2019版高考数学大一轮复习 第十四章 14.2 不等式选讲 第1课时 绝对值不等式试题 理 北师大版
2019版高考数学一轮复习选修部分不等式选讲第一节绝对值不等式实用课件理
[方法技巧]
绝对值不等式的常用解法 (1)基本性质法 对 a∈R+,|x|<a⇔-a<x<a, |x|>a⇔x<-a 或 x>a. (2)平方法 两边平方去掉绝对值符号. (3)零点分区间法 含有两个或两个以上绝对值符号的不等式,可用零点 分区间法去掉绝对值符号,将其转化为与之等价的不含绝 对值符号的不等式(组)求解.
(1)含绝对值的不等式|x|<a 与|x|>a 的解集
不等式
a>0
|x|<a |x|>a
x|-a<x<a
x|x>a或x<-a
a=0
∅
x∈R|x≠0
a<0 ∅ R
(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c 或 ax+b≤-c . (3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式 的解法 ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解. ③构造函数,利用函数的图象求解.
法二:原不等式等价于x<-12, -2x+1+2x-1>0
或-12≤x≤1, 2x+1+2x-1>0
或x2>x1+,1-2x-1>0.
解得 x>14,所以原不等式的解集为x|x>14. (2)①当 x<-3 时,原不等式化为-(x+3)-(1-2x)<x2+1,解得 x<10, ∴x<-3. ②当-3≤x<12时,原不等式化为(x+3)-(1-2x)<x2+1,解得 x<-25, ∴-3≤x<-25. ③当 x≥12时,原不等式化为(x+3)+(1-2x)<x2+1, 解得 x>2,∴x>2.综上可知,原不等式的解集为x|x<-25或x>2.
2019届高考数学大一轮复习第十四章系列4选讲14.2不等式选讲课件理北师大版
2 当-1<x<1 时,不等式化为 3x-2>0,解得 <x<1; 3
当x≥1时,不等式化为-x+2>0,解得1≤x<2.
2 所以 f(x)>1 的解集为x3<x<2 .
3.不等式证明的方法
(1)比较法
①作差比较法
a-b>0 知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明_______
即可,这种方法称为作差比较法.
②作商比较法 a 由 a>b>0⇔ >1 且 a>0,b>0,因此当 a>0,b>0 时,要证明 a>b,只要证 b a >1 明 b 即可,这种方法称为作商比较法.
基础自测
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若|x|>c的解集为R,则c≤0.( × ) (2)不等式|x-1|+|x+2|<2的解集为∅.( √ ) (3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.( × ) (4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.( × ) (5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( √ )
1
2
3
4
5
6
题组二 教材改编 2.不等式3≤|5-2x|<9的解集为 A.[-2,1)∪[4,7) C.(-2,-1]∪[4,7) B.(-2,1]∪(4,7]
解析
高三数学一轮复习 第14篇 第1节 含绝对值的不等式及其解法课件 理
精选ppt
1
最新考纲 1.理解绝对值的几何意义,并能利用含 绝对值不等式的几何意义证明以下不等 式:①|a+b|≤|a|+|b|;②|a-b|≤ |a-c|+|c-b|.
2.会利用绝对值的几何 意义求解以下类型的不 等式: |ax+b|≤c;|ax+b|≥ c;|x-a|+|x-b|≥c.
精选ppt
7
基础自测
1.|2x-1|>3的解集为( B )
(A)(-∞,-2)∪(1,+∞)
(B)(-∞,-1)∪(2,+∞)
(C)(-2,1)
(D)(-1,2)
解析:由|2x-1|>3得2x-1<-3或2x-1>3,
解得x<-1或x>2.
故选B.
精选ppt
8
2.不等式1<|x+1|<3的解集为( D ) (A)(0,2) (B)(-2,0)∪(2,4) (C)(-4,0) (D)(-4,-2)∪(0,2) 解析:原不等式等价于1<x+1<3或-3<x+1<-1, 解之得0<x<2或-4<x<-2, 故应选D.
