From regression to classification in support vector machines

合集下载

classification作文

classification作文

classification作文英文回答:Classification is the process of categorizing data into different groups or classes based on their attributes. Itis a fundamental task in machine learning and data analysis. There are different types of classification algorithms, including decision trees, logistic regression, supportvector machines, and neural networks.The decision tree algorithm is a popular classification algorithm that works by recursively splitting the data into subsets based on the values of the attributes. The logistic regression algorithm is a statistical method that estimates the probabilities of the outcomes based on the input variables. The support vector machine algorithm is a binary classification algorithm that separates the data into two classes using a hyperplane. The neural network algorithm is a complex algorithm that learns the patterns in the data by adjusting the weights of the connections between theneurons.Classification has many applications in various fields, such as image recognition, speech recognition, fraud detection, and sentiment analysis. For example, in image recognition, a classification algorithm can be trained to recognize different objects in an image, such as cars, buildings, and trees. In speech recognition, aclassification algorithm can be used to identify different words or phrases in a spoken language. In fraud detection, a classification algorithm can be trained to detect fraudulent transactions based on their characteristics. In sentiment analysis, a classification algorithm can be used to classify the sentiment of a piece of text as positive, negative, or neutral.中文回答:分类是将数据根据其属性分为不同的组或类别的过程。

人工智能原理MOOC习题集及答案 北京大学 王文敏

人工智能原理MOOC习题集及答案 北京大学 王文敏

Quizzes for Chapter 11单选(1分)图灵测试旨在给予哪一种令人满意的操作定义得分/总分A.人类思考B.人工智能C.机器智能D.机器动作正确答案:C你选对了2多选(1分)选择以下关于人工智能概念的正确表述得分/总分A.人工智能旨在创造智能机器该题无法得分/B.人工智能是研究和构建在给定环境下表现良好的智能体程序该题无法得分/C.人工智能将其定义为人类智能体的研究该题无法得分/D.人工智能是为了开发一类计算机使之能够完成通常由人类所能做的事该题无法得分/正确答案:A、B、D你错选为A、B、C、D3多选(1分)如下学科哪些是人工智能的基础?得分/总分A.经济学B.哲学C.心理学D.数学正确答案:A、B、C、D你选对了4多选(1分)下列陈述中哪些是描述强AI(通用AI)的正确答案?得分/总分A.指的是一种机器,具有将智能应用于任何问题的能力B.是经过适当编程的具有正确输入和输出的计算机,因此有与人类同样判断力的头脑C.指的是一种机器,仅针对一个具体问题D.其定义为无知觉的计算机智能,或专注于一个狭窄任务的AI正确答案:A、B你选对了5多选(1分)选择下列计算机系统中属于人工智能的实例得分/总分搜索引擎B.超市条形码扫描器C.声控电话菜单该题无法得分/D.智能个人助理该题无法得分/正确答案:A、D你错选为C、D6多选(1分)选择下列哪些是人工智能的研究领域得分/总分A.人脸识别B.专家系统C.图像理解D.分布式计算正确答案:A、B、C你错选为A、B7多选(1分)考察人工智能(AI)的一些应用,去发现目前下列哪些任务可以通过AI来解决得分/总分A.以竞技水平玩德州扑克游戏B.打一场像样的乒乓球比赛C.在Web上购买一周的食品杂货D.在市场上购买一周的食品杂货正确答案:A、B、C你错选为A、C8填空(1分)理性指的是一个系统的属性,即在_________的环境下做正确的事。

得分/总分正确答案:已知1单选(1分)图灵测试旨在给予哪一种令人满意的操作定义得分/总分A.人类思考B.人工智能C.机器智能D.机器动作正确答案:C你选对了2多选(1分)选择以下关于人工智能概念的正确表述得分/总分A.人工智能旨在创造智能机器该题无法得分/B.人工智能是研究和构建在给定环境下表现良好的智能体程序该题无法得分/C.人工智能将其定义为人类智能体的研究该题无法得分/D.人工智能是为了开发一类计算机使之能够完成通常由人类所能做的事该题无法得分/正确答案:A、B、D你错选为A、B、C、D3多选(1分)如下学科哪些是人工智能的基础?得分/总分A.经济学B.哲学C.心理学D.数学正确答案:A、B、C、D你选对了4多选(1分)下列陈述中哪些是描述强AI(通用AI)的正确答案?得分/总分A.指的是一种机器,具有将智能应用于任何问题的能力B.是经过适当编程的具有正确输入和输出的计算机,因此有与人类同样判断力的头脑C.指的是一种机器,仅针对一个具体问题D.其定义为无知觉的计算机智能,或专注于一个狭窄任务的AI正确答案:A、B你选对了5多选(1分)选择下列计算机系统中属于人工智能的实例得分/总分搜索引擎B.超市条形码扫描器C.声控电话菜单该题无法得分/D.智能个人助理该题无法得分/正确答案:A、D你错选为C、D6多选(1分)选择下列哪些是人工智能的研究领域得分/总分A.人脸识别B.专家系统C.图像理解D.分布式计算正确答案:A、B、C你错选为A、B7多选(1分)考察人工智能(AI)的一些应用,去发现目前下列哪些任务可以通过AI来解决得分/总分A.以竞技水平玩德州扑克游戏B.打一场像样的乒乓球比赛C.在Web上购买一周的食品杂货D.在市场上购买一周的食品杂货正确答案:A、B、C你错选为A、C8填空(1分)理性指的是一个系统的属性,即在_________的环境下做正确的事。

