高2015届文科班第一学期期中考试复习题

合集下载

湖北省重点高中联考2015届高三上学期期中数学试卷(文科)

湖北省重点高中联考2015届高三上学期期中数学试卷(文科)

湖北省重点高中联考2015届高三上学期期中数学试卷(文科)一、选择题:每小题5分,10小题共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.(5分)函数y=ln(2﹣x﹣x2)+的定义域是()A.(﹣1,2)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,1)D.①若=,=,则=;②若∥,∥,则∥;③||=||•||;④若•=•,则=的逆命题.其中正确的是()A.①②B.①④C.①②③D.①②④7.(5分)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k<8,则k等于()A.9B.8C.7D.68.(5分)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为()A.0B.1C.﹣1 D.29.(5分)已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:(λ∈R且λ≠0),则P的轨迹一定通过△ABC的()A.内心B.垂心C.重心D.AB边的中点10.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f>e2014f(0)B.e2014f(﹣2014)<f(0),f<e2014f(0)C.e2014f(﹣2014)>f(0),f>e2014f(0)D.e2014f(﹣2014)>f(0),f<e2014f(0)二、填空题:本大题共7个小题,每小题5分,共35分.把答案填在答题卡上对应题号后的横线上.答错位置,书写不清,模棱两可不得分.11.(5分)若集合A={x|2x﹣1>0},B={x||x|<1},则A∩B=.12.(5分)已知幂函数f(x)=x2+m是定义在区间上的奇函数,则f(m+1)=.13.(5分)在△ABC中,2sin2=sinA,sin(B﹣C)=2cosBsinC,则=.14.(5分)已知角A、B、C是△ABC 的内角,a,b,c 分别是其对边长,向量,,,且a=2,.则b=.15.(5分)数列{a n}的前n项和为S n,已知S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,则S17=.16.(5分)已知函数f(x)=2x,等差数列{a n}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2=.17.(5分)已知函数f(x)=2x,g(x)=+2.则函数g(x)的值域为;满足方程f(x)﹣g(x)=0的x的值是.三、解答题:本大题共5个小题,共65分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上对应题号指定框内.18.(12分)已知向量=(2cos(+x),﹣1),=(﹣sin(),cos2x),定义函数f(x)=•.(1)求函数f(x)的表达式,并指出其最大值和最小值;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC 的面积S.19.(13分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n•b n}的前n项和T n.20.(13分)已知函数,其中ω为使f(x)能在时取得最大值的最小正整数.(1)求ω的值;(2)设△ABC的三边长a、b、c满足b2=ac,且边b所对的角θ的取值集合为A,当x∈A 时,求f(x)的值域.21.(13分)设函数f(x)=,方程x=f(x)有唯一解,其中实数a为常数,f(x1)=,f(x n)=x n+1(n∈N*).(1)求f(x)的表达式;(2)求x2015的值;(3)若a n=﹣4023且b n=(n∈N*),求证:b1+b2+…+b n<n+1.22.(14分)已知函数φ(x)=,a为常数.(1)若f(x)=lnx+φ(x),且a=,求函数f(x)的单调区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],当x1≠x2时,都有<﹣1,求a的取值范围.湖北省重点高中联考2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题:每小题5分,10小题共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.(5分)函数y=ln(2﹣x﹣x2)+的定义域是()A.(﹣1,2)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,1)D.A.9B.8C.7D.6考点:数列递推式.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足5<a k<8,求出k.解答:解:a n==∵n=1时适合a n=2n﹣10,∴a n=2n﹣10.∵5<a k<8,∴5<2k﹣10<8,∴<k<9,又∵k∈N+,∴k=8,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用.8.(5分)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为()A.0B.1C.﹣1 D.2考点:等比数列的前n项和.专题:计算题.分析:由a n+1=ca n,知{a n}是等比数列,由S n=3n+k,分别求出a1,a2,a3,再由a1,a2,a3成等比数列,求出k的值..解答:解:∵a n+1=ca n,∴{a n}是等比数列,∵a1=S1=3+k,a2=S2﹣S1=(9+k)﹣(3+k)=6,a3=S3﹣S2=(27+k)﹣(9+k)=18,∵a1,a2,a3成等比数列,∴62=18(3+k),∴k=﹣1.故选C.点评:本题考查等比数列的性质和应用,解题时要认真审题,注意等比数列通项公式的合理运用.9.(5分)已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:(λ∈R且λ≠0),则P的轨迹一定通过△ABC的()A.内心B.垂心C.重心D.AB边的中点考点:轨迹方程;三角形五心.专题:计算题;数形结合.分析:根据向量的加法的平行四边形法则向量的运算法则,对进行化简,得到,根据三点共线的充要条件知道P、C、D三点共线,但λ≠0则点P的轨迹一定不经过△ABC的重心.解答:解:取AB的中点D,则∵∴=,而,∴P、C、D三点共线,∵λ≠0∴点P的轨迹一定不经过△ABC的重心.故选D.点评:此题是个中档题.考查向量的加法法则和运算法则,以及三点共线的充要条件,和三角形的五心问题,综合性强,体现了数形结合的思想.10.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f>e2014f(0)B.e2014f(﹣2014)<f(0),f<e2014f(0)C.e2014f(﹣2014)>f(0),f>e2014f(0)D.e2014f(﹣2014)>f(0),f<e2014f(0)考点:函数的单调性与导数的关系.专题:导数的综合应用.分析:构造函数g(x)=,可求函数g(x)=在R上单调递减,即可得>f(0),<f(0).解答:解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f<e2014f(0).故选:D.点评:本题主要考察了函数的单调性与导数的关系,其中,构造函数g(x),并讨论其单调性是关键,属于中档题.二、填空题:本大题共7个小题,每小题5分,共35分.把答案填在答题卡上对应题号后的横线上.答错位置,书写不清,模棱两可不得分.11.(5分)若集合A={x|2x﹣1>0},B={x||x|<1},则A∩B=(,1).考点:交集及其运算.专题:计算题.分析:由题意,可先化简两个集合A,B,再求两个集合的交集得到答案解答:解:由题意A={x|2x﹣1>0}={x|x>},B={x|﹣1<x<1},∴A∩B=(,1)故答案为(,1)点评:本题考查交的运算,是集合中的基本题型,解题的关键是熟练掌握交集的定义12.(5分)已知幂函数f(x)=x2+m是定义在区间上的奇函数,则f(m+1)=8.考点:幂函数的单调性、奇偶性及其应用.专题:函数的性质及应用.分析:利用奇函数的定义域关于原点对称可得m,即可得出.解答:解:∵幂函数在上是奇函数,∴m=1,∴f(x)=x3,∴f(m+1)=f(1+1)=f(2)=23=8.故答案为:8.点评:本题考查了奇函数的性质、函数求值,属于基础题.13.(5分)在△ABC中,2sin2=sinA,sin(B﹣C)=2cosBsinC,则=.考点:余弦定理的应用;正弦定理的应用.专题:综合题;解三角形.分析:利用2sin2=sinA,求出A,由余弦定理,得a2=b2+c2+bc①,将sin(B﹣C)=2cosBsinC展开得sinBcosC=3cosBsinC,所以将其角化边,即可得出结论.解答:解:∵2sin2=sinA,∴1﹣cosA=sinA,∴sin(A+)=,又0<A<π,所以A=.由余弦定理,得a2=b2+c2+bc①,将sin(B﹣C)=2cosBsinC展开得sinBcosC=3cosBsinC,所以将其角化边,得b•=3••c,即2b2﹣2c2=a2②,将①代入②,得b2﹣3c2﹣bc=0,左右两边同除以c2,得2﹣﹣3=0,③解③得=或=﹣1(舍),所以=.故答案为:.点评:本题考查余弦定理、正弦定理的应用,考查学生的计算能力,属于中档题.14.(5分)已知角A、B、C是△ABC 的内角,a,b,c 分别是其对边长,向量,,,且a=2,.则b=.考点:二倍角的余弦;数量积判断两个平面向量的垂直关系.专题:计算题.分析:根据两向量垂直时数量积为0,利用平面向量的数量积的运算法则化简=0,利用二倍角的正弦、余弦函数公式化简,提取2后,利用两角差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的范围求出此角的范围,利用特殊角的三角函数值即可求出A的度数;由B的范围及cosB的值,利用同角三角函数间的基本关系求出sinB 的值,然后由a,sinA及sinB的值,利用正弦定理求出b的值即可.