小学六年级复习-比和比例
小学六年级---比和比例
小学六年级比和比例比和比例比的概念是借助于除法的概念建立的。
两个数相除叫做两个数的比。
例如,5÷6可记作5∶6。
比值。
表示两个比相等的式子叫做比例(式)。
如,3∶7=9∶21。
判断两个比是否成比例,就要看它们的比值是否相等。
两个比的比值相等,这两个比能组成比例,否则不能组成比例。
在任意一个比例中,两个外项的积等于两个内项的积。
即:如果a∶b=c∶d,那么a×d=b×c。
两个数的比叫做单比,两个以上的数的比叫做连比。
例如a∶b∶c。
连比中的“∶”不能用“÷”代替,不能把连比看成连除。
把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍数。
例如,甲∶乙=5∶6,乙∶丙=4∶3,因为[6,4]=12,所以5∶ 6=10∶ 12, 4∶3=12∶9,得到甲∶乙∶丙=10∶12∶9。
例1已知3∶(x-1)=7∶9,求x。
解: 7×(x-1)=3×9,x-1=3×9÷7,例2六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。
求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。
由此求出女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。
在例2中,我们用到了按比例分配的方法。
将一个总量按照一定的比分成若干个分量叫做按比例分配。
按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,答:生石灰、硫磺粉、水分别需要180,360和2160千克。
小学六年级_比和比例知识点梳理(最新整理)
复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
(完整版)六年级比和比例复习知识点及典型例题
比和比例知识点:2、按比分配的实际应用:例:一辆货车和一列客车同时从相距135km 的两地相向而行,经过1.5小时相遇。
已知货车和客车的速度比是7:8,求货车行驶速度。
135÷1.5×=427153、比例综合应用:例:在一幅比例尺为1:4000000的中国地图上,量得浙江湖州到山东日照的图书距离为15cm 。
陈老师早上6:00从湖州出发开车去日照旅游,下午2:00到达目的地。
途中陈老师开车的平均速度是多少?75练一练:1、北京到济南高速公路距离大约为430km ,北京到天津大约为120km 。
一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。
按照这个速度,北京到济南全程需要多少小时?5.3752、刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1.刘大伯家养鸡、鸭、鹅各多少只?3、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。
在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。
一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。
5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?6、小淘气看一本科技书,第一天看了全书的,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?7、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?8、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。
求截成的较长一个圆柱的体积。
9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?10、一本书小明第一天读了全部的40%,第二天比第一天少读了30页。
六年级数学《比和比例》知识点
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
六年级下册《比和比例》总复习-
可以用两种方法解答:
(一)用比例解:
设需要X小时,因为工效相等,所以
72:6=120:X 72X=120×6 X=10
(二)用算术方法解: 先求出工作效率,再求工作时间:
120÷(72÷6) =120÷12 =10(小时)
答:需要10小时。
小结:
这两种方法得区别在于解比例只用到一个关 系式:工作量÷工作时间=工作效率,思路简捷;而 列算式解答,除了用到上面这个关系式,还要用到: 工作量÷工作效率=工作时间,思路转折多一些。 请大家以后在解题时,用自己理解得方法解答。
比例尺分为( 数值比例尺)和(
线段比例)尺
9) :1
4
( 2 ):8=0、25=— 1=620÷( 80
)
()
出粉率一定,面粉重量和小麦重量成( )正比例、
被除数一定,除数和商成( 反)比例、
总价一定,单价和数量成( 反)比例、
小明每天看8页书,它看书得总页数和看书得天数成(
已知a×b=c( a、b、c 均不为0)
答:这幅图纸得比例尺是1:5000、
(4)求实际距离。
在比例尺是 1:8000000得地图上,量得A地到B地得距离是 5厘米。求AB两地得实际距离。
解: 设A.B两地之间得距离是x厘米。
图上距离
根据:
———— 实际距离
=比例尺
5:x =1:8000000 1×x= 5×8000000
