稀土基本知识及应用
稀土基本知识
稀土元素基本知识1稀土元素稀土元素是钪(Sc)、钇(Y)和15个镧系元素的总称。
通常用RE表示,其氧化物用REO表示。
镧系元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。
所以稀土元素共有17个元素。
全部稀土元素的发现是从1794年发现钇至1947年从核反应堆裂变产物中分离出钷,历时150年。
其中钪是典型的分散元素,钷是自然界中极少见的放射性元素。
这两个元素与其它稀土元素在矿物中很少共生,因此在稀土生产中一般不包括它们。
稀土元素同属元素周期表第IIIB族,化学性质十分相似。
除钪和钷外,根据分离工艺要求或产品方案,可将它们分为两组或三组。
前者是以铽为界,镧至钆为铈组稀土,通常称作轻稀土,铽至镥和钇为钇组稀土,通常称为重稀土。
后者是依据P204萃取分为轻稀土(镧至钕)、中稀土(钐至铽)和重稀土(镝至镥和钇)。
2稀土元素的价态稀土元素易于失去电子,通常呈正三价。
所以稀土是非常活泼的金属元素,其活泼性仅次于碱土金属。
铈、镨、铽在外界氧化剂的作用下又可呈正四价,而钐、铕、镱在还原剂的作用下也可呈正二价离子。
因此各三价单一稀土氧化物的分子式可表示为M2O3(M—La、Nd…),而铈、镨、铽的氧化物的分子式分别为CeO2、Pr6O11、Tb4O7。
3镧系收缩镧系元素的原子半径、离子半径都随原子序数(从镧到镥)的增加而减小,将这一现象称为镧系收缩。
由于镧系收缩,从镧到镥的碱性随原子序数的增加而减弱;络合物的稳定性随原子序数的增加而增强。
这就是能将性质及其相似的稀土元素逐一分离的主要依据。
4稀土元素的主要化合物稀土元素的化合物很多,有无机化合物、有机化合物、金属间化合物等。
这里仅将在湿法冶金生产实际产出的几种化合物予以简单介绍。
4.1氧化物在800~10000C下灼烧稀土氢氧化物、草酸盐、碳酸盐、硫酸盐、硝酸盐都可获得稀土氧化物,其中铈、镨、铽在一定的灼烧条件下生成CeO2、Pr6O11(Pr2O3·4PrO2)、Tb4O7(Tb2O3·TbO2)。
稀土元素知识学习
一、稀土元素简介稀土,曾称稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。
稀土是制造被称为“灵巧炸弹”的精密制导武器、雷达和夜视镜等各种武器装备不可缺少的元素。
因其天然丰度小,又以氧化物或含氧酸盐矿物共生形式存在,故叫“稀土”。
1.基本简介稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。
钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。
与其名称暗示的不同,稀土元素(钷除外)在地壳中的丰度相当高,其中铈在地壳元素丰度排名第25,占0.0068%(与铜接近)。
然而,由于其化学性质,稀土元素很少富集到经济上可以开采的程度。
稀土元素的名称正是源自其匮乏性。
人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的硅铍钇矿,许多稀土元素的名称正源自于此地。
2.元素组成稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。
周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。
其中原子序数为57~71的15种化学元素又统称为镧系元素。
稀土元素的共性是:①它们的原子结构相似;②离子半径相近(REE3+离子半径1.06×10^-10m~0.84×10^-10m,Y3+为0.89×10^-10m);③它们在自然界密切共生。
稀土元素有多种分组方法,目前最常用的有两种:两分法:铈族稀土,La-Eu,亦称轻稀土(LREE)钇族稀土,Gd-Lu+Y,亦称重稀土(HREE)两分法分组以Gd划界的原因是:从Gd开始在4f亚层上新增加电子的自旋方向改变了。
稀土基本知识
稀土基本知识目录一、稀土概述 (3)1.1 稀土的定义与分类 (4)1.2 稀土在元素周期表中的位置 (5)1.3 稀土元素的性质与应用 (5)二、稀土元素简介 (6)2.1 镧系元素 (9)2.2 铽系元素 (10)2.3 钇系元素 (11)2.4 铌系元素 (12)2.5 钼系元素 (13)三、稀土矿床类型及特点 (14)3.1 水源型矿床 (15)3.2 磁性地层型矿床 (17)3.3 热液型矿床 (18)3.4 混合型矿床 (19)四、稀土提取工艺 (20)4.1 重选法 (21)4.2 浮选法 (22)4.3 磁选法 (23)4.4 电选法 (25)4.5 化学选矿法 (26)五、稀土金属的制备 (27)5.1 熔炼法 (28)5.2 合金化法 (29)5.3 离子交换法 (30)5.4 湿法冶金法 (31)六、稀土材料及其应用 (32)6.1 稀土永磁材料 (33)6.2 稀土发光材料 (34)6.3 稀土催化材料 (36)6.4 稀土储氢材料 (37)七、稀土在高科技领域的应用 (38)7.1 稀土在信息技术中的应用 (39)7.2 稀土在新能源、环保领域的应用 (40)7.3 稀土在生物医学、农业领域的应用 (41)八、稀土资源保护与可持续发展 (42)8.1 稀土资源的现状与面临的问题 (43)8.2 稀土资源的保护和合理利用 (44)8.3 稀土产业的绿色转型与可持续发展 (45)一、稀土概述也称为镧系元素和钇族元素,包括17种化学元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、钇(Y)、镱(Yb)和镥(Lu)。