解答:解:∵,∴,∴,(4分)∴,(6分)∵0<A<π,∴,∴,(8分)∴;(9分)在△ABC中,,a=2,,∴,(10分)由正弦定理知:,(11分)∴═.∴b=.(13分)点评:此题综合考查了平面向量的数量积的运算法则,三角函数的恒等变换及正弦定理.要求学生掌握平面向量垂直时满足的关系及正弦函数的值域,牢记特殊角的三角函数值.15.(5分)数列{a n}的前n项和为S n,已知S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,则S17=9.考点:数列的求和.专题:等差数列与等比数列.分析:由已知得S17=(1﹣2)+(3﹣4)+…+(15﹣16)+17,由此能求出结果.解答:解:∵S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,∴S17=(1﹣2)+(3﹣4)+…+(15﹣16)+17=+17=﹣8+17=9.故答案为:9.点评:本题考查数列的前17项和的求法,是基础题,解题时要认真审题,注意总结规律.16.(5分)已知函数f(x)=2x,等差数列{a n}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2=﹣6.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据等差数列{a x}的公差为2和a2+a4+a6+a8+a10=2进而可得到a1+a3+a5+a7+a9=2﹣5×2=﹣8,即可得到a1+…+a10=﹣6,即可求出答案.解答:解:∵f(x)=2x,f(a2+a4+a6+a8+a10)=4,∴a2+a4+a6+a8+a10=2,又{a n}的公差为2,∴a1+a3+a5+a7+a9=(a2+a4+a6+a8+a10)﹣5d=﹣8,∴a1+a2+…+a9+a10=﹣6,∴log2=log22﹣6=﹣6.故答案为:﹣6.点评:本题主要考查等差数列的性质和指数函数的运算法则.属基础题.17.(5分)已知函数f(x)=2x,g(x)=+2.则函数g(x)的值域为(2,3];满足方程f(x)﹣g(x)=0的x的值是log.考点:指数函数综合题.专题:函数的性质及应用.分析:(1)根据指数函数的性质结合不等式求解,(2)分类求解方程:2x﹣﹣2=0,即可.解答:解:(1)∵2|x|≥1,∴,∴2<+2≤3故g(x)的值域是(2,3].故答案为(2,3].(2)由f(x)﹣g(x)=0,当x≤0时,﹣2=0,显然不满足方程,即只有x>0时满足2x﹣﹣2=0,整理得(2x)2﹣2•2x﹣1=0,(2x﹣1)2=2,故2x=1±,即x=log2(1+).故答案为;log点评:本题考察了指数函数的性质,求解方程等问题,属于中档题.三、解答题:本大题共5个小题,共65分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上对应题号指定框内.18.(12分)已知向量=(2cos(+x),﹣1),=(﹣sin(),cos2x),定义函数f(x)=•.(1)求函数f(x)的表达式,并指出其最大值和最小值;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC 的面积S.考点:正弦定理的应用;平面向量数量积的运算;三角函数中的恒等变换应用.专题:解三角形.分析:(1)首先对向量进行化简,利用三角函数的基本关系确定函数f(x)的解析式,从而求出f(x)的最大,最小值.(2)根据已知条件以及(1)中的结论确定A的值,再利用三角形的面积公式求出面积S.解答:解:(1)∵,.∴f(x)=•=(﹣2sinx,﹣1)•(﹣cosx,cos2x)=(﹣2sin x,﹣1)•(﹣cos x,cos 2x)=(﹣sinx)•(﹣cosx)﹣cos2x=sin 2x﹣cos2x=sin(2x﹣),∴f(x)的最大值和最小值分别是和﹣.(2)∵f(A)=1,∴,∴sin(2A﹣)=.又∵0<A<π∴2A﹣=或2A﹣=.∴A=或A=.又∵△ABC为锐角三角形,∴A=.∵bc=8,∴△ABC的面积S═×8×=2.点评:本题考查三角函数基本关系的应用,正弦定理等知识.属于中档题.19.(13分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n•b n}的前n项和T n.考点:数列的求和;等差关系的确定;等比关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)由S n=2n2+n可得,当n=1时,可求a1=3,当n≥2时,由a n=s n﹣s n﹣1可求通项,进而可求b n(Ⅱ)由(Ⅰ)知,,利用错位相减可求数列的和解答:解:(Ⅰ)由S n=2n2+n可得,当n=1时,a1=s1=3当n≥2时,a n=s n﹣s n﹣1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1而n=1,a1=4﹣1=3适合上式,故a n=4n﹣1,又∵a n=4log2b n+3=4n﹣1∴(Ⅱ)由(Ⅰ)知,2T n=3×2+7×22+…+(4n﹣5)•2n﹣1+(4n﹣1)•2n∴=(4n﹣1)•2n=(4n﹣1)•2n﹣=(4n﹣5)•2n+5点评:本题主要考查了数列的递推公式在数列的通项公式求解中的应用,数列求和的错位相减求和方法的应用.20.(13分)已知函数,其中ω为使f(x)能在时取得最大值的最小正整数.(1)求ω的值;(2)设△ABC的三边长a、b、c满足b2=ac,且边b所对的角θ的取值集合为A,当x∈A 时,求f(x)的值域.考点:两角和与差的正弦函数;余弦定理.专题:解三角形.分析:(1)利用两角和差的正弦公式化简函数f(x)的解析式为,再根据在时取得最大值可得,由此求得ω的最小正整数值.(2)△ABC中,由b2=ac 以及余弦定理可得,可得,即,再利用正弦函数的定义域和值域求得当x∈A时,f(x)的值域.解答:解:(1)∵函数=sin2ωx﹣=,由于f(x)能在时取得最大值,故,即,故ω的最小正整数值为2.…(5分)(2)△ABC中,由余弦定理可得b2=a2+c2﹣2accosB,再由b2=ac,可得a2+c2﹣2accosB=ac,化简得,当且仅当a=c时,取等号.求得,可得,即.…(8分)∴,()∴,∴,…(10分)∴函数f(x)的值域是.…(12分)点评:本题主要考查两角和差的正弦公式、余弦定理、正弦函数的定义域和值域,属于中档题.21.(13分)设函数f(x)=,方程x=f(x)有唯一解,其中实数a为常数,f(x1)=,f(x n)=x n+1(n∈N*).(1)求f(x)的表达式;(2)求x2015的值;(3)若a n=﹣4023且b n=(n∈N*),求证:b1+b2+…+b n<n+1.考点:数列与不等式的综合.专题:等差数列与等比数列.分析:(1)由x=,得ax(x+2)=x(a≠0),由此能求出f(x)=.(2)由f(x n)=x n+1,得=x n+1,从而数列是以为首项,为公差的等差数列.由此能求出x n=,从而x2015==.(3)由x n=,得a n=2n﹣1,从而b n=1+﹣,由此能证明b1+b2+…+b n<n+1.解答:(1)解:由x=,得ax(x+2)=x(a≠0),所以ax2+(2a﹣1)x=0,当且仅当a=时,方程x=f(x)有唯一解.从而f(x)=.(2)解:由已知f(x n)=x n+1,得=x n+1,∴=+,即=(n∈N*),∴数列是以为首项,为公差的等差数列.∴=+(n﹣1)×=,故x n=.∵f(x1)=,∴=,解得x1=.∴x n==,故x2015==.(3)证明:∵x n=,∴a n=4×﹣4 023=2n﹣1,∴b n====1+﹣,∴b1+b2+…+b n﹣n=﹣n=1﹣<1.故b1+b2+…+b n<n+1.点评:本题考查函数的表达式的求法,考查数列的第2005项的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.22.(14分)已知函数φ(x)=,a为常数.(1)若f(x)=lnx+φ(x),且a=,求函数f(x)的单调区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],当x1≠x2时,都有<﹣1,求a的取值范围.考点:利用导数求闭区间上函数的最值;对数函数图象与性质的综合应用.专题:综合题;分类讨论;函数思想;导数的综合应用.分析:(1)对f(x)求导,利用f′(x)>0判断函数单调增,f′(x)<0函数单调减,求出单调区间;(2)由题意,构造函数h(x)=g(x)+x,根据h(x)在(0,2]上的单调性,再利用导数讨论h(x)的单调性与最值问题,从而求出a的取值范围.解答:解:(1)∵f(x)=lnx+φ(x)=lnx+,(x>0);∴f′(x)=﹣=,当a=时,令f′(x)>0,即x2﹣x+1>0,解得x>2,或x,∴函数f(x)的单调增区间为(0,),(2,+∞),单调减区间为(,2);﹣﹣﹣5分(注:两个单调增区间,错一个扣1分)(2)∵<﹣1,∴+1<0,即<0;设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数;﹣﹣﹣8分当1≤x≤2时,h(x)=lnx++x,h′(x)=﹣+1;令h′(x)≤0,解得a≥+(x+1)2=x2+3x++3对x∈时恒成立;设m(x)=x2+3x++3,则m′(x)=2x+3﹣,∵1≤x≤2,∴m′(x)=2x+3﹣>0,∴m(x)在上是增函数,则当x=2时,m(x)的最大值为,∴a≥;…11分当0<x<1时,h(x)=﹣lnx++x,h′(x)=﹣﹣+1,令h′(x)≤0,解得a≥﹣+(x+1)2=x2+x﹣﹣1,设t(x)=x2+x﹣﹣1,则t′(x)=2x+1+>0,∴t(x)在(0,1)上是增函数,∴t(x)<t(1)=0,∴a≥0;﹣﹣﹣13分综上所述,a的取值范围{a|a≥}.﹣﹣﹣14分点评:本题考查了导数的综合应用问题,也考查了构造函数来研究函数的单调性与最值问题和分类讨论思想,是综合性题目.。