Support Vector Machines for Classification and Regression

Support Vector Machines for Classification and Regression

UNIVERSITY OF SOUTHAMPTONSupport Vector MachinesforClassification and RegressionbySteve R.GunnTechnical ReportFaculty of Engineering,Science and Mathematics School of Electronics and Computer Science10May1998ContentsNomenclature xi1Introduction11.1Statistical Learning Theory (2)1.1.1VC Dimension (3)1.1.2Structural Risk Minimisation (4)2Support Vector Classification52.1The Optimal Separating Hyperplane (5)2.1.1Linearly Separable Example (10)2.2The Generalised Optimal Separating Hyperplane (10)2.2.1Linearly Non-Separable Example (13)2.3Generalisation in High Dimensional Feature Space (14)2.3.1Polynomial Mapping Example (16)2.4Discussion (16)3Feature Space193.1Kernel Functions (19)3.1.1Polynomial (20)3.1.2Gaussian Radial Basis Function (20)3.1.3Exponential Radial Basis Function (20)3.1.4Multi-Layer Perceptron (20)3.1.5Fourier Series (21)3.1.6Splines (21)3.1.7B splines (21)3.1.8Additive Kernels (22)3.1.9Tensor Product (22)3.2Implicit vs.Explicit Bias (22)3.3Data Normalisation (23)3.4Kernel Selection (23)4Classification Example:IRIS data254.1Applications (28)5Support Vector Regression295.1Linear Regression (30)5.1.1 -insensitive Loss Function (30)5.1.2Quadratic Loss Function (31)iiiiv CONTENTS5.1.3Huber Loss Function (32)5.1.4Example (33)5.2Non Linear Regression (33)5.2.1Examples (34)5.2.2Comments (36)6Regression Example:Titanium Data396.1Applications (42)7Conclusions43A Implementation Issues45A.1Support Vector Classification (45)A.2Support Vector Regression (47)B MATLAB SVM Toolbox51 Bibliography53List of Figures1.1Modelling Errors (2)1.2VC Dimension Illustration (3)2.1Optimal Separating Hyperplane (5)2.2Canonical Hyperplanes (6)2.3Constraining the Canonical Hyperplanes (7)2.4Optimal Separating Hyperplane (10)2.5Generalised Optimal Separating Hyperplane (11)2.6Generalised Optimal Separating Hyperplane Example(C=1) (13)2.7Generalised Optimal Separating Hyperplane Example(C=105) (14)2.8Generalised Optimal Separating Hyperplane Example(C=10−8) (14)2.9Mapping the Input Space into a High Dimensional Feature Space (14)2.10Mapping input space into Polynomial Feature Space (16)3.1Comparison between Implicit and Explicit bias for a linear kernel (22)4.1Iris data set (25)4.2Separating Setosa with a linear SVC(C=∞) (26)4.3Separating Viginica with a polynomial SVM(degree2,C=∞) (26)4.4Separating Viginica with a polynomial SVM(degree10,C=∞) (26)4.5Separating Viginica with a Radial Basis Function SVM(σ=1.0,C=∞)274.6Separating Viginica with a polynomial SVM(degree2,C=10) (27)4.7The effect of C on the separation of Versilcolor with a linear spline SVM.285.1Loss Functions (29)5.2Linear regression (33)5.3Polynomial Regression (35)5.4Radial Basis Function Regression (35)5.5Spline Regression (36)5.6B-spline Regression (36)5.7Exponential RBF Regression (36)6.1Titanium Linear Spline Regression( =0.05,C=∞) (39)6.2Titanium B-Spline Regression( =0.05,C=∞) (40)6.3Titanium Gaussian RBF Regression( =0.05,σ=1.0,C=∞) (40)6.4Titanium Gaussian RBF Regression( =0.05,σ=0.3,C=∞) (40)6.5Titanium Exponential RBF Regression( =0.05,σ=1.0,C=∞) (41)6.6Titanium Fourier Regression( =0.05,degree3,C=∞) (41)6.7Titanium Linear Spline Regression( =0.05,C=10) (42)vvi LIST OF FIGURES6.8Titanium B-Spline Regression( =0.05,C=10) (42)List of Tables2.1Linearly Separable Classification Data (10)2.2Non-Linearly Separable Classification Data (13)5.1Regression Data (33)viiListingsA.1Support Vector Classification MATLAB Code (46)A.2Support Vector Regression MATLAB Code (48)ixNomenclature0Column vector of zeros(x)+The positive part of xC SVM misclassification tolerance parameterD DatasetK(x,x )Kernel functionR[f]Risk functionalR emp[f]Empirical Risk functionalxiChapter1IntroductionThe problem of empirical data modelling is germane to many engineering applications. In empirical data modelling a process of induction is used to build up a model of the system,from which it is hoped to deduce responses of the system that have yet to be ob-served.Ultimately the quantity and quality of the observations govern the performance of this empirical model.By its observational nature data obtained isfinite and sampled; typically this sampling is non-uniform and due to the high dimensional nature of the problem the data will form only a sparse distribution in the input space.Consequently the problem is nearly always ill posed(Poggio et al.,1985)in the sense of Hadamard (Hadamard,1923).Traditional neural network approaches have suffered difficulties with generalisation,producing models that can overfit the data.This is a consequence of the optimisation algorithms used for parameter selection and the statistical measures used to select the’best’model.The foundations of Support Vector Machines(SVM)have been developed by Vapnik(1995)and are gaining popularity due to many attractive features,and promising empirical performance.The formulation embodies the Struc-tural Risk Minimisation(SRM)principle,which has been shown to be superior,(Gunn et al.,1997),to traditional Empirical Risk Minimisation(ERM)principle,employed by conventional neural networks.SRM minimises an upper bound on the expected risk, as opposed to ERM that minimises the error on the training data.It is this difference which equips SVM with a greater ability to generalise,which is the goal in statistical learning.SVMs were developed to solve the classification problem,but recently they have been extended to the domain of regression problems(Vapnik et al.,1997).In the literature the terminology for SVMs can be slightly confusing.The term SVM is typ-ically used to describe classification with support vector methods and support vector regression is used to describe regression with support vector methods.In this report the term SVM will refer to both classification and regression methods,and the terms Support Vector Classification(SVC)and Support Vector Regression(SVR)will be used for specification.This section continues with a brief introduction to the structural risk12Chapter1Introductionminimisation principle.In Chapter2the SVM is introduced in the setting of classifica-tion,being both historical and more accessible.This leads onto mapping the input into a higher dimensional feature space by a suitable choice of kernel function.The report then considers the problem of regression.Illustrative examples re given to show the properties of the techniques.1.1Statistical Learning TheoryThis section is a very brief introduction to statistical learning theory.For a much more in depth look at statistical learning theory,see(Vapnik,1998).Figure1.1:Modelling ErrorsThe goal in modelling is to choose a model from the hypothesis space,which is closest (with respect to some error measure)to the underlying function in the target space. Errors in doing this arise from two cases:Approximation Error is a consequence of the hypothesis space being smaller than the target space,and hence the underlying function may lie outside the hypothesis space.A poor choice of the model space will result in a large approximation error, and is referred to as model mismatch.Estimation Error is the error due to the learning procedure which results in a tech-nique selecting the non-optimal model from the hypothesis space.Chapter1Introduction3Together these errors form the generalisation error.Ultimately we would like tofind the function,f,which minimises the risk,R[f]=X×YL(y,f(x))P(x,y)dxdy(1.1)However,P(x,y)is unknown.It is possible tofind an approximation according to the empirical risk minimisation principle,R emp[f]=1lli=1Ly i,fx i(1.2)which minimises the empirical risk,ˆf n,l (x)=arg minf∈H nR emp[f](1.3)Empirical risk minimisation makes sense only if,liml→∞R emp[f]=R[f](1.4) which is true from the law of large numbers.However,it must also satisfy,lim l→∞minf∈H nR emp[f]=minf∈H nR[f](1.5)which is only valid when H n is’small’enough.This condition is less intuitive and requires that the minima also converge.The following bound holds with probability1−δ,R[f]≤R emp[f]+h ln2lh+1−lnδ4l(1.6)Remarkably,this expression for the expected risk is independent of the probability dis-tribution.1.1.1VC DimensionThe VC dimension is a scalar value that measures the capacity of a set offunctions.Figure1.2:VC Dimension Illustration4Chapter1IntroductionDefinition1.1(Vapnik–Chervonenkis).The VC dimension of a set of functions is p if and only if there exists a set of points{x i}pi=1such that these points can be separatedin all2p possible configurations,and that no set{x i}qi=1exists where q>p satisfying this property.Figure1.2illustrates how three points in the plane can be shattered by the set of linear indicator functions whereas four points cannot.In this case the VC dimension is equal to the number of free parameters,but in general that is not the case;e.g.the function A sin(bx)has an infinite VC dimension(Vapnik,1995).The set of linear indicator functions in n dimensional space has a VC dimension equal to n+1.1.1.2Structural Risk MinimisationCreate a structure such that S h is a hypothesis space of VC dimension h then,S1⊂S2⊂...⊂S∞(1.7) SRM consists in solving the following problemmin S h R emp[f]+h ln2lh+1−lnδ4l(1.8)If the underlying process being modelled is not deterministic the modelling problem becomes more exacting and consequently this chapter is restricted to deterministic pro-cesses.Multiple output problems can usually be reduced to a set of single output prob-lems that may be considered independent.Hence it is appropriate to consider processes with multiple inputs from which it is desired to predict a single output.Chapter2Support Vector ClassificationThe classification problem can be restricted to consideration of the two-class problem without loss of generality.In this problem the goal is to separate the two classes by a function which is induced from available examples.The goal is to produce a classifier that will work well on unseen examples,i.e.it generalises well.Consider the example in Figure2.1.Here there are many possible linear classifiers that can separate the data, but there is only one that maximises the margin(maximises the distance between it and the nearest data point of each class).This linear classifier is termed the optimal separating hyperplane.Intuitively,we would expect this boundary to generalise well as opposed to the other possible boundaries.Figure2.1:Optimal Separating Hyperplane2.1The Optimal Separating HyperplaneConsider the problem of separating the set of training vectors belonging to two separateclasses,D=(x1,y1),...,(x l,y l),x∈R n,y∈{−1,1},(2.1)56Chapter 2Support Vector Classificationwith a hyperplane, w,x +b =0.(2.2)The set of vectors is said to be optimally separated by the hyperplane if it is separated without error and the distance between the closest vector to the hyperplane is maximal.There is some redundancy in Equation 2.2,and without loss of generality it is appropri-ate to consider a canonical hyperplane (Vapnik ,1995),where the parameters w ,b are constrained by,min i w,x i +b =1.(2.3)This incisive constraint on the parameterisation is preferable to alternatives in simpli-fying the formulation of the problem.In words it states that:the norm of the weight vector should be equal to the inverse of the distance,of the nearest point in the data set to the hyperplane .The idea is illustrated in Figure 2.2,where the distance from the nearest point to each hyperplane is shown.Figure 2.2:Canonical HyperplanesA separating hyperplane in canonical form must satisfy the following constraints,y i w,x i +b ≥1,i =1,...,l.(2.4)The distance d (w,b ;x )of a point x from the hyperplane (w,b )is,d (w,b ;x )= w,x i +bw .(2.5)Chapter 2Support Vector Classification 7The optimal hyperplane is given by maximising the margin,ρ,subject to the constraints of Equation 2.4.The margin is given by,ρ(w,b )=min x i :y i =−1d (w,b ;x i )+min x i :y i =1d (w,b ;x i )=min x i :y i =−1 w,x i +b w +min x i :y i =1 w,x i +b w =1 w min x i :y i =−1 w,x i +b +min x i :y i =1w,x i +b =2 w (2.6)Hence the hyperplane that optimally separates the data is the one that minimisesΦ(w )=12 w 2.(2.7)It is independent of b because provided Equation 2.4is satisfied (i.e.it is a separating hyperplane)changing b will move it in the normal direction to itself.Accordingly the margin remains unchanged but the hyperplane is no longer optimal in that it will be nearer to one class than the other.To consider how minimising Equation 2.7is equivalent to implementing the SRM principle,suppose that the following bound holds,w <A.(2.8)Then from Equation 2.4and 2.5,d (w,b ;x )≥1A.(2.9)Accordingly the hyperplanes cannot be nearer than 1A to any of the data points and intuitively it can be seen in Figure 2.3how this reduces the possible hyperplanes,andhence thecapacity.Figure 2.3:Constraining the Canonical Hyperplanes8Chapter2Support Vector ClassificationThe VC dimension,h,of the set of canonical hyperplanes in n dimensional space is bounded by,h≤min[R2A2,n]+1,(2.10)where R is the radius of a hypersphere enclosing all the data points.Hence minimising Equation2.7is equivalent to minimising an upper bound on the VC dimension.The solution to the optimisation problem of Equation2.7under the constraints of Equation 2.4is given by the saddle point of the Lagrange functional(Lagrangian)(Minoux,1986),Φ(w,b,α)=12 w 2−li=1αiy iw,x i +b−1,(2.11)whereαare the Lagrange multipliers.The Lagrangian has to be minimised with respect to w,b and maximised with respect toα≥0.Classical Lagrangian duality enables the primal problem,Equation2.11,to be transformed to its dual problem,which is easier to solve.The dual problem is given by,max αW(α)=maxαminw,bΦ(w,b,α).(2.12)The minimum with respect to w and b of the Lagrangian,Φ,is given by,∂Φ∂b =0⇒li=1αi y i=0∂Φ∂w =0⇒w=li=1αi y i x i.(2.13)Hence from Equations2.11,2.12and2.13,the dual problem is,max αW(α)=maxα−12li=1lj=1αiαj y i y j x i,x j +lk=1αk,(2.14)and hence the solution to the problem is given by,α∗=arg minα12li=1lj=1αiαj y i y j x i,x j −lk=1αk,(2.15)with constraints,αi≥0i=1,...,llj=1αj y j=0.(2.16)Chapter2Support Vector Classification9Solving Equation2.15with constraints Equation2.16determines the Lagrange multi-pliers,and the optimal separating hyperplane is given by,w∗=li=1αi y i x ib∗=−12w∗,x r+x s .(2.17)where x r and x s are any support vector from each class satisfying,αr,αs>0,y r=−1,y s=1.(2.18)The hard classifier is then,f(x)=sgn( w∗,x +b)(2.19) Alternatively,a soft classifier may be used which linearly interpolates the margin,f(x)=h( w∗,x +b)where h(z)=−1:z<−1z:−1≤z≤1+1:z>1(2.20)This may be more appropriate than the hard classifier of Equation2.19,because it produces a real valued output between−1and1when the classifier is queried within the margin,where no training data resides.From the Kuhn-Tucker conditions,αiy iw,x i +b−1=0,i=1,...,l,(2.21)and hence only the points x i which satisfy,y iw,x i +b=1(2.22)will have non-zero Lagrange multipliers.These points are termed Support Vectors(SV). If the data is linearly separable all the SV will lie on the margin and hence the number of SV can be very small.Consequently the hyperplane is determined by a small subset of the training set;the other points could be removed from the training set and recalculating the hyperplane would produce the same answer.Hence SVM can be used to summarise the information contained in a data set by the SV produced.If the data is linearly separable the following equality will hold,w 2=li=1αi=i∈SV sαi=i∈SV sj∈SV sαiαj y i y j x i,x j .(2.23)Hence from Equation2.10the VC dimension of the classifier is bounded by,h≤min[R2i∈SV s,n]+1,(2.24)10Chapter2Support Vector Classificationx1x2y11-133113131-12 2.513 2.5-143-1Table2.1:Linearly Separable Classification Dataand if the training data,x,is normalised to lie in the unit hypersphere,,n],(2.25)h≤1+min[i∈SV s2.1.1Linearly Separable ExampleTo illustrate the method consider the training set in Table2.1.The SVC solution is shown in Figure2.4,where the dotted lines describe the locus of the margin and the circled data points represent the SV,which all lie on the margin.Figure2.4:Optimal Separating Hyperplane2.2The Generalised Optimal Separating HyperplaneSo far the discussion has been restricted to the case where the training data is linearly separable.However,in general this will not be the case,Figure2.5.There are two approaches to generalising the problem,which are dependent upon prior knowledge of the problem and an estimate of the noise on the data.In the case where it is expected (or possibly even known)that a hyperplane can correctly separate the data,a method ofChapter2Support Vector Classification11Figure2.5:Generalised Optimal Separating Hyperplaneintroducing an additional cost function associated with misclassification is appropriate. Alternatively a more complex function can be used to describe the boundary,as discussed in Chapter2.1.To enable the optimal separating hyperplane method to be generalised, Cortes and Vapnik(1995)introduced non-negative variables,ξi≥0,and a penalty function,Fσ(ξ)=iξσiσ>0,(2.26) where theξi are a measure of the misclassification errors.The optimisation problem is now posed so as to minimise the classification error as well as minimising the bound on the VC dimension of the classifier.The constraints of Equation2.4are modified for the non-separable case to,y iw,x i +b≥1−ξi,i=1,...,l.(2.27)whereξi≥0.The generalised optimal separating hyperplane is determined by the vector w,that minimises the functional,Φ(w,ξ)=12w 2+Ciξi,(2.28)(where C is a given value)subject to the constraints of Equation2.27.The solution to the optimisation problem of Equation2.28under the constraints of Equation2.27is given by the saddle point of the Lagrangian(Minoux,1986),Φ(w,b,α,ξ,β)=12 w 2+Ciξi−li=1αiy iw T x i+b−1+ξi−lj=1βiξi,(2.29)12Chapter2Support Vector Classificationwhereα,βare the Lagrange multipliers.The Lagrangian has to be minimised with respect to w,b,x and maximised with respect toα,β.As before,classical Lagrangian duality enables the primal problem,Equation2.29,to be transformed to its dual problem. The dual problem is given by,max αW(α,β)=maxα,βminw,b,ξΦ(w,b,α,ξ,β).(2.30)The minimum with respect to w,b andξof the Lagrangian,Φ,is given by,∂Φ∂b =0⇒li=1αi y i=0∂Φ∂w =0⇒w=li=1αi y i x i∂Φ∂ξ=0⇒αi+βi=C.(2.31) Hence from Equations2.29,2.30and2.31,the dual problem is,max αW(α)=maxα−12li=1lj=1αiαj y i y j x i,x j +lk=1αk,(2.32)and hence the solution to the problem is given by,α∗=arg minα12li=1lj=1αiαj y i y j x i,x j −lk=1αk,(2.33)with constraints,0≤αi≤C i=1,...,llj=1αj y j=0.(2.34)The solution to this minimisation problem is identical to the separable case except for a modification of the bounds of the Lagrange multipliers.The uncertain part of Cortes’s approach is that the coefficient C has to be determined.This parameter introduces additional capacity control within the classifier.C can be directly related to a regulari-sation parameter(Girosi,1997;Smola and Sch¨o lkopf,1998).Blanz et al.(1996)uses a value of C=5,but ultimately C must be chosen to reflect the knowledge of the noise on the data.This warrants further work,but a more practical discussion is given in Chapter4.Chapter2Support Vector Classification13x1x2y11-133113131-12 2.513 2.5-143-11.5 1.5112-1Table2.2:Non-Linearly Separable Classification Data2.2.1Linearly Non-Separable ExampleTwo additional data points are added to the separable data of Table2.1to produce a linearly non-separable data set,Table2.2.The resulting SVC is shown in Figure2.6,for C=1.The SV are no longer required to lie on the margin,as in Figure2.4,and the orientation of the hyperplane and the width of the margin are different.Figure2.6:Generalised Optimal Separating Hyperplane Example(C=1)In the limit,lim C→∞the solution converges towards the solution obtained by the optimal separating hyperplane(on this non-separable data),Figure2.7.In the limit,lim C→0the solution converges to one where the margin maximisation term dominates,Figure2.8.Beyond a certain point the Lagrange multipliers will all take on the value of C.There is now less emphasis on minimising the misclassification error, but purely on maximising the margin,producing a large width margin.Consequently as C decreases the width of the margin increases.The useful range of C lies between the point where all the Lagrange Multipliers are equal to C and when only one of them is just bounded by C.14Chapter2Support Vector ClassificationFigure2.7:Generalised Optimal Separating Hyperplane Example(C=105)Figure2.8:Generalised Optimal Separating Hyperplane Example(C=10−8)2.3Generalisation in High Dimensional Feature SpaceIn the case where a linear boundary is inappropriate the SVM can map the input vector, x,into a high dimensional feature space,z.By choosing a non-linear mapping a priori, the SVM constructs an optimal separating hyperplane in this higher dimensional space, Figure2.9.The idea exploits the method of Aizerman et al.(1964)which,enables the curse of dimensionality(Bellman,1961)to be addressed.Figure2.9:Mapping the Input Space into a High Dimensional Feature SpaceChapter2Support Vector Classification15There are some restrictions on the non-linear mapping that can be employed,see Chap-ter3,but it turns out,surprisingly,that most commonly employed functions are accept-able.Among acceptable mappings are polynomials,radial basis functions and certain sigmoid functions.The optimisation problem of Equation2.33becomes,α∗=arg minα12li=1lj=1αiαj y i y j K(x i,x j)−lk=1αk,(2.35)where K(x,x )is the kernel function performing the non-linear mapping into feature space,and the constraints are unchanged,0≤αi≤C i=1,...,llj=1αj y j=0.(2.36)Solving Equation2.35with constraints Equation2.36determines the Lagrange multipli-ers,and a hard classifier implementing the optimal separating hyperplane in the feature space is given by,f(x)=sgn(i∈SV sαi y i K(x i,x)+b)(2.37) wherew∗,x =li=1αi y i K(x i,x)b∗=−12li=1αi y i[K(x i,x r)+K(x i,x r)].(2.38)The bias is computed here using two support vectors,but can be computed using all the SV on the margin for stability(Vapnik et al.,1997).If the Kernel contains a bias term, the bias can be accommodated within the Kernel,and hence the classifier is simply,f(x)=sgn(i∈SV sαi K(x i,x))(2.39)Many employed kernels have a bias term and anyfinite Kernel can be made to have one(Girosi,1997).This simplifies the optimisation problem by removing the equality constraint of Equation2.36.Chapter3discusses the necessary conditions that must be satisfied by valid kernel functions.16Chapter2Support Vector Classification 2.3.1Polynomial Mapping ExampleConsider a polynomial kernel of the form,K(x,x )=( x,x +1)2,(2.40)which maps a two dimensional input vector into a six dimensional feature space.Apply-ing the non-linear SVC to the linearly non-separable training data of Table2.2,produces the classification illustrated in Figure2.10(C=∞).The margin is no longer of constant width due to the non-linear projection into the input space.The solution is in contrast to Figure2.7,in that the training data is now classified correctly.However,even though SVMs implement the SRM principle and hence can generalise well,a careful choice of the kernel function is necessary to produce a classification boundary that is topologically appropriate.It is always possible to map the input space into a dimension greater than the number of training points and produce a classifier with no classification errors on the training set.However,this will generalise badly.Figure2.10:Mapping input space into Polynomial Feature Space2.4DiscussionTypically the data will only be linearly separable in some,possibly very high dimensional feature space.It may not make sense to try and separate the data exactly,particularly when only afinite amount of training data is available which is potentially corrupted by noise.Hence in practice it will be necessary to employ the non-separable approach which places an upper bound on the Lagrange multipliers.This raises the question of how to determine the parameter C.It is similar to the problem in regularisation where the regularisation coefficient has to be determined,and it has been shown that the parameter C can be directly related to a regularisation parameter for certain kernels (Smola and Sch¨o lkopf,1998).A process of cross-validation can be used to determine thisChapter2Support Vector Classification17parameter,although more efficient and potentially better methods are sought after.In removing the training patterns that are not support vectors,the solution is unchanged and hence a fast method for validation may be available when the support vectors are sparse.Chapter3Feature SpaceThis chapter discusses the method that can be used to construct a mapping into a high dimensional feature space by the use of reproducing kernels.The idea of the kernel function is to enable operations to be performed in the input space rather than the potentially high dimensional feature space.Hence the inner product does not need to be evaluated in the feature space.This provides a way of addressing the curse of dimensionality.However,the computation is still critically dependent upon the number of training patterns and to provide a good data distribution for a high dimensional problem will generally require a large training set.3.1Kernel FunctionsThe following theory is based upon Reproducing Kernel Hilbert Spaces(RKHS)(Aron-szajn,1950;Girosi,1997;Heckman,1997;Wahba,1990).An inner product in feature space has an equivalent kernel in input space,K(x,x )= φ(x),φ(x ) ,(3.1)provided certain conditions hold.If K is a symmetric positive definite function,which satisfies Mercer’s Conditions,K(x,x )=∞ma mφm(x)φm(x ),a m≥0,(3.2)K(x,x )g(x)g(x )dxdx >0,g∈L2,(3.3) then the kernel represents a legitimate inner product in feature space.Valid functions that satisfy Mercer’s conditions are now given,which unless stated are valid for all real x and x .1920Chapter3Feature Space3.1.1PolynomialA polynomial mapping is a popular method for non-linear modelling,K(x,x )= x,x d.(3.4)K(x,x )=x,x +1d.(3.5)The second kernel is usually preferable as it avoids problems with the hessian becoming zero.3.1.2Gaussian Radial Basis FunctionRadial basis functions have received significant attention,most commonly with a Gaus-sian of the form,K(x,x )=exp−x−x 22σ2.(3.6)Classical techniques utilising radial basis functions employ some method of determining a subset of centres.Typically a method of clustering isfirst employed to select a subset of centres.An attractive feature of the SVM is that this selection is implicit,with each support vectors contributing one local Gaussian function,centred at that data point. By further considerations it is possible to select the global basis function width,s,using the SRM principle(Vapnik,1995).3.1.3Exponential Radial Basis FunctionA radial basis function of the form,K(x,x )=exp−x−x2σ2.(3.7)produces a piecewise linear solution which can be attractive when discontinuities are acceptable.3.1.4Multi-Layer PerceptronThe long established MLP,with a single hidden layer,also has a valid kernel represen-tation,K(x,x )=tanhρ x,x +(3.8)for certain values of the scale,ρ,and offset, ,parameters.Here the SV correspond to thefirst layer and the Lagrange multipliers to the weights.。