(3)c=0,则|ax+b|≤c 可转化为 ax+b=0,然后根据 a,b 的取值求解即 可;|ax+b|≥c 的解集为 R.
精选ppt
10
4.(2014高考广东卷)不等式|x-1|+|x+2|≥5的解集为
.
解析:本题考查绝对值不等式的解法.|x-1|+|x+2|≥5的几何意义是数
全国版2019版高考数学一轮复习不等式选讲第1讲绝对值不等式增分练20180509276
第1讲 绝对值不等式板块三 模拟演练·提能增分[基础能力达标]1.[2018·宜春模拟]设函数f (x )=|x -4|,g (x )=|2x +1|.(1)解不等式f (x )<g (x );(2)若2f (x )+g (x )>ax 对任意的实数x 恒成立,求a 的取值范围.解 (1)f (x )<g (x )等价于(x -4)2<(2x +1)2,∴x 2+4x -5>0,∴x <-5或x >1,∴不等式的解集为{x |x<-5或x >1}.(2)令H (x )=2f (x )+g (x )=⎩⎪⎨⎪⎧4x -7,x >4,9,-12≤x ≤4,-4x +7,x <-12, G (x )=ax , 2f (x )+g (x )>ax 对任意的实数x 恒成立,即H (x )的图象恒在直线G (x )=ax 的上方,故直线G (x )=ax 的斜率a 满足-4≤a <94,即a 的范围为⎣⎢⎡⎭⎪⎫-4,94. 2.[2018·深圳模拟]已知函数f (x )=|x -5|-|x -2|. (1)若∃x ∈R ,使得f (x )≤m 成立,求m 的取值范围; (2)求不等式x 2-8x +15+f (x )≤0的解集. 解 (1)f (x )=|x -5|-|x -2|=⎩⎪⎨⎪⎧ 3,x ≤2,7-2x ,2<x <5.-3,x ≥5,当2<x <5时,-3<7-2x <3,所以-3≤f (x )≤3.所以m 的取值范围是[-3,+∞).(2)原不等式等价于-f (x )≥x 2-8x +15,由(1)可知,当x ≤2时,-f (x )≥x 2-8x +15的解集为空集;当2<x <5时,-f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,-f (x )≥x 2-8x +15 的解集为{x |5≤x ≤6}.综上,原不等式的解集为{x |5-3≤x ≤6}.3.[2018·福州模拟]已知函数f (x )=|x +a |+|x -2|的定义域为实数集R .(1)当a =5时,解关于x 的不等式f (x )>9;(2)设关于x 的不等式f (x )≤|x -4|的解集为A ,B ={x ∈R ||2x -1|≤3},如果A ∪B =A ,求实数a 的取值范围.解 (1)当a =5时,f (x )=|x +5|+|x -2|.①当x ≥2时,由f (x )>9,得2x +3>9,解得x >3;②当-5≤x <2时,由f (x ) >9,得7>9,此时不等式无解;③当x <-5时,由f (x )>9,得-2x -3>9,解得x <-6.综上所述,当a =5时,关于x 的不等式f (x )>9的解集为{x ∈R |x <-6或x >3}.(2)∵A ∪B =A ,∴B ⊆A .又B ={x ∈R ||2x -1|≤3}={x ∈R |-1≤x ≤2},关于x 的不等式f (x )≤|x -4|的解集为A ,∴当-1≤x ≤2时,f (x )≤|x -4|恒成立.由f (x )≤|x -4|得|x +a |≤2.∴当-1≤x ≤2时,|x +a |≤2恒成立,即-2-x ≤a ≤2-x 恒成立.∴实数a 的取值范围为[-1,0].4.[2018·泉州模拟]已知函数f (x )=|x +1|+|2x -4|.(1)解关于x 的不等式f (x )<9;(2)若直线y =m 与曲线y =f (x )围成一个三角形,求实数m 的取值范围,并求所围成的三角形面积的最大值.