山东省临沂市2015届高三上学期期中数学试卷(文科)

山东省临沂市2015届高三上学期期中数学试卷(文科)

山东省临沂市2015届高三上学期期中数学试卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设全集M={0,1,2},N={x|x2+x﹣2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}2.(5分)函数f(x)=ln(1﹣x)的定义域为()A.D.3.(5分)已知向量=(2,4),=(﹣1,1),则2=()A.(3,9)B.(5,9)C.(3,7)D.(5,7)4.(5分)等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a6的值为()A.10 B.9C.8D.75.(5分)已知某几何体的三视图如图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A.24﹣B.24﹣C.24﹣πD.24﹣6.(5分)将函数y=sinx+cosx(x∈R)的图象向左平移m(m>0)个单位长度后,得到图象关于y轴对称,则m的最小值为()A.B.C.D.π7.(5分)在三棱锥P﹣ABC中,O是底面正三角形ABC的中心,Q为棱PA上的一点,PA=1,若QO∥平面PBC,则PQ=()A.B.C.D.8.(5分)已知a,b∈R,t>0,下列四个条件中,使a>b成立的必要不充分条件是()A.a>b﹣t B.a>b+t C.|a|>|b| D.4a>4b9.(5分)在同一直角坐标系中,函数f(x)=xα(x≥0),g(x)=﹣logαx的图象可能是()A.B.C.D.10.(5分)不等式组的解集记为D,由下面四个命题:P1:∀(x,y)∈D,则2x﹣y≥﹣1;P2:∃(x,y)∈D,则2x﹣y<﹣2;P3:∀(x,y)∈D,则2x﹣y>7;P4:∃(x,y)∈D,则2x﹣y≤5.其中正确命题是()A.P2,P3B.P1,P2C.P1,P3D.P1,P4二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)已知若9a=3,log3x=a,则x=.12.(5分)已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图,则f(x)的解析式为.13.(5分)已知不等式axy≤4x2+y2对于∈,y∈恒成立,则实数a的取值范围是.14.(5分)已知△ABC中,三边为AB=2,BC=1,AC=,则=.15.(5分)记函数f(x)的定义域为D,若f(x)满足:(1)∀x1,x2∈D,当x1≠x2时,>0;(2)∀x∈D,f(x+2)﹣f(x+1)≥f(x+1)﹣f(x),则称函数f(x)具有性质P.现有以下四个函数:①f(x)=x2,x∈(0,+∞);②f(x)=e x;③f(x)=lnx;④f(x)=cosx则具有性质P的为(把所有符合条件的函数编号都填上).三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知向量=(﹣cosA,sinA),=(cosB,sinB),且=,其中A,B,C分别为△ABC的三边a,b,c所对的角.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.17.(12分)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,O是底面ABCD的对角线的交点,A1A=A1C,A1A⊥BC.(1)证明:平面A1BC∥平面CD1B1;(2)证明:A1O⊥平面ABC.18.(12分)已知数列{a n}的前n项和为S n,且S n满足S n=2a n﹣2.(1)求{a n}的通项;(2)若{b n}满足b1=1,=1,求数列{a n}的前n项和.19.(12分)已知函数f(x)=(α+cos2x)cos(2x+θ)为奇函数,且f()=0,其中α∈R,θ∈(0,π).(1)求α,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.20.(13分)根据统计资料,某工厂的日产量不超过20万件,每日次品率p与日产量x(万件)之间近似地满足关系式p=,已知每生产1件正品可盈利2元,而生产1件次品亏损1元,(该工厂的日利润y=日正品盈利额﹣日次品亏损额).(1)将该过程日利润y(万元)表示为日产量x(万件)的函数;(2)当该工厂日产量为多少万件时日利润最大?最大日利润是多少元?21.(14分)已知函数f(x)=2lnx﹣ax.(1)若曲线f(x)在点(1,f(1))处的切线过点(2,0),求a的值;(2)求f(x)的单调区间;(3)如果x1,x2(x1<x2)是函数f(x)的两个零点,f′(x)为f(x)的导数,证明:f′()<0.山东省临沂市2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设全集M={0,1,2},N={x|x2+x﹣2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}考点:交集及其运算.专题:集合.分析:由x2+x﹣2≤0求出集合N,再由交集的运算求出M∩N.解答:解:由x2+x﹣2≤0得,﹣2≤x≤1,则集合N={x|﹣2≤x≤1},又M={0,1,2},所以M∩N={0,1},故选:C.点评:本题考查交集及其运算,以及二次不等式的解法,属于基础题.2.(5分)函数f(x)=ln(1﹣x)的定义域为()A.D.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,解得﹣1≤x<1,即可得定义域.解答:解:由题意可得,解得﹣1≤x<1,故函数的定义域为:9.(5分)在同一直角坐标系中,函数f(x)=xα(x≥0),g(x)=﹣logαx的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.解答:解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D点评:本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.10.(5分)不等式组的解集记为D,由下面四个命题:P1:∀(x,y)∈D,则2x﹣y≥﹣1;P2:∃(x,y)∈D,则2x﹣y<﹣2;P3:∀(x,y)∈D,则2x﹣y>7;P4:∃(x,y)∈D,则2x﹣y≤5.其中正确命题是()A.P2,P3B.P1,P2C.P1,P3D.P1,P4考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:依题意,作出线性规划图,对P1、P2、P3、P4四个选项逐一判断分析即可.解答:解:∵,作出平面区域:由图可知,在阴影区域OAPB中,对于P1:∀(x,y)∈D,则2x﹣y≥﹣1,成立,故P1正确;对于P2:不∃(x,y)∈D,则2x﹣y<﹣2,故P2错误;对于P3:∀(x,y)∈D,则2x﹣y<7,故P3错误;对于P4:∃(x,y)∈D,则2x﹣y≤5,故P4正确.故选:D.点评:本题考查命题的真假判断与应用,作出平面区域是关键,考查分析与作图能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)已知若9a=3,log3x=a,则x=.考点:函数的零点.专题:函数的性质及应用.分析:利用已知条件求出a,然后利用对数的运算法则求解即可.解答:解:9a=3,∴,∴log3x=a=,解得x=.故答案为:.点评:本题考查指数函数以及对数函数的运算法则的应用,函数的零点的求法,基本知识的考查.12.(5分)已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图,则f(x)的解析式为.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的求值;三角函数的图像与性质.分析:首先利用函数的最值确定A的值,进一步利用周期公式确定ω,最后利用x=求出φ的值,进一步求出函数的解析式.解答:解:函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图函数的最大值和最小值为:±2所以:A=2解得:T=所以:当x=)由于:|φ|<所以:φ=所以:故答案为:点评:本题考查的知识要点:利用函数的图象求正弦型函数的解析式,主要确定A、ω和φ的值.13.(5分)已知不等式axy≤4x2+y2对于∈,y∈恒成立,则实数a的取值范围是{a|a≤4}.考点:函数恒成立问题.专题:函数的性质及应用;不等式的解法及应用.分析:不等式axy≤4x2+y2等价于a≤=,设t=,则求出函数的最小值即可.解答:解:不等式axy≤4x2+y2等价于a≤=,设t=,故a≤的最小值即可.∵x∈及y∈,∴≤≤1,即1≤≤3,∴1≤t≤3,则=t+,∵t+≥2=4,当且仅当t=,即t=2时取等号.则的最小值为4.∴a≤4.故答案为:{a|a≤4}.点评:本题主要考查不等式的应用,将不等式恒成立转化为求函数的最值是解决本题的关键,要求熟练掌握函数f(x)=x+,a>0图象的单调性以及应用.14.(5分)已知△ABC中,三边为AB=2,BC=1,AC=,则=﹣4.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知三角形三边的关系判断三角形为直角三角形,得到向量夹角的余弦值,然后利用向量的数量积的运算求值.解答:解:∵△ABC的三边分别为AB=2,BC=1,AC=,∴a2+b2=c2,∴AC⊥BC,cosA==,cosB=,∴A=,B=∴═c×acos+a×bcosC+bccos=2×1×(﹣)+1××0+2××(﹣)=﹣4;故答案为:﹣4.点评:本题考查了向量数量积的运算;本题要特别注意向量的夹角及其余弦值符号.15.(5分)记函数f(x)的定义域为D,若f(x)满足:(1)∀x1,x2∈D,当x1≠x2时,>0;(2)∀x∈D,f(x+2)﹣f(x+1)≥f(x+1)﹣f(x),则称函数f(x)具有性质P.