人工智能英文课件

人工智能英文课件

Supervised learning is a type of machine learning where the algorithm is provided with labeled training data The goal is to learn a function that maps input data to desired outputs based on the provided labels Common examples include classification and regression tasks
Deep learning is a type of machine learning that uses neural networks with multiple layers of hidden units to learn complex patterns and representations from data It is based on biomimetic neural networks and self-organizing mapping networks.
Machine translation is the process of automatically translating text or speech from one language to another using computer algorithms and language data banks This technology has identified the need for human translators in many scenarios
Some challenges associated with deep learning include the requirement for large amounts of labeled data, the complexity of explaining the learned patterns or representations, and the potential for overflow or poor generalization to unseen data

classification

classification

classificationClassification is a fundamental task in machine learning and data analysis. It involves categorizing data into predefined classes or categories based on their features or characteristics. The goal of classification is to build a model that can accurately predict the class of new, unseen instances.In this document, we will explore the concept of classification, different types of classification algorithms, and their applications in various domains. We will also discuss the process of building and evaluating a classification model.I. Introduction to ClassificationA. Definition and Importance of ClassificationClassification is the process of assigning predefined labels or classes to instances based on their relevant features. It plays a vital role in numerous fields, including finance, healthcare, marketing, and customer service. By classifying data, organizations can make informed decisions, automate processes, and enhance efficiency.B. Types of Classification Problems1. Binary Classification: In binary classification, instances are classified into one of two classes. For example, spam detection, fraud detection, and sentiment analysis are binary classification problems.2. Multi-class Classification: In multi-class classification, instances are classified into more than two classes. Examples of multi-class classification problems include document categorization, image recognition, and disease diagnosis.II. Classification AlgorithmsA. Decision TreesDecision trees are widely used for classification tasks. They provide a clear and interpretable way to classify instances by creating a tree-like model. Decision trees use a set of rules based on features to make decisions, leading down different branches until a leaf node (class label) is reached. Some popular decision tree algorithms include C4.5, CART, and Random Forest.B. Naive BayesNaive Bayes is a probabilistic classification algorithm based on Bayes' theorem. It assumes that the features are statistically independent of each other, despite the simplifying assumption, which often doesn't hold in the realworld. Naive Bayes is known for its simplicity and efficiency and works well in text classification and spam filtering.C. Support Vector MachinesSupport Vector Machines (SVMs) are powerful classification algorithms that find the optimal hyperplane in high-dimensional space to separate instances into different classes. SVMs are good at dealing with linear and non-linear classification problems. They have applications in image recognition, hand-written digit recognition, and text categorization.D. K-Nearest Neighbors (KNN)K-Nearest Neighbors is a simple yet effective classification algorithm. It classifies an instance based on its k nearest neighbors in the training set. KNN is a non-parametric algorithm, meaning it does not assume any specific distribution of the data. It has applications in recommendation systems and pattern recognition.E. Artificial Neural Networks (ANN)Artificial Neural Networks are inspired by the biological structure of the human brain. They consist of interconnected nodes (neurons) organized in layers. ANN algorithms, such asMultilayer Perceptron and Convolutional Neural Networks, have achieved remarkable success in various classification tasks, including image recognition, speech recognition, and natural language processing.III. Building a Classification ModelA. Data PreprocessingBefore implementing a classification algorithm, data preprocessing is necessary. This step involves cleaning the data, handling missing values, and encoding categorical variables. It may also include feature scaling and dimensionality reduction techniques like Principal Component Analysis (PCA).B. Training and TestingTo build a classification model, a labeled dataset is divided into a training set and a testing set. The training set is used to fit the model on the data, while the testing set is used to evaluate the performance of the model. Cross-validation techniques like k-fold cross-validation can be used to obtain more accurate estimates of the model's performance.C. Evaluation MetricsSeveral metrics can be used to evaluate the performance of a classification model. Accuracy, precision, recall, and F1-score are commonly used metrics. Additionally, ROC curves and AUC (Area Under Curve) can assess the model's performance across different probability thresholds.IV. Applications of ClassificationA. Spam DetectionClassification algorithms can be used to detect spam emails accurately. By training a model on a dataset of labeled spam and non-spam emails, it can learn to classify incoming emails as either spam or legitimate.B. Fraud DetectionClassification algorithms are essential in fraud detection systems. By analyzing features such as account activity, transaction patterns, and user behavior, a model can identify potentially fraudulent transactions or activities.C. Disease DiagnosisClassification algorithms can assist in disease diagnosis by analyzing patient data, including symptoms, medical history, and test results. By comparing the patient's data againsthistorical data, the model can predict the likelihood of a specific disease.D. Image RecognitionClassification algorithms, particularly deep learning algorithms like Convolutional Neural Networks (CNNs), have revolutionized image recognition tasks. They can accurately identify objects or scenes in images, enabling applications like facial recognition and autonomous driving.V. ConclusionClassification is a vital task in machine learning and data analysis. It enables us to categorize instances into different classes based on their features. By understanding different classification algorithms and their applications, organizations can make better decisions, automate processes, and gain valuable insights from their data.。

