大学物理学习题讲解_图文.ppt
合集下载
大学物理第四章习题解答PPT演示课件
注意:最高点处摆锤(刚体)的速度恰好为零 时, 完成一个圆周运动。(区别:3-30)
16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况
16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况
《大学物理》的习题训练与详细解答三PPT课件
(3)T1T2 T3
(4)不能确定
T2 2 m我们知道对于相同的弹簧,
k
m,k相同,周期T自然也相等.
与弹簧放置位置无关!
答案为(2)
.
15
4.水平面上有一轻弹簧振子,当它作无阻尼自由振动时, 一块橡胶泥正好竖直落在该振动物体上,设此时刻: (1)振动物体正好通过平衡位置,(2)振动物体正好 在最大位移处。则:
谐振动的振动曲线。则(1)和(2)合成振动的振幅为
,初周相为
,周期为
,试在图
中画出合振动的曲线。
.
13
答 案 为 : 1cm;,T12s
3
.
14
3.轻弹簧k的一端固定,另一端系一物体m。将系统按图 2所示三种情况放置,如果物体作无阻尼的简谐振动,则 它们振动周期的关系是:
(1)T1T2 T3
(2)T1T2 T3
T 2 ,初始位相为:;某时刻的周相为(t )
从题目我们可以知道:
T=1s;初位相为23;t
2s时周相为14;周相为32 对应的
3
3
t 振 动 方 程 x = 0 . 0 2 c o s 2 ( t +1 3 )米 的 振 子 在 初 始
时 刻 及 t = 0 . 2 5 , 0 . 5 , 1 . 0 秒 各 时 刻 的 矢 量 位 置 。
大学物理Ⅳ-习题课3
练习十 机械振动(一)
1。质量为0.01千克的小球与弹簧组成的系统的振动规律为:
x=0.1cos2(t+13)米,t以秒计。则该振动的周期为——————,
初位相为———————;t 2秒时的周期为————————;周相为
323对 谐振 应动 的的 时运 刻动 t 方__程 ___为 ___: ___x_ . Acos(t)
2024版大学物理PPT完整全套教学课件pptx
科里奥利力的概念
在非惯性系中,当物体相对于非 惯性系有相对运动时,会受到科 里奥利力的作用,其方向垂直于 物体相对运动方向和非惯性系的 角速度方向。
04
动量守恒定律和能量守恒 定律
动量守恒定律
定律表述
一个系统不受外力或所受合外力为零, 则系统的总动量保持不变。
适用范围
适用于宏观低速物体,也适用于微观高 速粒子;既适用于单个物体,也适用于 多个物体组成的系统。
大学物理涉及的知识面很广,包括力学、热 学、电磁学、光学、原子物理学等,因此要 拓宽知识面,掌握不同领域的知识。
02
质点运动学
质点运动的描述
01
位置矢量与位移
02
位置矢量的定义和性质
03
位移的计算方法和物理意义
质点运动的描述
加速度的定义、种类和计 算
速度的定义、种类和计算
速度与加速度
01
03 02
03
观察和实验
物理学是一门以实验为基础的自然科学, 观察和实验是物理学的基本研究方法,通 过实验可以验证物理假说和理论,发现新 的物理现象和规律。
建立理想模型
理想模型是物理学中经常采用的一种研究 方法,它忽略了次要因素,突出了主要因 素,使物理问题得到简化。
数学方法
数学是物理学的重要工具,通过数学方法 可以精确地描述物理现象和规律,推导物 理公式和定理。
03
动能定理的应用
用于解决刚体定轴转动中的功能 转换问题,如计算外力对刚体所 做的功、求解刚体的角速度等。
06
机械振动和机械波
简谐振动
简谐振动的定义和基本概 念
阐述简谐振动是物体在一定位置附近做周期性 的往返运动,介绍振幅、周期、频率等基本概 念。
大学物理上册全章节及习题ppt课件
大学物理上册 全章节PPT及 习题
• 6、切向加速度和法向加速度
dv at dt
d dt
v2 an
2 2 a a a t n