现有以下四个函数:①f(x)=x2,x∈(0,+∞);②f(x)=e x;③f(x)=lnx;④f(x)=cosx则具有性质P的为①②(把所有符合条件的函数编号都填上).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:依题意,在同一直角坐标系中,分别作出①f(x)=x2,x∈(0,+∞);②f(x)=e x;③f(x)=lnx;④f(x)=cosx的图象,即可得到答案.解答:解:由(1)知函数f(x)为定义域D上的增函数;由(2)知,f(x+2)+f(x)≥2f(x+1),即≥f(x+1);在同一直角坐标系中,分别作出①f(x)=x2,x∈(0,+∞);②f(x)=e x;③f(x)=lnx;④f(x)=cosx的图象,由图可知,具有性质P的为①②.故答案为:①②.点评:本题考查命题的真假判断与应用,着重考查基本初等函数的单调性与凸性,作图是关键,属于中档题.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知向量=(﹣cosA,sinA),=(cosB,sinB),且=,其中A,B,C分别为△ABC的三边a,b,c所对的角.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.考点:余弦定理;平面向量数量积的运算.专题:解三角形.分析:(1)由两向量的坐标以及平面向量的数量积运算法则化简已知等式,求出cosC的值,即可确定出C的度数;(2)利用三角形面积公式列出关系式,把b,sinC以及已知面积代入求出a的值,再利用余弦定理即可求出c的值即可.解答:解:(1)∵向量=(﹣cosA,sinA),=(cosB,sinB),且=,∴﹣cosAcosB+sinAsinB=﹣cos(A+B)=cosC=,∵C为三角形内角,∴C=;(2)∵b=4,sinC=,△ABC的面积为6,∴×4a×=6,即a=3,由余弦定理得:c2=a2+b2﹣2abcosC=18+16﹣24=10,则c=.点评:此题考查了余弦定理,平面向量的数量积运算,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.17.(12分)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,O是底面ABCD的对角线的交点,A1A=A1C,A1A⊥BC.(1)证明:平面A1BC∥平面CD1B1;(2)证明:A1O⊥平面ABC.考点:直线与平面垂直的判定;平面与平面平行的判定.专题:空间位置关系与距离.分析:(1)运用几何性质判断A1B∥B1C,A1D∥B1C.再运用定理判断.(2)运用性质判断出DB⊥平面A1AO,BD⊥A1O,A1O⊥AC,再运用判定定理证明.解答:证明:(1)易知AA1∥DD1,∵底面ABCD为菱形,∴AB∥CD,又∵AA1∩AB=A,CD∩DD1=D,∴平面AA1BB1∥平面DC1CD1,又A1B⊂平面AA1BB1,CD1⊂平面DC1CD1,平面A1BCD1∩平面AA1BB1=A1B,平面ABCBD1∩平面DC1CD1=D1C,∴A1B∥B1C,同理可证:A1D∥B1C.又∵A1D∩A1B=A1,D1C∩B1C=C,∴平面A1BC∥平面CD1B1;(2)∵底面ABCD为菱形,∴AC⊥BD,又∵AA1⊥BD,AA1∩AC=A,∴DB⊥平面A1AO,∵A1O⊂平面A1AO,∴BD⊥A1O,由∵A1A=A1C,∴A1O⊥AC,∵AC∩BD=O,∴A1O⊥平面ABC.点评:本题考查了空间几何题的性质,运用判断直线,平面的平行、垂直关系.属于中档题.18.(12分)已知数列{a n}的前n项和为S n,且S n满足S n=2a n﹣2.(1)求{a n}的通项;(2)若{b n}满足b1=1,=1,求数列{a n}的前n项和.考点:数列的求和.专题:等差数列与等比数列.分析:(1)根据S n=2a n﹣2,n∈N*得到当n≥2时,S n﹣1=2a n﹣1﹣2,两式相减得a n=2a n﹣1,求出首项,再求出等差数列{a n}的通项公式;(2)利用题意和等比数列的定义,求出数列{b n}的通项公式,再求出a n,利用错位相减法能求出数列{a n}的前n项和.解答:解:(1)由题意得,S n=2a n﹣2,则当n≥2时,S n﹣1=2a n﹣1﹣2,两式相减得a n=S n﹣S n﹣1=2a n﹣2a n﹣1,即a n=2a n﹣1,令n=1得,a1=2a1﹣2,解得a1=2,因此{a n}是首项为2,公比为2的等比数列,所以a n=2×2n﹣1=2n;(2)因为,b1=1,所以数列{}是首项为1,公差为1的等差数列,则=1+(n﹣1)×1=n,即,所以==n•2n,设数列{a n}的前n项和为T n,则T n=1×2+2×22+3×23+…+n×2n①,2T n=1×22+2×23+3×24+…+n×2n+1②,①﹣②得,﹣T n=2+22+23+24+…+2n﹣n×2n+1==(﹣n+1)•2n+1﹣2所以T n=(n﹣1)•2n+1+2,故数列{a n}的前n项和是(n﹣1)•2n+1+2.点评:本题考查数列的S n与a n的关系式的应用,等差、等比数列的定义、通项公式,以及数列的前n项和的求法:错位相减法的合理运用.19.(12分)已知函数f(x)=(α+cos2x)cos(2x+θ)为奇函数,且f()=0,其中α∈R,θ∈(0,π).(1)求α,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.考点:两角和与差的正弦函数.专题:计算题;三角函数的求值.分析:(1))由f()=0即可求得﹣(α)sinθ=0,因为θ∈(0,π)从而可求得,又因为f(x)为奇函数,可得(﹣1)cosθ=0从而求得;(2)由(1)得f(x)=﹣sin4x.由f()=﹣先求得cosα,sinα从而可求sin()的值.解答:解:(1)∵f()=0,∴(α+cos2)cos(+θ)=0,∴﹣(α)sinθ=0∵θ∈(0,π),∴sinθ≠0,∴α+=0,即.又f(x)为奇函数,∴f(0)=0,∴(﹣1)cosθ=0,∴cosθ=0,∵θ∈(0,π),∴.(2)由(1)知,,则f(x)=()•cos(2x+)==﹣sin2x•cos2x=﹣sin4x.∵f()=﹣,∴.∵,∴cosα=﹣=﹣=﹣∴sin()=sinαcos+cosαsin==.点评:本题主要考察了两角和与差的正弦函数,属于基础题.20.(13分)根据统计资料,某工厂的日产量不超过20万件,每日次品率p与日产量x(万件)之间近似地满足关系式p=,已知每生产1件正品可盈利2元,而生产1件次品亏损1元,(该工厂的日利润y=日正品盈利额﹣日次品亏损额).(1)将该过程日利润y(万元)表示为日产量x(万件)的函数;(2)当该工厂日产量为多少万件时日利润最大?最大日利润是多少元?考点:导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:本题(1)根据题中的数量关系构造日利润y(万元)表示为日产量x(万件)的分段函数,得到本题结论;(2)利用导函数得到原函数的单调区间,从而研究函数的最值,得到本题结论.解答:解:(1)由题意知:当0<x≤12时,y=2x(1﹣p)﹣px,∴=,当12<x≤20时,y=2x(1﹣p)﹣px,=2x(1﹣)﹣=.∴.(2)①当0<x≤12时,,当0<x<10时,y′>0,当10<x≤12时,y′<0.当x=10时,y′=0,∴当x=10时,y取极大值.②当12<x≤20时,y=≤10,∴当x=20时,y取最大值10.∵,∴由①②知:当x=10时,y取最大值.∴该工厂日产量为10万件时,该最大日利润是万元.点评:本题考查了实际问题的数学建模,还考查了用导函数研究函数的最值,还考查了分类讨论的数学思想,本题难度适中,属于中档题.21.(14分)已知函数f(x)=2lnx﹣ax.(1)若曲线f(x)在点(1,f(1))处的切线过点(2,0),求a的值;(2)求f(x)的单调区间;(3)如果x1,x2(x1<x2)是函数f(x)的两个零点,f′(x)为f(x)的导数,证明:f′()<0.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:函数思想;函数的性质及应用;导数的综合应用.分析:(1)利用导数求出f(x)在点(1,f(1))处的切线方程,把点(2,0)的坐标代入方程,求出a的值;(2)求出函数的导数f′(x),讨论a的值,在f′(x)>0时,f(x)增,f′(x)<0时,f (x)减,从而得出单调区间;(3)由题意,求出f′()的表达式,根据它的表达式,利用构造适当的函数,求出函数最值的方法证明f′()<0即可.解答:解:(1)∵f(x)=2lnx﹣ax,(x>0);∴f′(x)=﹣a,∴f′(1)=2﹣a;又∵f(1)=﹣a,∴曲线在点(1,f(1))处的切线方程为y﹣(﹣a)=(2﹣a)(x﹣1),即y+a=(2﹣a)(x﹣1);又切线过点(2,0),∴0+a=(2﹣a)(2﹣1),解得a=1;(2)由(1)知,f′(x)=﹣a,(x>0),①当a≤0时,f′(x)>0恒成立,函数f(x)在(0,+∞)上是增函数;②当a>0时,令f′(x)>0,得x∈(0,),∴f(x)在(0,)上是增函数,令f′(x)<0,得x∈(,+∞),∴f(x)在(,+∞)上是减函数;∴当a≤0时,函数f(x)的单调增区间是(0,+∞),当a>0时,函数f(x)的单调增区间是(0,),单调减区间是(,+∞);(3)由题意知,f(x1)=0,f(x2)=0,即;则2lnx2﹣2lnx1=a(x2﹣x1),∴a=;又∵f′(x)=,∴f′()=﹣a=﹣;要使f′()<0,只要﹣<0(*);∵x2>x1>0,∴x2﹣x1>0,x1+2x2>0,(*)式可化为﹣ln<0,∴﹣ln<0,令t=,则t>1,构造函数h(t)=﹣lnt,则h′(t)=﹣=﹣,显然t>1时,h′(t)<0,即h(t)在[1,+∞)上是减函数,∴h(t)<h(1)=0,即证f′()<0.点评:本题考查了函数的导数以及导数的综合应用问题,解题时应用导数求函数的切线,利用导数判断函数的单调性,求函数的最值问题,是综合题.。