这些元素在自然界中通常以矿石的形式存在,如独居石、氟碳铈矿等。
稀土元素在地壳中的分布不均,但在某些地区,如中国、美国和印度,它们的储量相对丰富。
稀土元素具有独特的物理和化学性质,如荧光性、磁性、催化活性和电导性等,这使得它们在许多高科技领域具有重要的应用价值。
稀土资源现状讲解 ppt课件
ppt课件
LOGO
5
世界分布情况
稀土介绍
世界稀土资源
中国稀土资源
第* 页
稀土资源在地壳中的分布并不稀少,只是分散而已, 因此稀土的绝对量很大,但目前为止能真正成为可开 采稀土矿的并不多,而且在世界上的分布很不均匀, 主要集中在中国、美国、印度、俄罗斯、南非、澳大 利亚、埃及等主要国家,其中中国的占有率最高。
ppt课件
LOGO
21
变身术
目前,稀土合金的出口不受配额的限制, 但是政府对稀土原材料有严格的出口管制 措施。所以有的人为了避免稀土原材料的 直接出口,将其简单的加工成为稀土合金, 以这种方式绕道出关。
稀土合金的生成技术本身并不复杂,企业 把稀土进行简单加工就可以达到出口的要 求了。
ppt课件
第* 页
ppt课件
LOGO
19
流失资源的原因
稀土流失渠道的三大隐蔽渠道
一、偷梁换柱 二、变身术 三、私采浪费
ppt课件
第* 页
LOGO
20
第* 页
偷梁换柱
比如说氧化铈(稀土元素氧化物)就是稀土的 主要品种,大都是白色的粉末。抛光粉的外观 也是白色的粉末状。很多出口商为了让氧化铈 为顺利通过海关,在出口单上填写的都是抛光 粉的名字,这样就蒙蔽了海关检查员。
ppt课件
LOGO
6
稀土介绍
世界稀土资源
中国稀土资源
第* 页
ppt课件
LOGO
7
稀土资源
ห้องสมุดไป่ตู้
世界稀土资源
中国稀土资源
第* 页
ppt课件
LOGO
8
文化知识概述
企业文化概述
企业文化体系
稀土基础知识
独居石、碳 酸岩风化壳 稀土矿
独居石
世界三大稀土矿床名称ຫໍສະໝຸດ 发现时间(年)规模
内蒙古白云鄂博 铁-铌-稀土矿床
1927
世界第一
最大
美国加利福尼亚 Mountain Pass矿
床
1949
最早
世界第二
其他
开始只发现两 种但当时没受 到重视,直至 新中国建立后
1966年矿山产 量达到矿山历 史的最高水平
⑤稀土硫酸盐
稀土氧化物于略微过量的浓硫酸反应,水合硫酸盐 高温脱水或酸式盐的热分解均可制得无水稀土硫酸 盐。无水稀土硫酸盐容易吸水,溶于水是放热,在 20 ℃时,稀土硫酸盐的溶解度由铈至铕依次降低, 由钇至镥依次升高。 水和稀土硫酸盐可用通式RE2(SO4)3·nH2O表示, 其中n=3,4,5,6,8,9,但以n=9(La,Ce)和n=8(Pr至 镥Lu)最为常见。 稀土硫酸盐于碱金属和碱土金属的硫酸盐均能形成 复盐。RE2(SO4)3 M2SO4·nH2O, n=0、2、8。
(Baxe Earth)。
稀土既非稀也非土
铝土矿 锰矿 铁矿 铜矿
40%
稀 20~25% 20~60% 10%
散
土
氧化物成土状
稀土元素性质很活泼,它们很容易跟氧结合形成氧化物。稀土 矿物主要是磷酸盐、碳酸盐、氟碳酸盐和硅酸盐等。
RE元素“之最”
REE中丰度最大的元素:铈(Ce)
目前所有元素中磁性最强的是:钕(Nd) 最早观察到有超导现象的元素: 镧(La)
一.稀土的简介和性质 二. 稀土的重要化合物 三.稀土的应用 四.稀土的分离
五. 稀土金属的制备
稀土元素 稀土元素 的组成 的发现
稀土元素的 稀土元素的 化学性质 物理性质
《无机化学》中“稀土知识”侧重教学的必要性
《无机化学》中“稀土知识”侧重教学的必要性摘要:本文介绍了稀土元素及其在国民经济中的重要地位,并对稀土资源的现状进行了阐述,针对于稀土的重要作用及面临的出口形势,分析了在无机化学教学过程中侧重讲授稀土知识的必要性。
关键词:无机化学稀土侧重教学1 稀土简介《无机化学》中元素部分有一章非常重要的知识——稀土,邓小平同志曾经讲过:”中东有石油,中国有稀土。
一定要把稀土的事情办好,把我国稀土优势发挥出来”。
江泽民曾说过“搞好稀土开发应用,把资源优势转化为经济优势”。
那么稀土到底是什么呢?稀土是化学元素周期表中镧系元素—镧(Lanthanum La)、铈(Cerium Ce)、镨(Praseodymium Pr)、钕(Neodymium Nd)、钷(Promethium Pm)、钐(Samarium Sm)、铕(Europium Eu)、钆(Gadolinium Gd)、铽(Terbium Tb)、镝(Dysprosium Dy)、钬(Holmium Ho)、铒(Erbium Er)、铥(Thulium Tm)、镱(Ytterbium Yb)、镥(Lutecium Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth),简称稀土(RE或R)。
稀土并不是土,它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器,一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件,稀土元素被称为“工业维生素”和“二十一世纪高科技和功能材料宝库”。
我国是世界上稀土蕴藏量最多的国家.根据不完全统计资料显示,全球稀土已探明工业储量为11235万吨,中国为5200万吨,中国也是全球唯一能够提供全部17种稀土金属的国家,储量占世界的95%,是名副其实的“稀土大国”,日本、欧洲和北美都是它的主要市场。