李欣海:用R实现随机森林的分类与回归

李欣海:用R实现随机森林的分类与回归

YES
6/25 随机森林简介
第五届中国R语言会议 北京2012
李欣海
Ensemble classifiers
/profiles/Trevor_Hastie/
Tree models are simple, often produce noisy (bushy) or weak (stunted) classifiers.
• For each tree grown on a bootstrap sample, the error rate for observations left out of the bootstrap sample is monitored. This is called the out-of-bag (OOB) error rate.
#################################################################################
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
#
#
#
#
黄河 # # # # # #
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

IEC-61854架空线.隔离层的要求和检验

IEC-61854架空线.隔离层的要求和检验

NORMEINTERNATIONALECEI IEC INTERNATIONALSTANDARD 61854Première éditionFirst edition1998-09Lignes aériennes –Exigences et essais applicables aux entretoisesOverhead lines –Requirements and tests for spacersCommission Electrotechnique InternationaleInternational Electrotechnical Commission Pour prix, voir catalogue en vigueurFor price, see current catalogue© IEC 1998 Droits de reproduction réservés Copyright - all rights reservedAucune partie de cette publication ne peut être reproduite niutilisée sous quelque forme que ce soit et par aucunprocédé, électronique ou mécanique, y compris la photo-copie et les microfilms, sans l'accord écrit de l'éditeur.No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from the publisher.International Electrotechnical Commission 3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.ch IEC web site http: //www.iec.chCODE PRIX PRICE CODE X– 2 –61854 © CEI:1998SOMMAIREPages AVANT-PROPOS (6)Articles1Domaine d'application (8)2Références normatives (8)3Définitions (12)4Exigences générales (12)4.1Conception (12)4.2Matériaux (14)4.2.1Généralités (14)4.2.2Matériaux non métalliques (14)4.3Masse, dimensions et tolérances (14)4.4Protection contre la corrosion (14)4.5Aspect et finition de fabrication (14)4.6Marquage (14)4.7Consignes d'installation (14)5Assurance de la qualité (16)6Classification des essais (16)6.1Essais de type (16)6.1.1Généralités (16)6.1.2Application (16)6.2Essais sur échantillon (16)6.2.1Généralités (16)6.2.2Application (16)6.2.3Echantillonnage et critères de réception (18)6.3Essais individuels de série (18)6.3.1Généralités (18)6.3.2Application et critères de réception (18)6.4Tableau des essais à effectuer (18)7Méthodes d'essai (22)7.1Contrôle visuel (22)7.2Vérification des dimensions, des matériaux et de la masse (22)7.3Essai de protection contre la corrosion (22)7.3.1Composants revêtus par galvanisation à chaud (autres queles fils d'acier galvanisés toronnés) (22)7.3.2Produits en fer protégés contre la corrosion par des méthodes autresque la galvanisation à chaud (24)7.3.3Fils d'acier galvanisé toronnés (24)7.3.4Corrosion causée par des composants non métalliques (24)7.4Essais non destructifs (24)61854 © IEC:1998– 3 –CONTENTSPage FOREWORD (7)Clause1Scope (9)2Normative references (9)3Definitions (13)4General requirements (13)4.1Design (13)4.2Materials (15)4.2.1General (15)4.2.2Non-metallic materials (15)4.3Mass, dimensions and tolerances (15)4.4Protection against corrosion (15)4.5Manufacturing appearance and finish (15)4.6Marking (15)4.7Installation instructions (15)5Quality assurance (17)6Classification of tests (17)6.1Type tests (17)6.1.1General (17)6.1.2Application (17)6.2Sample tests (17)6.2.1General (17)6.2.2Application (17)6.2.3Sampling and acceptance criteria (19)6.3Routine tests (19)6.3.1General (19)6.3.2Application and acceptance criteria (19)6.4Table of tests to be applied (19)7Test methods (23)7.1Visual examination (23)7.2Verification of dimensions, materials and mass (23)7.3Corrosion protection test (23)7.3.1Hot dip galvanized components (other than stranded galvanizedsteel wires) (23)7.3.2Ferrous components protected from corrosion by methods other thanhot dip galvanizing (25)7.3.3Stranded galvanized steel wires (25)7.3.4Corrosion caused by non-metallic components (25)7.4Non-destructive tests (25)– 4 –61854 © CEI:1998 Articles Pages7.5Essais mécaniques (26)7.5.1Essais de glissement des pinces (26)7.5.1.1Essai de glissement longitudinal (26)7.5.1.2Essai de glissement en torsion (28)7.5.2Essai de boulon fusible (28)7.5.3Essai de serrage des boulons de pince (30)7.5.4Essais de courant de court-circuit simulé et essais de compressionet de traction (30)7.5.4.1Essai de courant de court-circuit simulé (30)7.5.4.2Essai de compression et de traction (32)7.5.5Caractérisation des propriétés élastiques et d'amortissement (32)7.5.6Essais de flexibilité (38)7.5.7Essais de fatigue (38)7.5.7.1Généralités (38)7.5.7.2Oscillation de sous-portée (40)7.5.7.3Vibrations éoliennes (40)7.6Essais de caractérisation des élastomères (42)7.6.1Généralités (42)7.6.2Essais (42)7.6.3Essai de résistance à l'ozone (46)7.7Essais électriques (46)7.7.1Essais d'effet couronne et de tension de perturbations radioélectriques..467.7.2Essai de résistance électrique (46)7.8Vérification du comportement vibratoire du système faisceau/entretoise (48)Annexe A (normative) Informations techniques minimales à convenirentre acheteur et fournisseur (64)Annexe B (informative) Forces de compression dans l'essai de courantde court-circuit simulé (66)Annexe C (informative) Caractérisation des propriétés élastiques et d'amortissementMéthode de détermination de la rigidité et de l'amortissement (70)Annexe D (informative) Contrôle du comportement vibratoire du systèmefaisceau/entretoise (74)Bibliographie (80)Figures (50)Tableau 1 – Essais sur les entretoises (20)Tableau 2 – Essais sur les élastomères (44)61854 © IEC:1998– 5 –Clause Page7.5Mechanical tests (27)7.5.1Clamp slip tests (27)7.5.1.1Longitudinal slip test (27)7.5.1.2Torsional slip test (29)7.5.2Breakaway bolt test (29)7.5.3Clamp bolt tightening test (31)7.5.4Simulated short-circuit current test and compression and tension tests (31)7.5.4.1Simulated short-circuit current test (31)7.5.4.2Compression and tension test (33)7.5.5Characterisation of the elastic and damping properties (33)7.5.6Flexibility tests (39)7.5.7Fatigue tests (39)7.5.7.1General (39)7.5.7.2Subspan oscillation (41)7.5.7.3Aeolian vibration (41)7.6Tests to characterise elastomers (43)7.6.1General (43)7.6.2Tests (43)7.6.3Ozone resistance test (47)7.7Electrical tests (47)7.7.1Corona and radio interference voltage (RIV) tests (47)7.7.2Electrical resistance test (47)7.8Verification of vibration behaviour of the bundle-spacer system (49)Annex A (normative) Minimum technical details to be agreed betweenpurchaser and supplier (65)Annex B (informative) Compressive forces in the simulated short-circuit current test (67)Annex C (informative) Characterisation of the elastic and damping propertiesStiffness-Damping Method (71)Annex D (informative) Verification of vibration behaviour of the bundle/spacer system (75)Bibliography (81)Figures (51)Table 1 – Tests on spacers (21)Table 2 – Tests on elastomers (45)– 6 –61854 © CEI:1998 COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE––––––––––LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISESAVANT-PROPOS1)La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composéede l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.2)Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesuredu possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d’études.3)Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiéscomme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.4)Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer defaçon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.5)La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilitén’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent fairel’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.La Norme internationale CEI 61854 a été établie par le comité d'études 11 de la CEI: Lignes aériennes.Le texte de cette norme est issu des documents suivants:FDIS Rapport de vote11/141/FDIS11/143/RVDLe rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.L’annexe A fait partie intégrante de cette norme.Les annexes B, C et D sont données uniquement à titre d’information.61854 © IEC:1998– 7 –INTERNATIONAL ELECTROTECHNICAL COMMISSION––––––––––OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERSFOREWORD1)The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprisingall national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.2)The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, aninternational consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.3)The documents produced have the form of recommendations for international use and are published in the formof standards, technical reports or guides and they are accepted by the National Committees in that sense.4)In order to promote international unification, IEC National Committees undertake to apply IEC InternationalStandards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.5)The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for anyequipment declared to be in conformity with one of its standards.6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subjectof patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61854 has been prepared by IEC technical committee 11: Overhead lines.The text of this standard is based on the following documents:FDIS Report on voting11/141/FDIS11/143/RVDFull information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.Annex A forms an integral part of this standard.Annexes B, C and D are for information only.– 8 –61854 © CEI:1998LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISES1 Domaine d'applicationLa présente Norme internationale s'applique aux entretoises destinées aux faisceaux de conducteurs de lignes aériennes. Elle recouvre les entretoises rigides, les entretoises flexibles et les entretoises amortissantes.Elle ne s'applique pas aux espaceurs, aux écarteurs à anneaux et aux entretoises de mise à la terre.NOTE – La présente norme est applicable aux pratiques de conception de lignes et aux entretoises les plus couramment utilisées au moment de sa rédaction. Il peut exister d'autres entretoises auxquelles les essais spécifiques décrits dans la présente norme ne s'appliquent pas.Dans de nombreux cas, les procédures d'essai et les valeurs d'essai sont convenues entre l'acheteur et le fournisseur et sont énoncées dans le contrat d'approvisionnement. L'acheteur est le mieux à même d'évaluer les conditions de service prévues, qu'il convient d'utiliser comme base à la définition de la sévérité des essais.La liste des informations techniques minimales à convenir entre acheteur et fournisseur est fournie en annexe A.2 Références normativesLes documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.CEI 60050(466):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 466: Lignes aériennesCEI 61284:1997, Lignes aériennes – Exigences et essais pour le matériel d'équipementCEI 60888:1987, Fils en acier zingué pour conducteurs câblésISO 34-1:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 1: Eprouvettes pantalon, angulaire et croissantISO 34-2:1996, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 2: Petites éprouvettes (éprouvettes de Delft)ISO 37:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination des caractéristiques de contrainte-déformation en traction61854 © IEC:1998– 9 –OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERS1 ScopeThis International Standard applies to spacers for conductor bundles of overhead lines. It covers rigid spacers, flexible spacers and spacer dampers.It does not apply to interphase spacers, hoop spacers and bonding spacers.NOTE – This standard is written to cover the line design practices and spacers most commonly used at the time of writing. There may be other spacers available for which the specific tests reported in this standard may not be applicable.In many cases, test procedures and test values are left to agreement between purchaser and supplier and are stated in the procurement contract. The purchaser is best able to evaluate the intended service conditions, which should be the basis for establishing the test severity.In annex A, the minimum technical details to be agreed between purchaser and supplier are listed.2 Normative referencesThe following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication of this standard, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.IEC 60050(466):1990, International Electrotechnical vocabulary (IEV) – Chapter 466: Overhead linesIEC 61284:1997, Overhead lines – Requirements and tests for fittingsIEC 60888:1987, Zinc-coated steel wires for stranded conductorsISO 34-1:1994, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 1: Trouser, angle and crescent test piecesISO 34-2:1996, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 2: Small (Delft) test piecesISO 37:1994, Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties– 10 –61854 © CEI:1998 ISO 188:1982, Caoutchouc vulcanisé – Essais de résistance au vieillissement accéléré ou à la chaleurISO 812:1991, Caoutchouc vulcanisé – Détermination de la fragilité à basse températureISO 815:1991, Caoutchouc vulcanisé ou thermoplastique – Détermination de la déformation rémanente après compression aux températures ambiantes, élevées ou bassesISO 868:1985, Plastiques et ébonite – Détermination de la dureté par pénétration au moyen d'un duromètre (dureté Shore)ISO 1183:1987, Plastiques – Méthodes pour déterminer la masse volumique et la densitérelative des plastiques non alvéolairesISO 1431-1:1989, Caoutchouc vulcanisé ou thermoplastique – Résistance au craquelage par l'ozone – Partie 1: Essai sous allongement statiqueISO 1461,— Revêtements de galvanisation à chaud sur produits finis ferreux – Spécifications1) ISO 1817:1985, Caoutchouc vulcanisé – Détermination de l'action des liquidesISO 2781:1988, Caoutchouc vulcanisé – Détermination de la masse volumiqueISO 2859-1:1989, Règles d'échantillonnage pour les contrôles par attributs – Partie 1: Plans d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)ISO 2859-2:1985, Règles d'échantillonnage pour les contrôles par attributs – Partie 2: Plans d'échantillonnage pour les contrôles de lots isolés, indexés d'après la qualité limite (QL)ISO 2921:1982, Caoutchouc vulcanisé – Détermination des caractéristiques à basse température – Méthode température-retrait (essai TR)ISO 3417:1991, Caoutchouc – Détermination des caractéristiques de vulcanisation à l'aide du rhéomètre à disque oscillantISO 3951:1989, Règles et tables d'échantillonnage pour les contrôles par mesures des pourcentages de non conformesISO 4649:1985, Caoutchouc – Détermination de la résistance à l'abrasion à l'aide d'un dispositif à tambour tournantISO 4662:1986, Caoutchouc – Détermination de la résilience de rebondissement des vulcanisats––––––––––1) A publierThis is a preview - click here to buy the full publication61854 © IEC:1998– 11 –ISO 188:1982, Rubber, vulcanized – Accelerated ageing or heat-resistance testsISO 812:1991, Rubber, vulcanized – Determination of low temperature brittlenessISO 815:1991, Rubber, vulcanized or thermoplastic – Determination of compression set at ambient, elevated or low temperaturesISO 868:1985, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness)ISO 1183:1987, Plastics – Methods for determining the density and relative density of non-cellular plasticsISO 1431-1:1989, Rubber, vulcanized or thermoplastic – Resistance to ozone cracking –Part 1: static strain testISO 1461, — Hot dip galvanized coatings on fabricated ferrous products – Specifications1)ISO 1817:1985, Rubber, vulcanized – Determination of the effect of liquidsISO 2781:1988, Rubber, vulcanized – Determination of densityISO 2859-1:1989, Sampling procedures for inspection by attributes – Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspectionISO 2859-2:1985, Sampling procedures for inspection by attributes – Part 2: Sampling plans indexed by limiting quality level (LQ) for isolated lot inspectionISO 2921:1982, Rubber, vulcanized – Determination of low temperature characteristics –Temperature-retraction procedure (TR test)ISO 3417:1991, Rubber – Measurement of vulcanization characteristics with the oscillating disc curemeterISO 3951:1989, Sampling procedures and charts for inspection by variables for percent nonconformingISO 4649:1985, Rubber – Determination of abrasion resistance using a rotating cylindrical drum deviceISO 4662:1986, Rubber – Determination of rebound resilience of vulcanizates–––––––––1) To be published.。