河南省洛阳市2015届高三上学期期中考试数学文试题 Word版含解析

河南省洛阳市2015届高三上学期期中考试数学文试题 Word版含解析

2014-2015学年河南省洛阳市高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分,每小题给出的四个选项中,只有一个是符合题意的)1.设集合A={0,1},B={﹣1,0,m﹣2},若A⊆B,则实数m=()A.0 B.1C.2D.3考点:集合的包含关系判断及应用.专题:计算题;集合.分析:本题利用集合的包含关系得到元素与元素的关系,从而求出参数的值.解答:解:∵集合A={0,1},∴1∈A.∵A⊆B,∴1∈B.∵B={﹣1,0,m﹣2},∴1=m﹣2.∴m=3.故选:D.点评:本题考查的知识点是集合与元素的关系,本题思维量小,过程简单,是容易题.2.设复数z1=1+i,z2=2+bi,其中i为虚数单位,若z1•z2为实数,则实数b=()A.﹣2 B.﹣1 C.1D.2考点:复数的基本概念.专题:数系的扩充和复数.分析:由题意可得z1•z2=2﹣b+(2+b)i,由实数的定义可得2+b=0,解方程可得.解答:解:∵z1=1+i,z2=2+bi,∴z1•z2=(1+i)(2+bi)=2﹣b+(2+b)i,∵z1•z2为实数,∴2+b=0,解得b=﹣2故选:A点评:本题考查复数的基本概念,属基础题.3.设等差数列{a n}的前n项和为S n,若S8=32,则a2+a7=()A.1 B.4C.8D.9考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式和前n项和公式求解.解答:解:∵等差数列{a n}的前n项和为S n,S8=32,∴,∴a2+a7=8.故选:C.点评:本题考查等差数列的两项和的求法,是基础题,解题时要注意等差数列的性质的合理运用.4.在长方体ABCD﹣A1B1C1D1中,AB=3,AD=,AA1=h,则异面直线BD与B1C1所成的角为()A.30°B.60°C.90°D.不能确定,与h有关考点:异面直线及其所成的角.专题:空间角.分析:由B1C1∥BC,知∠DBC是异面直线BD与B1C1所成的角(或所成的角的平面角),由此能求出异面直线BD与B1C1所成的角为60°.解答:解:∵B1C1∥BC,∴∠DBC是异面直线BD与B1C1所成的角(或所成的角的平面角),∵长方体ABCD﹣A1B1C1D1中,AB=3,AD=,AA1=h,∴tan∠DBC===,∴异面直线BD与B1C1所成的角为60°.故选:B.点评:本题考查异面直线所成的角的大小的求法,是中档题,解题时要注意空间思维能力的培养.5.某程序的框图如图所示,运行该程序时,若输入的x=0.1,则运行后输出的y值是()A.﹣1 B.0.5 C.2D.10考点:程序框图.专题:算法和程序框图.分析:按照程序框图的流程,判断输入的值是否满足判断框中的条件,“是”按y=lgx求出y.解答:解:当x=0.1时,满足第一个判断框中的条件,执行“是”,也满足第二个判断框中的条件,执行“是”,将x=0.1代入y=lgx得y=﹣1故选A.点评:本题考查解决程序框图的选择结构时,关键是判断出输入的值是否满足判断框中的条件.6.抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.7.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2015)=()A.2 B.﹣2 C.8D.﹣8考点:函数解析式的求解及常用方法.专题:计算题;函数的性质及应用.分析:由题意知函数的周期为4,故f(2015)=f(﹣1),又由奇函数可求f(﹣1)=﹣f(1)=﹣2.解答:解:∵f(x+4)=f(x),∴f(2015)=f(504×4﹣1)=f(﹣1),又∵f(x)在R上是奇函数,∴f(﹣1)=﹣f(1)=﹣2.故选B.点评:本题考查了函数的奇偶性与周期性的应用,属于基础题.8.已知向量=(cosθ,sinθ),θ∈(,π),=(0,﹣1),则与的夹角等于()A.θ﹣B.+θC.﹣θD.θ考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:由向量夹角公式可得cos<,>==﹣sinθ=cos(),再由∈(,π),<,>∈[0,π],y=cox在[0,π]上单调递减,可得结论.解答:解:•=cosθ×0+sinθ×(﹣1)=﹣sinθ,||=1,||=1,∴cos<,>==﹣sinθ=cos(),∵θ∈(,π),∴∈(,π),又<,>∈[0,π],y=cox在[0,π]上单调递减,∴<,>=,故选C.点评:本题考查向量的数量积运算、夹角公式及诱导公式等知识,属基础题.9.直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:直线与圆;简易逻辑.分析:根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.解答:解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.点评:本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.10.x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为7,则的最小值为()A.14 B.7C.18 D.13考点:基本不等式;简单线性规划.专题:计算题.分析:作出可行域,得到目标函数z=ax+by(a>0,b>0)的最优解,从而得到3a+4b=7,利用基本不等式即可.解答:解:∵x、y满足约束条件,目标函数z=ax+by(a>0,b>0),作出可行域:由图可得,可行域为△ABC区域,目标函数z=ax+by(a>0,b>0)经过可行域内的点C时,取得最大值(最优解).由解得x=3,y=4,即C(3,4),∵目标函数z=ax+by(a>0,b>0)的最大值为7,∴3a+4b=7(a>0,b>0),∴=(3a+4b)•()=(9++16+)≥(25+2)=×49=7(当且仅当a=b=1时取“=”).故选B.点评:本题考查线性规划,作出线性约束条件下的可行域,求得其最优解是关键,也是难点,属于中档题.11.若函数f(x)=x2﹣ax+lnx存在垂直于y轴的切线,则实数a的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2)∪(2,+∞)C.[2,+∞) D .(2,+∞)考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,由导函数等于0得到a=x+,利用基本不等式求得x+的范围得答案.解答:解:∵f(x)=x2﹣ax+lnx,∴f'(x)=x﹣a+,由题意可知存在实数x>0,使得f'(x)=x﹣a+=0,即a=x+成立,∴a=x+≥2(当且仅当x=,即x=1时等号取到),∴实数a的取值范围是[2,+∞).故选:C.点评:本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.12.已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f′(x)在R上专题:计算题.分析:构造函数g(x)=f(x)﹣x﹣1,g'(x)=f′(x)﹣1<0,从而可得g(x)的单调性,结合f(1)=2,可求得g(1)=1,然后求出不等式的解集即可.解答:解:令g(x)=f(x)﹣x﹣1,∵f′(x)<1(x∈R),∴g′(x)=f′(x)﹣1<0,∴g(x)=f(x)﹣x﹣1为减函数,又f(1)=2,∴g(1)=f(1)﹣1﹣1=0,∴不等式f(x)<x+1的解集⇔g(x)=f(x)﹣x﹣1<0=g(1)的解集,即g(x)<g(1),又g(x)=f(x)﹣x﹣1为减函数,∴x>1,即x∈(1,+∞).故选A.点评:本题利用导数研究函数的单调性,可构造函数,考查所构造的函数的单调性是关键,也是难点所在,属于中档题.二、填空题(每小题5分,共20分)13.等比数列{a n}的各项都是正数,若a3a15=64,则log2a9等于3.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:由题意和等比数列的性质可得a9=8,代入要求的式子化简即可.解答:解:∵等比数列{a n}的各项都是正数,且a3a15=64,∴a 9===8,∴log2a9=log28=3故答案为:3点评:本题考查等比数列的性质,涉及对数的运算,属基础题.14.在面积为S的△ABC内任取一点P,则△PAB的面积大于的概率为.考点:几何概型;诱导公式的作用;二倍角的正弦;二倍角的余弦.专题:概率与统计.分析:设DE是△ABC平行于BC的中位线,可得当P点位于△ABC内部的线段DE上方时,能使△PAB的面积大于,因此所求的概率等于△ADE的面积与△ABC的面积比值,根据相似三角形的性质求出这个面积比即可.解答:解:分别取AB、AC中点D、E,连接DE∵DE是△ABC的中位线,∴DE上一点到BC的距离等于A到BC距离的一半设A到BC的距离为h,则当动点P位于线段DE上时,△PAB的面积S=BC•h=S△ABC=S因此,当点P位于△ABC内部,且位于线段DE上方时,△PAB的面积大于.∵△ADE∽△ABC,且相似比=∴S△ADE:S△ABC=由此可得△PAB的面积大于的概率为P==.故答案为:.点评:本题给出三角形ABC内部一点P,求三角形PBC面积大于或等于三角形ABC面积的一半的概率,着重考查了相似三角形的性质和几何概型的计算等知识,属于基础题.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体的体积为.考点:由三视图求面积、体积.专题:计算题.分析:三视图复原的几何体是四棱锥,利用几何体的数据求解几何体的体积即可.解答:解:由题意可知三视图复原的几何体是底面为边长为2的正方形,一条侧棱垂直底面正方形的顶点的四棱锥,并且棱锥的高为2,所以几何体的体积为:=.故答案为:.点评:本题考查三视图与几何体的直观图的关系,考查空间想象能力与计算能力.16.已知函数f(x)=1﹣ax﹣x2,若对于∀x∈[a,a+1],都有f(x)>0成立,则实数a的取值范围是(﹣,﹣).考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:根据二次函数的性质结合函数的图象得到不等式组,解出即可.解答:解:令f(x)=1﹣ax﹣x2=0,∴x1=,x2=,若f(x)>0成立,∴,解得:﹣<a<﹣.故答案为:(﹣,﹣).点评:本题考查了二次函数的性质,函数的最值问题,是一道中档题.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知c=2,C=.(1)若△ABC的面积等于,求a,b;(2)若cosA=,求b.考点:余弦定理.专题:解三角形.