2 稀土的应用稀土元素在各个领域都有应用,例如镧可应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
稀土的基础知识与应用
稀土的基礎知識與應用神奇的稀土鑭、鈰、鐠、釹、釔等17種稀土元素由於原子結構特殊,電子能級異常豐富,具有許多優異的光、電、磁、核等特性,加之化學性質十分活潑,能與其它元素組成品類繁多、功能千變萬化、用途各異的新型材料,被稱作為“現代工業的維生素”和神奇的“新材料寶庫”。
稀土已廣泛應用於冶金、機械、石油、化工、玻璃、陶瓷、紡織、皮革、農牧養殖等傳統產業領域,可以顯著改善產品性能和增加產量。
作為改性添加元素在鋼鐵和有色金屬中加入千分之幾甚至萬分之幾的稀土就能明顯改善金屬材料性能。
稀土可以提高鋼材的強度、耐磨性和抗腐蝕性能。
稀土球墨鑄鐵管比普通鑄鐵管強度高5~6倍。
由於我國鋁錠含矽量高,用其生產的鋁導線導電率長期以來不符合國際標準,加入稀土生產的稀土鋁導線,不但導電北達到了國際標準,導電性能還提高2~4%,強度提高20%,抗腐蝕性能提高近一倍,已成功用於50萬伏超高壓輸電線。
稀土分子篩催化劑用於石油加工的催化裂化,可使汽油產出率提高5%,提高裝置裂化能力30%。
稀土植物助長劑用於農業,可使糧食作物平均增產7%,油料作物平均增產10%,瓜果蔬菜增產10%~20%,還能使含糖作物的含糖量明顯提高,並能增強農作物的抗逆性(抗災病能力)。
稀土作為基體元素能製造出具有特殊“光電磁”性能的多種功能材料,如稀土永磁材料、螢光發光材料、貯氫蓄能材料、催化劑材料、鐳射材料、超導材料、光導材料、功能陶瓷材料、生物工程材料和半導體材料等等,它們都是發展電子資訊產業,開發新能源,環保和國防尖端技術等方面不可缺少的新材料。
稀土永磁材料釹鐵硼是當今磁性能最強的永磁材料,被稱作“一代磁王”,已廣泛用於各種電動機、發電機、音響設備、儀器儀錶、核磁共振成像儀和航太航空通訊等方面。
稀土永磁材料用於電機,可使設備小型化和輕型化,同等功率的電機體積和重量可減少30%以上。
用稀土永磁同步電機代替工業上耗能最多的非同步電機,節電率達12~15%。
稀土元素知识简介
稀土百科内容来自于:、、。
(又称铈组):镧、铈、镨、钕、钷、钐、重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。
铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
稀土金属(rareearthmetals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。
它们的名称和化学符号是钪(Sc)、钇(Y)镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)镥(Lu)。
它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
名称由来稀土18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。
稀土一般是以氧化物镥钇称为重稀土或钇组稀土。
也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。
其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。
钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。
过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。
性质应用稀土金属具有可塑性,属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。
主要特点稀土元素在地壳中平均含量为165.35×10-6(黎彤,1976)。
稀土基本知识
稀土基本知识目录1. 什么是稀土 (2)1.1 稀土元素的定义 (3)1.2 稀土元素的化学性质 (3)1.3 稀土元素的物理性质 (4)1.4 稀土元素的分布和来源 (6)2. 稀土元素的分类 (7)2.1 扫描dium期的稀土元素 (7)2.2 十六种稀土元素 (8)2.3 其他与稀土元素相关的元素 (9)3. 稀土元素的用途 (11)3.1 电子工业 (12)3.2 磁性材料 (13)3.3 催化剂 (14)3.4 玻璃和陶瓷 (16)4. 稀土元素的开采和加工 (17)4.1 稀土矿的种类和分布 (18)4.2 稀土元素的提取工艺 (19)4.3 稀土元素的精炼工艺 (20)5. 稀土元素的环保问题 (21)5.1 开采和加工过程的污染问题 (23)5.2 稀土元素在环境中的蓄积和迁移 (24)5.3 稀土元素的资源利用和回收利用 (26)6. 稀土元素的未来发展 (26)6.1 新兴应用领域 (27)6.2 资源利用的创新和技术发展 (29)1. 什么是稀土全称是非常稀有土元素,是一种用于各个高科技领域至关重要的资源。
它们是元素周期表上17种金属元素中的一类,包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和锕系元素钍和钚。
由于它们的化学特性相似,这些元素通常一起加工和利用。