• 7、角速度和角加速度
d d 2 2 d t dt
an 2r
v r
at r
a a v u a e • 8、相对运动 v
e x i n 质点系的动能定理: W W E E k k 0
五、保守力的功 势能
保守力的功: F d势能: E p kx l 2 Mm 引力势能: E G p W ( E E ) E 保 pb pa p r
• 9、牛顿第二定律
2 d v d r F m a m m2 dt dt
第二章
一、牛顿三定律
质点动力学
牛顿第一定律:惯性定律 d v 牛顿第二定律 Fm m a d t 牛顿第三定律:作用力与反作用力 二、动量定理 动量守恒定律 t2 质点动量定理 m v v d I 2-m 1 Ft
六、功能原理 机械能守恒定律
ex in 功能原理: W W E E nc 0
0
动能和势能之和 ——机械能
机械能守恒 E E0
第三章 刚体力学
一、定轴转动定律
1)受力分析
M J
质点:牛顿第二定律 F ma 2)列方程: 刚体:转动定律 M J 无滑动条件:a R
固有长度
相对静止时测得棒的长度叫固有长度,相对棒长 方向运动时,测得长度要变短,长度只沿运动方向 收缩。
二、洛仑兹变换 x ut x' 2 2 1 u / c 洛 仑 y' y 兹 变 z 'z u 换 t 2 x 式 c t 1 u2 / c2
• 6、切向加速度和法向加速度
dv at dt
d dt
v2 an
2 2 a a a t n
• 7、角速度和角加速度
d d 2 2 d t dt
an 2r
v r
at r
a a v u a e • 8、相对运动 v
e x i n 质点系的动能定理: W W E E k k 0
五、保守力的功 势能
保守力的功: F d势能: E p kx l 2 Mm 引力势能: E G p W ( E E ) E 保 pb pa p r
• 9、牛顿第二定律
2 d v d r F m a m m2 dt dt
第二章
一、牛顿三定律
质点动力学
牛顿第一定律:惯性定律 d v 牛顿第二定律 Fm m a d t 牛顿第三定律:作用力与反作用力 二、动量定理 动量守恒定律 t2 质点动量定理 m v v d I 2-m 1 Ft
六、功能原理 机械能守恒定律
ex in 功能原理: W W E E nc 0
0
动能和势能之和 ——机械能
机械能守恒 E E0
第三章 刚体力学
一、定轴转动定律
1)受力分析
M J
质点:牛顿第二定律 F ma 2)列方程: 刚体:转动定律 M J 无滑动条件:a R
固有长度
相对静止时测得棒的长度叫固有长度,相对棒长 方向运动时,测得长度要变短,长度只沿运动方向 收缩。
二、洛仑兹变换 x ut x' 2 2 1 u / c 洛 仑 y' y 兹 变 z 'z u 换 t 2 x 式 c t 1 u2 / c2
《大学物理学》PPT课件
课程内容包括力学、热学、电磁学、光学和近 代物理等基础知识,涉及物质的基本性质、相 互作用和运动规律等方面。
大学物理学不仅是后续专业课程的基础,也是 培养学生科学素质、创新思维和实践能力的重 要途径。
学习目标与要求
01 掌握物理学基本概念、原理和定律,理解 物理现象的本质和规律。
02
能够运用物理学知识分析和解决实际问题 ,具备实验设计和数据处理的能力。
角动量守恒定律
在不受外力矩作用的封闭系统中,系统的总角动量保 持不变。
能量守恒定律
在封闭系统中,能量不能被创造或消灭,只能从一种 形式转化为另一种形式。
03
热学基础与热力学定律
温度与热量概念
01
温度定义
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧
烈程度。
02
热量概念
热量是指当系统状态的改变来源于热学平衡条件的破坏,也即来源于系
05
光学原理与现象解析
几何光学基础
光的直线传播
光在同种均匀介质中沿直线传 播,形成影子、日食、月食等
现象。
光的反射