分析:(1)由三角形的面积公式表示出三角形ABC的面积,将sinC的值代入求出ab的值,再由余弦定理列出关系式,利用完全平方公式变形后,将ab的值代入即可求出a+b的值,由此求得a、b的值.(2)由cosA=,求得sinA=,由正弦定理求得a的值.再求得sinB=sin(A+C)的值,由=,求得b的值.解答:解:(1)∵S△ABC=absinC==,∴ab=4①.由余弦定理c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab,即4=(a+b)2﹣12,则a+b=4 ②.由①②求得a=b=2.(2)∵cosA=,∴sinA=,由正弦定理可得=,即=,求得a=.又sinB=sin(A+C)=sinAcosC+cosAsinC=+=,故由=,即=,求得b=.点评:此题考查了正弦定理、余弦定理的应用,三角形的面积公式,以及完全平方公式的运用,属于基础题.18.(12分)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.考点:古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)根据80岁以下老龄人的人数,即可估计该地区80岁以下老龄人生活能够自理的概率.(Ⅱ)由分层抽样方法可得被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0,设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B;列举从这五人中抽取3人的结果,由古典概型公式计算可得答案.解答:解:(Ⅰ)该小区80岁以下老龄人生活能够自理的频率为,所以该小区80岁以下老龄人生活能够自理的概率约为.(Ⅱ)该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人共有70人,由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B.从这五人中抽取3人,结果有10种:(1,2,3),(1,2,4),(1,2,B),(1,3,4),(1,3,B),(1,4,B),(2,3,4),(2,3,B),(2,4,B),(3,4,B,),其中恰有一位老龄人健康指数不大于0的有6种:(1,2,B),(1,3,B),(1,4,B),(2,3,B),(2,4,B),(3,4,B,),∴被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为.点评:本题考查概率的计算,考查学生利用数学知识解决实际问题,考查学生的计算能力,属于中档题.19.(12分)已知直三棱柱ABC﹣A1B1C1中,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面ABC为边长为2的正三角形,BB1=,求三棱锥B1﹣A1DC的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)连接AC1交A1C于点E,连接DE,由直三棱柱的几何特征及三角形中位线定理,可得DE∥BC1,进而由线面平行的判定定理得到结论;(2)先利用面面垂直的性质定理证明直线CD⊥平面AA1B1B,再由面面垂直的判定定理证明所证结论即可(3)三棱锥B 1﹣A1DC的体积=,求出棱锥的底面面积和高,代入棱锥体积公式,可得答案.解答:证明:(1)连接AC1交A1C于点E,连接DE∵四边形AA1C1C是矩形,则E为AC1的中点又∵D是AB的中点,DE∥BC1,又DE⊂面CA1D,BC1⊄面CA1D,∴BC1∥平面CA1D;(2)AC=BC,D是AB的中点,∴AB⊥CD,又∵AA1⊥面ABC,CD⊂面ABC,∴AA1⊥CD,∵AA1∩AB=A,∴CD⊥面AA1B1B,又∵CD⊂面CA1D,∴平面CA1D⊥平面AA1B1B(3)则由(2)知CD⊥面ABB1B,∴三棱锥B1﹣A1DC底面B1A1D上的高就是CD=,又∵BD=1,BB 1=,∴A1D=B1D=A1B1=2,=,∴三棱锥B 1﹣A1DC的体积===1点评:本题主要考查了直棱柱中的线面、面面关系,线面及面面平行、垂直的判定定理和性质定理的应用,棱锥的体积,推理论证的能力和表达能力,注意证明过程的严密性20.(12分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.考点:直线与圆锥曲线的综合问题.专题:计算题;证明题;压轴题;数形结合;分类讨论;转化思想.分析:(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;(3)要证PA⊥PB,只需证直线PB与直线PA的斜率之积为﹣1,根据题意求出它们的斜率,即证的结果.解答:解:(1)由题设知,a=2,b=,故M(﹣2,0),N(0,﹣),所以线段MN中点坐标为(﹣1,﹣).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过原点,所以k=.(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P(,),A(﹣,﹣)于是C(,0),直线AC的斜率为1,故直线AB的方程为x﹣y﹣=0.因此,d=.(3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(﹣x1,﹣y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=,从而kk1+1=2k1k2+1=2•===.因此kk1=﹣1,所以PA⊥PB.点评:此题是个难题.考查椭圆的标准方程和简单的几何性质,以及直线斜率的求法,以及直线与椭圆的位置关系,体现了方程的思想和数形结合思想,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.21.(12分)已知函数f(x)=x+alnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)若函数f(x)没有零点,求a的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)由已知得x>0,,由此利用导数性质能求出f(x)的单调区间.(II)由(I)导数性质能求出当﹣e<a≤0时,f(x)没有零点.解答:解:(I)∵f(x)=x+alnx,∴x>0,,∴当a≥0时,在x∈(0,+∞)时,f′(x)>0,∴f(x)的单调增区间是(0,+∞),没的减区间;当a<0时,函数f(x)与f′(x)在定义域上的情况如下:x (0,﹣a)﹣a (﹣a,+∞)f′(x)﹣0 +f(x)↘极小值↗函数的增区间是(﹣a,+∞),减区间是(0,a).(II)由(I)可知当a>0时,(0,+∞)是函数f(x)的单调增区间,且有f(e)=﹣1<1﹣1=0,f(1)=1>0,所以,此时函数有零点,不符合题意;当a=0时,函数f(x)在定义域(0,+∞)上没零点;当a<0时,f(﹣a)是函数f(x)的极小值,也是函数f(x)的最小值,所以,当f(﹣a)=a[ln(﹣a)﹣1]>0,即a>﹣e时,函数f(x)没有零点,综上所述,当﹣e<a≤0时,f(x)没有零点.点评:本题考查函数的单调区间的求法,考查实数的取值范围的求法,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.请在下面的三个题中任选一题做答【选修4—1】集合证明选讲22.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)证明:AE是⊙O的切线;(2)如果AB=2,AE=,求CD.考点:与圆有关的比例线段.专题:几何证明.分析:(1)首先通过连接半径,进一步证明∠DAE+∠OAD=90°,得到结论.(2)利用第一步的结论,找到△ADE∽△BDA的条件,进一步利用勾股定理求的结果解答:(1)证明:连结OA,在△ADE中,AE⊥CD于点E,∴∠DAE+∠ADE=90°∵DA平分∠BDC.∴∠ADE=∠BDA∵OA=OD∴∠BDA=∠OAD∴∠OAD=∠ADE∴∠DAE+∠OAD=90°即:AE是⊙O的切线(2)在△ADE和△BDA中,∵BD是⊙O的直径∴∠BAD=90°由(1)得:∠DAE=∠ABD又∵∠BAD=∠AED∵AB=2求得:BD=4,AD=2 ∴∠BDA=∠ADE=∠BDC=60°进一步求得:CD=2 故答案为:(1)略(2)CD=2点评:本题考查的知识点:证明切线的方法:连半径,证垂直.三角形相似的判定,勾股定理的应用.【选修4—4】坐标系与参数方程23.已知直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半径为极轴)中,曲线C的极坐标方程为ρ=4cosθ.(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;(2)设直线l与曲线C交于P、Q两点,求|PQ|.考点:参数方程化成普通方程;点的极坐标和直角坐标的互化.专题:选作题;坐标系和参数方程.分析:(1)消去参数,可得直线l的普通方程,圆ρ=4cosθ,等式两边同时乘以ρ,可得曲线C的方程化为直角坐标系下的普通方程;(2)求出圆心和半径,再求出圆心到直线的距离,即可求|PQ|.解答:解:(1)直线l的参数方程为(t为参数),普通方程为y=x+2﹣2;圆ρ=4cosθ,等式两边同时乘以ρ得到ρ2=4ρcosθ,即x2+y2=4x,即(x﹣2)2+y2=4;(2)x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心,半径等于2的圆.圆心到直线的距离为=1,∴|PQ|=2=2.点评:本题考查参数方程化成普通方程、极坐标方程化为直角坐标方程,考查直线与圆的位置关系,比较基础.【选修4—5】不等式选讲24.设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.考点:二维形式的柯西不等式;绝对值不等式.专题:不等式的解法及应用.分析:(Ⅰ)根据函数f(x)=+=•+≤•=3,求得实数M的值.(Ⅱ)关于x的不等式即|x﹣1|+|x+2|≤3,由绝对值三角不等式可得|x﹣1|+|x+2|≥3,可得|x﹣1|+|x+2|=3.根据绝对值的意义可得x的范围.解答:解:(Ⅰ)函数f(x)=+=•+≤•=3,当且仅当=,即x=4时,取等号,故实数M=3.(Ⅱ)关于x的不等式|x﹣1|+|x+2|≤M,即|x﹣1|+|x+2|≤3.由绝对值三角不等式可得|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,∴|x﹣1|+|x+2|=3.根据绝对值的意义可得,当且仅当﹣2≤x≤1时,|x﹣1|+|x+2|=3,故不等式的解集为[﹣2,1].点评:本题主要考查二维形式的柯西不等式的应用,绝对值的意义,绝对值三角不等式,属于基础题.。