人工智能原理习题集及答案 北京大学 王文敏

人工智能原理习题集及答案 北京大学 王文敏

Quizzes for Chapter 11单选(1分)图灵测试旨在给予哪一种令人满意的操作定义得分/总分• A.人类思考•B.人工智能•C.机器智能1.00/1.00•D.机器动作正确答案:C 你选对了2多选(1分)选择以下关于人工智能概念的正确表述得分/总分• A.人工智能旨在创造智能机器该题无法得分/1.00 •B.人工智能是研究和构建在给定环境下表现良好的智能体程序该题无法得分/1.00•C.人工智能将其定义为人类智能体的研究该题无法得分/1.00• D.人工智能是为了开发一类计算机使之能够完成通常由人类所能做的事该题无法得分/1.00 正确答案:A 、B 、D 你错选为A 、B 、C 、D3多选(1分)如下学科哪些是人工智能的基础?得分/总分• A.经济学0.25/1.00 • B.哲学0.25/1.00 •C.心理学0.25/1.00 •D.数学0.25/1.00正确答案:A 、B 、C、D 你选对了4多选(1分)下列陈述中哪些是描述强AI (通用AI )的正确答案?得分/总分• A.指的是一种机器,具有将智能应用于任何问题的能力0.50/1.00• B.是经过适当编程的具有正确输入和输出的计算机,因此有与人类同样判断力的头脑0.50/1.00•C.指的是一种机器,仅针对一个具体问题正确答案:A 、B 你选对了5多选(1分)选择下列计算机系统中属于人工智能的实例得分/总分•A.Web 搜索引擎 •B.超市条形码扫描器•C.声控电话菜单该题无法得分/1.00 •D.智能个人助理该题无法得分/1.00正确答案:A 、D 你错选为C 、D6多选(1分)选择下列哪些是人工智能的研究领域 得分/总分• A.人脸识别0.33/1.00• B.专家系统0.33/1.00 •C.图像理解•D.分布式计算正确答案:A、B 、C 你错选为A 、B7多选(1分)考察人工智能(AI)的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分• A.以竞技水平玩德州扑克游戏0.33/1.00• B.打一场像样的乒乓球比赛•C.在Web 上购买一周的食品杂货0.33/1.00•D.在市场上购买一周的食品杂货正确答案:A、B 、C 你错选为A 、C8填空(1分)理性指的是一个系统的属性,即在_________的环境下做正确的事。

catboost matlab代码

catboost matlab代码

一、CatBoost简介CatBoost是一种用于机器学习的开源梯度提升库,由Yandex开发。

它专门针对类别特征进行优化,能够自动处理类别特征的编码,从而减少了许多特性工程的工作量。

CatBoost能够快速训练模型,具有出色的性能,并且在大规模数据集上表现出色。

二、Matlab代码中使用CatBoost的优势1. 支持类别特征编码在传统的机器学习模型中,类别特征通常需要进行独热编码或者标签编码等处理,而CatBoost能够自动处理类别特征的编码,极大地减少了特性工程的工作量。

2. 快速训练模型由于CatBoost是专门针对大规模数据集进行优化的,因此在处理大规模数据集时,CatBoost能够比传统的机器学习模型更快速地训练模型。

3. 出色的性能CatBoost在各种机器学习任务上都展现出了出色的性能,尤其是在处理类别特征较多的数据集时,CatBoost能够更好地发挥其优势。

三、在Matlab中使用CatBoost的方法在Matlab中使用CatBoost,需要先安装CatBoost库,并在Matlab中载入CatBoost库。

接下来,可以使用CatBoost库提供的各种函数进行模型的训练和预测。

以下是一个简单的示例代码:```Matlab导入数据data = load('data.csv');X = data(:, 1:end-1);y = data(:, end);创建CatBoost模型mdl = fitcensemble(X, y, 'Method', 'catboost', 'Learners', 'tree', 'NumLearningCycles', 100);进行预测pred = predict(mdl, X);```以上代码示例中,首先导入数据,然后使用CatBoost库提供的fitcensemble函数创建CatBoost模型,最后使用predict函数进行预测。

机器学习-联邦学习学习笔记综述

机器学习-联邦学习学习笔记综述

联邦学习学习笔记综述摘要随着大数据的进一步发展,重视数据隐私和安全已经成为了世界性的趋势,同时,大多数行业数据呈现数据孤岛现象,如何在满足用户隐私保护、数据安全和政府法规的前提下,进行跨组织的数据合作是困扰人工智能从业者的一大难题。

而“联邦学习”将成为解决这一行业性难题的关键技术。

联邦学习旨在建立一个基于分布数据集的联邦学习模型。

两个过程:模型训练和模型推理。

在模型训练中模型相关的信息可以在各方交换(或者以加密形式交换)联邦学习是具有以下特征的用来建立机器学习模型的算法框架有两个或以上的联邦学习参与方协作构建一个共享的机器学习模型。

每一个参与方都拥有若干能够用来训练模型的训练数据在联邦学习模型的训练过程中,每一个参与方拥有的数据都不会离开参与方,即数据不离开数据拥有者联邦学习模型相关的信息能够以加密方式在各方之间进行传输和交换,并且需要保证任何一个参与方都不能推测出其他方的原始数据联邦学习模型的性能要能够充分逼近理想模型(指通过所有训练数据集中在一起并训练获得的机器学习模型)的性能。

一.联邦学习总览1.联邦学习背景介绍当今,在几乎每种工业领域正在展现它的强大之处。

然而,回顾AI的发展,不可避免地是它经历了几次高潮与低谷。

AI将会有下一次衰落吗?什么时候出现?什么原因?当前大数据的可得性是驱动AI上的public interest的部分原因:2016年AlphaGo使用20万个游戏作为训练数据取得了极好的结果。

然而,真实世界的情况有时是令人失望的:除了一部分工业外,大多领域只有有限的数据或者低质量数据,这使得AI技术的应用困难性超出我们的想象。

有可能通过组织者间转移数据把数据融合在一个公共的地方吗?事实上,非常困难,如果可能的话,很多情况下要打破数据源之间的屏障。

由于工业竞争、隐私安全和复杂的行政程序,即使在同一公司的不同部分间的数据整合都面临着严重的限制。

几乎不可能整合遍布全国和机构的数据,否则成本很高。

人工智能英语介绍ppt课件

人工智能英语介绍ppt课件
• Unsupervised Learning: Unsupervised learning algorithms are used to discover patterns or structures in unlabeled data Common unsupervised learning techniques include clustering, dimensionality reduction, and association rule learning
The field of AI has continued to grow quickly, with advantages in deep learning and other machine learning techniques leading to significant breakthroughs in areas such as image recognition, speech recognition, and natural language processing AI systems are now capable of performing complex tasks that were once thought to be the exclusive domain of humans
• Supervised Learning: Supervised learning algorithms are trained using labeled examples, such as input output pairs, and the goal is to generalize to new, unseen data Common supervised learning algorithms include linear regression, logistic regression, decision trees, and support vector machines

哈工大博士学位论文模板

哈工大博士学位论文模板

- III -
学 学博士学位论文
4.1
.............................................................................................. 9
4.1.1
.................................................................................. 9
3.3
....................................................................................... 8
第 4 章 图表 ............................................................................................ 9
-I-
学 学博士学位论文
Abstract
This is a LATEX template for the master/doctor thesis/dissertation of Harbin Institute of Technology (due to personal interest, not an official template). Keywords: Master/Doctor thesis/dissertation, Harbin Institute of Technology, LATEX template
2.4
................................................................................... 5

To open SPSS(SPSS界面简介)

To open SPSS(SPSS界面简介)
To exit SPSS program after u have saved your changes, simply click on the top right corner, or u can go to the file menu, save the changes u want to make, and then click “exit”.
Below the menu bar are the shortcut buttons for frequently used functions such as open, Print, Find, insert cases, insert variables, Split the file,Weight cases,and show value labelsamong other tickets
This is the brief overview of the SPSS program. I want to discuss how to start the SPSS program, what items are in the SPSS menu bar, what items are in the SPSS data editor tool bar , and finally how to exit the SPSS program.
The transform menu is where you will find the options to do some computations on variables, to create new variables from existing ones or recode old variables.
You are not going to save anything made here, so we click “NO” to exit.