光在两种物质分界面上改变传 播方向又返回原来物质中的现 象,遵循反射定律。
光的折射
光从一种透明介质斜射入另一 种透明介质时,传播方向发生 改变的现象,遵循折射定律。
透镜成像
凸透镜和凹透镜对光线的作用 及成像规律,包括放大、缩小
库仑定律与电场强度
阐述库仑定律的内容,电场强度的定义及计算 。
电势与电势能
解释电势的概念,电势差的计算,电势能的定义及性质。
稳恒电流与电路分析
1 2
电流与电阻
介绍电流的形成,电阻的定义及影响因素。
欧姆定律与焦耳定律
大学物理学不仅是后续专业课程的基础,也是 培养学生科学素质、创新思维和实践能力的重 要途径。
学习目标与要求
01 掌握物理学基本概念、原理和定律,理解 物理现象的本质和规律。
02
能够运用物理学知识分析和解决实际问题 ,具备实验设计和数据处理的能力。
角动量守恒定律
在不受外力矩作用的封闭系统中,系统的总角动量保 持不变。
能量守恒定律
在封闭系统中,能量不能被创造或消灭,只能从一种 形式转化为另一种形式。
03
热学基础与热力学定律
温度与热量概念
01
温度定义
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧
烈程度。
02
热量概念
热量是指当系统状态的改变来源于热学平衡条件的破坏,也即来源于系
05
光学原理与现象解析
几何光学基础
光的直线传播
光在同种均匀介质中沿直线传 播,形成影子、日食、月食等
现象。
光的反射
光在两种物质分界面上改变传 播方向又返回原来物质中的现 象,遵循反射定律。
光的折射
光从一种透明介质斜射入另一 种透明介质时,传播方向发生 改变的现象,遵循折射定律。
透镜成像
凸透镜和凹透镜对光线的作用 及成像规律,包括放大、缩小
库仑定律与电场强度
阐述库仑定律的内容,电场强度的定义及计算 。
电势与电势能
解释电势的概念,电势差的计算,电势能的定义及性质。
稳恒电流与电路分析
1 2
电流与电阻
介绍电流的形成,电阻的定义及影响因素。
欧姆定律与焦耳定律
大学物理,课件,习题.ppt
1º 稳恒磁场的磁感应线是连续的闭合曲线。 即:在磁场的任何一点上磁感应线 既不是起点也不是终点。
2º 磁场中以任一闭合曲线L为边界的所有曲面的 磁通量相等。
L S1 S2 曲面S1、S2均以L为边界
33
三、磁力功 磁力矩的功
1.磁力的功 A F aa BIl aa
BIS I m
m B S 2.磁力矩的功
B0
v Idl //
rv
dB 0
如果是带电直线的延长线上:
E0
E (1 1 ) 4 0 d d L
8
例2 求半径为R电流为I的载流园线圈轴线上的 磁场分布。
解 取一对对称的电流源, 它们在p点产生一对元磁场.
由于dB与dB关于轴线对称, 垂直轴的分量相互抵消。
B dBcos
cos R
任意一点产生的电场、磁场间
关系
B
0
0
(v
E)
1 c2
(v
E)
1
c
00
—— 真空中光速。
22
下面讨论在非均匀磁场中带电体受磁力作用问题。
例1 无限长载流直导线通有电流I=10A,一质子 以v=2103m/s沿如图所示方向运动,此刻二者相 距1 m。求质子受长直导线磁力的大小和方向。
解: 长直导线的磁场
电流强度 I 的微观模型:
正电荷以v 定向运动。
I dq qsvn
dt
S
I
v
20
电流 I dq qnSv
电流元
dt
dB
0 4
Idl r
2
rˆ
0 4
(qnSv )dl rˆ
r2
电荷数 dN
单个电荷
2º 磁场中以任一闭合曲线L为边界的所有曲面的 磁通量相等。
L S1 S2 曲面S1、S2均以L为边界
33
三、磁力功 磁力矩的功
1.磁力的功 A F aa BIl aa
BIS I m
m B S 2.磁力矩的功
B0
v Idl //
rv
dB 0
如果是带电直线的延长线上:
E0
E (1 1 ) 4 0 d d L
8
例2 求半径为R电流为I的载流园线圈轴线上的 磁场分布。
解 取一对对称的电流源, 它们在p点产生一对元磁场.
