有理数的加法;正数和负数.专题:应用题.分析:(1)把记录数据相加,结果为0,说明小虫最后回到出发点A;(2)分别计算出每次爬行后距离A点的距离;(3)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求得到的芝麻粒数.解答:解:(1)+5﹣3+10﹣8﹣6+12﹣10=27﹣27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5﹣3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12﹣8=4(cm),第五次爬行距离原点是|4﹣6|=|﹣2|(cm),第六次爬行距离原点是﹣2+12=10(cm),第七次爬行距离原点是10﹣10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.点评:正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负;距离即绝对值与正负无关.。
七年级数学第一次月考试卷
七年级数学第一次月考试卷一、选择题(每题 3 分,共30 分)1. 下列各数中,是负数的是()A. 0B. -2C. 3D. 52. 温度上升3℃记作+3℃,那么温度下降5℃记作()A. +5℃B. -5℃C. +8℃D. -8℃3. 数轴上表示-3 的点与表示2 的点之间的距离是()A. 1B. 5C. -1D. -54. 一个数的绝对值是5,则这个数是()A. 5B. -5C. 5 或-5D. 05. 比较-2,0,1,-3 的大小,正确的是()A. -3<-2<0<1B. -2<-3<0<1C. -3<0<-2<1D. -2<0<-3<16. 下列计算正确的是()A. (-3)+(-4)=-7B. 4+(-9)=5C. (-5)+5=0D. 1+(-2)=-17. 若a 与2 互为相反数,则a 的值为()A. 2B. -2C. 1/2D. -1/28. 已知|a|=3,|b|=2,且a>b,则a+b 的值为()A. 5B. 1C. 5 或1D. -5 或-19. 一个数加上-12 得-5,那么这个数是()A. 7B. -7C. 17D. -1710. 下列说法错误的是()A. 零是整数B. 零是有理数C. 零是最小的数D. 零是自然数二、填空题(每题 3 分,共18 分)11. 规定向东为正,向西为负,那么向东走5 米记作______米,向西走8 米记作______米。
12. -3 的相反数是______,绝对值是______。
13. 比较大小:-1/2______-2/3。
(填“>”“<”或“=”)14. 绝对值小于4 的所有整数的和是______。
15. 若|x-2|=0,则x=______。
16. 若a、b 互为相反数,c、d 互为倒数,则a+b+cd=______。
三、解答题(共52 分)17.(8 分)把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来。
-4,2,0,-1,3。
七年级上册第一次月考试卷数学
七年级上册第一次月考试卷数学一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 下列四个数中,最小的数是()A. 0B. -2C. 3D. -1.3. 计算:1 - (-2)的结果是()A. -1B. 1C. -3D. 3.4. 在数轴上,距离原点3个单位长度的点所表示的数是()A. 3B. -3C. 3或 -3D. 6或 -6。
5. 一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A. 24.70千克B. 25.30千克C. 24.80千克D. 25.51千克。
6. 把(-3)+(-5)-(-1)写成省略括号的和的形式是()A. -3 - 5 + 1B. -3 - 5 - 1C. -3 + 5 + 1D. 3 + 5 - 1.7. 若x = 5,则x的值是()A. 5B. -5C. 5或 -5D. 0。
8. 计算-2×3的结果是()A. 6B. -6C. 5D. -5.9. 有理数a,b在数轴上的位置如图所示,下列式子正确的是()(此处数轴略,a在原点左边,b在原点右边,且a到原点的距离大于b到原点的距离)A. a > bB. a > bC. a + b > 0D. ab > 010. 一个数加上 -12等于 -5,则这个数是()A. 17B. 7C. -17D. -7.二、填空题(每题3分,共15分)11. 如果收入100元记作 + 100元,那么支出50元记作_______元。
12. 比较大小:- (3)/(4)___- (4)/(5)(填“>”或“<”)。
13. 计算:(-2)^3=_______。
14. 绝对值等于3的数是_______。
15. 若a,b互为相反数,则a + b=_______。
三、解答题(共55分)16. (8分)计算:(-12)+(+30)-4 - 5 + 2017. (8分)计算:(-2)×(-5)×(-(1)/(2))(-(3)/(4))×(-8 + (2)/(3))18. (9分)在数轴上表示下列各数,并比较它们的大小:-3,0,2,-1(1)/(2),4.19. (10分)某冷库的温度是零下10℃,下降 -3℃后又下降5℃,求两次变化后的冷库温度。
七年级上第一次月考数学试卷【含答案】