解 (1)x ≤-1,不等式可化为-x -1-2x +4<9,∴x >-2,∴-2<x ≤-1;-1<x <2,不等式可化为x +1-2x +4<9,∴x >-4,∴-1<x <2; x ≥2,不等式可化为x +1+2x -4<9,∴x <4,∴2≤x <4;综上所述,不等式的解集为{x |-2<x <4}.(2)f (x )=|x +1|+2|x -2|=⎩⎪⎨⎪⎧ 3x -3,x ≥2,5-x ,-1≤x <2,3-3x ,x <-1.由题意作图如下,结合图象可知,A (3,6),B (-1,6),C (2,3);故3<m ≤6,且m =6时面积最大为12×(3+1)×3=6. 5.[2018·长春模拟]已知函数f (x )=|2x +4|+|x -a |.(1)当a <-2时,f (x )的最小值为1,求实数a 的值;(2)当f (x )=|x +a +4|时,求x 的取值范围.解 (1)f (x )=|2x +4|+|x -a |=⎩⎪⎨⎪⎧ -3x +a -4x <a ,-x -a -4a ≤x ≤-2,3x -a +4x >-2.可知,当x =-2时,f (x )取得最小值,最小值为f (-2)=-a -2=1,解得a =-3.(2)f (x )=|2x +4|+|x -a |≥|(2x +4)-(x -a )|=|x +a +4|,当且仅当(2x +4)(x -a )≤0时,等号成立,所以若f (x )=|x +a +4|,则当a <-2时,x 的取值范围是{x |a ≤x ≤-2};当a =-2时,x 的取值范围是{x |x =-2};当a >-2时,x 的取值范围是{x |-2≤x ≤a }.6.[2018·辽宁大连双基考试]设函数f (x )=|x -1|+12|x -3|. (1)求不等式f (x )>2的解集;(2)若不等式f (x )≤a ⎝ ⎛⎭⎪⎫x +12的解集非空,求实数a 的取值范围. 解 (1)原不等式等价于⎩⎪⎨⎪⎧ -32x +52>2,x ≤1或⎩⎪⎨⎪⎧ 12x +12>2,1<x ≤3或⎩⎪⎨⎪⎧ 32x -52>2,x >3,∴不等式的解集为⎝⎛⎭⎪⎫-∞,13∪(3,+∞).(2)f(x)=|x-1|+12|x-3|=⎩⎪⎨⎪⎧-32x+52,x≤1,12x+12,1<x≤3,32x-52,x>3.f(x)的图象如图所示,其中A(1,1),B(3,2),直线y=a⎝⎛⎭⎪⎫x+12绕点⎝⎛⎭⎪⎫-12,0旋转,由图可得不等式f(x)≤a⎝⎛⎭⎪⎫x+12的解集非空时,a的取值范围为⎝⎛⎭⎪⎫-∞,-32∪⎣⎢⎡⎭⎪⎫47,+∞.。
高三数学一轮复习 不等式选讲 第一节 绝对值不等式课
的解集为 5
a
1,,
3
从而有
1 a
5, 3
此方程组无解. 当a<0时,不等式的解集为
5 a
,,从a1而 有
5 a
5, 3
解1a得 a13=, -3.
考点突破
考点一 绝对值不等式的解法 典例1 (2016课标全国Ⅰ,24,10分)已知函数f(x)=|x+1|-|2x-3|. (1)画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集.
解析 (1)当x≤2时, f(x)=-3,而x2-8x+14=(x-4)2-2≥-2,∴f(x)≥x2-8x+14无
解;
(2)当2<x<5时, f(x)=2x-7,
原不等式等价于2x 7 x2 8x 14,解得3≤x<5;
2 x 5,
(3)当x≥5时,
f(x)=3,原不等式等价于
x
2
8x
(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2
b2-1=(a2-1)(1-b2)<0,
因此|a+b|<|1+ab|. (10分)
方法技巧
证明绝对值不等式主要的三种方法
(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.
(2)利用不等式||a|-|b||≤|a±b|≤|a|+|b|进行证明.