稀土之所以得名略具误导性,是因为它们在自然界中并不完全稀缺。
其名称来源于它们最初被发现的难以提取的特性,随着科技的进步和提取技术的优化,稀土元素的供应变得相对丰富。
它们在工业上也扮演着关键角色,尤其是在现代化技术中,如光电、永磁、储能、显示技术以及电子、汽车和航空航天等领域。
在环境和技术领域,稀土也因其对地球生态系统的潜在影响而备受关注。
商业生产稀土通常涉及高耗能流程和可能导致环境污染的活动,这促使研发者和制造商寻找更加可持续和环保的稀土提取与处理方式。
稀土不但是现代工业和技术的核心材料,也是可持续发展和环境保护工作中需要考虑的一个关键因素。
稀土矿石的分类及其主要成分知识点解说.
稀土元素在地壳中的分布、赋存状态及稀土矿石的分类稀土元素在地壳中的总质量分数为0.0153%,含量最大的是铈(占0.0046%),其次是钇、钕、镧等。
含量最小的是钷,然后是铥、镥、铽、铕、钬、铒、镱等。
稀土元素在地壳中主要呈三种状态存在:1.呈单独的稀土矿物存在于矿石中,如独居石、氟碳铈矿、磷钇矿等。
2.呈类质同象置换矿物中的钙、锶、钡、锰、锆、钍等组分存在于造岩矿物和其它金属矿物及非金属矿物中,如萤石、磷灰石、钛铀矿等。
3.呈离子形态吸附于某些矿物晶粒表面或晶层间,如稀土离子吸附于黏土矿物、云母类矿物的晶粒表面或晶层间形成离子吸附型稀土矿床。
离子吸附型矿是我国独有的具有重要工业价值的稀土矿。
离子吸附型稀土矿中约75%~95%的稀土元素呈离子状态吸附于高岭土和云母中,其余约10%的稀土元素呈矿物相(氟碳铈矿、独居石、磷钇矿等)、类质同象(云母、长石、萤石等)和固体分散相(石英等)的形态存在。
离子吸附型稀土矿中的稀土氧化物含量一般为0.1%左右,有的可高达0.3%以上。
根据离子型稀土矿中稀土元素的配分值可将其分为下列类型:富钇重稀土矿、富铕中钇轻稀土矿、中钇重稀土矿、富镧钕轻稀土矿、中钇轻稀土矿、无选择配分稀土矿。
离子型稀土矿不用经过选矿,用NaCl、(NH4)2SO4、NH4Cl等溶液渗浸就可以将稀土元素提取到溶液中,再将溶液中的稀土转化成草酸盐或碳酸盐,最后灼烧得到稀土氧化物。
一、钨的性质1.钨的分析化学性质(1)钨的化学性质简述钨在元素周期表中,属第六周期第ⅥB族。
钨的外层电子结构为5d46S2,其化合价有0、+1、+2、+3、+4、+5、+6和-1、-2价等。
在化学分析上有重要意义的是+3、+5、+6价。
其中最稳定的是+6价。
在常温下,盐酸、硝酸、硫酸、氢氟酸、王水等都不能溶解钨。
加热时,硝酸和王水能慢慢侵蚀它,而盐酸和硫酸对其作用微弱。
硫酸-硫酸铵混合溶剂能使钨迅速溶解。
过氧化氢、氢氟酸-硝酸混合酸能溶解钨。
稀土化学专业知识竞赛题库——稀土基础知识
6、3月10日上午,虔东稀土集团董事长龚斌与北京矿冶研究总院副院长战凯签署了战略合作协议书。彰显了虔东稀土履行环保的责任心,通过与北矿院合作一方面践行党的十八大提出的建设生态文明的国家方针;另一方面共同分享国家大力发展环保产业的带来的机会。
38、金属钬 :以钬的化合物为原料,采用金属热还原法制得的银白色金属,质软有延展性。在干燥空气中稳定。主要用于磁致伸缩合金的添加剂。金属卤素灯、激光器、磁性材料和光纤材料。
39、氧化钬 :以含钬的稀土为原料,一般采用溶剂萃取法或离子交换法制得,为淡黄色结晶粉末,在空气中容易吸水、吸气。主要用于激光材料、铁磁性材料、光纤等。
1、稀土有工业黄金之称,又有工业维生素的美称。中国是全球第一大稀土资源国,以20%左右的稀土资源储量,承担了世界90%以上的市场供应。我国稀土呈现出资源分布“北轻南重”、资源类型较多、轻稀土矿伴生的放射性元素对环境影响大、离子型中重稀土矿赋存条件差等四大显著特点。江西赣州有着“稀土王国”美誉,稀土矿主要赋存于花岗岩、火山岩风化壳中。
要用于金属钬及合金的制备。
74、氟化钆 :以钆的化合物为原料,一般采用化学法制得的粉末状的钆的氟化物。主要用于金属钆的制备。
75、氟化铽 :以铽的化合物为原料,一般采用化学法制得的粉末状的铽的氟化物。主要用于金属铽及磁致伸缩材料的制备。
76、氟化镝 :以镝的化合物为原料,一般采用化学法制得的粉末状的镝的氟化物。主要用于金属镝及合金的制备。
61、镧镨钕氧化物 :镧镨钕按一定比例混合,经沉淀灼烧制得,可供制作FCCL陶瓷电容器等。
稀土基本知识
第1章绪论1.1引言[1-76]材料是人类生存和社会发展的物质基础,材料的不断发展成为了人类社会不断进步的标志。
在人类社会发展的历史长河中,每一种重要材料的发现和利用,都能把人类支配和改造自然的能力提高到一个新的水平,给社会生产力和人类生活带来巨大的变化,往往成为划分一个时代的标志。
从石器时代-青铜器时代-铁器时代的变迁,到半导体材料的发现和发展造就了如今的信息产业,材料对社会进步的推动作用越来越大。
在信息时代的今天,科学技术的发展更是离不开材料科学的发展,材料已经和能源、信息技术一起成为当代文明的“三大支柱”。
按照应用方式的不同,材料一般可以分为两大类:结构材料和功能材料。
结构材料是指具有较好的力学性能(比如强度、韧性及温度特性等等)用作结构部件的材料。
而功能材料,则是指具有优秀的电、磁、光、声、力、生物、化学等性质,并被用于非结构目的的高技术材料。
按照主要使用性能的不同,功能材料又可以分为:电学功能材料、光学功能材料、磁学功能材料、声学功能材料、热学功能材料、化学功能材料、生物医学功能材料等等。