七年级上第一次月考数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少厘米?A. 22厘米B. 32厘米C. 34厘米D. 44厘米4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1075. 下列哪个图形是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个等边三角形的三个角都是60度。
()3. 两个负数相乘的结果是正数。
()4. 一个数的立方根只有一个。
()5. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)1. 1的立方是______。
2. 两个质数相乘得到的一个数是______。
3. 一个等腰三角形的底角相等,如果一个底角是50度,那么另一个底角是______度。
4. 如果一个数是9的倍数,那么这个数也是______的倍数。
5. 下列各数中,______是最大的质数。
四、简答题(每题2分,共10分)1. 请简述等边三角形的性质。
2. 请简述平行四边形的性质。
3. 请简述因数分解的意义。
4. 请简述负数的乘法法则。
5. 请简述立方根的定义。
五、应用题(每题2分,共10分)1. 一个长方形的周长是34厘米,长是12厘米,求宽。
2. 一个等腰三角形的底边长是10厘米,周长是36厘米,求腰长。
3. 请将48分解成质因数。
4. 一个数的平方是121,求这个数。
5. 一个数的立方是27,求这个数的平方。
六、分析题(每题5分,共10分)1. 已知一个三角形的两边长分别是5厘米和12厘米,请问第三边的长度可能是多少?请给出理由。
七年级上册数学月考试卷及答案
七年级上册数学月考试卷及答案七年级上册数学月考试卷及答案七年级上册数学月考试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A。
-7℃ B。
+7℃ C。
+12℃ D。
-12℃2.某同学春节期间将自己的压岁钱800元,存入银行。
XXX放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A。
+800,+350,-100 B。
+800,-350,-100C。
-800,+350,+100 D。
+800,-350,+1003.-6的相反数为( )A。
6 B。
-6 C。
0 D。
-14.下列式子中,-(-3),-|-3|,3-5,-1-5是负数的有( )A。
1个 B。
2个 C。
3个 D。
4个5.下列计算不正确的是( )A。
-(-3)=-3 B。
+[-(-3)]=3 C。
-3+|-3|=0 D。
-5=-56.下列四个数中,最小的数是( )A。
2 B。
-2 C。
0 D。
-18.某种面粉袋上的质量标识为250.25kg,则下列面粉中合格的是( )A。
24.70kg B。
25.30kg C。
25.51kg D。
24.80kg9.(-1)-(-3)+2(-3)的值等于( )A。
1 B。
-4 C。
5 D。
-110.若ab≠0,则a/b的值不可能是( )A。
2 B。
0 C。
-2 D。
1二、填空题(每小题3分,共30分)11.①3的相反数是-3,②-2的倒数是-1/2,③|-2012|=2012.12.如果m≥0,n≥0,m≥|n|,那么m≥n≥-m≥-n.13.写出一个比-1小的数是-2.14.7(-2)的相反数是-14.16.若|x|=3,y=2,则|x+y|=5.17.计算|-|-3|=3.18.武冈某天早晨气温是-5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为-7℃.19.已知a,b互为相反数,且都不为0,则(a+b-5)(-3)=12.20.一组按规律排列的数:-4,-1,2,5,8,请你推断第9个数是14.三、XXX21.(16分) 计算1) 3+(-2)-(-3)+2 = 62) |-5+7|+(-4)-6 = 03) -2×(-3)-(-4)×(-5) = 24) (-2)×[(3-7)×(-4)] = 3222.(14分) 一张纸的厚度是0.01cm,折叠后厚度变成原来的2倍,再折叠后厚度变成原来的3倍,求折叠3次后纸的厚度.答:第一次折叠后厚度为0.02cm,第二次折叠后厚度为0.06cm,第三次折叠后厚度为0.18cm.23.(10分) 如果-3x+2y=5,3x-y=7,求x和y的值.答:将第二个式子两边乘以3得-9x+6y=15,与第一个式子相加得7y=20,即y=20/7.将y的值代入第二个式子得3x-(20/7)=7,解得x=61/21.因此,x=61/21,y=20/7.24.(10分) 一辆汽车从A地出发,以每小时60公里的速度向B地行驶,途中遇到了一次故障,耽误了1小时,然后以每小时40公里的速度向B地行驶,结果比原计划晚到2小时,求AB两地的距离.答:设AB两地的距离为x公里,则原计划行驶时间为x/60小时,故障后行驶时间为(x/60+1)小时,最后行驶时间为(x/60+1)+(x/40)小时。
初一数学 七年级数学上册第一次月考试卷附答案
初一数学七年级数学上册第一次月考试卷附答案一、选择题(共10题,每题2分,共20分)1. 请计算:3 + 4 × 5 =A. 23B. 35C. 53D. 702. 请计算:(2 + 3) × (4 - 1) =A. 6B. 9C. 12D. 153. 下列哪个是负数?A. 0B. 5C. -2D. 34. 若a = 3, b = 4,c = 5,则a × b ÷ c 等于A. 0.12B. 1.2C. 12D. 1205. 将7.6写成分数的形式是A. 3/5B. 3 1/5C. 7/6D. 7 3/56. 下列哪个数是最大的?A. -4B. -2C. 0D. 27. 请计算:84 ÷ 6 =A. 7B. 12C. 14D. 218. 下列哪个是正数?A. 0B. -5C. -3D. 49. 请计算:2 + 4 × (5 - 3) =A. 6B. 10C. 12D. 1410. 下列哪个分数是最小的?A. 3/4B. 2/3C. 5/8D. 1/2二、填空题(共10题,每题2分,共20分)1. 小华去动物园看了___只大象。