西瓜书课后习题——第三章

西瓜书课后习题——第三章

西⽠书课后习题——第三章3.1式3.2 f(x)=\omega ^{T}x+b中,\omega ^{T}和b有各⾃的意义,简单来说,\omega ^{T}决定学习得到模型(直线、平⾯)的⽅向,⽽b则决定截距,当学习得到的模型恰好经过原点时,可以不考虑偏置项b。

偏置项b实质上就是体现拟合模型整体上的浮动,可以看做是其它变量留下的偏差的线性修正,因此⼀般情况下是需要考虑偏置项的。

但如果对数据集进⾏了归⼀化处理,即对⽬标变量减去均值向量,此时就不需要考虑偏置项了。

3.2对区间[a,b]上定义的函数f(x),若它对区间中任意两点x1,x2均有f(\frac{x1+x2}{2})\leq \frac{f(x1)+f(x2)}{2},则称f(x)为区间[a,b]上的凸函数。

对于实数集上的函数,可通过⼆阶导数来判断:若⼆阶导数在区间上⾮负,则称为凸函数,在区间上恒⼤于零,则称为严格凸函数。

对于式3.18 y=\frac{1}{1+e^{-(\omega ^{T}x+b)}},有\frac{dy}{d\omega ^{T}}=\frac{1}{(1+e^{-(\omega ^{T}x+b)})^{2}}e^{-(\omega ^{T}x+b)}(-x)=(-x)\frac{1}{1+e^{-(\omega ^{T}x+b)}}(1-\frac{1}{1+e^{-(\omega ^{T}x+b)}})=xy(y-1)=x(y^{2}-y)\frac{d}{d\omega ^{T}}(\frac{dy}{d\omega ^{T}})=x(2y-1)(\frac{dy}{d\omega ^{T}})=x^{2}y(2y-1)(y-1)其中,y的取值范围是(0,1),不难看出⼆阶导有正有负,所以该函数⾮凸。

3.3对率回归即Logis regression西⽠集数据如图所⽰:将好⽠这⼀列变量⽤0/1变量代替,进⾏对率回归学习,python代码如下:import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn import model_selectionfrom sklearn.linear_model import LogisticRegressionfrom sklearn import metricsdataset = pd.read_csv('/home/zwt/Desktop/watermelon3a.csv')#数据预处理X = dataset[['密度','含糖率']]Y = dataset['好⽠']good_melon = dataset[dataset['好⽠'] == 1]bad_melon = dataset[dataset['好⽠'] == 0]#画图f1 = plt.figure(1)plt.title('watermelon_3a')plt.xlabel('density')plt.ylabel('radio_sugar')plt.xlim(0,1)plt.ylim(0,1)plt.scatter(bad_melon['密度'],bad_melon['含糖率'],marker='o',color='r',s=100,label='bad')plt.scatter(good_melon['密度'],good_melon['含糖率'],marker='o',color='g',s=100,label='good')plt.legend(loc='upper right')#分割训练集和验证集X_train,X_test,Y_train,Y_test = model_selection.train_test_split(X,Y,test_size=0.5,random_state=0) #训练log_model = LogisticRegression()log_model.fit(X_train,Y_train)#验证Y_pred = log_model.predict(X_test)#汇总print(metrics.confusion_matrix(Y_test, Y_pred))print(metrics.classification_report(Y_test, Y_pred, target_names=['Bad','Good']))print(log_model.coef_)theta1, theta2 = log_model.coef_[0][0], log_model.coef_[0][1]X_pred = np.linspace(0,1,100)line_pred = theta1 + theta2 * X_predplt.plot(X_pred, line_pred)plt.show()View Codeimport numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn import model_selectionfrom sklearn.linear_model import LogisticRegressionfrom sklearn import metricsdataset = pd.read_csv('/home/zwt/Desktop/watermelon3a.csv')#数据预处理X = dataset[['密度','含糖率']]Y = dataset['好⽠']good_melon = dataset[dataset['好⽠'] == 1]bad_melon = dataset[dataset['好⽠'] == 0]#画图f1 = plt.figure(1)plt.title('watermelon_3a')plt.xlabel('density')plt.ylabel('radio_sugar')plt.xlim(0,1)plt.ylim(0,1)plt.scatter(bad_melon['密度'],bad_melon['含糖率'],marker='o',color='r',s=100,label='bad')plt.scatter(good_melon['密度'],good_melon['含糖率'],marker='o',color='g',s=100,label='good')plt.legend(loc='upper right')#分割训练集和验证集X_train,X_test,Y_train,Y_test = model_selection.train_test_split(X,Y,test_size=0.5,random_state=0) #训练log_model = LogisticRegression()log_model.fit(X_train,Y_train)#验证Y_pred = log_model.predict(X_test)#汇总print(metrics.confusion_matrix(Y_test, Y_pred))print(metrics.classification_report(Y_test, Y_pred))print(log_model.coef_)theta1, theta2 = log_model.coef_[0][0], log_model.coef_[0][1]X_pred = np.linspace(0,1,100)line_pred = theta1 + theta2 * X_predplt.plot(X_pred, line_pred)plt.show()View Code模型效果输出(查准率、查全率、预测效果评分):precision recall f1-score supportBad 0.75 0.60 0.67 5Good 0.60 0.75 0.67 4micro avg 0.67 0.67 0.67 9macro avg 0.68 0.68 0.67 9weighted avg 0.68 0.67 0.67 9也可以输出验证集的实际结果和预测结果:密度含糖率 Y_test Y_pred1 0.774 0.376 1 16 0.481 0.149 1 08 0.666 0.091 0 09 0.243 0.267 0 113 0.657 0.198 0 04 0.556 0.215 1 12 0.634 0.264 1 114 0.360 0.370 0 110 0.245 0.057 0 03.4⾸先附上使⽤葡萄酒品质数据做的对率回归学习代码import numpy as npimport matplotlib.pyplot as pltimport pandas as pdpd.set_option('display.max_rows',None)pd.set_option('max_colwidth',200)pd.set_option('expand_frame_repr', False)from sklearn import model_selectionfrom sklearn.linear_model import LogisticRegressionfrom sklearn import metricsdataset = pd.read_csv('/home/zwt/Desktop/winequality-red_new.csv')#数据预处理dataset['quality2'] = dataset['quality'].apply(lambda x: 0 if x < 5 else 1) #新加⼊⼆分类变量是否为好酒,基于原数据中quality的值,其⼤于等于5就定义为好酒,反之坏酒X = dataset[["fixed_acidity","volatile_acidity","citric_acid","residual_sugar","chlorides","free_sulfur_dioxide","total_sulfur_dioxide","density","pH","sulphates","alcohol"]] Y = dataset["quality2"]#分割训练集和验证集X_train,X_test,Y_train,Y_test = model_selection.train_test_split(X,Y,test_size=0.5,random_state=0)#训练log_model = LogisticRegression()log_model.fit(X_train,Y_train)#验证Y_pred = log_model.predict(X_test)#汇总print(metrics.confusion_matrix(Y_test, Y_pred))print(metrics.classification_report(Y_test, Y_pred))print(log_model.coef_)View Code其中,从UCI下载的数据集格式有问题,⽆法直接使⽤,先编写程序将格式调整完毕再使⽤数据fr = open('/home/zwt/Desktop/winequality-red.csv','r',encoding='utf-8')fw = open('/home/zwt/Desktop/winequality-red_new.csv','w',encoding='utf-8')f = fr.readlines()for line in f:line = line.replace(';',',')fw.write(line)fr.close()fw.close()View Code两种⽅法的错误率⽐较from sklearn.linear_model import LogisticRegressionfrom sklearn import model_selectionfrom sklearn.datasets import load_wine# 载⼊wine数据dataset = load_wine()#10次10折交叉验证法⽣成训练集和测试集def tenfolds():k = 0truth = 0while k < 10:kf = model_selection.KFold(n_splits=10, random_state=None, shuffle=True)for x_train_index, x_test_index in kf.split(dataset.data):x_train = dataset.data[x_train_index]y_train = dataset.target[x_train_index]x_test = dataset.data[x_test_index]y_test = dataset.target[x_test_index]# ⽤对率回归进⾏训练,拟合数据log_model = LogisticRegression()log_model.fit(x_train, y_train)# ⽤训练好的模型预测y_pred = log_model.predict(x_test)for i in range(len(x_test)): #这⾥和留⼀法不同,是因为10折交叉验证的验证集是len(dataset.target)/10,验证集的预测集也是,都是⼀个列表,是⼀串数字,⽽留⼀法是⼀个数字if y_pred[i] == y_test[i]:truth += 1k += 1# 计算精度accuracy = truth/(len(x_train)+len(x_test)) #accuracy = truth/len(dataset.target)print("⽤10次10折交叉验证对率回归的精度是:", accuracy)tenfolds()#留⼀法def leaveone():loo = model_selection.LeaveOneOut()i = 0true = 0while i < len(dataset.target):for x_train_index, x_test_index in loo.split(dataset.data):x_train = dataset.data[x_train_index]y_train = dataset.target[x_train_index]x_test = dataset.data[x_test_index]y_test = dataset.target[x_test_index]# ⽤对率回归进⾏训练,拟合数据log_model = LogisticRegression()log_model.fit(x_train, y_train)# ⽤训练好的模型预测y_pred = log_model.predict(x_test)if y_pred == y_test:true += 1i += 1# 计算精度accuracy = true / len(dataset.target)print("⽤留⼀法验证对率回归的精度是:", accuracy)leaveone()View Code3.5import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysisfrom sklearn import model_selectionfrom sklearn import metricsdataset = pd.read_csv('/home/zwt/Desktop/watermelon3a.csv')#数据预处理X = dataset[['密度','含糖率']]Y = dataset['好⽠']#分割训练集和验证集X_train,X_test,Y_train,Y_test = model_selection.train_test_split(X,Y,test_size=0.5,random_state=0) #训练LDA_model = LinearDiscriminantAnalysis()LDA_model.fit(X_train,Y_train)#验证Y_pred = LDA_model.predict(X_test)#汇总print(metrics.confusion_matrix(Y_test, Y_pred))print(metrics.classification_report(Y_test, Y_pred, target_names=['Bad','Good']))print(LDA_model.coef_)#画图good_melon = dataset[dataset['好⽠'] == 1]bad_melon = dataset[dataset['好⽠'] == 0]plt.scatter(bad_melon['密度'],bad_melon['含糖率'],marker='o',color='r',s=100,label='bad')plt.scatter(good_melon['密度'],good_melon['含糖率'],marker='o',color='g',s=100,label='good')View Codeimport numpy as npimport matplotlib.pyplot as pltdata = [[0.697, 0.460, 1],[0.774, 0.376, 1],[0.634, 0.264, 1],[0.608, 0.318, 1],[0.556, 0.215, 1],[0.403, 0.237, 1],[0.481, 0.149, 1],[0.437, 0.211, 1],[0.666, 0.091, 0],[0.243, 0.267, 0],[0.245, 0.057, 0],[0.343, 0.099, 0],[0.639, 0.161, 0],[0.657, 0.198, 0],[0.360, 0.370, 0],[0.593, 0.042, 0],[0.719, 0.103, 0]]#数据集按⽠好坏分类data = np.array([i[:-1] for i in data])X0 = np.array(data[:8])X1 = np.array(data[8:])#求正反例均值miu0 = np.mean(X0, axis=0).reshape((-1, 1))miu1 = np.mean(X1, axis=0).reshape((-1, 1))#求协⽅差cov0 = np.cov(X0, rowvar=False)cov1 = np.cov(X1, rowvar=False)#求出wS_w = np.mat(cov0 + cov1)Omiga = S_w.I * (miu0 - miu1)#画出点、直线plt.scatter(X0[:, 0], X0[:, 1], c='b', label='+', marker = '+')plt.scatter(X1[:, 0], X1[:, 1], c='r', label='-', marker = '_')plt.plot([0, 1], [0, -Omiga[0] / Omiga[1]], label='y')plt.xlabel('密度', fontproperties='SimHei', fontsize=15, color='green');plt.ylabel('含糖率', fontproperties='SimHei', fontsize=15, color='green');plt.title(r'LinearDiscriminantAnalysis', fontproperties='SimHei', fontsize=25);plt.legend()plt.show()View Code3.6对于⾮线性可分的数据,要想使⽤判别分析,⼀般思想是将其映射到更⾼维的空间上,使它在⾼维空间上线性可分进⼀步使⽤判别分析。