由于dB与dB关于轴线对称, 垂直轴的分量相互抵消。
B dBcos
cos R
任意一点产生的电场、磁场间
关系
B
0
0
(v
E)
1 c2
(v
E)
1
c
00
—— 真空中光速。
22
下面讨论在非均匀磁场中带电体受磁力作用问题。
例1 无限长载流直导线通有电流I=10A,一质子 以v=2103m/s沿如图所示方向运动,此刻二者相 距1 m。求质子受长直导线磁力的大小和方向。
解: 长直导线的磁场
电流强度 I 的微观模型:
正电荷以v 定向运动。
I dq qsvn
dt
S
I
v
20
电流 I dq qnSv
电流元
dt
dB
0 4
Idl r
2
rˆ
0 4
(qnSv )dl rˆ
r2
电荷数 dN
单个电荷
大学物理下 电磁感应习题册讲解PPT课件
dR
2 r 2
故金属圆盘中的总涡流为
i i di 1 kb a rdr 1 kba2
0
2
0
4
第17页/共24页
5.一个n匝圆形细线圈,半径为b,电阻为R,以匀角 速绕其某一直径为轴而转动,该转轴与均匀磁场 B
垂直。假定有一个面积为A(很小)的小铜环固定在该转
动线圈的圆心上,环面与磁场垂直,如图所示,求在小铜
第2页/共24页
4.在圆柱形空间内有一磁感应强度为 B 的均匀磁场, 先B 后的放大在小磁以场速的率两dB个/ d不t 变同化位。置有1(一a长b)度和为2l0(的a金b属)棒,
则金属棒在这两个位置时棒内的感应电动势的大小 关系为
(A) ab ab (B)ab ab (C)ab ab 0 (D) ab ab 0
的恒定速率减小。当电子分别位于磁场中a点、b点与
c点时,假定a,c的r = 0.5m,求电子获得的瞬时加速
度的大小和方向。
答案:(1)aa 4.4 104 (ms2 ) 方向水平向左
(2) (3)
ab 0
ac 4 4 104 (ms2 )
a
r b R
B r
c
方向水平向右。
图5-10
d dvta I b (r d vt)dr
d vt 2 r a
Ib Ib (d vt) ln d vt a
2 2 a
d vt
d Ibv (ln d a a )
dt t0 2a
d da
方向顺时针
第21页/共24页
例 一截面为长方形的螺绕环,尺寸如图,共有N 匝,求其自感系数。
(2)PQ边: 1 0
P
S
PS边:2
大学物理习题讲解静电场-PPT精选文档
3.无限大均匀带电平面
E 2 0
4.均匀带电球面
几种特殊电荷系统的电场
0
r R
2
E
q 4 0 r
r R
5.均匀带电球体
几种特殊电荷系统的电场
E
qr 3 4 0 R
r R
q 4 0 r
2
r R
点电荷电势:
q 4 0 r
对于点电荷系:
q2 R
h
4.
O
d
d
一、选择题
3.
q
r
P
r
M
5.
Q
qr
R
(二)、填空题
2.
dx
x
a
b
O
P
3. a源自yaO
x
5.
R
Q
d
(三)、计算题
1.
R
r
a
x
2.