北京市朝阳区2015届高三上学期期中统一考试文科数学试卷(解析版)

北京市朝阳区2015届高三上学期期中统一考试文科数学试卷(解析版)

2014-2015学年度???学校12月月考卷一、选择题1.已知集合{}{}2+20,0A x x x B x x =-<=>,则集合AB 等于( )A .{}2x x >- B .{}01x x << C .{}1x x < D .{}21x x -<< 【答案】B 【解析】 试题分析:试题分析:{}{}{}2+2021,0A xx xx B x x =-<=-<=>;A B ∴{}01x x <<. 考点:集合的交集运算.2.要得到函数πtan()6y x =+的图象,只要将函数tan y x =的图象( ) A .向右平移π3个单位 B .向左平移π3个单位C .向右平移π6个单位D .向左平移π6个单位【答案】D【解析】试题分析:将函数tan y x =的图象向左平移π6个单位,得到πtan()6y x =+,故选D . 考点:三角函数图象平移.3.“1a >”是“函数3()f x x a =+在R 上为单调递增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:∵ 2'()30f x x =≥,∴a 无论取何值,函数3()f x x a =+在R 上为单调递增函数,∴“1a >”是“函数3()f x x a =+在R 上为单调递增函数” 充分不必要条件.考点:1导数在函数单调性中的应用;2.充分必要条件的判断. 4.执行如图所示的程序框图,则输出的b 值等于( )A .3-B .8-C .15-D .24- 【答案】B 【解析】试题分析:执行程序框图,第一次循环后,b=0,a=3;第二次循环后,b=-3,a=5;第三次循环后,b=-8,a=8;此时a=8不满足条件a <7,输出b 的值为-8.故选:B . 考点:程序框图.5.如图,点D 是线段BC 的中点,6BC =,且A B A C A B A C +=-,则AD = ( )DA.6 B ..3 D .32【答案】C【解析】试题分析: ||AB AC AB AC +=-,AB AC ⊥∴,即△ABC 为直角三角形,AD 为斜边上的中线, 则132||||AD BC ==.故选C . 考点:平面向量加法模的几何意义.6. 已知命题p :x ∀∈R ,20x>;命题q :在曲线cosy x =则下列判断正确的是( ) A .p 是假命题 B .q 是真命题C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题 【答案】C 【解析】试题分析:易知,命题p 是真命题;对于命题q :sin [1,1]y x '=-∈- [1,1]-,故命题q 为假命题;所以q ⌝为真命题;所以()p q ∧⌝ 是真命题,故选C .考点:复合命题真假的判断.7.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0100x <<)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2%x .若要保证产品A 的年产值不减少,则最多能分流的人数是( ) A .15 B .16 C .17 D .18【答案】B 【解析】试题分析:由题意,分流前每年创造的产值为100t (万元),分流后x 人后,每年创造的产值为()()1001 1.2%x x t -+,则由()()01001001 1.2%100x x x t t<<-+≥⎧⎨⎩,解得:5003x <<.所以x 的最大值为16. 故选:B .考点: 函数模型的选择与应用.8.在平面直角坐标系中,ABC △顶点坐标分别为(00)A ,,(1B ,(0)C m , .若ABC △是钝角三角形,则正实数m 的取值范围是( ) A .01m <<B .0m <C .0m <或4m >D .01m <<或4m > 【答案】D【解析】试题分析:由(B ,得到1AE BE ==,根据勾股定理得:260AB BAE =∠=︒,, 过B 作BD AB ⊥ ,可得30ADB ∠=︒,∴24AD AB == ,即()40D , ,则ABC 是钝角三角形时,正实数m 的取值范围是01m << 或4m >,故选:D . 考点:余弦定理.二、填空题9.已知平面向量(2,1)=-a ,(,1)x =b ,若⊥a b ,则x = . 【答案】12【解析】试题分析:∵⊥a b ,∴⋅a b =0,即210x -= ,得12x =. 考点:向量垂直的充要条件.10.已知3sin 5α= ,(,)2απ∈π,则cos α=_______;tan()4απ+= _______.【答案】45-;17.【解析】试题分析:∵3sin 5α=,(,)2απ∈π,∴4cos 5α==-,∴3tan 4α=-,所以tan()4απ+=311tan 141tan 714αα-+==-+. 考点:1.同角的基本关系;2.两角和的正切公式.11.已知函数()22xxf x a -=+⋅,且对于任意的x ,有()()0f x f x -+=,则实数a 的值为 . 【答案】1- 【解析】试题分析:∵对于任意的x ,有()()f x f x -+=,∴(0)0f =,即00(0)2210f a a =+⋅=+=,∴a =1-.考点:函数奇偶性.12.已知x ,y 满足条件20,3260,20,x y x y y -+≤⎧⎪-+≥⎨⎪-≤⎩则函数2z x y =-+的最大值是 .【答案】4 【解析】试题分析:作出可行区域,如下图可知在()2,0M - 处,取到最大值,最大值为4. 考点:简单的线性规划.13. 设函数1e ,0,()sin π1,0 1.x x f x x x +⎧≤=⎨+<≤⎩若()1f m =,则实数m 的值等于 .【答案】1-或1 【解析】试题分析:∵()1f m =,∴当0m ≤时,1()1m f m e +==,解得1m =-;当10m ≥>时,()sin 11f m m π=+=,解得1m =;故答案为1-或1.考点: 分段函数的函数值,14.已知函数()()f x x a x =-⋅的图象与直线1y =有且只有一个交点,则实数a 的取值范围是 . 【答案】2a >- 【解析】试题分析:当x≥0时,f (x )=(x-a )•|x|=(x-a )•x,当x <0时,f (x )=(x-a )•|x|=-(x-a )•x=-x2+ax ,若a=0,则f (x )的图象如图:满足条件.若a >0,则f (x )的图象如图:满足条件;若a <0,则f (x )的图象如图:要使条件成立,则只需要当x <0时,函数的最大值小于1,即22144a a -<-= ,即24a <,解得-2<a <2,此时-2<a <0,综上a >-1,故答案为:(-1,+∞) .考点:函数零点与方程根的关系.三、解答题15.(本小题满分13分)已知数列{}n a 是等差数列,且253619,25a a a a +=+=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n n a b -是首项为2,公比为2的等比数列,求数列{}n b 的前n 项和n S .【答案】(Ⅰ)31n a n =-; (Ⅱ)213422n n n +++- 【解析】试题分析:(I )利用等差数列的通项公式可得,由253619,25,a a a a +=⎧⎨+=⎩整理得112519,2725.a d a d +=⎧⎨+=⎩即可得出;(II )利用等比数列的通项公式可知2n n n a b -=、等差数列与等比数列的前n 项和公式,采用分组求和即可求出结果.试题解析:解:(Ⅰ)由253619,25,a a a a +=⎧⎨+=⎩整理得112519,2725.a d a d +=⎧⎨+=⎩解得13,2.d a =⎧⎨=⎩所以31n a n =-. 6分(Ⅱ)因为数列{}n n a b -是首项为2,公比为2的等比数列, 所以2n n n a b -=,所以312n n b n =--,所以数列{}n b 的前n 项和21(31)2(12)3422122n n n n n n n S ++-++=-=--. 13分考点: 1.等差数列与等比数列;2.分组求和.16.(本小题满分13分)已知函数1()sin cos sin(2)23f x x x x π=--. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在[0,]2π上的最大值与最小值. 【答案】(Ⅰ)π; (Ⅱ)最大值为12;最小值为【解析】试题分析:(Ⅰ)利用三角恒等变换公式可得1sin(2)23f x x π=+(),利用周期公式,即可可求f (x )的最小正周期;(Ⅱ)[0,]2x ∈π,可知2[,]x ππ4π+∈333,进而求出11sin(2)[]232x π+∈,即可求得()f x 在[0,]2π上的最大值与最小值. 试题解析:解:(Ⅰ)1()sin cos sin(2)23f x x x x π=--11sin2(sin2cos cos2sin )2233x x x ππ=--11sin 2sin 2224x x x =-1sin 224x x = 1sin(2)23x π=+. 则()f x 的最小正周期为π. 7分(Ⅱ)因为[0,]2x π∈,则2[,]x ππ4π+∈333.所以sin(2)[3x π+∈.所以11sin(2)[]232x π+∈. 则()f x 在[0,]2π上的最大值为12,此时232x ππ+=,即12x π=. ()f x 在[0,]2π上的最小值为,此时233x π4π+=,即2x π=. 13分.考点:1.三角恒等变换;2.函数sin()A x f x ωϕ=+()的性质.17.(本小题满分14分)如图,在△ABC 中,ACB ∠为钝角,π2,6AB BC A ===.D 为AC延长线上一点,且1CD =.CB(Ⅰ)求BCD ∠的大小; (Ⅱ)求,BD AC 的长. 【答案】(Ⅰ)π4BCD ∠=; (Ⅱ)2BD =,1AC =. 【解析】试题分析:(Ⅰ)利用正弦定理求出sin ACB ∠=ACB ∠为钝角,求出角的大小;(Ⅱ)在△BCD 中,由余弦定理可求BD 的长,然后再用余弦定理即可求出AC 的长. 试题解析:解:(Ⅰ)在ABC 中,因为π2,6AB A ==,BC = 由正弦定理可得sin sin AB BCACB A=∠,即2sin sin 62ACB ===∠所以sin 2ACB ∠=因为ACB ∠为钝角,所以3π4ACB ∠=. 所以π4BCD ∠=. 7分 (Ⅱ)在△BCD 中,由余弦定理可知2222cos BD CB DC CB DC BCD =+-⋅⋅∠,即222π1)21)cos4BD =+-⋅, 整理得2BD =.在△ABC 中,由余弦定理可知2222cos BC AB AC AB AC A =+-⋅⋅,即222π222cos6AC AC =+-⋅⋅⋅,整理得220AC -+=.解得1AC =.因为ACB ∠为钝角,所以2AC AB <=.所以1AC =. 14分.考点:1.正弦定理的应用;2.余弦定理的应用.18.(本小题满分13分)已知函数2()21f x x ax a =--+,a ∈R . (Ⅰ)若2a =,试求函数()f x y x=(0x >)的最小值; (Ⅱ)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围. 【答案】(Ⅰ)2-; (Ⅱ)3[,)4+∞ 【解析】试题分析:(Ⅰ)依题意得2()4114f x x x y x x x x-+===+-.然后利用基本不等式即可求得函数的最小值;(Ⅱ)由题意可知要使得“∀[0,2]x ∈,不等式()f x a ≤成立”只要“2210x ax --≤在[0,2]恒成立”.不妨设2()21g x x ax =--,则只要()0g x ≤在[0,2]恒成立.利用二次函数的性质和图像,列出不等式解得,即可解得结果.试题解析:解:(Ⅰ)依题意得2()4114f x x x y x x x x-+===+-. 因为0x >,所以12x x +≥,当且仅当1x x=时,即1x =时,等号成立. 所以2y ≥-.所以当1x =时,()f x y x=的最小值为2-. 6分 (Ⅱ)因为2()21f x a x ax -=--,所以要使得“∀[0,2]x ∈,不等式()f x a ≤成立”只要“2210x ax --≤在[0,2]恒成立”.不妨设2()21g x x ax =--,则只要()0g x ≤在[0,2]恒成立. 因为222()21()1g x x ax x a a =--=---, 所以(0)0,(2)0,g g ≤⎧⎨≤⎩即0010,4410,a --≤⎧⎨--≤⎩解得34a ≥.所以a 的取值范围是3[,)4+∞. 13分. 考点: 1.基本不等式的应用;二次函数在闭区间上的最值. 19.(本小题满分14分)已知数列{}n a 与{}n b 满足122(1)n n a a na n n b +++=+,n *∈N . (Ⅰ)若11,a =22a =,求1b ,2b ; (Ⅱ)若1n n a n +=,求证:12n b >; (Ⅲ)若2n b n =,求数列{}n a 的通项公式. 【答案】(Ⅰ)112b =,256b =; (Ⅱ)n a =2431n n -+ (n *∈N ) 【解析】试题分析:(Ⅰ)将11,a =22a =代入122(1)n n a a na n n b +++=+,即可求出12b b ,;(Ⅱ)由1n n a n+=化简得1n na n =+,由122(1)n n a a na n n b +++=+,即可得到1312(1)2121n n b n n +=⋅=+++,即可证明结果;(Ⅲ)由122(1)n n a a na n n b +++=+,利用做差,得到11()()n n n n n a n b b b b --=-++,再将2n b n =代入,即可求数列{}n a 的通项公式.试题解析:解:(Ⅰ)当1n =时,有1121a b ==,所以112b =. 当2n =时,有1222(23)a a b +=⨯.因为11,a =22a =,所以256b =. 3分 (Ⅱ)因为1n n a n +=,所以11n n na n n n+=⋅=+.所以12(3)223(1)(1)2n n n n a a na n n n b ++++=++++==+. 所以13121(1)21212n n b n n +=⋅=+>++. 8分 (Ⅲ)由已知得122(1)n n a a na n n b +++=+ ① 当2n ≥时,12112(1)(1)n n a a n a n nb --+++-=- ②①-②得,[]1(1)(1)n n n na n n b n b -=+--,即11()()n n n n n a n b b b b --=-++.因为2n b n =,所以n a =2431n n -+(2n ≥).当1n =时,11b =,又112a b ==2,符合上式.所以n a =2431n n -+ (n *∈N ). 14分 .考点:1.数列与不等式的综合;2.数列的求和.20.(本小题满分13分)已知函数()()ln f x x a x =-,a ÎR .(Ⅰ)若0a =,对于任意的(0,1)x Î,求证:1()0f x e -?;(Ⅱ)若函数()f x 在其定义域内不是单调函数,求实数a 的取值范围.【答案】(Ⅰ)详见解析; (Ⅱ)21a e >-【解析】试题分析:(Ⅰ) 当0a =时,()ln f x x x =,对函数进行求导,求出函数的单调区间,即可求出函数的最小值,又由于(0,1)x Î,ln 0x <,即可得到结论;(Ⅱ)由ln ()x x x a f x x +-¢=,设()l n g x x x x a =+-.令()l n 0g x x x x a =+-=,即ln a x x x =+,设函数()ln h x x x x =+.求出()ln 20h x x ¢=+=的解为2e x -=.然后再利用导数 求出函数的单调区间和函数的极值,即可求出结果.试题解析:解:(Ⅰ) 当0a =时,()ln f x x x =,()ln 1f x x ¢=+. 令()ln 10f x x ¢=+=,解得1e x =. 当1(0,)e x Î时,()0f x ¢<,所以函数()f x 在1(0,)e 是减函数;当1(,)e x ? 时,()0f x ¢>,所以函数()f x 在1(,)e + 为增函数. 所以函数()f x 在1e x =处取得最小值,11()e ef =-. 因为(0,1)x Î,ln 0x <,所以对任意(0,1)x Î,都有()0f x <. 即对任意(0,1)x Î,1()0e f x -?. 6分(Ⅱ)函数()f x 的定义域为(0,)+ . 又ln ()x x x a f x x+-¢=,设()ln g x x x x a =+-. 令()ln 0g x x x x a =+-=,即ln a x x x =+,设函数()ln h x x x x =+.令()ln 20h x x ¢=+=,则2e x -=. 当21(0,)e x Î时,()0h x ¢<,所以()h x 在21(0,)e上是减函数; 当21(,)e x ? 时,()0h x ¢>,所以()h x 在21(,)e+ 上是增函数; 所以min 2211()()e e h x h ==-.则()0,x ∈+∞时,1()eh x ≥-. 于是,当21e a ?时,直线y a =与函数()ln h x x x x =+的图象有公共点, 即函数()ln g x x x x a =+-至少有一个零点,也就是方程()0f x ¢=至少有一个实数根. 当21e a =-时,()ln g x x x x a =+-有且只有一个零点, 所以ln ()0x x x a f x x+-¢= 恒成立,函数()f x 为单调增函数,不合题意,舍去. 即当21e a >-时,函数()f x 不是单调增函数. 又因为()0f x ¢<不恒成立, 所以21e a >-为所求. 13分. 考点: 1.利用导数研究函数的单调性.2.导数在证明不等式中的应用.。