x= 40000000 40000000厘米=400千米 答:A.B两地实际距离是400千米。
12
答:三条边分别长21厘米,28厘米, 35厘米。 白云居课件
甲乙丙3人和合租一套房子,房 租为990。甲住了 1 得时间
(完整版)小学六年级__比和比例知识点梳理
复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)kxy=反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
六年级小升初毕业考试总复习-比和比例难点、易错点
六年级小升初毕业考试总复习——比和比例难点、易错点1.比、分数、除法之间的联系。
用字母表示三者之间的联系:a:b=a ÷b=b a (b ≠0) 例.下面四个情境中的比可以用2:3表示的共有( A )个。
A.1B.2C.3D.42.比和比例的联系和区别。
比 比例 意义 两个数相除又叫做这两个数的比。
比表示两个数相除的关系。
表示两个比相等的式子叫做比例。
比例表示两个比相等的关系,是一个等式。
构成 由两项组成,分别叫做比的前项和后项。
由四项组成,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
基本性质 比的前项和后项同时乘或除以同一个数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
例.如果a 与b 互为倒数,且c a ,那么c=( 0.5 ). 3.由ad=bc 写出8个比例式。
a 、d 作外项: a:b=c:d a:c=b:d d:b=c:a d:c=b:ab 、c 作外项: b:a=d:c b:d=a:c c:a=d:b c:d=a:b例1.已知13×12=35×518,在下面各式中( ③ )是正确的。
①13∶35=12∶518 ②12∶13= 518∶35 ③518∶13=12∶35 ④35∶12=518∶13比 前项 :(比号) 后项 比值 除法 被除数 ÷(除号) 除数 商 分数 分子 —(分数线)分母 分数值例2.根据图中的数量关系,求出x=(5.4 ),y=( 9)。
4.正比例关系与反比例关系的异同点。
正比例关系 反比例关系 相同点 1.都是两种相关联的量。
2.一种量随着另一种量的变化而变化。
不同点 1. 变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小。
2. 相对应的两个数的比值一定。
3. 关系式:k x y =(一定)。
4. 图象:是一条从(0,0)出发的无限延伸的射线。
1. 变化方向相反,一种量扩大或缩小,另一种量反而缩小或扩大。
六年级期末分数、百分数、比和比例应用题复习-PPT
11、比例尺:一幅图的图上距离和实际距离的比, 叫做这幅图的比例尺。
12、比例尺的分类 (1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺
例、小明读一本故事书,已读的页数是未读 的页数的1/5,若再读30页,则已读与未读 的页数之比是3:5这本书共有多少页?
方法一:转化“1”,不变量法; 方法二:比例方程。 单位1是这本书的总页数
30 ( 3 - 1 ) 35 15
30 (3 - 1) 30 58 6
24 14(4 页)
解:原来已读x页,未读5x页 x 30 3 : 5 5x - 30 3(5x - 30) 5(x 30)
13、图上距离: 图上距离:实际距离=比例尺 实际距离×比例尺=图上距离 图上距离÷比例尺=实际距离
14、应用比例尺画图的步骤: (1)写出图的名称、 (2)确定比例尺; (3)根据比例尺求出图上距离; (4)画图(画出单位长度) (5)标出实际距离,写清地点名称 (6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。
1500×4.50%×2=135(元) 135×(1-5%)=128.25(元) 答:到期后实得利息128.25元。
3、利润问题 成本:商品进价; 售价:商品卖出去的价钱; 利润:商家赚到的钱;
定价=成本×(1+利润率) 卖价=成本×(1+利润的百分数)=定价×折扣 成本=卖价÷(1+利润率) 利润率=利润÷成本×100%
6、比例的基本性质:在比例里,两个外项 的积等于两个两个内项的积。这叫做比例的 基本性质。
7、比和比例的区别 (1)比表示两个量相除的关系,它有两项 (即前、后项);
六年级数学比和比例
六年级数学比和比例
(实用版)
目录
1.比和比例的定义
2.比和比例的性质
3.比和比例的应用
4.提高比和比例的解题技巧
正文
1.比和比例的定义
比和比例是数学中常见的概念,比是指两个数相除的结果,比例则是指两个比相等的式子。
比如,如果我们说一个长度为 10 厘米的线段是另一个长度为 5 厘米的线段的两倍,我们就可以说这两个线段的比是 2:1,也可以说这两个线段的比例是 2/1。
2.比和比例的性质
比和比例有一些基本的性质。
比如,如果两个比的比值相等,那么这两个比就是相等的,也就是说,如果 a:b=c:d,那么 a/b=c/d。
另外,比例也有一个基本性质,那就是如果两个比例相等,那么它们的乘积也相等,也就是说,如果 a:b=c:d,那么 a*d=b*c。
3.比和比例的应用
比和比例在实际生活中应用广泛,比如在商业中,我们常常需要通过比例来计算成本和利润;在科学研究中,我们常常需要通过比来描述两个量的关系。
此外,比和比例也是解决许多数学问题的基础,比如在解方程时,我们常常需要通过比例来找到未知数的值。