自20世纪60年代以来,各种现代技术如微电子、激光、光电、空间、能源、计算机、机器人、信息、生物和医学等技术的兴起,强烈刺激了功能材料的发展。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
同时,由于固体物理、固体化学、量子理论、结构化学、生物物理和生物化学等学科的飞速发展,以及各种制备功能材料的新技术和现代分析测试技术在功能材料研究和生产中的实际应用,许多新的功能材料不仅已在实验室中研制出来,而且已批量生产和得到应用,并在不同程度上推动或加速了各种现代技术的进一步发展。
1.1.1稀土功能材料[2-6]稀土元素包括元素周期表中的镧系元素和同属第三副族的钪Sc、钇Y,共计17个元素(图1.1)。
镧系元素包括元素周期表中原子序数从57~71号15种元素,它们是镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。
[宝典]稀土的基本知识
稀土的基本知识什么是稀土?稀土和金、银、铜、铁一样,是一组典型的金属元素。
稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
为什么称为稀土呢?由于稀土元素最初是从瑞典产的比较稀少的矿物中发现的,按当时的习惯,称不溶于水的物质为“土”,故称稀土。
稀土元素发现始于北欧。
1787年,瑞典业余矿物学家阿累尼乌斯(C.A.Arrhenius)在斯德哥尔摩附近一个名叫伊特比(Yteerby)的小村捡到一块未曾见过的沥青状黑色矿石,借用这个村名将其命名为Yteerite矿。
1794年,芬兰化学家加多林(J.Gadolin)从这种矿物中发现了一种新元素,将其命名为Yteelium(钇)。
这一年被当作第一个稀土元素的发现年代。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。
轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。
稀土的用途很多,稀土就在我们身边,我们日常生活很多方面都用到稀土,大家几乎天天要看电视,您之所以能欣赏到五颜六色的荧屏,是稀土发光材料起到了重要作用;您用的电动自行车电池和手机电池可能是由含稀土的镍氢电池制成的;您家中的使用的高效节能灯是稀土三基色荧光粉是其主要原材料,您去医院,也能接触到稀土,许多医疗设备中都用到了稀土如X光照相用的增感屏、用含稀土的激光材料制成的激光刀可作精细手术。
稀土元素分析化学PPT课件
稀土元素具有丰富的电子能级,可与 其他元素形成稳定的化合物,表现出 独特的物理和化学性质,如荧光、催 化、磁性等。
稀土元素在地壳中的分布
分布
稀土元素在地壳中分布广泛,但 相对集中于某些矿物中,如氟碳 铈矿、独居石等。
储量
全球稀土资源丰富,主要分布在 中国、美国、澳大利亚等国家。
稀土元素的重要应用
04
CATALOGUE
稀土元素的分析方法
质谱法
总结词
高灵敏度、高分辨率
详细描述
质谱法是一种通过测量样品离子质量和丰度来进行分析的方法。在稀土元素分析中,质 谱法具有高灵敏度和高分辨率的特点,能够准确地测定稀土元素的质量数,进而确定元
素组成。
原子吸收光谱法
总结词
高精度、低背景干扰
VS
详细描述
原子吸收光谱法是一种基于原子能级跃迁 的分析方法。通过测量特定波长的光被吸 收的程度,可以确定样品中目标元素的存 在和浓度。在稀土元素分析中,原子吸收 光谱法具有高精度和低背景干扰的优点, 能够准确测定稀土元素的含量。
稀土元素分析化学的定义与重要性
定义
稀土元素分析化学是研究稀土元素的性质、组成、结构和形态,以及它们在环 境、材料和生物体内的存在、迁移、转化和检测的科学。
重要性
稀土元素在高科技产业、新材料、新能源等领域具有广泛应用,因此准确测定 稀土元素的含量和分布对于科学研究、工业生产和环境保护具有重要意义。
稀土元素分析化学的主要方法
THANKS
感谢观看
分析准确度与精密度的提高
总结词
提高分析准确度与精密度是稀土元素 分析化学的重要挑战,有助于减小误 差和提高分析质量。
详细描述
随着分析技术的发展,稀土元素分析 化学将不断提高准确度和精密度,减 少误差和不确定性,提高分析质量, 以满足更严格的质量控制和检测要求 。
稀土湿法冶炼基础知识
稀土湿法冶炼基础知识培训资料广东富远稀土新材料股份有限公司二○○四年元月十五日本公司职工上岗培训材料稀土湿法冶炼基础知识(一)广东富远稀土新材料股份有限公司组织编写生产技术部主编:韩旗英编写人员:韩旗英韩新福钟德强张尚兴目录第一章稀土元素简介 (1)第二章稀土冶炼主要过程 (7)第三章离子矿开采 (10)第四章离子矿酸溶 (12)第五章萃取分离 (15)第六章沉淀 (35)第七章灼烧 (38)第八章“三废”处理 (39)附1: 化工材料性质简介 (41)附2: 工艺流程及物料平衡图 (45)第一章稀土元素简介一、稀土名词的由来稀土元素的发现要追溯到1794年从硅铍钇矿中找到“钇土”,限于当时的科学技术水平,没有能够分离成单独元素,只能得到氧化物,由于当时习惯把不溶于水的固体氧化物称为“土”,加上当时认为很稀罕,因此就得到了“Real-earth”稀土这个名词,其实稀土元素并不稀少,在自然界中广泛存在,地壳中储藏量约占地壳的0.016%(135g/T),它们在地壳中的丰度比铅锌还大几倍,比金大三万倍,而且分布极不均匀,一般原子序数为偶数的稀土元素较相印奇数元素的丰度大,但也有例外。
也不是土,而是典型的金属元素(稀土金属),活泼性仅次于碱金属和碱土金属。