ConvolutionalNeuralNetworksforSentenceClassification

ConvolutionalNeuralNetworksforSentenceClassification

References
1. https:///abs/1408.5882 2. /2015/12/implementing-a-cnn-for-text-classification-in-
tensorflow/ 3. /people/pabo/movie-review-data/ 4. https:///dennybritz/cnn-text-classification-tf 5. https:///yoonkim/CNN_sentence
Data Sample
negative: simplistic , silly and tedious . it's so laddish and juvenile , only teenage boys could possibly find it funny . exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable . [garbus] discards the potential for pathological study , exhuming instead , the skewed melodrama of the circumstantial situation . a visually flashy but narratively opaque and emotionally vapid exercise in style and mystification . the story is also as unoriginal as they come , already having been recycled more times than i'd care to count .

有关于分类的英语作文初一

有关于分类的英语作文初一

When it comes to writing an essay about classification in English,especially for a seventhgrade student,its essential to approach the topic in a structured and clear manner. Here are some key points to consider when writing such an essay:1.Introduction:Begin by introducing the concept of classification.Explain that classification is a way of organizing information into groups based on shared characteristics.2.Importance of Classification:Discuss why classification is important.It helps in making sense of the world around us,whether its in biology,where animals and plants are classified into different species,or in everyday life,where we classify objects to keep our environment organized.3.Types of Classification:Describe the different types of classification.For example: Hierarchical Classification:This involves grouping items into a series of categories that are subdivided into smaller categories.Cross Classification:This is when items are classified based on multiple criteria. Binary Classification:This is a simple form of classification where items are divided into two categories.4.Examples in Daily Life:Provide examples of classification that students can relate to, such as:Organizing books in a library by genre and author.Sorting clothes by color or type.Classifying food into categories like fruits,vegetables,proteins,etc.5.Classification in Science:Explain how classification is used in various scientific fields. For instance:In Biology,the Linnaean system classifies organisms into kingdoms,phyla,classes, orders,families,genera,and species.In Geology,rocks are classified into three main types:igneous,sedimentary,and metamorphic.6.Classification in Technology:Discuss how technology uses classification,such as: Categorizing software applications based on their function.Organizing digital files and folders on a computer.7.Challenges in Classification:Mention some of the challenges that can arise when classifying,such as ambiguity in the criteria used for classification or the difficulty in categorizing items that dont fit neatly into one category.8.Conclusion:Sum up the essay by reiterating the importance of classification in organizing and understanding the world.Encourage students to think critically about the categories they use in their own lives and to consider how classification can be used to solve problems or make decisions.9.Personal Reflection:Optionally,you can include a personal reflection on how the student uses classification in their life or how they have learned to classify things in a new way.Remember to use simple and clear language appropriate for a seventhgrade level,and ensure that the essay is wellstructured with a logical flow of ideas.。

机器学习大作业2英文

机器学习大作业2英文

with softmax regression to solve multi-classificationIn these notes, we describe the Softmax regression model. This model generalizes logistic regression to classification problems where the class label y can take on more than two possible values. This will be useful for such problems as MNIST digit classification, where the goal is to distinguish between 10 different numerical digits. Softmax regression is a supervised learning algorithm, but we will later be using it in conjuction with our deep learning/unsupervised feature learning methods.Recall that in logistic regression, we had a trainingset of m labeled examples, where the input features are . (In this set of notes, we will use thenotational convention of letting the feature vectors x be n+ 1 dimensional, with x0 = 1 corresponding to the intercept term.) With logistic regression, we were in the binary classification setting, so the labelswere . Our hypothesis took the form:and the model parameters θ were trained to minimize the cost functionIn the softmax regression setting, we are interested in multi-class classification (as opposed to only binary classification), and so thelabel y can take on k different values, rather than only two. Thus, in our training set , we now havethat . (Note that our convention will be to index the classes starting from 1, rather than from 0.) For example, in the MNIST digit recognition task, we would have k = 10 different classes.Given a test input x, we want our hypothesis to estimate the probability that p(y = j | x) for each value of . I.e., we want to estimatethe probability of the class label taking on each of the k different possible values. Thus, our hypothesis will output a k dimensional vector (whose elements sum to 1) giving us our k estimated probabilities. Concretely, our hypothesis hθ(x) takes the form:Here are the parameters of our model. Noticethat the term normalizes the distribution, so that it sums to one.For convenience, we will also write θ to denote all the parameters of our model. When you implement softmax regression, it is usually convenient to represent θ as a k-by-(n + 1) matrix obtained by stackingup in rows, so thatWe now describe the cost function that we'll use for softmax regression. In the equation below, is the indicator function, so that 1{a truestatement} = 1, and 1{a false statement} = 0. For example, 1{2 + 2 =4} evaluates to 1; whereas1{1 + 1 = 5} evaluates to 0. Our cost function will be:Notice that this generalizes the logistic regression cost function, which could also have been written:The softmax cost function is similar, except that we now sum overthe k different possible values of the class label. Note also that insoftmax regression, we have that .There is no known closed-form way to solve for the minimum of J(θ), and thus as usual we'll resort to an iterative optimization algorithm such as gradient descent or L-BFGS. Taking derivatives, one can show that the gradient is:Recall the meaning of the "" notation. In particular, is itself avector, so that its l-th element is the partial derivative of J(θ) with respect to the l-th element of θj.Armed with this formula for the derivative, one can then plug it into an algorithm such as gradient descent, and have it minimize J(θ). For example, with the standard implementation of gradient descent, on eachiteration we would perform the update (foreach ).When implementing softmax regression, we will typically use a modified version of the cost function described above; specifically, one that incorporates weight decay. We describe the motivation and details below.Properties of softmax regression parameterizationSoftmax regression has an unusual property that it has a "redundant" set of parameters. To explain what this means, suppose we take each of our parameter vectors θj, and subtract some fixed vector ψ from it, so thatevery θj is now replaced withθj− ψ (for every ). Our hypothesis now estimates the class label probabilities asIn other words, subtracting ψ from every θj does not affect our hypothesis' predictions at all! This shows that softmax regression's parameters are "redundant." More formally, we say that our softmax model is overparameterized, meaning that for any hypothesis we might fit to the data, there are multiple parameter settings that give rise to exactly the same hypothesis function hθ mapping from inputs x to the predictions.Further, if the cost function J(θ) is minimized by some setting of theparameters , then it is also minimizedby for any value of ψ. Thus, the minimizerof J(θ) is not unique. (Interestingly, J(θ) is still convex, and thus gradient descent will not run into a local optima problems. But the Hessian issingular/non-invertible, which causes a straightforward implementation of Newton's method to run into numerical problems.)Notice also that by setting ψ = θ1, one can alwaysreplace θ1 with (the vector of all 0's), without affecting the hypothesis. Thus, one could "eliminate" the vector of parameters θ1 (or any other θj, for any single value of j), without harming the representational power of our hypothesis. Indeed, rather than optimizingover the k(n + 1) parameters (where ), onecould instead set and optimize only with respect to the (k− 1)(n + 1)remaining parameters, and this would work fine.In practice, however, it is often cleaner and simpler to implement the version which keeps all the parameters , withoutarbitrarily setting one of them to zero. But we will make one change to the cost function: Adding weight decay. This will take care of the numerical problems associated with softmax regression's overparameterized representation.We will modify the cost function by adding a weight decayterm which penalizes large values of the parameters. Our cost function is nowWith this weight decay term (for any λ > 0), the cost function J(θ) is now strictly convex, and is guaranteed to have a unique solution. The Hessian is now invertible, and because J(θ) is convex, algorithms such as gradient descent, L-BFGS, etc. are guaranteed to converge to the global minimum.To apply an optimization algorithm, we also need the derivative of this new definition of J(θ). One can show that the derivativeis:By minimizing J(θ) with respect to θ, we will have a working implementation of softmax regression.In the special case where k = 2, one can show that softmax regression reduces to logistic regression. This shows that softmax regression is a generalization of logistic regression. Concretely, when k = 2, the softmax regression hypothesis outputsTaking advantage of the fact that this hypothesis is overparameterized and setting ψ = θ1, we can subtract θ1 from each of the two parameters, giving usThus, replacing θ2− θ1 with a single parameter vector θ', we find that softmax regression predicts the probability of one of the classesas , and that of the other class as , same as logistic regression.Suppose you are working on a music classification application, and there are k types of music that you are trying to recognize. Should you use a softmax classifier, or should you build k separate binary classifiers using logistic regression?This will depend on whether the four classes are mutually exclusive. For example, if your four classes are classical, country, rock, and jazz, then assuming each of your training examples is labeled with exactly one of these four class labels, you should build a softmax classifier with k = 4. (If there're also some examples that are none of the above four classes, then you can set k = 5 in softmax regression, and also have a fifth, "none of the above," class.)If however your categories are has_vocals, dance, soundtrack, pop, then the classes are not mutually exclusive; for example, there can be a piece of pop music that comes from a soundtrack and in addition has vocals. In this case, it would be more appropriate to build 4 binary logistic regression classifiers. This way, for each new musical piece, your algorithm can separately decide whether it falls into each of the four categories.Now, consider a computer vision example, where you're trying to classify images into three different classes. (i) Suppose that your classes are indoor_scene, outdoor_urban_scene, and outdoor_wilderness_scene. Would you use sofmax regression or three logistic regression classifiers? (ii) Now suppose your classes are indoor_scene,black_and_white_image, and image_has_people. Would you use softmax regression or multiple logistic regression classifiers?In the first case, the classes are mutually exclusive, so a softmax regression classifier would be appropriate. In the second case, it would be more appropriate to build three separate logistic regression classifiers.。

xgboost回归算法流程

xgboost回归算法流程

xgboost回归算法流程English Answer:XGBoost Regression Algorithm Workflow.XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm that excels in regression and classification tasks. It leverages the concept of gradient boosting to build an ensemble of decision trees, where each tree learns from the errors of its predecessors. The XGBoost algorithm follows a specific workflow:1. Data Preprocessing: The algorithm begins by preprocessing the data, which may involve handling missing values, scaling features, and transforming categorical variables.2. Initialization: An initial guess or model is created to serve as the baseline for the ensemble.3. Tree Building: Multiple decision trees are constructed sequentially. Each tree is built using a specific objective function, such as the mean squared error for regression tasks.4. Gradient Computation: For each data point, the gradient of the loss function with respect to theprediction is calculated.5. Weight Adjustment: The gradients are used to update the weights of the instances in the training set. Instances with larger gradients receive higher weights, indicating their significance in the model.6. Loss Function Minimization: The objective functionis minimized by optimizing the weights of the training instances.7. Model Update: A new decision tree is added to the ensemble, further improving the prediction performance.8. Iteration: Steps 3-7 are repeated for a specifiednumber of iterations or until a stopping criterion is met.Chinese Answer:XGBoost 回归算法流程。