4.提高比和比例的解题技巧
要提高比和比例的解题技巧,首先我们需要理解比和比例的概念,熟悉它们的基本性质。
其次,我们需要多做一些有关比和比例的练习题,这样可以帮助我们加深对比和比例的理解,提高我们的解题能力。
最后,我们需要学会灵活运用比和比例的知识,比如在解题时,我们可以通过比例来简化方程,这样更容易找到未知数的值。
总的来说,比和比例是数学中非常重要的概念,它们在实际生活中的应用也非常广泛。
小学六年级数学小升初珍藏版复习资料第5讲 比和比例(解析)
2022-2023学年小升初数学精讲精练专题汇编讲义第5讲比和比例知识点一:比1.比的意义:两个数相除又叫作两个数的比。
2.比的各部分名称及比的读法:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变4.求比值与化简比(1)求比值:前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称; 不同类量的比,其比值有单位名称。
例如: 100千米:5时=20千米/时(2)化简比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
5.比与分数、除法的关系关系:比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线;比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
(1)比、分数和除法之间的联系与区别如下表所示:名称比分数除法联系前项分子被除法:(比号)一(分数线)÷(除号)后项分母除数比值分数值商知识精讲除法各部分间的关系可知,比的基本性质、分数的基本性质以及商不变的规律三者只是说法不同,其实质是一样的。
6.按比分配:(1)在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫作按比分配。
(2)按比分配应用题的特征:已知总数量和部分数量的比,求各部分数量。
(3)常用的解题方法有两种:一种是先求总份数,再求各部分量占总量的几分之几,最后求各部分数量;另一种是先求每份是多少,再求几份是多少。
知识点二:比例1.比例的意义:表示两个比相等的式子叫做比例。
2.比例的各部分名称:组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
小学六年级--比和比例知识点梳理
复习(fùxí)课:比和比例知识(zhī shi)点一: 比和比例(bǐlì)的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
化简比的依据。
解比例的依据。
知识点二:比和分数(fēnshù)、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)除数商知识点三:求比值(bǐzhí)和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系名称不同点相同点意义不相同变化方向不相同关系式不同正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
kxy=(一定)两种相关联的量,一种量变化另一种量也随着变化反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
(完整版)小学六年级比和比例知识点复习
比和比例知识点1、基本概念(1)两个数相除,又叫做这两个数的比,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
(2)分数的基本性质∶分数的分子和分母同时乘以或者除以相同的数(0除外), 分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
(3)商不变的规律∶在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
(4)比的基本性质∶比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
(5)小数的性质∶在小数的末尾添上零或者去掉零小数的大小不变。
(6)公因数只有1的两个数叫做互质数。
如(5和7,7和9)最简整数比∶比的前项和后项是互质数。
(7)比的化简∶用商不变的性质、分数的基本性质或比的基本性质来化简。
求比值:比的前项除以比的后项所得的商叫做比值。
(8)比例∶①表示两个比相等的式子叫做比例。
比例有四个项,分别是两个内项和两个外项。
在3∶4=9∶12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
(9)比例的基本性质∶在一个比例中,两个外项的积等于两个内项的积。
(10)比、比例、比例尺、百分数的后面不能带单位。
(11) “比”进行分配。
基本方法:1. 先求出总份数,先求出每份数,再求每份数分别占各部分的几分之几。
2.然后用总量乘以每份数分别占各部分的几分之几,求出各部分的数量。
2、正比例∶两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(1)用字母表示∶xy= k (一定) (2)正比例关系两种相关联的量的变化规律∶同时扩大,同时缩小,比值不变。
3、反比例∶两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系。
小学六年级数学总复习-比、比例
按2:1画出下面图形放大后的图形.
按2:1放大也就是各 边放大到原来的2倍.
按2:1画出下面图形放大后的图形.
三角形的两条直角边放大 到原来的2倍后,斜边是否 也变为原来的2倍呢?
观察一下,放大后的图形与原 来的图形相比,有什么相同的 地方?有什么不同的地方?
如果把放大后的三个图形的各边按1:3缩小, 图形又发生了什么变化?画画看.
0 20 40 60千米
线段比例尺可以改写成数值比例尺,用1厘米比它所代表的实 际距离, 即: 1厘米:20千米﹦1厘米:2000000厘米 ﹦1: 2000000
这些比例尺分别表示什么?
1:5000000 表示图上1 厘米相当于实际的 5000000厘米( 即: 50千米)
1 30000000
计划在景观大道种800棵观赏树,前8天种了200 棵。照这样计算,要完成任务,还要多少天?
解:设还要X天。 200 800-200 = 8 X 200X=8×600 X=24
一堆煤,原计划每天烧12吨,可以烧45天;实 际每天比计划节约25%,实际烧了多少天?
解:设实际烧了X天。 12×(1-25%)×X=12×45
3
学校要建一个长80m、宽60m的长方形操场, 画出操场的平面图。 比例尺 1:1000
(1)把数值比例尺变为线段比例尺: 1000cm=10m
0 10m
(2)求长的图上距离:
80÷10 = 8(cm) (3)求宽的图上距离: 60÷10 = 6(cm)
3
学校要建一个长80m、宽60m的长方形操场, 画出操场的平面图。
因为图上距离和实际距离的单位不同,所以必须化成同级单位。
10米=1000厘米 1 或 - 1 ∶ 100 10∶1000= 100 10厘米 ∶ 10米 = 10厘米∶ 1000厘米 = 1∶ 100
六年级下比和比例整理与复习
六年级下比和比例整理与复习在六年级下册的数学学习中,比和比例是非常重要的知识点。
它们不仅在数学学科中有着广泛的应用,还与我们的日常生活息息相关。
现在,让我们一起来对这部分知识进行整理和复习,加深对它们的理解和掌握。
一、比的认识比,表示两个数相除的关系。
例如,3∶5 可以读作“三比五”,其中3 是前项,5 是后项,“∶”是比号。
比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
利用比的基本性质,可以将比化简为最简整数比。
例如,将 12∶18 化简,先找出 12 和 18 的最大公因数是 6,然后将前项和后项同时除以 6,得到 2∶3。
二、比例的认识比例,表示两个比相等的式子。
例如,3∶4 = 9∶12 就是一个比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
利用比例的基本性质,可以解比例。
比如,解比例 2∶x = 4∶8,根据比例的基本性质可得 4x = 2×8,4x = 16,x = 4。
三、比和比例的联系与区别联系:比例是由两个比值相等的比组成的。
区别:1、意义不同:比表示两个数相除,比例表示两个比相等。
2、项数不同:比有两项,前项和后项;比例有四项,两个内项和两个外项。
3、基本性质不同:比的基本性质是比的前项和后项同时乘或除以相同的数(0 除外),比值不变;比例的基本性质是在比例里,两个外项的积等于两个内项的积。
四、正比例和反比例1、正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
例如,汽车行驶的速度一定,行驶的路程和时间成正比例关系。
因为路程÷时间=速度(一定)。
2、反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
六年级数学:比和比例总复习
六年级数学:比和比例总复习(一)比的意义和性质 1、比的意义:两个数相除又叫两个数的比。
(如:爸爸身高是小明身高的多少倍?170÷110=1117=17:11) 2、比的读写法,各部分名称。
(1)17比11记作17:11 1.5比3记作 ( 1.5:3 )(2)比的各部分名称5 : 7 前项 比号 后项 3、什么是比值?比的前项除以比的后项所得的商叫做比值比值是一个数,一般用整数或分数表示。
例题1、求比值3.5:0.7=35:7=55:8=5÷8=0.62592:31=92÷31=92×13=32 注意比值的读法:三分之二 4比的后项能不能是零?为什么?小结:因为除法中除数不能为0,分数中分母不能为0,所以比的后项也不能是零。
例题2、求下面比的未知项。
x :3=0.21 120:x =24解:x =3×0.21 解: x =120÷24 x =0.63 x =5 根据什么可以求出比的未知项?5、比的基本性质: 比的前项和后项同时乘以或除以一个相同的数 (零除外),比值不变。
为什么“零除外”?6、化简比:应用比的基本性质,可以把比化成和它相等的最简单的整数比。
把比化成最简单的整数比,叫做化简比。
例题3、化简比(1)63:9=963=17 (2)7.5:2.5=75:25=3:1想一想:把整数比、小数比或分数比化成最简单的整数比的一般方法是什么? ①整数比写成分数后约分后得最简比。
②小数比先化成整数比,再化简。
③分数比先同乘分母的最小公倍数化成整数比,再化简。
例4、填空:( )÷4=()9=0.75=( ):20=( )%(3)÷4=()129=0.75=( 15):20=(75 )% 注意:熟练掌握除法、分数、小数、比、百分数之间的关系,整体观察把握公用条件。
(二)按比分配例5、六年级三个班共有150人,一班人数、二班人数和三班的人数比是6:5:4,这三个班各有多少人? 6+5+4=15150×156=60(人) 150×155=50(人)150×154=40(人)答:一班有60人,二班有50人,三班有40人。
六年级【小升初】小学数学专题课程比和比例(含答案)
10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。
比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。
“:”是比号,读作“比”,所以a:b读作a比b。
比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。
前项除以后项所得的商是比的结果,叫做比值。
例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。
比可以写成分数形式,如7:4可读作:七比四。
比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。
例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。
组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。
例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。
五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。
小学六年级比和比例知识点梳理
小学六年级比和比例知识点梳理比和比例是数学中常见的概念,它们有联系,也有区别。
比是用来表示两个数相除的关系,比的前项和后项可以同时乘除以相同的数,不会改变比的值。
化简比的依据就是这个性质。
比和分数、除法有联系,比的前项相当于分数的分子,后项相当于分母,前项除以后项得到的商就是比值,也可以用这个方法来求比。
比例表示两个比相等的关系,两个外项的积等于两个内项的积,这是解比例的依据。
正比例和反比例是两种相关联的量,它们的意义和关系式不同,判断方法是一找二看三判断。
按比例分配问题是应用比例知识的常见问题,可以用比例的性质来解决。
应用题叫做按比例分配应用题。
解题方法:一般方法:把比转化成分数,用分数方法解答。
先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量。
归一法:把比看做分得的分数,先求出各部分的总分数。
然后再用“总量除以总份数等于平均每份的量(归一)”,再用“一份的量乘以各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为x。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。
用正、反比例知识解答应用题的步骤:分析数量关系。
判断成什么比例。
找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
解比例式。
设未知数为x,并代入等量关系式,得正比例式或反比例式。
解比例。
检验并写出答语。
例题1:一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是()。
解题方法:把比转化成分数,甲的效率为1/4,乙的效率为1/5,求它们的比值。
通分得到20,甲和乙的比值为5:4.例题2:汉江码头第一货场有750吨货物,分给两个运输队运到另一货场。