二、稀土元素组成稀土元素包括原子序数从57至71的15个镧系元素以及与镧系元素化学性质相似的钪和钇(钇的离子半经在Ho-Er之间共生于稀土矿物中)共17个元素,它们属于周期表申的第ⅢB族,正常原子价为正三价。
钜是17个稀土元素中最后发现的一个,是天然放射性元素,极不稳定,半期为2.7年,当时认为在自然界中没有,直到1947年在铀裂变产物中得到,因为在高品位铀矿中有足够的中子流强度,使之缓慢地进行核裂变,形成了钜,在稀土矿中含量极少,特别在离子吸附型稀土矿中含量更少,习惯不把它列入稀土元素。
钪和镧系元素有共同的特征氧化物,在一些方面有些共同点,但它的化学性质不象钇那样相似于镧系元素,且在镧系矿物中很少发现钪,所以在一般的生产工艺中不把钪放在稀土元素之列。
稀土基本知识及应用
稀土基本知识及应用一、概念1.1 什么是稀土?1。
2 稀土生产与分离1.3 稀土资源(一)什么是稀土?稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素-钪(Sc)和钇(Y)共17种元素,称为稀土元素。
简称稀土(RE或R)。
稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组.轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇.称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。
稀土元素的主要物理化学性质稀土元素是典型的金属元素,能形成化学稳定的氧化物、卤化物、硫化物。
稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。
钷为核反应堆生产的人造放射性元素。
常用15种稀土元素名称的由来及用途浅说镧(La)“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。
从此,镧便登上了历史舞台。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。
铈(Ce)“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星-—谷神星.铈广泛应用于(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
稀土基础知识
五. 稀土金属的制备
稀土元素 稀土元素 的组成 的发现
稀土元素的 稀土元素的 化学性质 物理性质
1、稀土元素的组成
稀土元素:周期表ⅢB族中原子序数为21、39和 57~71的17种化学元素的统称。
稀土元素包括钪、钇、镧、铈、镨、钕、钷、钐、 铕、钆、铽、镝、钬、铒、铥、镱、镥。
(Baxe Earth)。
稀土既非稀也非土
铝土矿 锰矿 铁矿 铜矿
40%
稀 20~25% 20~60% 10%
散
土
氧化物成土状
稀土元素性质很活泼,它们很容易跟氧结合形成氧化物。稀土 矿物主要是磷酸盐、碳酸盐、氟碳酸盐和硅酸盐等。
RE元素“之最”
REE中丰度最大的元素:铈(Ce)
目前所有元素中磁性最强的是:钕(Nd) 最早观察到有超导现象的元素: 镧(La)
用于产生激光束的氧 化铝合成晶石
电光源 工业领域:
稀 土
元
的素 应在
作荧光灯 用 工 的发光材料 业
领
氧化铕 域
动力电池 钇(铁)锂 电动车直流电机 防紫外线辐射玻璃
氧化铈
尾气净化催化剂
氧化铈、氧化镧和氧化 镨等
。
每辆普瑞斯汽车需要16种稀土材料,油耗低、环保性能好,适合 城市使用;但价格比同等动力汽车较昂贵。
密度 7.88 8.27 8.54 8.80 9.05 9.33 6.98 9.84 (g/cm3)
熔点 1312 1356 1407 1461 1497 1545 824 1652 (℃)
+3氧化态镧系元素离子多数有颜色,如果阴离子 为无色,在结晶盐和水溶液中都保持Ln3+的特征颜色
稀土知识
稀土知识名称:氧化镧;lanthanum oxide资料:La2O3 分子量325.84氧化镧白色无定形粉末。
密度6.51g/cm3。
熔点2217℃。
沸点4200℃。
微溶于水,易溶于酸而生成相应的盐类。
露置空气中易吸收二氧化碳和水,逐渐变成碳酸镧。
灼烧的氧化镧与水化合放出大量的热。
应用领域主要用于制造制特种合金精密光学玻璃、高折射光学纤维板,适合做摄影机、照相机、显微镜镜头和高级光学仪器棱镜等。
还用于制造陶瓷电容器、压电陶瓷掺入剂和X射线发光材料溴氧化镧粉等。
由磷铈镧矿砂萃取或由灼烧碳酸镧或硝酸镧而得。
也可以由镧的草酸盐加热分解可以制得。
用作多种反应的催化剂,如掺杂氧化镉时催化一氧化碳的氧化反应,掺杂钯时催化一氧化碳加氢生成甲烷的反应。
浸渗入氧化锂或氧化锆(1%)的氧化镧可用于制造铁氧体磁体。
是甲烷氧化偶联生成乙烷和乙烯的非常有效的选择性催化剂。
用于改进钛酸钡(BaTiO3)、钛酸锶(SrTiO3)铁电体的温度相依性和介电性质,以及制造纤维光学器件和光学玻璃。
氧化镧的物理化学性质外观与性状: 白色固体粉末。
相对密度: 6.51 g/mL at 25 °C(li熔点: 2315 °C沸点: 4200 °C溶解性: 溶于酸、乙醇、氯化铵,不溶于水、酮。
氧化镧的用途主要用于制造精密光学玻璃、光导纤维。
也用于电子工业作陶瓷电容器,压电陶瓷掺入剂。
还用作制硼化镧的原料,石油分离精制催化剂。
中文名称:氧化铈中文别名:二氧化铈英文别名:Cerium(IV)oxide,Ceriumdioxide,Ceria氧化铈淡黄或黄褐色助粉末。