随机森林与传统经典方法在回归与分类问题中的比较

随机森林与传统经典方法在回归与分类问题中的比较

Statistics and Application 统计学与应用, 2023, 12(2), 255-260 Published Online April 2023 in Hans. https:///journal/sa https:///10.12677/sa.2023.122026随机森林与传统经典方法在回归与分类问题中的比较董娅婷云南师范大学数学学院,云南 昆明收稿日期:2023年3月6日;录用日期:2023年3月26日;发布日期:2023年4月14日摘要随机森林最早是由Breiman 提出的,是机器学习的算法之一。

本文以一个回归,一个分类的数据为基础,利用10折交叉验证的方法比较传统经典回归和分类方法与随机森林的预测效果。

对于回归数据,分别用逐步回归、岭回归、偏最小二乘回归、线性回归和随机森林做预测对比,10折交叉验证结果显示随机森林的预测效果比传统回归方法的预测效果好。

对于分类数据,分别用混合线性判别分析、线性判别分析、logistic 回归和随机森林进行分类对比,10折交叉验证结果显示随机森林的分类效果比传统分类方法的预测效果好。

关键词随机森林,经典回归方法,经典分类方法,交叉验证,机器学习Comparison of Random Forest and Traditional Classical Method inRegression and Classification ProblemsYating DongSchool of Mathematics, Yunnan Normal University, Kunming YunnanReceived: Mar. 6th , 2023; accepted: Mar. 26th , 2023; published: Apr. 14th , 2023AbstractRandom Forest was first proposed by Breiman as one of the algorithms for machine learning. Based on one regression and one categorical data, this paper uses the 10-fold cross-validation董娅婷method to compare the prediction effect of traditional classical regression and classification me-thods with random forests. For the regression data, stepwise regression, ridge regression, partial least squares regression, linear regression and random forest were used for prediction compari-son, and the 10-fold cross-validation results showed that the prediction effect of random forest was better than that of traditional regression method. For the categorical data, mixed linear dis-criminant analysis, linear discriminant analysis, logistic regression and random forest were used for classification comparison, and the results of 10-fold cross-validation showed that the classifi-cation effect of random forest was better than that of the traditional classification method.KeywordsRandom Forest, Classical Regression Methods, Classical Classification Methods, Cross-Validation, Machine LearningCopyright © 2023 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言1.1. 随机森林随机森林是一种基于分类树的算法,是机器学习的算法之一,最早是由Breiman [1]提出的。

《吴恩达-机学》一、回归、分类、监督学习、非监督学习

《吴恩达-机学》一、回归、分类、监督学习、非监督学习

《吴恩达-机学》⼀、回归、分类、监督学习、⾮监督学习1 ) Well-posed learning problem : A computer program is said to learn from experience E with respect to(关于) some task T and some performance measure(测量) P, if its performance on T, as measured by P, improves with experience E.适当的学习问题构成:⼀个电脑程序从经验E中学习去解决某⼀任务T,进⾏某⼀性能测量P,通过P测定在T上的表现,因经验E⽽提⾼总结,机器学习三要素:E,T,P====================================例⼦:对于跳棋,经验:⾃⼰和⾃⼰下成千上万次任务:玩跳棋表现:和对⼿玩成功概率Q: Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to betterfilter spam. What is the task T in this setting?(A). Classifying emails as spam or not spam.------这个是T,是我们想要达成的任务,⽬标。

(B). Watching you label emails as spam or not spam. ------ 这个是E,可以说是积攒的经验,也就是学习的过程。

(C). The number (or fraction分数) of emails correctly classified as spam/not spam. ----- 这个是P,相当于来个学习的总结或者评价,看正确分类的数量或者⽐例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

From Regression to Classification in Support VectorMachinesMassimiliano Pontil,Ryan Rifkin and Theodoros EvgeniouAbstractWe study the relation between support vector machines(SVMs)for regression(SVMR)and SVM for classification(SVMC).We show that for a given SVMC solution there existsa SVMR solution which is equivalent for a certain choice of the parameters.In particularour result is that for sufficiently close to one,the optimal hyperplane and threshold forthe SVMC problem with regularization parameter C c are equal to12 w 2+C i=1ξiw,b,ξy i(w·x i+b)≥1−ξi i=1,...,lξ≥0This formulation is motivated by the fact that minimizing the norm of w is equivalent to maxi-mizing the margin;the goal of maximizing the margin is in turn motivated by attempts to bound the generalization error via structural risk minimization.This theme is developed in[2].In the support vector machine regression problem,the goal is to construct a hyperplane that lies “close”to as many of the data points as possible.We are given l examples(x1,y1),...,(x l,y l), with x i∈I R n and y i∈I R for all i.Again,we must select a hyperplane and threshold(w,b)1. Our objective is to choose a hyperplane w with small norm,while simultaneously minimizing the sum of the distances from our points to the hyperplane,measured using Vapnik’s -insensitive loss function:|y i−(w·x i+b)| = 0if|y i−(w·x i+b)|≤|y i−(w·x i+b)|− o therwise(1) The parameter is preselected by the user.As in the classification case,the tradeoffbetween finding a hyperplane with small norm andfinding a hyperplane that performs regression well iscontrolled via a user selected regularization parameter C.The quadratic programming problem associated with SVMR is:(R)min11− times the optimal hyperplane and threshold for thesupport vector machine regression problem with regularization parameter C r=(1− )C c.We now proceed to formally derive this result.We make the following variable substitution:ηi= ξi if y i=1ξ∗i if y i=−1.,η∗i= ξ∗i if y i=1ξi if y i=−1.(2)Combining this substitution with our knowledge that y i∈{−1,1}yields the following modifica-tion of R:(R )min11− ,b =b1−,η∗ =η∗(R )min11− ( i=1(η i+η∗ i))w ,b ,η ,η∗y i(w ·x i+b )≥1−η i i=1,...,ly i(w ·x i+b )≤1+2 l i,j=1(βi−β∗i)D ij(βi−β∗i)− iβi+1+1−where D is the symmetric positive semidefinite matrix defined by the equation D ij≡y i y j x i x j. For all sufficiently close to one,theη∗i will all be zero:to see this,note thatη=0,η∗=0is a feasible solution to RD with cost zero,and if anyη∗i is positive,for sufficiently close to one, the value of the solution will be positive.Therefore,assuming that is sufficiently large,we may eliminate theη∗terms from R and and theβ∗terms from D .But removing these terms from R leaves us with a quadratic program essentially identical to the dual of formulation C: (CD )min11−Going back through the dual,we recover a slightly modified version of C:(C )min11− i=1ξiw,b,ξy i(w·x i+b)≥1−ξi i=1,...,lξ≥0Starting from the classification problem instead of the regression problem,we have proved the following theorem:Theorem2.1Suppose the classification problem C is solved with regularization parameter C, and the optimal solution is found to be(w,b).Then,there exists a value a∈(0,1)such that ∀ ∈[a,1),if problem R is solved with regularization parameter(1− )C,the optimal solution will be(1− )(w,b).Several points regarding this theorem are in order:•Theηsubstitution.This substitution has an intuitive interpretation.In formulation R,a variableξi is non-zero if and only if y i lies above the -tube,and the correspondingξ∗i isnon-zero if and only if y i lies below the -tube.This is independent of whether y i is1or−1.After theηsubstitution,ηi is non-zero if y i=1and y i lives above the -tube,or if y i=−1 and y i lives below the -tube.A similar interpretation holds for theη∗i.Intuitively,theηi correspond to error points which lie on the same side of the tube as their sign,and theη∗icorrespond to error points which lie on the opposite side.We might guess that as goes to one,only the former type of error will remain:the theorem provides a constructive proof of this conjecture.•Support Vectors.Examination of the formulations,and their KKT conditions,shows that there is a one-to-one correspondence between support vectors of C and support vectors of R under the conditions of correspondence.Points which are not support vectors in C and therefore lie outside the margin and are correctly classified will lie strictly inside the -tube in R.Points which lie on the margin in C will lie on the boundaries of the -tube in R,and are support vectors for both problems.Finally,points which lie inside the margin or are incorrectly classified in C will lie strictly outside the -tube,above the tube for points with y=1,below the tube for points with y=−1,and are support vectors for both problems.•Computation of ing the KKT conditions associated with problem(R ),we can determine the value of a which satisfies the theorem.To do so,simply solve problem C ,and choose a to be the smallest value such that when the constraints(w ·x i+b)≤1+m+1will satisfy the theorem.Observethat as w:= w gets larger(i.e.,the separating hyperplane gets steeper),or as the correctly classified x i get relatively(in units of the margin w−1)farther away from the hyperplane we expect a to increase.More precisely it is easy to see that m≤wD,with D the diameter of the smallest hypersphere containing all the points.Then a≤wD−12 w 2+C( i=1((η i)2+(η∗ i)2)).The theorem then states thatfor sufficiently large ,if(w,b)solves C with regularization parameter C,(1− )(w,b) solves R,also with regularization parameter C.•Variations of the SVM algorithm.Recently a modification of the SVM algorithm for both classification and regression has been proposed[?].The main idea is to introduce a new parameter with the purpose of controlling the number of support vectors beforehand.It might be interesting to check if our analysis applies the modified algorithms.3ExamplesIn this section,we present two simple one-dimensional examples that help to illustrate the the-orem.These examples were both performed penalizing theξi linearly.In thefirst example,the data are linearly separable.Figure1a shows the data points,and Figure1b shows the separating hyperplane found by performing support vector classification with C=5on this data set.Note that in the classification problem,the data lie in one dimension,with the y-values being“labels”.The hyperplane drawn shows the value of w·x+b as a function of x.The computed value of a is approximately.63.Figure1c shows the -tube computed for the regression problem with =.65,and Figure1d shows the same for =.9.Note that every data point is correctly classified in the classification problem,and that every data point lies inside the -tube in the regression problems,for the values of chosen.In the second example,the data are not linearly separable.Figure2a shows the data points. Figure2b shows the separating hyperplane found by performing classification with C=5.The computed value of a is approximately.08.Figures2c and d show the regression tubes for =.1 and =.5,respectively.Note that the points that lie at the edge of the margin for classification, x=−5and x=6lie on the edge of the -tube in the regression problems,and that points that lie inside the margin,or are misclassified,lie outside the -tube.The point x=−6,which is the only point that is strictly outside the margin in the classification problem,lies inside the -tubes.The image provides insight as to why a is much smaller in this problem than in the linearly separable example:in the linearly separable case,any -tube must be shallow and wide enough to contain all the points.Figure1:Separable data.4Conclusions and Future WorkIn this note we have shown how SVMR can be related to SVMC.Our main result can be summarized as follows:if is sufficiently close to one,the optimal hyperplane and threshold for the SVMC problem with regularization parameter C c are equal to1(c)Regression, =.1(d)Regression, =.5Figure2:Non-separable data.5AcknowledgmentsWe wish to thank Alessandro Verri,Tomaso Poggio,Sayan Mukherjee and Vladimir Vapnik for useful discussions.References[1]C.Burges,A tutorial on Support Vector Machines for Pattern Recognition,In Data Miningand Knowledge Discover,volume2,pp.1-43.Kluwer Academic Publishers,Boston.[2]V.N.Vapnik,Statistical Learning Theory,John Wiley&Son,New York,1998.。

相关文档
最新文档