R d
O
Q
3. (1)
B
A
R0
R1
R2
3.(2)
B
A
R0
R1
R2
3.(3)
B
A
R0
R1
R2
3.(4)
B
A
第四章 静电场 1.库仑定律
q1q2 f 2 4 0 r
适用于“点电荷”
2.电场强度
F E q0
⑴ 场强叠加原理 E E i
i
★ 场强的计算
⑵ 高斯定理 ⑶ 几种特殊电荷系统的电场
★3.电势的计算
Ui ⑴ 电势叠加原理 U
i
大学物理第1章习题解答(全)ppt课件
2 t
23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为
23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为
《大学物理上典型题》PPT课件
1 2 m 0 2 6 1 v m 4 0 2 2 1 v ( M 4 3 m ) l2 4 ( M 8 m 3 2 m v 1 0 2 ) 2 l2
1 2m0 2(3 3 v 2 11 2M 6 7 m 3m )
v0 8
O
v0
9 m0v
2(M3m)l
共7题
1. 2g氢气与2g氦气分别装在两个容积一样的封闭 容器内,温度也一样。(氢气视为刚性双原子分子)。 求:(1)氢分子与氦分子的平均平动动能之比;(2)氢 气与氦气压强之比;(3)氢气与氦气内能之比。
〔1〕 选微元d m
dm d s2 rd rm R 22 rd
(2)求 d J
(3)利用上题结果 dJ = r2
r 0
dm (3) 求 J
Jr2 d m R r2
m
0
m R 22rd 1 2 rm 2 R
dr
J 1mR2 2
7.如图,两圆轮的半径分别为R1和R2,质量分别为M1 和M2,皆可视为均匀圆柱体且同轴固结在一起,二盘 边缘绕有细绳,绳子下端挂两个质量分别为m1和m2的 物体,求在重力作用下,m2下落时轮的角加速度。
解:以车厢为参考系,箱子在水平
方向受摩擦力 f= kmg 和惯性力 F0=ma,由牛二定律,对箱子有
a’
f
F0
a
F0f m'a
l
那 箱么子箱碰子 帮对 时车 相厢 对的 卡加车速的度速为率为a'F 0m fakg
v '2 a 'l2 a k g l 2 .9 m /s
3. 一质量 m = 0.14kg 的垒球沿水平方向以 v1=
N2N1N 33
(3)
平均速率:
1 2m0 2(3 3 v 2 11 2M 6 7 m 3m )
v0 8
O
v0
9 m0v
2(M3m)l
共7题
1. 2g氢气与2g氦气分别装在两个容积一样的封闭 容器内,温度也一样。(氢气视为刚性双原子分子)。 求:(1)氢分子与氦分子的平均平动动能之比;(2)氢 气与氦气压强之比;(3)氢气与氦气内能之比。
〔1〕 选微元d m
dm d s2 rd rm R 22 rd
(2)求 d J
(3)利用上题结果 dJ = r2
r 0
dm (3) 求 J
Jr2 d m R r2
m
0
m R 22rd 1 2 rm 2 R
dr
J 1mR2 2
7.如图,两圆轮的半径分别为R1和R2,质量分别为M1 和M2,皆可视为均匀圆柱体且同轴固结在一起,二盘 边缘绕有细绳,绳子下端挂两个质量分别为m1和m2的 物体,求在重力作用下,m2下落时轮的角加速度。
解:以车厢为参考系,箱子在水平
方向受摩擦力 f= kmg 和惯性力 F0=ma,由牛二定律,对箱子有
a’
f
F0
a
F0f m'a
l
那 箱么子箱碰子 帮对 时车 相厢 对的 卡加车速的度速为率为a'F 0m fakg
v '2 a 'l2 a k g l 2 .9 m /s
3. 一质量 m = 0.14kg 的垒球沿水平方向以 v1=
N2N1N 33
(3)
平均速率: