2013年株洲中考数学复习学案 第17课时 函数及其图象

合集下载

八年级数学下册 第17章 函数及其图象 17.3 一次函数 4 求一次函数的表达式课件

八年级数学下册 第17章 函数及其图象 17.3 一次函数 4 求一次函数的表达式课件

[学生(xué sheng)用书P44]
用待定系数法求一次函数的表达式 待定系数法:先设待求的函数关系式(其中含有未知的系数),再根据条件 列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数 法. 步 骤:(1)设出待求的一次函数关系式; (2)把已知条件__代__入__函_数__(_há_n_s_hù_)_关__系_式得到___方_程__(_或__方__程__组__) ___; (3)解方__程__(f_ān_g_c_hé_n_g_)(_或__方__程_组_求) 出待定系数的值,从而写出函数关系式.
第二十页,共三十页。
【解析】由图可知:玲玲用30分钟从家里步行到距家1 200米的学校,因此 玲玲的速度为40米/分;妈妈在玲玲步行10分钟后从家出发,用5分钟追上玲 玲,因此妈妈的速度为40×15÷5=120(米/分),返回家的速度为120÷2=60(米/ 分).设妈妈用x分钟返回到家里,则60x=40×15,解得x=10,此时玲玲已行 走了25分钟,共步行25×40=1 000米,还离学校1 200-1 000=200(米).
第二十七页,共三十页。
11.[2018·长春]某种水泥储存罐的容量为25立方米,它有一个输入口和一 个输出口.从某一时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟 后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭 输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8 立方米时,关闭输出口,储存罐内的水泥量y(立方米)与时间x(分)之间的部分函 数图象如图所示.
第17章 函数(hánshù)及其图像
17.3 一次函数 4. 求一次函数的表达式
学习指南 知识管理 归类探究 当堂测评 分层作业

八年级第十七章《函数及其图象》知识点

八年级第十七章《函数及其图象》知识点

.精品文档.八年级第十七章《函数及其图象》知识点八年级第十七《函数及其图象》知识点(2)一、一次函数(一)一次函数的概念:形如y=kx+b (其中k工0),两个特征:①k工0,②x的次数为1正比例函数的概念:当b=0时的一次函数成为正比例函数,此时称y与x成正比例【注意】两个变量成正比例,即y=kx.例题1、若函数y=(-1)x|| 是一次函数,则=.2、若y-1与x+3成正比例,且当x=1时,y=2,求y与x 的函数关系式.(二)一次函数的图象及其性质:y=kx+b (" 0)1、一次函数的图象是一条直线,故使用待定系数法求直线解析式时一般需要两个点.特殊直线:直线y=x或直线y= -x上的点到两坐标轴距离相等.2、一次函数的性质(与系数k、b相关)① k决定着函数的增减性当k > 0时,y随x的增大而增大(增函数),必过第一三象限当k v 0时,y随x的增大而减小(减函数),必过第二四象限② b决定着直线与y轴交点的位置:在原点的基础上“上加下减”当b=0时,必过原点;当b>0时,沿y轴向上平移;当b v 0时,沿y轴向下平移.补充口诀:上加下减改变b, y=kx+b —y=kx+b+左加右减改变x, y=kx+b —y=k(x+)+b③斜率k的性质:平移k不变;|k|越大,直线的倾斜程度越大;k=【可用于待定系数法求解析式中的k 1④截距b的性质:与y轴交点(0, b),与x轴交点(, 0)⑤四种特殊位置关系的直线:两直线平行k相等;两直线相互垂直--> k1 • k2= -1 ;两直线关于x轴对称--> k与b均互为相反数;两直线关于y轴对称k互为相反数,b相等.⑥点(x0, y0)到直线ax+by+=0的距离d公式:d=(三)一次函数的应用1、解题关键:点的坐标,尤其是交点的坐标三种交点:①与x轴交点,y坐标为0,即(x, 0)②与y轴交点,x坐标为0,即(0, y)③两个图象的交点:联立解析式,方程组的解即为交点的x坐标和y坐标2、解题思路:①与三角形全等、直角三角形、面积、周长、线段有关的问题均转化为点的坐标【数形结合很重要,注意运用“全等(含对称)、勾股定理、等面积法(含同底等高)”等知识】②求函数解析式(含求函数值或自变量的值)均用待定系数法,其中k、b注意利用性质求得.【待定系数法思路:几个未知系数,就用几个条件构造方程】③比较大小的三种方法:【含两种方案的比较问题】代入计算法(对函数解析式已知的题目适用)增减性分析法(对k的符号已知的适用)图象分析法(对能画出大致图形的适用,借助交点和坐标轴分析)④最值问题(如最大利润):先求出自变量的取值范围(常以“有几种方案”的问题出现,需根据题意列不等式组求出);再列出关于利润的函数表达式(要化简整理成y=kx+b 的形式),最后根据增减性结合具体方案(自变量取值范围),找出最值.⑤行程问题(常以两车同向或相向为背景)图象交点的意义:两车相遇(或追上)两车的距离即为:s=y1-y2例题1、已知直线y=(k+2)x+k2-4 的图象经过原点,贝U k=.2、若一次函数y=(k+2)x-2k+3的图象不经过第四象限,则k的取值范围是.3、已知直线平行于直线y=2x,且与y轴交点到原点的距离为2,则该直线的解析式是.4、把直线y=-x+3向上平移个单位后,与直线y=2x+4的交点在第一象限,则的取值范围是.5、函数y=ax-2与y=bx+3的图象交于x轴上的一点,则=.6、一次函数y=(3a-7)x+a-2 的图象与y轴交点在x轴上方,且y随x的增大而减小,求a的取值范围.7、正比例函数y=-kx的图象经过第一三象限,在函数y=(k-2)x 的图象上有三个点(x1 , y1 )、(x2, y2)、(x3, y3), 且x1 >x2 > x3时,贝» y1、y2、y3的大小关系为.&若直线y=kx+b交坐标轴于(-2,0) 、(0,3)两点,则不等式kx+b > 0的解集是.9、函数y= -x+3,当图象在第一象限时,x的取值范围是;当-1 < x < 3时,函数的最小值是.10、直线AB过点A (0,6 )、B (-3,0 ),直线D与直线AB相互垂直,且过点(0,1 ).(1)求两直线的解析式;(2)求直线D与x轴的交点D 的坐标;(3)求直线AB上到y轴距离等于4的点的坐标;(4)求两直线的交点P的坐标;(5)求厶PAD的面积;(6)在y 轴上的是否存在点,使得S A PA=S^ PAD.11、点A为直线y=-2x+2上的点,点A到两坐标轴的距离相等,则点A的坐标为.12、把Rt △ AB放在平面直角坐标系中,点A (1,0 )、点B( 4,0 ), / AB=90°, B=5.将厶AB沿x轴向右平移,当点落在直线y=2x-6上时,求线段B扫过的面积.13、某工厂投入生产一种机器,当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x (单位:台)102030y (单位:万元/台)605550(1)求y与x之间的函数关系式,并写出自变量x的50取值范围;(2)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润. (注:利润=售价-成本)14、现从A, B两个蔬菜市场向甲、乙两地运送蔬菜,A, B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A地到甲地的运费为50元/吨,到乙地的运费为30元/吨;从B地到甲地的运费为60元/吨,到乙地的运费为45元/吨.(1) 设从A地往甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)AxB(2) 设总运费为元,请写出与x的函数关系式;(3) 共有多少种运送方案?哪种方案运费最少?15、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1 (k),出租车离甲地的距离为y2 ( k),客车行驶时间为x ( h), y1 , y2 与x 的函数关系图象如图所示:(1)根据图象,求出y1 , y2关于x的函数关系式。

2013中考数学第一轮复习讲义第三章《函数及其图象》自我测试

2013中考数学第一轮复习讲义第三章《函数及其图象》自我测试

第三章 《函数及其图象》自我测试[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分) 1. (2012·成都)函数y =1x -2中,自变量x 的取值范围是( )A .x>2B .x<2C .x ≠2D .x ≠-22. (2012·广州)如图,正比例函数y 1=k 1x 和反比例函数y 2=k 2x 的图象交于A(-1,2)、B(1,-2)两点,若y 1<y 2,则x 的取值范围是( )A .x <-1或x >1B .x <-1或0<x <1C .-1<x <0或0<x <1D .-1<x <0或x >13. (2012·山西)已知直线y =ax(a ≠0)与双曲线y =kx (k ≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是( )A .(-2,6)B .(-6,-2)C .(-2,-6)D .(6,2)4. (2012·兰州)抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5. (2012·资阳)如图是二次函数y =ax 2+bx +c 的部分图象,由图象可知不等式ax 2+bx +c<0 的解集是( )A .-1<x<5B .x>5C .x<-1且x>5D .x<-1或x>56. (2012·铜仁)如图,正方形ABOC 的边长为2,反比例函数y =kx的图象过点A ,则k 的值是( )A .2B .-2C .4D .-47. (2012·泰安)二次函数y =a(x +m)2+n 的图象如图,则一次函数y =mx +n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8. (2012·荆门)如图,点A 是反比例函数y =2x (x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x 的图象于点B ,以AB 为边作 ABCD ,其中C 、D 在x 轴上,则S ABCD为( )A .2B .3C .4D .59. (2012·黄石)已知反比例函数y =bx (b 为常数),当x>0时,y 随x 的增大而增大,则一次函数y =x +b 的图像不经过第几象限( ) A .一 B. 二 C. 三 D. 四10. (2012·重庆)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,对称轴为x =-12.下列结论中,正确的是( )A .abc>0B .a +b =0C .2b +c =0D .4a +c<2b二、填空题(每小题4分,共24分)11. (2012·滨州)下列函数:①y =2x -1;②y =-5x ;③y =x 2+8x -2;④y =3x 2;⑤y =12x ;⑥y =ax中,y 是x 的反比例函数的有________.(填序号)12. (2012·赤峰)已知点A(-5,a),B(4,b)在直线y =-3x +2上,则a_______ b .(填“>”、 “<”或“=”号)13.(2011·黄冈)已知函数y = 则使y =k 成立的x 值恰好有三个,则k 的值为________.14. (2012·聊城)如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P(3a ,a)是反比例函数y =kx (k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为____________.15. (2012·营口)如图,直线y =-x +b 与双曲线y =1x(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,连接OA 、OB ,若S △AOB =S △OBF +S △OAE ,则b =__________.16. (2012·东营)在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =kx +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 2(72,32),那么点A n 的纵坐标是________________.三、解答题(第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17. (2012·北京)如图,在平面直角坐标系xOy 中,函数y =4x(x>0)的图象与一次函数y =kx-k 的图象的交点为A(m ,2). (1)求一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点, 且满足△PAB 的面积是4,直接写出点P 的坐标.18. (2012·嘉兴)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A(2,3)和点B ,与x 轴相交于点C(8,0).(1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.19. (2012·菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能..超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?20. (2012·兰州)若x 1、x 2是关于一元二次方程ax 2+bx +c(a ≠0)的两个根,则方程的两个根x 1、x 2和系数a 、b 、c 有如下关系:x 1+x 2=-b a ,x 1·x 2=ca .把它称为一元二次方程根与系数关系定理.如果设二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴的两个交点为A(x 1,0),B(x 2,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB =|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-b a 2-4c a=b 2-4aca 2=b 2-4ac|a|; 参考以上定理和结论,解答下列问题:设二次函数y =ax 2+bx +c(a >0)的图象与x 轴的两个交点A(x 1,0),B(x 2,0),抛物线 的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求b 2-4ac 的值; (2)当△ABC 为等边三角形时,求b 2-4ac 的值.21. (2012·武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE 、ED 、DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系. (1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?22. (2012·贵港)如图所示,一次函数y =k 1x +b 与反比例函数y =k 2x (x<0)的图象相交于A 、B两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求△AOB 的面积;(3)直接写出不等式k 1x +b>k 2x的解.23. (2012·杭州模拟)如图,抛物线y =-x 2+bx +c 与x 轴交于A(1,0)、B(-3,0)两点. (1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?若存在, 求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.24. (2012·重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂 处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同 时进行.1至6月,该企业向污水厂输送的污水量y 1(吨)与月份x(1≤x ≤6,且x 取整数)2二次函数关系式为y 2=ax 2+c(a ≠0),其图象如图所示.1至6月,污水厂处理每吨污水的费用z 1(元)与月份x 之间满足函数关系式z 1=12x ,该企业自身处理每吨污水的费用z 2(元)与月份x 之间满足函数关系式z 2=34x -112x 2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知 识,分别写出y 1、y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费 用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水 全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加 a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a -30)%,为鼓励节能 降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月 的污水处理费用为18000元,请计算出a 的整数值. (参考数据: 231≈15.2, 419≈20.5,809≈28.4)。

中考数学 第17课时 一次函数课件 北师大版

中考数学 第17课时 一次函数课件 北师大版
第三十页,共30页。
1.图象
(1)一次函数的图象是____一__条__(_y_ī__t.iáo)
(2)正比例函数的图象是经直过线_____的一条直线. 原点
2.直线y=kx与y=kx+b的位置关系
直线y=kx与直线y=kx+b(b≠0)_____.
3.直线y=kx+b的性质(xìngzhì)
平行 (píngxíng)
当k>0时,y随x增大而______;当k<0时,y随x增大而______.
3
第二十七页,共30页。
【创新点拨】
一次函数y=kx+b(k≠0)与两坐标轴围成的三角形的面积
设一次函数y=kx+b(k≠0)与两坐标轴的交点( jiāodiǎn)坐标为(Ab ,0)
和B(0,b),由此可知,
OB=|b|,△ABC的面积为
k
1b
b2
b .
2 k 2k
OA b , k
第二十八页,共30页。
第四页,共30页。
【即时( jíshí)检验】
一、1.若y=2x+m-2是正比例函数,则m=__2__.
2.当k=___3_时,y=kxk-2+1是一次函数.
二、1.在一次函数y=2x+3中,y随x的增大而_____增_.大
2.一次函数y=-3x-2的图象不经过第_____象限. 一
(zēnɡ
dà)
第十一页,共30页。
一次函数的图象和性质(xìngzhì) 【例2】(2011·陕西中考)若一次函数y=(2m-1)x+3-2m的图象经过一、 二、四象限,则m的取值范围是_____________.
第十二页,共30页。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

中考数学复习第三单元函数及其图象单元测试

中考数学复习第三单元函数及其图象单元测试

单元测试(三)范围:函数及其图象限时:45分钟满分:100分一、选择题(每小题5分,共30分)1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于 ()A.-1B.0C.3D.43.在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到4.如图D3-1,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,3),(3,0),∠ACB=90°,AC=2BC,函数y=kx(k>0,x>0)的图象经过点B,则k的值为()图D3-1A.92B.9 C.278D.2745.甲、乙两辆摩托车同时分别从相距20 km的A,B两地出发,相向而行.图D3-2中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)之间的函数关系.则下列说法错误的是 ()图D3-2A.乙摩托车的速度较快B.经过0.3 h甲摩托车行驶到A,B两地的中点C.经过0.25 h两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地503km6.如图D3-3,抛物线y=ax2+bx+c(a≠0)与x轴交于点(-3,0),其对称轴为直线x=-12.结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y 随x 的增大而增大;④一元二次方程cx 2+bx+a=0的两根分别为x 1=-13,x 2=12;⑤b 2-4ac 4a<0;⑥若m ,n (m<n )为方程a (x+3)·(x -2)+3=0的两个根,则m<-3,n>2,其中正确的结论有( )图D3-3A .3个B .4个C .5个D .6个二、 填空题(每小题5分,共20分)7.将点A (1,-3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A'的坐标为 .8.如图D3-4,已知直线y=kx+b 过A (-1,2),B (-2,0)两点,则0≤kx+b ≤-2x 的解集为 .图D3-49.如图D3-5,点A ,C 分别是正比例函数y=x 的图象与反比例函数y=4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为 .图D3-510.已知抛物线y=ax 2+4ax+4a+1(a ≠0)过点A (m ,3),B (n ,3)两点,若线段AB 的长不大于4,则代数式a 2+a+1的最小值是 . 三、 解答题(共50分)11.(15分)如图D3-6,一次函数y=kx+b与反比例函数y=4的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于xM,N两点.(1)求一次函数的解析式;>0中x的取值范围;(2)根据图象直接写出kx+b-4x(3)求△AOB的面积.图D3-612.(15分)某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元) 1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.13.(20分)如图D3-7,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF 的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.图D3-7【参考答案】1.D2.C [解析]设直线的解析式为y=kx +b (k ≠0),把(1,4),(2,7)的坐标代入y=kx +b ,得{4=k +b,7=2k +b,解得{k =3,b =1,∴直线的解析式为y=3x +1,把C (a ,10)代入y=3x +1中,得a=3,故选C .3.C [解析]根据二次函数的性质进行判断,由二次函数y=(x -2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x ≥2时,y 的值随x 值的增大而增大,当x<2时,y 的值随x值的增大而减小,可由y=x 2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C 是错误的, 故选C .4.D [解析]过B 作BD ⊥x 轴,垂足为D. ∵A ,C 的坐标分别为(0,3),(3,0), ∴OA=OC=3,∠ACO=45°,∴AC=3√2. ∵AC=2BC ,∴BC=3√22. ∵∠ACB=90°,∴∠BCD=45°,∴BD=CD=32,∴点B 的坐标为92,32.∵函数y=kx (k>0,x>0)的图象经过点B , ∴k=92×32=274,故选D .5.C [解析]由图可知,甲行驶完全程需要0.6 h,乙行驶完全程需要0.5 h,所以乙摩托车的速度较快,A 选项正确;∵甲摩托车匀速行驶,且行驶完全程需要0.6 h,∴经过0.3 h 甲摩托车行驶到A ,B 两地的中点,B 选项正确; 设两车相遇的时间为t h,根据题意,得20t 0.6+20t0.5=20,解得t=311,所以经过311 h 两摩托车相遇,C 选项错误; 当乙摩托车到达A 地时,甲摩托车距离A 地200.6×0.5=503(km),D 选项正确.6.C [解析]①由图象可知a<0,b<0,c>0, ∴abc>0,故①正确; ②由于对称轴是直线x=-12, ∴a=b.∵图象与x 轴的一个交点是(-3,0),∴另一个交点是(2,0), 把(2,0)代入解析式可得4a +2b +c=0, ∴6a +c=0,∴3a +c=-3a ,∵a<0,∴-3a>0,∴3a +c>0,故②正确;③由图象可知当-12<x<0时,y 随x 的增大而减小,∴当x<0时,y 随x 的增大而增大是错误的;④一元二次方程ax 2+bx +c=0的两根为x 1=-3,x 2=2,∴一元二次方程cx 2+bx +a=0的两根分别为x 1=-13,x 2=12,正确; ⑤由图象顶点的纵坐标大于0可知,4ac -b 24a>0,∴b 2-4ac 4a<0,正确;⑥若m ,n (m<n )为方程a (x +3)(x -2)+3=0的两个根,则a (x +3)(x -2)=-3,由图象可知,当y=-3时,m<-3,n>2,⑥正确,综上,正确的结论有5个, 故选C . 7.(-2,2)8.-2≤x ≤-1 [解析]如图,直线OA 的解析式为y=-2x ,当-2≤x ≤-1时,0≤kx +b ≤-2x.9.8 [解析]由{y =x,y =4x ,得{x =2,y =2或{x =-2,y =-2,,∴A 的坐标为(2,2),C 的坐标为(-2,-2).∵AD ⊥x 轴于点D ,CB ⊥x 轴于点B ,∴B (-2,0),D (2,0),∴BD=4,AD=2, ∴四边形ABCD 的面积=12AD ·BD ×2=8.10.74 [解析]∵抛物线y=ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点, ∴m+n 2=-4a2a =-2.∵线段AB 的长不大于4,∴4a +1≥3,∴a ≥12, ∴a 2+a +1的最小值为:122+12+1=74.11.解:(1)∵点A 在反比例函数y=4x 图象上, ∴4m =4,解得m=1, ∴点A 的坐标为(1,4).又∵点B 也在反比例函数y=4x图象上,∴42=n ,解得n=2,∴点B 的坐标为(2,2). ∵点A ,B 在y=kx +b 的图象上, ∴{k +b =4,2k +b =2,,解得{k =-2,b =6, ∴一次函数的解析式为y=-2x +6.(2)根据图象得:kx +b -4x >0时,x 的取值范围为x<0或1<x<2. (3)∵直线y=-2x +6与x 轴的交点为N , ∴点N 的坐标为(3,0),∴S △AOB =S △AON -S △BON =12×3×4-12×3×2=3.12.解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200.②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件;周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.13.[分析] (1)将点A ,D 的坐标分别代入直线表达式、抛物线的表达式,即可求解; (2)设出P 点坐标,用参数表示PE ,PF 的长,利用二次函数求最值的方法.求解; (3)分NC 是平行四边形的一条边或NC 是平行四边形的对角线两种情况,分别求解即可. 解:(1)将点A ,D 的坐标代入y=kx +n 得: {-k +n =0,5k +n =-6,解得:{k =-1,n =-1, 故直线l 的表达式为y=-x -1. 将点A ,D 的坐标代入抛物线表达式,得{-1-b +c =0,-25+5b +c =-6, 解得{b =3,c =4. 故抛物线的表达式为:y=-x 2+3x +4. (2)∵直线l 的表达式为y=-x -1,∴C (0,-1),则直线l 与x 轴的夹角为45°,即∠OAC=45°, ∵PE ∥x 轴,∴∠PEF=∠OAC=45°.又∵PF ∥y 轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P 坐标为(x ,-x 2+3x +4), 则点F (x ,-x -1),∴PE +PF=2PF=2(-x 2+3x +4+x +1)=-2(x -2)2+18, ∵-2<0,∴当x=2时,PE +PF 有最大值,其最大值为18. (3)由题意知N (0,4),C (0,-1),∴NC=5,①当NC 是平行四边形的一条边时,有NC ∥PM ,NC=PM. 设点P 坐标为(x ,-x 2+3x +4),则点M 的坐标为(x ,-x -1), ∴|y M -y P |=5,即|-x 2+3x +4+x +1|=5, 解得x=2±√14或x=0或x=4(舍去x=0),则点M 坐标为(2+√14,-3-√14)或(2-√14,-3+√14)或(4,-5); ②当NC 是平行四边形的对角线时,线段NC 与PM 互相平分. 由题意,NC 的中点坐标为0,32,设点P 坐标为(m ,-m 2+3m +4), 则点M (n',-n'-1), ∴0=m+n'2,32=-m 2+3m+4-n'-12,解得:n'=0或-4(舍去n'=0), 故点M (-4,3).综上所述,存在点M ,使得以N ,C ,M ,P 为顶点的四边形为平行四边形,点M 的坐标分别为: (2+√14,-3-√14),(2-√14,-3+√14),(4,-5),(-4,3).。

八年级数学下册第17章函数及其图象17.3一次函数4求一次函数的表达式课件新版华东师大版

八年级数学下册第17章函数及其图象17.3一次函数4求一次函数的表达式课件新版华东师大版
第六页,编辑于星期六:七点 五十一分。
【自主解答】依题意将A,B两点的坐标代入y=kx+b得
3 -3
-k 解b得,
2k b,
k 2,
b
1.
∴所求一次函数的表达式是y=-2x+1.
第七页,编辑于星期六:七点 五十一分。
【总结提升】点的坐标在求函数表达式中的作用 (1)函数表达式与函数图象可以相互转化,实现这种转化的工具就是点 的坐标. (2)若已知图象上某点的坐标,就可以把该点的横、纵坐标作为表达式 中的一对x,y的值,代入函数表达式,从而得到一个关于待定系数
答案:7.4
第二十六页,编辑于星期六:七点 五十一分。
4.(2013·湘潭中考)莲城超市以10元/件的价格调进一批商品,根 据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数 关系,如图所示.
(1)求销售量y与定价x之间的函数表达式.
(2)如果超市将该商品的销售价定为13元/件,不考虑其他因素,求超
的方程.
第八页,编辑于星期六:七点 五十一分。
知识点 2 用一次函数解决实际问题 【例2】(2013·陕西中考)“五一”节期间,申老师一家自驾游去了离家 170 km的某地,下面是他们离家的距离y(km)与汽车行驶时间x(h)之
间的函数图象.
①求他们出发0.5 h时,离家多少km. ②求出AB段图象的函数表达式. ③他们出发2 h时,离目的地还有多少km.
表达式是
.
【解析】∵一次函数y=(2-m)x+m的图象经过点(-1,0),∴0=(2-
m)×(-1)+m,解得m=1,
∴这个一次函数的表达式是y=x+1.
答案:y=x+1

高考数学大一轮复习第三章导数及其应用17曲线的切线课件文

高考数学大一轮复习第三章导数及其应用17曲线的切线课件文
解.
导数几何意义的综合应用
例2
已知函数 f(x)=ax-bx,曲线 y=f(x)在点(2,f(2))
处的切线方程为 7x-4y-12=0.
(1) 求函数 f(x)的解析式;
(2) 求证:曲线 y=f(x)上任意一点处的切线与直线 x=0
和直线 y=x 所围成的三角形的面积为定值,并求出此定值.
【解答】(1) 方程 7x-4y-12=0 可化为 y=74x-3,当 x
(2) 已知函数 f(x)=xln x,过点 A-e12,0作函数 y=f(x) 图象的切线,那么切线的方程为__x+__y_+__e_12_=__0_________.
【思维引导】(1) 本题考查导数的几何意义和导数的运
算,这类题比较常见.本题要注意点与曲线的位置关系.(2) 点
A 不在曲线 y=f(x)上,故先设切点,利用切线过点 A,建立
2. (2016·苏州暑假测试)已知函数 f(x)=x-1+e1x,若直线 l:y=kx-1 与曲线 y=f(x)相切,则实数 k=__1_-__e___.
【解析】设切点为(x0,y0).因为 f′(x)=1-e1x,则 f′(x0) =k,即 1-e1x0=k,且 kx0-1=x0-1+e1x0,所以 x0=-1,所 以 k=1-e1-1=1-e.
=2 时,y=12,又 f′(x)=a+xb2,
于是2aa+-b4b2==7412,, 所以 f(x)=x-3x.
解得ab= =13, ,
(2) 设点 P(x0,y0)为曲线上任意一点,由 f′(x)=1+x32知,
曲线在点 P(x0,y0)处的切线方程为 y-y0=1+x302(x-x0), 即 y-x0-x30=1+x302(x-x0). 令 x=0,得 y=-x60,从而得切线与直线 x=0 的交点坐

中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT

中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT

★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析

第17章函数及其图象综合练习题-2021-2022学年华东师大版八年级数学下册(word版含答案)

第17章函数及其图象综合练习题-2021-2022学年华东师大版八年级数学下册(word版含答案)

2021-2022学年华师大版八年级数学下册《第17章函数及其图象》期中复习综合练习题(附答案)一.选择题1.点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为()A.(﹣6,2)B.(﹣2,﹣6)C.(﹣2,6)D.(2,﹣6)2.已知甲、乙两地相距720米,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:米),下列说法正确的是()A.乙先走5分钟B.甲的速度比乙的速度快C.12分钟时,甲乙相距160米D.甲比乙先到2分钟3.如图,欣欣妈妈在超市购买某种水果所付金额y(元)与购买x(千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省()元.A.4B.3C.2D.14.如图1,在矩形ABCD中,点P从点C出发,沿C→D→A→B方向运动至点B处停止.设点P运动的路程为x,△PBC的面积为y,已知y关于x的函数关系如图2所示,则长方形ABCD的面积为()A.15B.20C.25D.305.如图,一次函数y=kx+b的图象与x轴交于点A(1,0),则关于x的不等式x(kx+b)>0的解集是()A.x>0B.x<0C.x>1或x<0D.x>1或x<1 6.在函数y=中,自变量x的取值范围是()A.x≥0B.x≠3C.x≥0且x≠3D.0≤x≤37.若图中反比例函数的表达式均为y=,则阴影面积为2的是()A.图1B.图2C.图3D.图48.如图,在直角坐标系中,O为坐标原点,函数y=与y=在第一象限的图象分别为曲线l1,l2,点P为曲线l1上的任意一点,过点P作y轴的垂线交l2于点A,交y轴于点M,作x轴的垂线交l2于点B,则△AOB的面积是()A.B.3C.D.4二.填空题9.若点M在第二象限,且点M到x轴的距离为1,到y轴的距离为2,则点M的坐标为.10.一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y(升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为.11.将一次函数y=2x﹣4的图象沿x轴向左平移4个单位长度,所得到的图象对应的函数表达式是.12.已知直线y=x+b和y=ax+2交于点P(3,﹣1),则关于x的方程(a﹣1)x=b﹣2的解为.13.已知一次函数y=(m﹣1)x+4﹣3m(m为常数),若其图象经过第一、三、四象限,则m的取值范围为.14.疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示,当乙地完成接种任务时,甲地未接种疫苗的人数为万人.15.如图,在平面直角坐标系xOy中,点A,B分别在函数y=(x>0),y=(x<0)的图象上,AB∥x轴,点C是y轴上一点,线段AC与x轴正半轴交于点D.若△ABC 的面积为8,=,则k的值为.16.若一次函数y=kx+5在﹣1≤x≤4范围内有最大值17,则k=.三.解答题17.在平面直角坐标系中,有一点M(a﹣2,2a+6),试求满足下列条件的a值或取值范围.(1)点M在y轴上;(2)点M在第二象限;(3)点M到x轴的距离为2.18.小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程ykm与行驶时间xmin之间的函数关系如图所示.结合图象,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.19.如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.(1)求A,B两点的坐标;(2)求BD的长;(3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.20.一辆客车从甲地驶往乙地,同时一辆私家车从乙地驶往甲地(私家车、客车两车速度不变).图1是私家车离甲地距离为y(千米)与行驶的时间为x(小时)之间的函数图象,图2是两车之间的距离s(千米)与行驶的时间x(小时)之间的函数图象:(1)求私家车和客车的速度各是多少;(2)点P的坐标为,c的值为;(3)直接写出两车相距200千米时,两车出发的时间x(小时)的值.21.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(4,1),B(n,﹣4)两点,与y轴交于点C.(1)求一次函数和反比例函数的表达式;(2)将直线y=kx+b向上平移,平移后的直线与反比例函数y=在第一象限的图象交于点P,连接P A,PC,若△P AC的面积为12,求点P的坐标.22.如图,直线y=k1x+b与双曲线y=交于A、B两点,已知A(﹣2,1),点B的纵坐标为﹣3,直线AB与x轴交于点C,与y轴交于点D.(1)求直线AB和双曲线的解析式;(2)若点P是第二象限内反比例函数图象上的一点,△OCP的面积是△ODB的面积的2倍,求点P的坐标;(3)直接写出不等式k1x+b<的解集.参考答案一.选择题1.解:∵点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,∴点P的横坐标为﹣2,纵坐标为6,∴点P的坐标为(﹣2,6).故选:C.2.解:A.由图象可知,甲先走5分钟,故本选项不合题意;B.甲的速度为:720÷12=60(米/分),乙的速度为:720÷(14﹣5)=80(米/分),60<80,故本选项不合题意;C.12分钟时,甲乙相距:80×(12﹣5)=560(米),故本选项不合题意;D.由图象可知,甲比乙先到2分钟,故本选项符合题意.故选:D.3.根据图象可知,当x≤4时,购买的单价为:20÷4=5(元/千克),故平均分2次购买需要:6×5=30(元);当x>4时,前4千克需要20元,多于4千克部分的单价为:(44﹣20)÷(10﹣4)=4(元/千克),故一次性购买6千克需要:20+(6﹣4)×4=28(元),一次性购买可节省:30﹣28=2(元),故选:C.4.解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D 之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=5时,y开始不变,说明BC=5,x=11时,接着变化,说明CD=11﹣5=6.长方形ABCD的面积为:5×6=30.故选:D.5.解:∵不等式x(kx+b)>0,∴或,∵一次函数y=kx+b的图象与x轴交于点A(1,0),由图象可知,当x>1时,y>0;当x<1时,y<0,∴关于x的不等式x(kx+b)>0的解集是x>1或x<0.故选:C.6.解:由题意得:x≥0且x﹣3≠0,解得:x≥0且x≠3,故选:C.7.解:图1中,阴影面积为4;图2中,阴影面积为×4=2;图3中,阴影面积为2××4=4;图4中,阴影面积为4××4=8;则阴影面积为2的有1个.故选:B.8.解:如图,∵点A、B在反比例函数y=的图象上,点P在反比例函数y=图象上,∴S△AOM=S△BON=×|2|=1,S矩形OMON=|6|=6,设ON=a,则PN=OM=,BN=,∴PB=PN﹣BN=,在Rt△AOM中,∵OM•AM=1,OM=,∴AM=a,∴P A=PM﹣AM=a﹣a=a,∴S△P AB=P A•PB=×a×=,∴S△AOB=S矩形OMPN﹣S△AOM﹣S△BON﹣S△P AB=6﹣1﹣1﹣=,故选:A.二.填空题9.解:∵点M在第二象限,且到x轴的距离是1,到y轴的距离是2,∴点M的横坐标是﹣2,纵坐标是1,∴点M的坐标是(﹣2,1).故答案为:(﹣2,1).10.解:一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y (升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为:y=﹣4x+80,故答案为:y=﹣4x+80.11.解:将一次函数y=2x﹣4的图象沿x轴向左平移4个单位长度,所得到的图象对应的函数表达式是:y=2(x+4)﹣4,即y=2x+4.故答案为:y=2x+4.12.解:由(a﹣1)x=b﹣2知,x+b=ax+2.∵直线y=x+b和ax+2交于点P(3,﹣1),∴当x=3时,x+b=ax+2=﹣1,即关于x的方程(a﹣1)x=b﹣2的解为x=3.故答案为:x=3.13.解:∵一次函数y=(m﹣1)x+4﹣3m(m为常数)的图象经过第一、三、四象限,∴,解得m>.故答案为:m>.14.解:乙地接种速度为40÷80=0.5(万人/天),∴0.5a=30﹣5,解得a=50.设y=kx+b,将(50,30),(100,40)代入解析式得:,解得,∴y=x+20(50≤x≤100).把x=80代入y=x+20得y=×80+20=36,∴40﹣36=4(万人).故答案为:4.15.解:∵△ABC的面积为8,=,∴△ABD的面积为×8=5,如图,连接OA,OB,设AB与y轴交于点P,∵△AOB与△ADB同底等高,∴S△AOB=S△ADB,∵AB∥x轴,∴AB⊥y轴,∵A、B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOP=3,S△BOP=,∴S△ABD=S△AOB=S△AOP+S△BOP=3+=5.解得k=﹣4,(正值舍去)故答案为:﹣4.16.解:①当x=﹣1时,y有最大值17,则﹣k+5=17,解得k=﹣12;②当x=4时,y有最大值17,则4k+5=17,解得k=3;∴若﹣1≤x≤4时,y有最大值17,k的值为﹣12或3,故答案为:﹣12或3.三.解答题17.解:(1)由题意得,a﹣2=0,解得a=2;(2)由,解得,﹣3<a<2;(3)由|2a+6|=2,解得a=–2或–4.18.解:(1)设直线BC的解析式为y=kx+b,代入点(5,6)和(10,4)得,解得,∴直线BC的解析式为y=﹣x+8,当y=0时,x=20,故答案为:20;(2)由题知:AB段的速度为:=1.2(km/min),BC段的速度为:=0.4(km/min),4分钟行驶了2.4千米的平均速度为:2.4÷4=0.6(km/min),则小明爸爸连续的四分钟有一段在AB段有一段在BC段,设在AB段行驶时间为xmin,则在BC段行驶(4﹣x)min,由题意得1.2x+(4﹣x)×0.4=2.4,解得x=1,5﹣1=4(min),4+4=8(min),∴这4分钟的起止时间是从第4分钟到第8分钟.19.解:(1)∵把y=x的图象向下平移1个单位,∴y=x﹣1,当x=0时,y=﹣1,∴B(0,﹣1),当y=0时,x=2,∴A(2,0);(2)∵A(2,0),B(0,﹣1),∴AB=,∵C为线段AB的中点,∴C(1,﹣),∵CD⊥AB,∴∠BDC=∠BAO,∴BD=;(3)∵BD=,∴D(0,),设直线CD的解析式为y=kx+b,∴,∴,∴y=﹣2x+,当BE=AE时,E点在AB的垂直平分线上,∴E点与D点重合或E点是CD与x轴的交点,∴E(0,)或E(,0);当BA=BE时,BE=,∴E(0,﹣1+)或(0,﹣1﹣)或(﹣2,0);当AB=AE时,E(2+,0)或(0,1)或(2﹣,0);综上所述:E点坐标为(0,)或(,0)或(0,﹣1+)或(0,﹣1﹣)或(﹣2,0)或(2+,0)或(0,1)或(2﹣,0).20.解:(1)由图1可知,私家车6小时行驶600千米,∴私家车的速度是100千米/时,由图2可知,两车小时相遇,∴客车的速度是﹣100=60(千米/时),答:私家车的速度是100千米/时,客车的速度是60千米/时;(2)∵私家车的速度是100千米/时,客车的速度是60千米/时;∴私家车到达甲地用了6小时,此时客车行驶的路程是360千米,∴点P的坐标为(6,360);而客车到达乙地需要600÷60=10(小时),∴c的值为10,故答案为:(6,360),10;(3)出发x小时,客车距甲地60x千米,私家车距甲地(600﹣100x)千米,根据题意得:60x﹣(600﹣100x)=200或(600﹣100x)﹣60x=200,解得x=5或x=2.5,答:两车出发5小时或2.5小时,相距200千米.21.解:(1)∵反比例函数y=的图象经过A(4,1),∴m=4×1=4,∵B(n,﹣4)在y=上,∴﹣4=,∴n=﹣1,∴B(﹣1,﹣4),∵一次函数y=kx+b的图象经过A,B,∴,解得,∴一次函数与反比例函数的解析式分别为y=和y=x﹣3.(2)设平移后的一次函数的解析式为y=x﹣3+p,交y轴于Q,连接AQ,令x=0,则y=p﹣3,∴Q(0,p﹣3),∵S△ACQ=S△ACP=12,∴=12,解得p=6,∴平移后的一次函数的解析式为y=x+3,解得或,∴P(1,4).22.解:(1)∵点A在双曲线y=上,A(﹣2,1),∴k2=﹣2×1=﹣2,∴双曲线的解析式为y=﹣,∵点B在双曲线上,且纵坐标为﹣3,∴﹣3=﹣,∴x=,∴B(,﹣3),将点A(﹣2,1),B(,﹣3)代入直线y=k1x+b中得,,∴,∴直线AB的解析式为y=﹣x﹣2;(2)如图2,连接OB,PO,PC;∵D(0,﹣2),∴OD=2,∴S△ODB=OD•x B=×2×=,∵△OCP的面积是△ODB的面积的2倍,∴S△OCP=2S△ODB=2×=,∵直线AB的解析式为y=﹣x﹣2,令y=0,则﹣x﹣2=0,∴x=﹣,∴OC=,设点P的纵坐标为n,∴S△OCP=OC•y P=×n=,∴n=2,∵点P在双曲线y=﹣上,∴2=﹣,∴x=﹣1,∴P(﹣1,2);(3)由图象知,不等式k1x+b<的解集为﹣2<x<0或x>.。

中考数学复习课件(全国通用版):第三单元 函数及其图象(123张PPT)【学霸笔记、状元学案、名师教案】

中考数学复习课件(全国通用版):第三单元 函数及其图象(123张PPT)【学霸笔记、状元学案、名师教案】

第11课时┃ 考点聚焦
考点3 图形变换引起点的坐标的变化
在平面直角坐标系中,将点(x,y)向右(或 向左)平移a个单位长度,可以得到对应点 点的平移 ________( (x+a,y) 或( x-a,y) ;将点(x,y)向上 ________) (或下)平移b个单位长度,可以得到对应点 (x,y+b) 或( ________ (________) x, y - b) 图形的 平移 图形的平移只改变图形的位置(图形上所 有点的坐标都要发生相应的变化),不改 变图形的大小和形状
第11课时┃ 考点聚焦
考点6
函数的表示方法
表示方法
(1)列表法
(2)图象法
(3)解析法
使用指导
表示函数时,要根据具体情况选择适 当的方法,解决问题时,常常综合应 用这三种方法来深入研究函数的性质
第11课时┃ 考点聚焦 考点7 函数图象的概念及画法
一般地,对于一个函数,如果以自变量与因变量 的每对对应值分别作为点的横坐标、纵坐标,那 概念 么坐标平面内由这些点组成的图形就是这个函数 的图象 画法 (1)列表;(2)描点;(3)连线 步骤
点到两坐标轴 的距离 点到原点的距离
第11课时┃ 考点聚焦
(1)x 轴上两点 P1(x1,0)与 P2(x2,0)的距离 P1P2 =|x1-x2|; 坐标轴 (2)y 轴上两点 Q1(0,y1)与 Q2(0,y2)的距离 Q1Q2 上两点 =|y1-y2|; 间距离 (3)x 轴上一点 P(x,0)与 y 轴上一点 Q(0,y)的 距离 PQ= x2+y2
对应关 坐标平面内的点与有序实数对是 ________ 一一 对 系 应的 (1)各象限内点的坐标的特征 点 P(x, y)在第一象限 ⇔____________ ; x>0 y>0 x<0 y>0 ; 点 P(x, y)在第二象限 ⇔____________ 平面内 点 P(x, y)在第三象限 ⇔____________ x<0 y<0 ; 点 P(x, 点 P(x, y)在第四象限 ⇔____________ x>0 y<0 y)的 (2)坐标轴上点的坐标的特征 坐标的 点 P(x, y)在 x 轴上⇔__________________ y=0,x为任意实数; 特征 点 P(x, y)在 y 轴上⇔__________________ x=0,y为任意实数; 点 P(x, y)既在 x 轴上,又在 y 轴上 ⇔x、y 同 时为零,即点 P 的坐标为(0, 0); 坐标轴上的点 不属于任何象限

湖南省中考数学复习方案 第3单元 函数及其图象课件 湘教版

湖南省中考数学复习方案 第3单元 函数及其图象课件 湘教版

一次函数
一般地,如果y=kx+b(k、b是常数,k≠ 0),那么y叫做x的一次函数
特别地,当b=0时,一次函数y=kx+b变为
正比例函数 y=kx(k为常数,k≠0),这时y叫做x的正比
例函数
第11讲┃ 考点聚焦
考点4 一次函数的图象和性质 (1)正比例函数与一次函数的图象
正比例函 正比例函数 y=kx(k≠0)的图象是经过点(0,0)和点
第10讲┃ 归类示例
在坐标系中求几何图形的点的坐标,通常转化为利用几 何图形的性质,求该点到两坐标轴的距离.常用到三角形, 四边形,勾股定理等知识.
第10讲┃ 归类示例
► 类型之二 坐标平面内点的坐标特征
命题角度: 1. 四个象限内点的坐标特征; 2. 坐标轴上的点的坐标特征; 3. 平行于x、y轴的直线上的点的坐标特征; 4. 第一、三,第二、四象限的平分线上的点的坐标特征.
数的图象
(1,k)的一条直线
一次函数 的图象
一次函数 y=kx+b(k≠0)的图象是经过点(0,b)和 -bk,0的一条直线
一次函数 y=kx+b 的图象可由正比例函数 y=kx 的
图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
x、y的方程组yy= =kk12xx+ +bb12,的解
第11讲┃ 归类示例
归类示例
► 类型之一 函数的概念及函数自变量的取值范围
命题角度: 1.常量与变量,函数的概念; 2.函数自变量的取值范围.
[2012·内江] 函数 y=1x+ x的图象在( A ) A.第一象限 B.第一、三象限 C.第二象限 D.第二、四象限

(中考数学复习)第12讲-一次函数及其图象-课件-解析

(中考数学复习)第12讲-一次函数及其图象-课件-解析

课堂回顾 · 巩固提升
(2)由题意,得xy=2 000,
浙派名师中考
-x2+130x-4 000=0, 解得x1=50,x2=80>70(舍去). 答:该机器的生产数量为50台. (3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z= ka+b,由函数图象,得
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 6.如图12-3所示,直线y=kx+b经过点A(-1,-2)和点B(-
2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为 __-__2_<__x_<__-__1___.
图12-3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
B.x>0
C.x<2
D.x>2
图12-2
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
5.(2013·泰安)把直线y=-x+3向上平移m个单位后,与直线y =2x+4的交点在第一象限,则m的取值范围是 ( C ) A.1<m<7 B.3<m<4 C.m>1 D.m<4 解析:把直线y=-x+3向上平移m个单位后可得:y=-x +3+m,求出直线y=-x+3+m与直线y=2x+4的交点, 再由此点在第一象限可得出m的取值范围.解得m>1.
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 函数、方程、不等式的结合 【例4】 (2012·乐山)已知一次函数y=ax+b的图象过第一、

中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题

中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题

第三章函数及其图象第一节函数及其图象怀化七年中考命题规律)标2021选择6函数自变量的取值范围求含有二次根式且位于分母的自变量的取值范围3填空13求函数值自变量的值,求函数的值36命题规律纵观怀化七年中考,有五年考察了此考点内容,并且以选择题、填空题的形式呈现,其中求函数自变量的取值范围考察了4次,平面直角坐标系考察了2次.命题预测预计2021年怀化中考,本课时的考察重点为求函数自变量的取值范围与函数图象的判断,可能会及其他知识结合,特别是及几何图形结合的图象,题型以选择题为主.,怀化七年中考真题及模拟)平面直角坐标系(2次)1.(2021怀化中考)在平面直角坐标系中,点(-3,3)所在象限是( B)A.第一象限B.第二象限C.第三象限D.第四象限2.(2021怀化中考)如图,假设在象棋盘上建立直角坐标系,假设“帅〞位于点(-1,-2),“馬〞位于点(2,-2),那么“兵〞位于点( C)A.(-1,1) B.(-2,-1)C .(-3,1)D .(1,-2)求自变量的取值范围与函数值(5次)3.(2021怀化中考)函数y =x -1x -2中,自变量x 的取值范围是( C )A .x ≥1B .x>1C .x ≥1且x≠2D .x ≠24.(2021怀化中考)在函数y =2x -3中,自变量x 的取值范围是( D )A .x>32B .x ≤32C .x ≠32D .x ≥325.(2021怀化中考)函数y =1x -2中,自变量x 的取值范围是( A )A .x>2B .x ≥2C .x ≠2D .x ≤26.(2021怀化中考)函数y =x -3中,自变量x 的取值范围是__x≥3__.7.(2021怀化中考)函数y =-6x ,当x =-2时,y 的值是__3__.及实际相结合的函数图象(1次)8.(2021怀化一模)小敏家距学校1 200 m ,某天小敏从家里出发骑自行车上学,开场她以v 1 m /min 的速度匀速行驶了600 m ,遇到交通堵塞,耽误了3 min ,然后以v 2 m /min 的速度匀速前进一直到学校(v 1<v 2),你认为小敏离家的距离y 及时间x 之间的函数图象大致是( A ),A ) ,B ) ,C ) ,D )9.(2021沅陵模拟)一艘轮船在同一航线上往返于甲、乙两地.轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h ),航行的路程为s(km ),那么s 及t 的函数图象大致是( C ),A ),B ),C ),D )10.(2021怀化考试说明)如图,在矩形中截取两个一样的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 与x ,那么y 及x 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )11.(2021中考预测)如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE =EF =FB =5,DE =12,动点P 从点A 出发,沿折线AD —DC —CB 以每秒1个单位长的速度运动到点B 停顿.设运动时间为t s ,y =S △EPF ,那么y 及t 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )12.(2021怀化学业考试指导)在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中(铁块完全淹没于水中),然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.如图能反映弹簧秤的读数y(单位:N )及铁块被提起的高度x(单位:cm )之间的函数关系的大致图象是( C ),A ) ,B ) ,C ) ,D )13.(2021 麻阳模拟)小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30 s .他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s ),他及教练的距离为y(单位:m ),表示y 及t 的函数关系的图象大致如图2所示,那么这个固定位置可能是图1中的( D )A .点MB .点NC .点PD .点Q14.(2021 中方模拟)点M(1-2m ,m -1)关于x 轴对称的点在第一象限,那么m 的取值范围在数轴上表示正确的选项是( A ),A ),B ),C ) ,D )15.(2021怀化二模)根据如下图的程序计算函数值,假设输入的x 的值为-1,那么输出的函数值为( A )A .1B .-2C .13 D .3,中考考点清单)平面直角坐标系及点的坐标1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.【方法技巧】一般地,点P(a ,b)到x 轴的距离为|b|;到y 轴的距离为|a|;到原点的距离为a 2+b 2.2.平面直角坐标系中点的坐标特征各象限点的坐标的符号特征 第一象限(+,+);第二象限①__(-,+)__;第三象限(-,-);第四象限②__(+,-)__ 坐标轴上点的坐标特征x 轴上的点的纵坐标为③__0__,y 轴上的点的横坐标为0,原点的坐标为(0,0)各象限角平分线上点的坐标特征 第一、三象限角平分线上点的横、纵坐标相等;第二、四象限角平分线上点的横、纵坐标④__互为相反数__对称点的坐标特征点P(a ,b)关于x 轴对称的点的坐标为(a ,-b);点P(a ,b)关于y 轴对称的点的坐标为⑤__(-a ,b)__;点P(a ,b)关于原点对称的点的坐标为P′(-a ,-b) 平移点的坐标特征将点P(x ,y)向右或向左平移a 个单位,得到对应点的坐标P′是(x +a ,y)或(x -a ,y);将点P(x ,y)向上或向下平移b 个单位,得到对应点的坐标P′是(x ,y +b)或(x ,y -b);将点P(x ,y)向右或向左平移a 个单位,再向上或向下平移b 个单位,得到对应点P′的坐标是⑥__(x +a ,y +b)或(x -a ,y -b)__,简记为:左减右加,上加下减函数的相关概念3.变量:在一个变化过程中,可以取不同数值的量叫做变量. 4.常量:在一个变化过程中,数值保持不变的量叫做常量.5.函数:一般地,在某个变化过程中,有两个变量,就能相应地确定y 的一个值,那么,我们就说y 是x 的函数.其中,x 叫做自变量.函数自变量的取值范围表达式 取值范围 整式型 取全体实数 分式型,如y =ax分母不为0,即x≠0 根式型,如y =x 被开方数大于等于0,即x≥0分式+根式型,如y =ax同时满足两个条件:①被开方数大于等于0即x≥0;②分母不为0,即x≠0函数的表示方法及其图象函数图象的判断近7年共考察3次,题型都为选择题,出题背景有:(1)及实际问题结合;(2)及几何图形结合;(3)及几何图形中的动点问题结合,设问方式均为“判断函数图象大致是〞.6.表示方法:数值表、图象、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观与便于抽象应用的特点.7.图象的画法:知道函数的表达式,一般用描点法按以下步骤画出函数的图象.(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表.(2)画点.根据自变量与函数的数值表,在直角坐标系中描点.(3)连线.用平滑的曲线将这些点连接起来,即得函数的图象.8.函数表达式,判断点P(x,y)是否在函数图象上的方法:假设点P(x,y)的坐标适合函数表达式,那么点P(x,y)在其图象上;假设点P(x,y)的坐标不适合函数表达式,那么点P(x,y)不在其图象上.【方法技巧】判断符合题意的函数图象的方法(1)及实际问题结合:判断符合实际问题的函数图象时,需遵循以下几点:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找相对应点;②找特殊点:即指交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性;④看是否及坐标轴相交:即此时另外一个量为0.(2)及几何图形(含动点)结合:以几何图形为背景判断函数图象的题目,一般的解题思路为设时间为t,找因变量及t之间存在的函数关系,用含t的式子表示,再找相对应的函数图象,要注意的是是否需要分类讨论自变量的取值范围.(3)分析函数图象判断结论正误:分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.,中考重难点突破)平面直角坐标系中点的坐标特征【例1】假设将点A(-4,3)先向右平移3个单位,再向下平移1个单位,得到点A1,点A1的坐标为( )A.(-1,3) B.(-1,2)C.(-7,2) D.(-7,4)【解析】∵点A(-4,3)先向右平移3个单位,再向下平移1个单位,∴点A1的坐标为(-1,2).【学生解答】B1.在平面直角坐标系中,假设点P的坐标为(-3,2),那么点P所在的象限是( B)A.第一象限B.第二象限C .第三象限D .第四象限函数自变量的取值范围【例2】(2021原创)函数y =xx -3-(x -2)0中,自变量x 的取值范围是________.【解析】根据题意得,x ≥0且x -3≠0且x -2≠0,解得x≥0且x≠3且x≠2.【学生解答】x ≥0且x≠3且x≠2【方法指导】对于分式、根式、零指数幂相结合型求自变量取值范围的,先求出各自变量的取值范围,然后取公共解集即可.2.(2021娄底中考)函数y =xx -2中自变量x 的取值范围是( A )A .x ≥0且x≠2B .x ≥0C .x ≠2D .x>2函数图象的判断【例3】(2021 营口中考)如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,那么△APE 的面积y 及点P 经过的路径长x 之间的函数关系用图象表示大致是( ),A ) ,B ) ,C ) ,D )【解析】∵在矩形ABCD 中,AB =2,AD =3,∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2.①点P 在AD 上时,△APE 的面积y =12x ·2=x(0≤x≤3);②点P 在CD 上时,S △APE =S四边形AECD-S△ADP -S △CEP =12×(2+3)×2-12×3×(x -3)-12×2×(3+2-x)=5-32x +92-5+x =-12x +92,∴y =-12x +92(3<x≤5);③点P 在CE 上时,S △APE =12×(3+2+2-x)×2=-x +7,∴y =-x +7(5<x≤7),纵观各选项,只有A 选项图形符合. 【学生解答】A【方法指导】根据动点P 的运动路径A→D→C→E 可得,在计算△APE 的面积时应该分为3种情况,①当P 在AD 上时,②当P 在DC 上时,③当P 在CE 上时,分别计算出即可.要注意转折点有x =3时与x =5时.3.(2021广东中考)如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,那么△APC 的面积y 及点P 运动的路程x 之间形成的函数关系的图象大致是( C),A) ,B),C) ,D)。

2013年中考数学 专题复习三 函数及其图象

2013年中考数学   专题复习三 函数及其图象

知识结构
典例精选
专题训练
首页
按ESC退出
【解析】B
2 2 设 A a,a,Bb, b,且 0<a<b.根据解析法可得直线 l 的解析式为:y




2a+b 2 =- x+ .当 y=0 时,x=a+b,故 C 点坐标为(a+b,0).所以△OBC 的面积为:S1 ab ab 1 2 a+b 1 2 a+b = (a+b) = .又△OAC 的面积为:S 2= (a+b) = .因为 AB∶BC=(m-1)∶1,则 2 2 b b a a a+b a+b a+b BC∶AC=1∶m,所以 S 1∶S2=1∶m,即 ∶ =1∶m,所以 b=am.所以 S1= = b a b m+1 m+1 m2-1 ,S2=m+1,所以△OAB 的面积为 m+1- = .故选 B. m m m
知识结构
典例精选
专题训练
首页
按ESC退出
知识结构
典例精选
专题训练
首页
按ESC退出
(2012· 深圳)已知点 P(a+1,2a-3)关于 x 轴的对称点在第一象限,则 a 的取值范围 是( ) A.a<-1 3 C.- <a<1 2 3 B.-1<a< 2 3 D.a> 2
点P关于x轴的对 a+1>0 【思路点拨】 → 点P在第四象限 → 称点在第一象限 2a-3<0
【解析】D 观察图象可知抛物线对称轴为 x=2,且与 x 轴交于点(5,0),依据对称性可 求出抛物线与 x 轴另一交点的坐标为(-1,0).二次函数 y=ax2+bx+c 的部分图象的开口向 下,所以不等式 ax 2+bx+c<0 的解集是 x<-1 或 x>5.故选 D.
知识结构
典例精选
专题训练

2013年株洲中考数学复习学案 第19课时 反比例函数

2013年株洲中考数学复习学案  第19课时   反比例函数

第19课时 反比例函数一、考标要求1.理解反比例函数定义。

2.会画反比例函数的图象。

3.理解反比例函数的性质。

4.能根据实际问题中的反比例关系用待定系数法确定反比例函数的解析式 二、知识要点1.反比例函数: (1)定义:形如y=k x(k 为常数,k ≠0)叫做反比例函数。

自变量x ≠0,函数与x 轴、y轴无交点。

(2)图象:双曲线,在用描点法画反比例函数y=k x的图象时,应注意自变量x 的取值不能为0,应从1或-1开始对称取点. (3)性质:当k >0时,图象位于________象限,在每一个象限内,y 随x 的增大而________:当k <0时,图象位于________象限,在每一个象限内,y 随x 的增大而________。

(4)两支曲线无限接近与坐标轴但永远不会与坐标轴相交。

(5)反比例函数y=k x中k 的意义:反比例函数y=k x(k ≠0)中比例系数k 的几何意义,即过双曲线y=k x(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.三、考点探视 本节主要考查反比例函数的定义、图象和性质,特别是用待定系数法求比例函数的解析式,能熟练地画出它们的图象,能根据题中函数图象所提供的信息解决实际问题,其中试题主要是以填空题,选择题和解答题的形式出现。

四.株洲中考链接:1.(2012·株洲中考)如图,直线(0)x t t =>与反比例函数21,y y x x-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆A B C 的面积为A .3B .32tC .32D .不能确定2.(2009·株洲中考)反比例函数图象如图所示,则这个反比例函数的解析式是y = .五. 反馈检测 一、填空题:第12题图1.若反比例函数y=kx经过点(-1,2),则一次函数y=-kx+2的图象一定不经过第_____象限.二、选择题2.经过点(2,-3)的双曲线是( )A.y=-6xB.y=6xC.y=32xD.y=-32x3.若存在点P是x轴上的一个动点,过点P作x轴的垂线PQ交双曲线于点Q,连结OQ,当点P 沿x轴正半方向运动时,Rt△QOP的面积( )A.逐渐增大B.逐渐减小;C.保持不变D.无法确定4.在函数y=kx(k>0)的图象上有三点A1(x1,y1),A2(x2,y2),A3( x3.y3),已知x1<x2<0<x3,则下列各式中,正确的是( )A.y1<0<y3B.y3<0<y1;C.y2<y1<y3D.y3<y1<y25.已知关于x的函数y=k(x-1)和y=-kx(k≠0),它们在同一坐标系内的图象大致是下图中的( ) 三、解答题6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点:A(-2,1),B(1,n).(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.7.如图,已知反比例函数y=12x的图象与一次函数y=kx+4的图象相交于P、Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.yO x AyO xByO xCyO xyQOxP。

2013年株洲中考数学复习学案 第18课时 一次函数及其图象

2013年株洲中考数学复习学案    第18课时   一次函数及其图象

第18课时 一次函数及其图象一、考标要求1.掌握一次函数的定义、图象和性质。

2.掌握正比例函数的定义、图象和性质。

3.会用待定系数法求一次函数和正比例函数的解析式。

二、知识要点1.正比例函数的定义、图象和性质:(1)定义:形如y=kx (k 为常数,k ≠0)的函数叫做正比例函数。

(2)图象:一条经过原点的直线。

(3)性质: 当k>0时,y 随x 的增大而 ;当k<0时,y 随x 的增大而 。

2.一次函数的定义、图象和性质:(1)定义:形如y=kx+b (k ,b 为常数,k ≠0)的函数叫做一次函数(2)图象: y=kx+b 的图象是一条 ,因为两点确定一条直线,所以在画图象时,•任取你喜欢的两个点,过这两点即可画出直线。

(3)性质:k 的符号看直线通过一、三或二、四象限而定,b 的符号看直线在y•轴上的截距而定。

当k>0时,y 随x 的增大而 ;当k<0时,y 随x 的增大而 。

三、考点探视:本节主要考查一次函数(含正比例函数)的定义、图象和性质,特别是用待定系数法求一次函数和正比例函数的解析式,能熟练地画出它们的图象,能根据题中函数图象所提供的信息解决实际问题,其中试题主要是以填空题,选择题和解答题的形式出现。

四.中考链接;1、(2011湖南)关于x 的一次函数12++=k kx y 的图像可能是( )2.(2009湘潭) 在同一直角坐标系中,二次函数22y x =+与一次函数2y x =的图象大致是( )3.(2012•y=﹣的图象不经过第_________ 象限.4.(2012株洲)一次函数2y x =+的图像不经过第 象限. x A x x C xD5.(2009株洲)一次函数2y x =+的图象不.经过 A .第一象限 B .第二象限 C .第三象限 D .第四象限6.(2011株洲)如图,直线l 过A 、B 两点,A (0,1-),B (1,0),则直线l 的解析式为 .7.(2012•怀化)如果点P 1(3,y 1),P 2(2,y 2)在一次函数y=2x ﹣1的图象上, 则y 1 _________ y 2.(填“>”,“<”或“=”)8.(2012娄底)对于一次函数y=﹣2x+4,下列结论错误的是( )A . 函数值随自变量的增大而减小B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)9. (2012湖南长沙)如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是 .10.(2012湖南湘潭)已知一次函数()0≠+=k b kx y 图象过点)2,0(,且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.解:将点)2,0(代入解析式()0≠+=k b kx y 中,得:2=b则一次函数()0≠+=k b kx y 与x 轴的交点横坐标k b -=k 2- 由题意可得:22221=⨯-⨯k ,则1±=k所以一次函数的解析式为2+=x y 或2+-=x y五. 反馈检测一、填空题:(每小题3分,共24分)1.直线y=2x+3与x 轴交点坐标为A ( , ),与y 轴交点坐标为B ( , ),△AOB 的面积为__________ 。

《函数的概念及其表示》教案完美版

《函数的概念及其表示》教案完美版

《函数的概念及其表示》教案第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。

教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。

教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。

“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。

株洲中考数学复习学案第17课时函数及其图象

株洲中考数学复习学案第17课时函数及其图象

第17课时 函数及其图象一、考标要求1.了解函数定义。

2.能熟练区分常量与变量。

3.会求函数自变量的取值范围,函数、函数值。

4.正确熟练地掌握点的坐标,方程的解,函数图象之间的关系。

5.了解平面直角坐标系的概念。

6.掌握平面直角坐标系的各个象限的点的特征二、知识要点1.函数定义:在某一变化过程中,存在两个变量x ,y ,变量x•在某一范围内取每一个确定的值,y 都有唯一确定的值与之对应,则称y 是x 的____ _,其中x 为_______量。

2.函数自变量的取值范围:•指使函数本身有意义并且符合实际情况的_____ __的取值范围。

3.函数的表示法(三种): , , .3.平面直角坐标系 (1)各象限内点的坐标的特点(2)坐标轴上点的坐标的特点 (3)关于坐标轴、原点对称的点的坐标的特点三、考点探视 本节主要考查函数的自变量的取值范围;函数值;点的坐标,方程的解,函数图象之间的关系以及列函数解析式,运用了数形结合的数学思想。

其中试题主要是以填空题,选择题的形式出现。

四.株洲中考链接:1.(2012·株洲中考)一次函数2y x =+的图像不经过第 象限.2.(2011·株洲中考)如图,直线l 过A 、B 两点,A (0,1-),B (1,0),则直线l 的解析式为 .3.(2009·株洲中考)一次函数2y x =+的图象不.经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限五.典例精析例 1 下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子,并写出自变量的取值范围.(1)一个弹簧秤最大能称不超过10kg 的物体,它的原长为10cm ,•挂上重物后弹簧的长度y (cm )随所挂重物的质量x (kg )的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;(2)设一长方体盒子高为30cm ,度面是正方形,底面边长a 改变时,•这个长方体的体积V (cm 3)也随之改变.解:(1)x 是自变量,y 是x 的函数,y=10+0.5x ,0≤x ≤10.(2)a 是自变量,V 是a 的函数,V=30a 2,a>0.例2 求下列各函数的自变量的取值范围.(1)y=2349x x -;(2)(3);4)11x -; (5)y=(2x-1)0;(6)y=2x 2+3x+1.解:(1)由4x 2-9≠0得x ≠±32.∴函数自变量的取值范围为x ≠±32的实数. (2)由x-2≥0,得x ≥2,∴函数自变量的取值范围为x ≥2.(3)由1030xx-≥⎧⎨-≠⎩得x≥且x≠3.(4)2010xx-≥⎧⎨-≠⎩得x≤2且x≠1(5)由2x-1≠0,得x≠12.(6)x可取一切实数.例 3 如图所示的图像反映的过程是:李文从家跑步去体育场,在那里锻炼了一阵后又走到商店去买笔,然后散步走回家,其中x表示时间,y表示李文离家的距离.根据图像回答下列问题:(1)体育场离李文家多远?李文从家到体育场用了多长时间?(2)体育场离商店多远?(3)李文在商店逗留了多长时间?(4)李文从商店回家的平均速度是多少?解:(1)体育场离李文家2.5km,李文从家到体育场用了15min;(2)体育场离商店1km(2.5-1.5=1);(3)李文在商店逗留65-45=20(min);(4)李文从商店回家的平均速度是:1.573530==1.5100-65(km/min)。

株洲中考数学复习学案第12课时一次函数

株洲中考数学复习学案第12课时一次函数

第12课时. 一次函数一.【知识考点】1.正比例函数的一般形式是__________.一次函数的一般形式是__________________.=+的图象是经过2. 正比例函数的图象一定经过坐标原点的直线,一次函数y kx b和两点的一条 .3.正比例函数图象与性质:k>0⇔直线过第一三象限,直线是上升的⇔y随x的增大而;k<0⇔直线过第一三象限,直线是下降的⇔y随x的增大而 .=+的图象与性质:4.一次函数y kx b=+当k相同时,若b>0⇔由直线y=kx向上平移|b|个单位得到直线y kx b=+若b<0⇔由直线y=kx向下平移|b|个单位得到直线y kx b5. 当k相同时,正比例函数与一次函数的增减性相同。

=+的解析式6. 求正比例函数y=kx、一次函数y kx b7.求两条直线的交点坐标就是求由两个函数解析式组成的方程组的解。

8.求一条直线与两条坐标轴围成的三角形的面积,首先要求出这条直线与两条坐标轴的交点的坐标,再运用三角形的面积公式去求。

二.【中考链接】一选择题1. 如果直线y ax b=+经过第一、二、三象限,那么ab____0.( 填“>”、“<”、“=”)2.(2011•桂林市)直线1y kx=-一定经过点().A.(1,0) B.(1,k) C.(0,k) D.(0,-1) 3. 一次函数(1)5=++中,y值随x的增小而减小,则m的取值范围是y m x()A.1m<m=-D.1m>-B.1m<-C.14.(2011河北省)一次函数y=6x+1的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限5.〔2011•福州市〕甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项(第9题)工程所需时间少( )A.12天B.14天C.16天D.18天6.(2011•乐山)已知一次函数y ax b=+的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式(1)0a x b-->的解集为()(A) x<-1 (B)x> -1 (C) x>1 (D)x<17.〔2011•芜湖市〕已知直线y kx b=+经过点(k,3)和(1,k),则k的值为( )AB...8.(2011•潜江市)如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,64) B.(0,128) C.(0,256) D.(0,512)9.(2011•黄冈市).如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C 落在直线y=2x-6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.10.(2011•黄石市)已知梯形ABCD的四个顶点的坐标分别为(1,0)A-,(5,0)B,(2,2)C,(0,2)D,直线2y kx=+将梯形分成面积相等的两部分,则k的值为()A.23- B.29- C.47- D.27-11.(2011•苏州市)如图,已知A点坐标为(5,0),直线(0)y x b b=+>与y轴交于点B,连接AB,∠a=75°,则b的值为()A.3 B C.4 D(第9题图)年度(第10题图)AB- 1xyO第3题12.〔2011•南京市〕如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 的弦AB 的长为23,则a 的值是( ) A .23 B .222+ C .23 D .23+13.〔2011•日照市〕在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 ( )(A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 二填空题 1.〔2011•浙江省义乌〕一次函数y =2x -1的图象经过点(a ,3),则a = . 2.(2011•天津)已知一次函数的图象经过点(0.1).且满足y 随x 的增大而增大,则该一次函数的解析式可以为________ (写出一一个即可). 3.(2011•株洲市)如图,直线l 过A 、B 两点, A (0,1-),B (1,0),则直线l 的解析式 为 .4.(2011•泰安市)已知一次函数2-+=n mx y 的图像如图所示,则m 、n 的取值范围是D(A )m >0,n <2(B )m >0,n >2(C )m <0,n <2(D )m <0,n >25.(2011•呼和浩特市)已知关于x 的一次函数nmx y +=的图象如图所示,则2||m m n --可化简为________n_________.6.〔2011•湖北〕 一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_8____分钟,容器中的水恰好放完.O x y(第12题) A B B P xyy=x7.为了加强公民的节约用水的意识,某市制定了如下节约用水的收费标准:每户每月的用水不超过10吨时,水价为1.2元,超过10吨时,超过部分按每吨1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式是_______.8.弹簧的长度与所挂物体的质量的关系是一次函数,如图所示,则不挂物体时弹簧的长度是 .9. 如图所示的折线ABC为某地出租汽车收费y(元)与乘坐路程x(千米)之间的函数关系式图象,当x≥3千米时,该函数的解析式为,乘坐2千米时,车费为元,乘坐8千米时,车费为元.(第9题)10.(2011•威海市)如图,在直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(n,0)……直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n分别交于点B1,B2,B3,……B n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17课时 函数及其图象
一、考标要求
1.了解函数定义。

2.能熟练区分常量与变量。

3.会求函数自变量的取值范围,函数、函数值。

4.正确熟练地掌握点的坐标,方程的解,函数图象之间的关系。

5.了解平面直角坐标系的概念。

6.掌握平面直角坐标系的各个象限的点的特征
二、知识要点
1.函数定义:在某一变化过程中,存在两个变量x ,y ,变量x •在某一范围内取每一个确
定的值,y 都有唯一确定的值与之对应,则称y 是x 的____ _,其中x 为_______量。

2.函数自变量的取值范围:•指使函数本身有意义并且符合实际情况的_____ __的取值范围。

3.函数的表示法(三种): , , .
3.平面直角坐标系 (1)各象限内点的坐标的特点
(2)坐标轴上点的坐标的特点 (3)关于坐标轴、原点对称的点的坐标的特点
三、考点探视 本节主要考查函数的自变量的取值范围;函数值;点的坐标,方程的解,函
数图象之间的关系以及列函数解析式,运用了数形结合的数学思想。

其中试题主要是以填空
题,选择题的形式出现。

四.株洲中考链接:
1.(2012·株洲中考)一次函数2y x =+的图像不经过第 象限.
2.(2011·株洲中考)如图,直线l 过A 、B 两点,A (0,1-),B (1,0),则直
线l 的解析式为 .
3.(2009·株洲中考)一次函数2y x =+的图象不.
经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
五.典例精析
例 1 下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的
式子,并写出自变量的取值范围.
(1)一个弹簧秤最大能称不超过10kg 的物体,它的原长为10cm ,•挂上重物后弹簧的长度
y (cm )随所挂重物的质量x (kg )的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;
(2)设一长方体盒子高为30cm ,度面是正方形,底面边长a 改变时,•这个长方体的体积
V (cm 3)也随之改变.
解:(1)x 是自变量,y 是x 的函数,y=10+0.5x ,0≤x ≤10.
(2)a 是自变量,V 是a 的函数,V=30a 2,a>0.
例2 求下列各函数的自变量的取值范围.
(1)y=2349x x -;(2)(3)y=3x
-;4)11x -; (5)y=(2x-1)0;(6)y=2x 2+3x+1.
解:(1)由4x 2-9≠0得x ≠±32.∴函数自变量的取值范围为x ≠±32
的实数. (2)由x-2≥0,得x ≥2,∴函数自变量的取值范围为x ≥2.
(3)由1030x x -≥⎧⎨-≠⎩ 得x ≥且x ≠3. (4)2010
x x -≥⎧⎨-≠⎩ 得x ≤2且x ≠1 (5)由2x-1≠0,得x ≠
12.(6)x 可取一切实数. 例 3 如图所示的图像反映的过程是:李文从家跑步去体育场,在那里锻炼了一阵后又走到商店去买笔,然后散步走回家,其中x 表示时间,y 表示李文离家的距离.
根据图像回答下列问题:
(1)体育场离李文家多远?李文从家到体育场用了多长时间?
(2)体育场离商店多远?(3)李文在商店逗留了多长时间?
(4)李文从商店回家的平均速度是多少?
解 :(1)体育场离李文家2.5km ,李文从家到体育场用了15min ;
(2)体育场离商店1km(2.5-1.5=1); (3)李文在商店逗留65-45=20(min );
(4)李文从商店回家的平均速度是: 1.573530
==1.5100-65(km/min )。

五. 反馈检测
一、填空题:(每小题3分,共24分)
1.某音像公司对外出租光盘的收费方法是:•每张光盘出租后的前2天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n 天(n>2且为整数)应收费_________元.。

2.等腰三角形的底角的度数为x ,顶角的度数为y ,写出以x 表示y 的函数关系式 ,并指出自变量x 的取值范围 。

3. 瓶子或罐头盒等圆柱形的物体常常如图展示那样堆放,随着层数的增加,物体总数也变化,根据变化规律填写下表:
则y 与n 的关系式是
y=______________,其中的变量是
________,常量是________。

二、选择题 4.点(3,b )关于x 轴对称的点的坐标是 ( )
A .(-3,b )
B .(3,-b ).
C .(-3,-b )
D .(b ,3)
5.在校运会上,二(4)班学生张明参加了1500米跑的比赛,图是一条折线图,图形反映的是张明跑的距离s(米)与时间的关系.由图中可知下列说法错误的是 ( ) A .张明同学跑完1500米用了6分钟; B ..张明同学跑这1500米时速度越来越快; C .张明同学在第2、第3分钟时速度一样; D .张明同学5分钟跑了1200米.。

相关文档
最新文档