(3)转化为函数问题,利用数形结合进行证明.
2-1 设a>0,|x-1|< a ,|y-2|<a ,求证:|2x+y-4|<a.
高考数学大一轮复习 第十四章 选考部分 14.2 不等式选讲 第1课时 绝对值不等式教师用书 理 新人教版
第1课时 绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ;(3)|x -a |+|x -b|≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质(1)如果a ,b 是实数,则|a |-|b |≤|a ±b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. (2)如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.1.(2015·山东改编)解不等式|x -1|-|x -5|<2的解集. 解 ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立,∴x ≤1.②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4,③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4).2.若存在实数x 使|x -a |+|x -1|≤3成立,求实数a 的取值范围.解 ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x+2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].题型一 绝对值不等式的解法例1 (2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2.(2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).思维升华 解绝对值不等式的基本方法有:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.(1)解不等式|x -1|+|x +2|≥5的解集.(2)若关于x 的不等式|ax -2|<3的解集为{x |-53<x <13},求a 的值.解 (1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a,与已知条件不符;当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a,又不等式的解集为{x |-53<x <13},故a =-3.题型二 利用绝对值不等式求最值例2 (1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值. (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值. 解 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1,|y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3. ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.(1)(2016·深圳模拟)若关于x 的不等式|2 014-x |+|2 015-x |≤d 有解,求d 的取值范围.(2)不等式|x +1x|≥|a -2|+sin y 对一切非零实数x ,y 均成立,求实数a 的取值范围.解 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x∈(-∞,-2]∪[2,+∞),∴|x +1x|∈[2,+∞),其最小值为2.又∵sin y 的最大值为1,故不等式|x +1x|≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3]. 题型三 绝对值不等式的综合应用例3 (2017·石家庄调研)设函数f (x )=|x -3|-|x +1|,x ∈R . (1)解不等式f (x )<-1;(2)设函数g (x )=|x +a |-4,且g (x )≤f (x )在x ∈[-2,2]上恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=|x -3|-|x +1| =⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3,故由不等式f (x )<-1可得x >3或⎩⎪⎨⎪⎧2-2x <-1,-1≤x ≤3.解得x >32.(2)函数g (x )≤f (x )在x ∈[-2,2]上恒成立,即|x +a |-4≤|x -3|-|x +1|在x ∈[-2,2]上恒成立,在同一个坐标系中画出函数f (x )和g (x )的图象,如图所示.错误!未找到引用源。
2019版高考数学一轮复习 选考部分 不等式选讲 第1课 绝对值不等式
2.若存在实数 x 使|x-a|+|x-1|≤3 成立,则实数 a 的取值 范围是________. 解析:∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|, 要使|x-a|+|x-1|≤3 有解,可使|a-1|≤3, ∴-3≤a-1≤3,∴-2≤a≤4. 答案:[-2,4]
即 3>0,此时 x>1.
综上所述,不等式 f(x)>0 的解集为xx>-12
.
(2)依题意,方程 f(x)=x 等价于 a=|x-1|-|x+1|+x, 令 g(x)=|x-1|-|x+1|+x.
x+2,x<-1, ∴g(x)=-x,-1≤x≤1, .
x-2,x>1. 画出函数 g(x)的图象如图所示,
2.解不等式|x-1|-|x-5|<2. 解:当 x<1 时,不等式可化为-(x-1)-(5-x)<2, 即-4<2,显然成立,所以此时不等式的解集为(-∞,1); 当 1≤x≤5 时,不等式可化为 x-1-(5-x)<2, 即 2x-6<2,解得 x<4,所以此时不等式的解集为[1,4); 当 x>5 时,不等式可化为(x-1)-(x-5)<2, 即 4<2,显然不成立.所以此时不等式无解. 综上,不等式的解集为(-∞,4).
3 . 若 不 等 式 |kx - 4|≤2
的
解
集
为
x|1≤x≤3
,
则
实
数
k=
________.
解析:由|kx-4|≤2⇔2≤kx≤6. ∵不等式的解集为x|1≤x≤3, ∴k=2. 答案:2 4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________. 解析:∵||x+1|-|x-2||≤3,∴-3≤|x+1|-|x-2|≤3, ∴k<(|x+1|-|x-2|)的最小值,即 k<-3. 答案:(-∞,-3)
高考数学一轮复习 选考部分 第十四篇 不等式选讲 第1节 绝对值不等式及其解法应用能力提升 文 北师大版
第十四篇不等式选讲(选修4-5)第1节绝对值不等式及其解法知识点、方法题号解绝对值不等式1,3,4与绝对值不等式有关的证明2,3与绝对值不等式有关的恒成立问题2,4 1.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1时,且当x∈[-错误!未找到引用源。
,错误!未找到引用源。
)时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=错误!未找到引用源。
其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈[-错误!未找到引用源。
,错误!未找到引用源。
)时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈[-错误!未找到引用源。
,错误!未找到引用源。
)都成立.故-错误!未找到引用源。
≥a-2,即a≤错误!未找到引用源。
.从而a的取值范围是(-1,错误!未找到引用源。
].2.(2016贵阳一测)(1)已知a和b是任意非零实数.证明:错误!未找到引用源。
≥4;(2)若不等式|2x+1|-|x+1|>k(x-1)-错误!未找到引用源。
恒成立,求实数k的取值范围.(1)证明:|2a+b|+|2a-b|≥|2a+b+2a-b|=4|a|,所以错误!未找到引用源。
≥4.(2)解:记h(x)=|2x+1|-|x+1|=错误!未找到引用源。
若不等式|2x+1|-|x+1|>k(x-1)-错误!未找到引用源。
恒成立,则函数h(x)的图像在直线y=k(x-1)-错误!未找到引用源。
的上方,因为y=k(x-1)-错误!未找到引用源。
经过定点(1,-错误!未找到引用源。
高中数学知识点总结(不等式选讲 第一节 绝对值不等式)
不等式选讲第一节绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点二绝对值不等式性质的应用[解题技法]绝对值不等式性质的应用利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|a-c|+|c-b|(a,b∈R),通过确定适当的a,b,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.考点三绝对值不等式的综合应用[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||;③利用零点分区间法.。
高考数学大一轮复习不等式选讲第一节绝对值不等式课件理
4.已知函数 f(x)=|x-a|+3x,其中 a>0. (1)当 a=1 时,求不等式 f(x)≥3x+2 的解集; (2)若不等式 f(x)≤0 的解集为{x|x≤-1},求 a 的值. 解:(1)当 a=1 时,f(x)≥3x+2 可化为|x-1|≥2. 由此可得 x≥3 或 x≤-1. 故不等式 f(x)≥3x+2 的解集为{x|x≥3 或 x≤-1}.
(2)若 g(x)=|x+1|,求不等式 g(x)-2>x-f(x)恒成立时 a 的取值范围.
[解] 由 g(x)=|x+1|,不等式 g(x)-2>x-f(x)恒成立,知 |x+1|+|x-a|>2 恒成立,
即(|x+1|+|x-a|)min>2. 而|x+1|+|x-a|≥|(x+1)-(x-a)|=|1+a|, 所以|1+a|>2,解得 a>1 或 a<-3. 故 a 的取值范围为(-∞,-3)∪(1,+∞).
得 4x2+4x+1>4(x2-2x+1),解得 x>14,所以原不等式的解集为
x|x>14.
法二:原不等式等价于x<-12, -2x+1+2x-1>0
或-12≤x≤1, 2x+1+2x-1>0
或x2>x1+,1-2x-1>0.
解得 x>14,所以原不等式的解集为x|x>14.
考点贯通
抓高考命题的“形”与“神” 证明绝对值不等式
[例 1] 已知 x,y∈R,且|x+y|≤16,|x-y|≤14, 求证:|x+5y|≤1. [证明] ∵|x+5y|=|3(x+y)-2(x-y)|. ∴由绝对值不等式的性质,得 |x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)| =3|x+y|+2|x-y|≤3×16+2×14=1. 即|x+5y|≤1.
近年届高考数学大一轮复习第十四章系列4选讲14.2第1讲绝对值不等式练习理北师大版(2021年整理)
2019届高考数学大一轮复习第十四章系列4选讲14.2 第1讲绝对值不等式练习理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第十四章系列4选讲14.2 第1讲绝对值不等式练习理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第十四章系列4选讲14.2 第1讲绝对值不等式练习理北师大版的全部内容。
第1讲绝对值不等式1.设函数f(x)=|2x+1|-|x-4|。
(1)解不等式f(x)>2;(2)求函数y=f(x)的最小值。
解(1)法一令2x+1=0,x-4=0分别得x=-错误!,x=4.原不等式可化为:错误!或错误!或错误!即错误!或错误!或错误!∴x<-7或x>错误!。
∴原不等式的解集为错误!.法二f(x)=|2x+1|-|x-4|=错误!画出f(x)的图象,如图所示.求得y=2与f(x)图象的交点为(-7,2),错误!.由图象知f(x)>2的解集为错误!。
(2)由(1)的法二图象知:当x=-错误!时,知:f(x)min=-92。
2.(2017·长沙一模)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.证明(1)|cos(α+β)|=|cos αcos β-sin αsin β|≤|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|;|sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+|cos αsin β|≤|cos α|+|cos β|.(2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+|cos γ|,而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版高考数学大一轮复习第十四章 14.2 不等式选讲第1课时绝对值不等式试题理北师大版1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:不等式a>0a=0a<0|x|<a (-a,a)∅∅|x|>a (-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.1.(2015·山东改编)解不等式|x-1|-|x-5|<2的解集.解①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).2.若存在实数x使|x-a|+|x-1|≤3成立,求实数a的取值范围.解∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x+2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].题型一 绝对值不等式的解法例1 (2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2.(2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 思维升华 解绝对值不等式的基本方法有(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解.(1)解不等式|x -1|+|x +2|≥5的解集.(2)若关于x 的不等式|ax -2|<3的解集为{x |-53<x <13},求a 的值.解 (1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a,与已知条件不符;当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a,又不等式的解集为{x |-53<x <13},故a =-3.题型二 利用绝对值不等式求最值例2 (1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值. (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值. 解 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1,|y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3. ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种: (1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |; (3)利用零点分区间法.(1)(2016·深圳模拟)若关于x 的不等式|2 014-x |+|2 015-x |≤d 有解,求d 的取值范围.(2)不等式|x +1x|≥|a -2|+sin y 对一切非零实数x ,y 均成立,求实数a 的取值范围.解 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x∈(-∞,-2]∪[2,+∞),∴|x +1x|∈[2,+∞),其最小值为2.又∵sin y 的最大值为1,故不等式|x +1x|≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3]. 题型三 绝对值不等式的综合应用例3 (2016·石家庄模拟)设函数f (x )=|x -3|-|x +1|,x ∈R . (1)解不等式f (x )<-1;(2)设函数g (x )=|x +a |-4,且g (x )≤f (x )在x ∈[-2,2]上恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=|x -3|-|x +1| =⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3,故由不等式f (x )<-1可得x >3或⎩⎪⎨⎪⎧2-2x <-1,-1≤x ≤3.解得x >32.