甲队有载重6吨的汽车6辆,乙队有载重8吨的汽车3辆,按两个队的运输能力分配,甲、乙两队各应运货多少吨?解题方法:先求出甲队和乙队的总运输能力,甲队的总运输能力为6*6=36吨,乙队的总运输能力为8*3=24吨,总运输能力为36+24=60吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、比和比例1比的意义和性质(1)比的意义两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2 比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3 正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)(2)成反比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)1.判断。
(1)、工作总量一定,工作效率和工作时间成反比例。
( )(2)、图上距离和实际距离成正比例。
( ) (3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。
( )(4)、分数的大小一定,它的分子和分母成正比例。
( ) (5)、在一定的距离内,车轮周长和它转动的圈数成反比例。
( ) (6)、两种相关联的量,不成正比例,就成反比例。
( ) (7)订阅《小学数学评价手册》的份数与所需钱数成正比例。
( ) (8)在400米赛跑中,跑步的速度和所用时间成反比例。
( ) (9)工作总量一定,已完成的量和未完成的量成反比例。
( ) (10)正方体的棱长和体积成正比例。
( ) (11)被除数一定,除数和商成反比例。
( ) (12)圆的周长和它的直径成正比例。
( ) 2.判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。
(1)、装配一批电视机,每天装配台数和所需的天数()。
(2)、正方形的边长和周长()。
(3)、水池的容积一定,水管每小时注水量和所用时间()。
(4)、房间面积一定,每块砖的面积和铺砖的块数()。
(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数()。
(6)、在一定时间里,每小时加工零件的个数和加工零件的个数()。
3.思考:明明三岁时体重12千克,十一岁时体重44千克。
于是小张就说:“明明的体重和身高成正比例。
”你认为小张的说法对吗?为什么?答:小张的说法是错误的,体重和身高不是两种相关联的量,体重和身高不成比例。
一、选择题1、一个零件的实际长度是7毫米,但在图上量得长是3.5厘米。
这副图的比例尺是( )A 、1:2B 、1:5C 、5:1D 、2:12、如果甲数的2/3等于乙数的3/5,那么甲数:乙数等于( )A 、6:15B 、10:9C 、15:6D 、9:103、小圆和大圆的半径分别是2厘米和5厘米,小圆与大圆的面积之比是( )A 、2:5B 、4:10C 、4:25D 、2:104、在一幅地图上,用1厘米表示60千米的距离,这幅地图的比例尺是( )A 、160B 、16000000C 、16000D 、16000005、把a ×b=c ×d 改写成比例式是( )A 、a:b=c:dB 、a:c=b:dC 、a:c=d:b6、下列等式中a 与b 成反比例的是( )A 、6×a= b 11B 、35a = 78bC 、4 × 3a= b ÷ 6 7、5千克盐溶解在20千克水中,盐的重量占盐水的( )A 、45B 、15C 、148、互为倒数的两个 量是( )的量。
A 、成正比例B 、成反比例C 、不成比例9、圆柱体的体积一定,圆柱体的高和( )成反比例.A 、底面周长B 、底面面积C 、底面半径10、速度一定,路程和时间( )A 、成正比例B 、成反比例C 、不成比例11、已知x 5 =8y,那么x 与y ( ) A 、成正比例 B 、不成比例 C 、成反比例12、712 :112的化简比是( ) A 、5 B 、5:1 C 、1:513、在一个比例中,已知两个外项之积为1,其中一个外项是最小的质数,那么另一个外项是( )A 、12B 、2C 、无法确定 14、在比例尺是1:5000000的地图上量得甲乙两城的距离是10厘米,实际甲乙两城相距( )千米。