2. 我们有____队篮球队伍。
3. 今天是2022年2月28日,再过____天就是春节了。
4. (-2) × 5 = ______5. 要把一个13升的装满,需要倒入____升的液体。
6. 一个直角三角形的两条直角边长度分别是3cm和4cm,斜边长度为_____.7. 两个相等的数相加的和是64,这个数是____.8. 60 ÷ 15 = ______.9. 计算:21 × 6 ÷ 7 = ______.10. 如果今天是星期五,再过____天就是星期天。
三、简答题(共5题,每题10分,共50分)1. 请解释下列数学术语的含义并举例:- 分数- 分子和分母- 整数2. 请计算下列算式的值:- 15 ÷ 3 + 2 × 4- 12 - 3(4 - 2)3. 请写出下列数的相反数:- 5- 1/3- 04. 请计算下列算式的积:- 3 × (-4)- (-5) × (-2)5. 请计算下列算式的商:- (-21) ÷ 3- 18 ÷ (-6)初一数学七年级数学上册第一次月考试卷答案一、选择题(共10题,每题2分,共20分)1. B2. D3. C4. B5. D6. D7. C8. D9. C10. B二、填空题(共10题,每题2分,共20分)1. 32. 23. 24. -105. 136. 57. 328. 49. 1810. 2三、简答题(共5题,每题10分,共50分)1.- 分数:指由分子和分母组成的数,分子表示被分割的数量,分母表示分割成几份。
人教2024版七年级数学第一次月考试卷
七年级数学 第1页,共4页七年级数学 第2页,共4页…○…………密…………封…………线…………内…………不…………要…………答…………题…………○………准考证号: 姓名: 班级:2024-2025学年度第一学期第一次学情评估试卷数学(时间:120分钟满分:120 分)题 号 一 二 三 四 五 总分 得 分一、选择题(3分×10=30分) 1、2020的绝对值是( )A 、2020B 、-2020C 、±2020D 、202012、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-5-2=-7D 、1)1(2-=- 3、下列各对数互为相反数的是( )A 、-8与-(+8)B 、-(+8)与8C 、-2与1/2D 、-8与+(-8)4、在3-,0.3,0,13这四个数中,绝对值最小的数是( ) A .3- B .0.3 C .0 D .135、两个互为相反数的有理数的和为( )A 、正数B 、负数C 、0D 、负数或0 6、温度由–4°C 上升7°C 后温度是 A .3°CB .–3°CC .11°CD .–11°C7、节约是一种美德,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A .3.5×107B .3.5×108C .3.5×109D .3.5×10108、数轴上点M 到原点的距离是5,则点M 表示的数是( )A .5B .﹣5C .5或﹣5D .不能确定 9、已知︱x ︱=2,︱y ︱=3,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±110、下列说法中:①减去一个负数等于加上这个数的相反数;②正数减负数,差为正数;③零减去一个数,仍得这个数;④两数相减,差一定小于被减数;⑤两个数相减,差不一定小于被减数;⑥互为相反数的两数相减得零。
初一数学上册第一次月考试卷四套
初一数学上册第一次月考试卷1一、选择题 1、—3的相反数是 ( )A 、13 B 、-3 C 、—13D 、32、 下列式子中,正确的是 ( ) A 、∣-5∣ =5 B 、-∣-5∣ = 5 C 、215.0-=- D 、2121=--3、下列算式正确的是 ( )A 、(—14)—5= —9B 、0 —(—3)=3C 、(—3)—(—3)=—6D 、∣5—3∣= —(5—3) 4、下列说法正确的是 ( ) A .整数包括正整数和负整数; B.零是整数,但不是正数,也不是负数; C.分数包括正分数、负分数和零; D.有理数不是正数就是负数 5、下列各数中互为相反数的是( )A 、12-与0.2B 、13与-0.33C 、-2.25与124D 、5与-(-5)6、在0,-1,∣-2∣,-(-3),5,3.8,215-,16中,正整数的个数是( )A 、1个B 、2个C 、3个D 、4个7、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔 ( ) A. -60米 B. -80米 C.-40米 D.40米8、下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小 A ①② B ①③ C ①②③ D ①②③④9、一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则mba cd m ++-2 值为 ( )A 、3- B 、3 C 、5- D 、3或5- 11、比较—2.4,—0.5,—(—2),—3的大小,下列正确的是 ( )A 、—3>—2.4>—(—2)>—0.5B 、—(—2)>—3>—2.4>—0.5C 、—(—2)>—0.5>—2.4>—3D 、—3>—(—2)>—2.4>—0.5二、填空题:12、321-的倒数是321-的相反数是的倒数是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第一次月考试卷