(2)函数g (x )≤f (x )在x ∈[-2,2]上恒成立,即|x +a |-4≤|x -3|-|x +1|在x ∈[-2,2]上恒成立,在同一个坐标系中画出函数f (x )和g (x )的图像,如图所示.故当x ∈[-2,2]时,若0≤-a ≤4时,则函数g (x )在函数f (x )的图像的下方,g (x )≤f (x )在x ∈[-2,2]上恒成立,求得-4≤a ≤0,故所求的实数a 的取值范围为[-4,0].思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决. (2)数形结合是解决与绝对值有关的综合问题的常用方法.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以f (x )≥3的解集为{x |x ≤1或x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].1.在实数范围内,求不等式||x -2|-1|≤1的解集. 解 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0,|x -2|≤2得0≤x ≤4.∴不等式的解集为[0,4].2.不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,求实数a 的取值范围. 解 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.3.对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.解 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,|a -12|≤12,所以|4a -3b +2|=|(3a -3b )+(a -12)+52|≤|3a -3b |+|a -12|+52≤3+12+52=6,即|4a -3b +2|的最大值为6, 所以m ≥|4a -3b +2|max =6.4.已知f (x )=|x -3|,g (x )=-|x -7|+m ,若函数f (x )的图像恒在函数g (x )图像的上方,求m 的取值范围.解 由题意,可得不等式|x -3|+|x -7|-m >0恒成立,即(|x -3|+|x -7|)min >m ,由于x 轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4,所以要使不等式恒成立,则m <4. 5.(2016·江苏)设a >0,||x -1<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 由a >0,|x -1|<a 3可得|2x -2|<2a3,又|y -2|<a3,∴|2x +y -4|=|(2x -2)+(y -2)| ≤|2x -2|+|y -2|<2a 3+a3=a .即|2x +y -4|<a .6.已知关于x 的不等式|2x -m |≤1的整数解有且仅有一个值为2,求关于x 的不等式|x -1|+|x -3|≥m 的解集. 解 由不等式|2x -m |≤1,可得m -12≤x ≤m +12,∵不等式的整数解为2,∴m-12≤2≤m+12,解得3≤m≤5.再由不等式仅有一个整数解2,∴m=4.本题即解不等式|x-1|+|x-3|≥4,当x<1时,不等式等价于1-x+3-x≥4,解得x≤0,不等式解集为{x|x≤0}.当1≤x≤3时,不等式等价于x-1+3-x≥4,解得x∈∅,不等式解集为∅.当x>3时,不等式等价于x-1+x-3≥4,解得x≥4,不等式解集为{x|x≥4}.综上,原不等式解集为(-∞,0]∪[4,+∞).7.已知函数f(x)=|x+1|-|2x-3|.(1)在图中画出y=f(x)的图像;(2)求不等式|f(x)|>1的解集.解(1)f(x)=⎩⎪⎨⎪⎧x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,y=f(x)的图像如图所示.(2)由f(x)的表达式及图像,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为⎩⎨⎧⎭⎬⎫x|x<13或x>5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x|x <13或1<x <3或x >5.8.已知函数f (x )=|x +3|-|x -2|. (1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围. 解 (1)f (x )=|x +3|-|x -2|≥3,当x ≥2时,有x +3-(x -2)≥3,解得x ≥2; 当x ≤-3时,-x -3+(x -2)≥3,解得x ∈∅; 当-3<x <2时,有2x +1≥3,解得1≤x <2. 综上,f (x )≥3的解集为{x |x ≥1}. (2)由绝对值不等式的性质可得,||x +3|-|x -2||≤|(x +3)-(x -2)|=5, 则有-5≤|x +3|-|x -2|≤5. 若f (x )≥|a -4|有解,则|a -4|≤5, 解得-1≤a ≤9.所以a 的取值范围是[-1,9]. 9.(2016·全国丙卷)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x | ≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞).10.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y=⎩⎪⎨⎪⎧-5x,x<12,-x-2,12≤x≤1,3x-6,x>1,其图像如图所示,由图像可知,当且仅当x∈(0,2)时,y<0,∴原不等式的解集是{x|0<x<2}.(2)∵a>-1,则-a2<12,∴f(x)=|2x-1|+|2x+a|=⎩⎪⎨⎪⎧-4x+1-a,x<-a2,a+1,-a2≤x<12,4x+a-1,x≥12.当x∈⎣⎢⎡⎭⎪⎫-a2,12时,f(x)=a+1,即a+1≤x+3在x∈⎣⎢⎡⎭⎪⎫-a2,12上恒成立.∴a+1≤-a2+3,即a≤43,∴a的取值范围为⎝⎛⎦⎥⎤-1,43.。