密度7.13g/cm3。
熔点2397℃。
不溶于水和碱,微溶于酸。
在2000℃温度和15Mpa压力下,可用氢还原氧化铈得到三氧化二铈,温度游离在2000℃间,压力游离在5Mpa压力时,氧化铈呈微黄略带红色,还有粉红色,其性能是做抛光材料。
化学式CeO2相对分子质量172.11性状纯品为白色重质粉末或立方体结晶,不纯品为浅黄色甚至粉红色至红棕色(因含有微量镧、镨等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀土基本知识及应用一、概念1.1 什么是稀土?1.2 稀土生产与分离1.3 稀土资源(一)什么是稀土?稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素。
简称稀土(RE或R)。
稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。
轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。
稀土元素的主要物理化学性质稀土元素是典型的金属元素,能形成化学稳定的氧化物、卤化物、硫化物。
稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。
钷为核反应堆生产的人造放射性元素。
常用15种稀土元素名称的由来及用途浅说镧(La)“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。
从此,镧便登上了历史舞台。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。
铈(Ce)“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星——谷神星。
铈广泛应用于(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
不仅能防紫外线,还可降低车内温度,从而节约空调用电。
从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约一千多吨。
(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。
美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。
目前领先的是法国罗纳普朗克公司。
(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。
铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。
如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr)大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。
“镨钕”希腊语为“双生子”之意。
大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。
这种“双生子”被分隔开了,镨元素也有了自己施展才华的广阔天地。
镨是用量较大的稀土元素,其主要用于玻璃、陶瓷和磁性材料中。
(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。
(2)用于制造永磁体。
选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。
广泛应用于各类电子器件和马达上。
(3)用于石油催化裂化。
以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。
我国70年代开始投入工业使用,用量不断增大。
(4)镨还可用于磨料抛光。
另外,镨在光纤领域的用途也越来越广。
钕(Nd)伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。
钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。
金属钕的最大用户是钕铁硼永磁材料。
钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。
钕铁硼磁体磁能积高,被称作当代“永磁之王”,以其优异的性能广泛用于电子、机械等行业。
阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。
钕还应用于有色金属材料。
在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。
另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。
在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。
钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。
随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
钐(Sm)1879年,波依斯包德莱从铌钇矿得到的“镨钕”中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。