A 、5B 、50C 、500D 、500015、一个圆的直径增加1倍后,面积是原来的( )A 、16倍B 、8倍C 、4倍D 、2倍16、如果把甲桶中水的14倒入乙桶后,甲、乙两桶中的水质量比是1:2,则甲、乙两桶原有水的质量比是( )A 、2:3B 、4:5C 、3:4D 、5:417、甲轮滚动2周的距离,乙轮要滚动3周,甲轮与乙轮的直径比是( )A 、9:4B 、3:2C 、2:3D 、9:118、甲三角形与乙三角形的底边长的比是2:1,高的比是1:2,那么甲三角形与乙三角形面积的比是( )A 、2:1B 、1:2C 、1:1D 、3:219、大小两个正方形的边长比是5:3,这大小两个正方形的面积比是( )A 、20:12B 、25:9C 、10:6D 、5:3二、判断题1、甲数的15 等于乙数的17(甲>0),甲乙两数之比是5:7。
( ) 2、工作总时间一定,生产每个零件所需时间与生产零件的个数成反比例。
( )3、两个大小不同的圆,大圆周长与直径的比值和小圆周长与直径的比值相等。
( )4、把10克糖溶解在100克水中,糖和水的比是1:11。
( )5、圆的周长与它的直径成正比例。
( )6、12 a=25b ,则a:b=4:5。
( ) 7、0.8:0.4化成最简的整数比是2。
( )8、一个数(0除外)和它的倒数成反比例。
( )9、甲数的1/3等于乙数的1/7(甲>0),甲、乙两个数的比是3:7。
( )10、正方形的面积与它的边长成正比例。
( )11、比的前项(除0外)一定,后项和比值成反比例。
( )12、把一个圆柱削成一个体积最大的圆锥,那么这个圆柱体积与圆锥体积的比是3:1。
( )13、圆柱体积与圆锥体积的比是3:1。
( )14、订阅《小学生数学报》的份数与应付的报款数成正比例。
( )15、三角形的面积一定,它的底和高成反比例。
( )16、若a:b=c:d ,那么 ad bc=1。
( )17、把10克盐溶解在100克水中,这时盐和盐水的比是1:10。
( )18、一幅地图,图上2厘米表示实际距离400米,这幅地图的比例尺是1/200。
( )19、圆的面积与半径成正比例。
( )三、填空题1、甲仓存粮的34 和乙仓存粮的23相等,甲仓:乙仓=( ):( )。
已知两仓共存粮340吨,甲仓存粮( )吨,乙仓存粮( )吨。
2、如果7x=8y ,那么x :y=( ):( )。
3、大圆的半径是8厘米,小圆的直径是6厘米,则大圆与小圆的周长比是( ),小圆与大圆的面积比是( )。
4、把5克盐放入50克水中,盐和盐水的比是( )。
5、甲、乙二人各有若干元,若甲拿出他所有钱的20%给乙,则两人所有的钱正好相等,原来甲、乙二人所有钱的最简整数比是( )。
6、一个圆的半径扩大3倍,周长就扩大( ),面积( )。
7、A 是B 的65%,A :B=( ):( )。
8、在比例尺是1:12500000的地图上,量得两城市间的距离是8厘米,如果画在比例尺是1:8000000的地图上,图上距离是( )厘米。
9、在一个比例里,两个外项为互倒数,其中一个内项是617,另一个内项是( )。
10、甲、乙两个长方形,它们的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是4:5,甲与乙面积之比是( )。
11、甲、乙两车货共100吨,其中甲车的14 与乙车的16相等,甲车运货( )吨,乙车运货( )吨。
12、一个圆柱体和一个圆锥体的底面半径相等,它们的高的比是5:6,它们的体积比是( )。
13、两个体积相等,高也相等的圆柱和圆锥,它们底面积的比值是( )。
14、车轮的直径一定,所行驶的路程和车轮转数成( )。
15、当盐和水的比是2:18时,这是含盐( )%的盐水。
16、男生人数比女生人数多14,女生人数比男生人数少( )%,女生人数和总人数的比是( ):( )。
17、8÷( )=( ):4=0.25=3( )=( )% 915=( )÷45=3:( )=( )%=( )小数=( )折扣 18、已知a :b=c :d ,现将a 扩大3倍,b 缩小到原来的13,c 不变,d 应( ),比例式仍然成立。
19、两个高相等,底面半径之比为1:2的圆柱和圆锥,它们的体积之比是( )。
20、含盐10%的盐水100克与含盐20%的盐水150克混合后,盐占盐水的( )。
21、等腰三角形一个底角度数与顶角度数的比是1:2,顶角是( )底,底角是( )底。
22、10÷( )=62.5%=15( )=( )8 23、如果5×a=6×b(b ≠0),那么a:b=( )。
24、不相等的两个圆,大圆周长与直径的比一定( )小圆周长与直径的比。
(填>、=或<)25、一个圆柱加工成与它等底等高的圆锥,圆柱的体积与去掉部分的体积比是( )。
26、一个比例的两个内项都是315 ,其中一个外项是135,另外一个外项是( )。
27、一种练习本,提价10%后,又降价10%,现价与原价的比是( )。
28、甲、乙两个圆柱的底面半径之比是3:2,高之比是3:4,甲、乙两个圆柱的体积比是( )。