一.选择题(本大题共6小题,每空3分,共18分)
1.-3的相反数是 ( )
A .-3
B .3
C .3
1
-
D .31
2.拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是 ( )
A.4
101678⨯千瓦 B.6
1078.16⨯千瓦 C.7
10678.1⨯千瓦 D. 8
101678.0⨯千瓦
3. 下列说法正确的是 ( ) ①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 A. ①② B. ①③ C. ①②③ D. ①②③④
4. 若|x+2|+|y-3|=0,则 x-y 的值为 ( ) A .5 B .-5 C .1或-1 D .以上都不对
5.写成省略加号和的形式后为-6-7-2+9的式子是 ( ) A 、(-6)-(+7)-(-2)+(+9) B 、-(+6)-(-7)-(+2)-(+9) C 、(-6)+(-7)+(+2)-(-9) D 、-6-(+7)+(-2)-(-9)
6. 计算:1
211-=,2213-=,3217-=,42115-=,5
2131-=,··· ···
归纳各计算结果中的个位数字规律,猜测2006
2
1-的个位数字是 ( )
A .1
B .3
C .7
D .5
二.用心填一填(本大题共8小题,每空3分,共24分)
7. 如果规定向东走为正,那么“—6米”表示 : 8. 平方等于25的数是 。
9.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________. 10. 若a 是最大的负整数,b 是绝对值最小的数,则a +b = 。
11. 比较大小:-|-0.8| -(-0.8),(填“>”或“<”)。
12. 实验学校为每个七年级学生编号,设定末尾用1表示男生,用2表示女生。
如果编号096432表示“2009年入学的6班43号同学,是位女生”,那么今年入学的5班23号男生同学的编号是 ________.
13如图所示是计算机程序计算,若开始输入1-=x ,则最后输出的结果是 。
14.
b
b
a a +()0≠a
b 的结果为 。
三.解答题
15.把下列各数填在相应的大括号里:(本题8分)
2
)2(--,43,0.86,2--,)2(--,0,2007
)1(-- ,
3
)2(3- 负整数集合:( …);负分数集合:( …); 正分数集合:( …);非负有理数集合( …)。
16. 在数轴上把下列各数表示出来,并用“<”连接各数。
(本题8分)
5.2--,211
,0,⎪⎭⎫
⎝
⎛--212,()1001-,
22
17.计算:(每题6分,共36分)
(1)-3+10-5 (2)12)17()15(5.0-----+-
(3))43(875.3-⨯÷- (4) ()361276521-⨯⎪⎭
⎫
⎝⎛-+
(5) (6)—14+〔1-(1-0.5×2)〕÷2
)3(2--
⎪⎭
⎫ ⎝⎛---+⎪⎭⎫ ⎝⎛-⨯-21221232
18.有一种“二十四点”游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算使其结果等于24。
例:对1,2,3,4可作运算:(1+2+3)×4=24 [注意:上述运算与4×(2+3+1)应视做相同方法的运算] (本题8分)
这个运算也适用于整数,现有四个有理数3,4,-6,10运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:
(1) (2) (3) 19. 已知a 、b 互为相反数且0≠a ,c 、d 互为倒数,m 的绝对值是最小的正整数, 求: ()cd b a b a m -++-2014
20132的值.(本题8分)
20.若∣x ∣=3,∣y ∣=5,且x <y ,求x +y 的值. (本题8分)
21. 2014年1----6月份泰州市的最高气温和最低气温记录如下表()
C 0
哪个月的温差最大?最大温差是多少?哪个月的温差最小?最小温差是多少?(本题8分) (列出算式并计算)
22.小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记整数为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.
求:⑴小虫最后是否回到出发点O?
⑵小虫离出发点O最远是多少厘米?
⑶在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?(本题满分12分)
23.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕。
⑴第3次对折后共有多少条折痕?第4次对折后呢?
⑵对折多少次后折痕会超过100条?
⑶请找出折痕条数与对折次数的对应规律,写出对折n次后,折痕有多少条?(本题满分12分)
24.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探求:(本题满分12分)
(1)|5-(-2)|= ;
(2)同理由|x+5|+|x-2|表示数轴上有理数x所对应的点到-5与2所对应的两数距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2=7,这样的正数是;
(3)由以上的探索猜想对于有理数x,|x+5|+|x-2|是否有最小值?如果有写出最小值,如果没有说明理由。