这种永磁体有SmCo5系和Sm2Co17系两类。
70年代前期发明了SmCo5系,后期发明了Sm2Co17系。
现在是以后者的需求为主。
钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。
此外,氧化钐还用于陶瓷电容器和催化剂方面。
另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
铕(Eu)1901年,德马凯(Eugene-Antole Demarcay)从“钐”中发现了新元素,取名为铕(Europium)。
这大概是根据欧洲(Europe)一词命名的。
氧化铕大部分用于荧光粉。
Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。
现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。
再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。
近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。
氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
钆(Gd)1880年,瑞士的马里格纳克(G.de Marignac)将“钐”分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
钆在现代技革新中将起重要作用。
它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。
(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。
(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。
(4)在无Camot 循环限制时,可用作固态磁致冷介质。
(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。
(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。
另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。
氧化钆还可用于制造电容器、x射线增感屏。
在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
铽(Tb)1843 年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。
铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。
主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。
(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。
(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。
特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大,这种变化可以使一些精密机械运动得以实现。
铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、太空望远镜的调节机构和飞机机翼调节器等领域。
镝(Dy)1886 年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝(dysprosium)。
镝目前在许多高技术领域起着越来越重要的作用,镝的最主要用途是(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。
(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。
(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。
(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。
(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。
(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。
(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。
随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。
钬(Ho)十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。
1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。
钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/ΣRE>99.9%。