山东省临沂市2015届高三上学期期中考试文科数学试题wo

山东省临沂市2015届高三上学期期中考试文科数学试题wo

高三教学质量检测考试文科数学2014.11本试卷分为选择题和非选择题两部分,共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集2{0,1,2},{|20}M B x x x ==+-≤,则M N = ( ) A .{}1 B .{}2 C .{}0,1 D .{}1,22、函数())f x x =-的定义域为( )A .[)1,1-B .()1,1-C .(]1,1-D .[]1,1-3、已知向量(2,4),(1,1)a b ==-,则2a b -= ( )A .()3,9B .()5,9C .()3,7D .()5,74、等差数列{}n a 中,14725839,33a a a a a a ++=++=,则6a 的值为( ) A .10 B .9 C .8 D .75、已知某几何体的三视图如图所示,其中正(主)视图中半圆 的半径为1,则该几何体的体积为( )A .243π-B .3242π- C .24π- D .242π-6、将函数sin cos ()y x x x R =+∈的图象向左平移(0)m m >个单位长度后,得到图象关于y 轴对称,则m 的最小值为( ) A .4π B .3π C .2πD .π 7、在三棱锥P ABC -中,O 是底面正三角形ABC 的中心,Q 为棱PA 上的一点,1PA =,若//QO 平面PBC ,则PQ =A .23 B .12 C .13 D .148、已知,,0a b R t ∈>,下列四个条件中,使a b >成立的必要不充分条件是( ) A .a b t >- B .a b t >+ C .a b > D .44ab>9、在同一直角坐标系中,函数()()(0),log a f x x x g x x α=≥=-的图象可能是( )10、不等式组0013x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩的解集记为D ,由下面四个命题:1:(,)P x y D ∀∈,则21x y -≥- 2:(,)P x y D ∃∈,则22x y -<- 3:(,)P x y D ∀∈,则27x y -> 4:(,)P x y D ∃∈,则25x y -≤ 其中正确命题是( )A .23,P PB .12,P PC .13,P PD .14,P P第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

2015-2016学年上学期高三期中考试数学(文科)试卷及答案

2015-2016学年上学期高三期中考试数学(文科)试卷及答案

2015-2016学年上学期高三期中考试数学(文科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第 Ⅰ 卷 (选择题,共60分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、考生号用黑色字迹的签字笔或钢笔填写在答题纸上. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题纸上.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数()()2lg 6f x x x =-- 的定义域为 ( )A .(),2-∞-B .()3,+∞C .()(),23,-∞-+∞D .()2,3-2.已知a =(3,0),b =(-5,5)则a 与b 的夹角为 ( )A .4π B .3π C .34π D .23π3. 已知集合21|log ,,2A y y x x ⎧⎫==>⎨⎬⎩⎭1|,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B = ( )A .1|02y y ⎧⎫<<⎨⎬⎩⎭B .{}|01y y <<C .1|12y y ⎧⎫<<⎨⎬⎩⎭D .1|12y y ⎧⎫-<<⎨⎬⎩⎭4. “1x =”是“210x -=”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.设()f x 为定义在R 上的奇函数,当0x ≥时()22xf x x b =++,则()1f -= ( )A .3B .1C .1-D .3-6.在ABC ∆中,若sin()12cos()sin()A B B C A C -=+++,则ABC ∆的形状一定是( ) A .等边三角形 B .等腰三角形 C .钝角三角形 D .直角三角形 7.已知函数()sin 2f x x =,为了得到()cos2g x x =的图象,只要将()y f x =的图象( )A. 向左平移2π个单位长度 B .向右平移2π个单位长度C .向左平移4π个单位长度 D .向右平移4π个单位长度8.已知()1312xf x x ⎛⎫=- ⎪⎝⎭,其零点所在区域为: ( )A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭ C .1,12⎛⎫⎪⎝⎭D .()2,39.下列函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是 ( )A .1y x x =+B .sin cos y x x x =+C .1xx y e e =- D .1ln 1x y x-=+ 10. 函数y=|tan x |·cosx (0≤x <23π,且x ≠2π)的图象是 ( )11.若曲线C 满足下列两个条件:(i)存在直线m 在点P(0x ,0y )处与曲线C 相切;(ii)曲线C 在点P 附近位于直线m 的两侧.则称点P 为曲线C 的“相似拐点”. 下列命题不正确...的是: ( ) A.点P(0,0)为曲线C :3y x =的“相似拐点”; B.点P(0,0) 为曲线C :sin y x =的“相似拐点”; C.点P(0,0) 为曲线C :tan y x =的“相似拐点”; D.点P(1,0) 为曲线C :y lnx =的“相似拐点”.12. 若1201x x <<<,则 ( )A.21sin sin x x -21ln ln x x >-B.2112ln ln x xe x e x <C.1212xxx x e e -<-D.1221xx x e x e <第II 卷二、填空题(本大题共4个小题,每小题5分,共20分)13. 若()2sin 12sin f x x =-,则f ⎝⎭的值是 . 14.已知1tan ,22πααπ=-<<,则sin α= . 15.已知函数()ln 1f x x ax =-+在1,e e⎡⎤⎢⎥⎣⎦内有零点,则a 的取值范围为 .16.已知函数()()33(1)log (1)a a x x f x x x ⎧--≤⎪=⎨>⎪⎩在R 上单调递增,则a 的取值范围为 .三:解答题:(本大题共6小题,共70分.解答应写出过程或演算步骤.) 17. (本小题满分10分)已知p :“∃x 0∈R ,使得x 20+mx 0+2m -3<0”;q :命题“∀x ∈[1,2],x 2-m ≤0”,若p ∨q 为真,p ∧q 为假,求实数m 的取值范围.18.(本小题满分12分)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()3,7.(Ⅰ)求函数()f x 的解析式;(Ⅱ)求()()()()4334f f f f -+-+++ 的值.19.(本小题满分12分)ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,若sin sin sin a c Bb c A C-=-+ (1)求角A 的大小;(2)若ABC ∆的面积为S ,求S AB AC⋅的值.20.(本小题满分12分)已知函数2()cos()2cos 336f x x x πππ=+- (1)求函数()f x 的周期T ; (2)求()f x 的单调递增区间.21.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式()2863m y x x =+--,其中36x <<,m 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求m 的值;(Ⅱ) 若该商品的成品为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.22. (本小题满分12分)已知函数),()(2R n m nx mxx f ∈+=在1=x 处取得极值2. (1)求)(x f 的解析式;(2)当0x >时,求)(x f 的最大值?(3)设函数a ax x x g +-=2)(2,若对于任意R x ∈1,总存在2[1,0]x ∈-,使得)()(12x f x g ≤,求实数a 的取值范围.2015-2016学年上学期高三期中考试曾都一中 枣阳一中 襄州一中 宜城一中数学(文科)参考答案CCAAD DCBCC DB 13. 12-14.515.01a ≤≤ 16.36a <≤17.解: ∵命题p 为真命题的充要条件是0∆>,即()24230m m -->,∴6m >或2m <.………………………………3分命题q 为真命题的充要条件是m ≥4 ………………………………6分 若p ∨q 为真,p ∧q 为假,则p ,q 一真一假若p 真q 假得2m < 若q 真p 假得46m ≤≤∴实数m 的取值范围为2m <或46m ≤≤ ……………………………10分18、解:(Ⅰ)()231f x ax '=+ ,()131f a '∴=+ 又 ()()7251312a af -+-'==-37a ∴= 得()2317f x x x =++ ...................6分(Ⅱ) ()()2f x f x -+=()()()()43349f f f f -+-+++= ...................12分19.解:(1)2()cos()2cos 336f x x x πππ=+-1=cos cos 12333x x x πππ--1cos 1=sin +123336x x x ππππ=----(),………………4分故T=6. ………………………………6分(2)令36t x ππ=+,则sin t 递减时,()f x 递增322,22k t k k Z ππππ∴+≤≤+∈ 6164,k x k k Z ∴+≤≤+∈得()f x 的单调递增区间为[]61,64,k k k Z ++∈ (开区间也可) ………………………………12分20.解: (1)由C A B c b c a sin sin sin +=--,得ca bc b c a +=--, 即222a b c bc =+-,由余弦定理,得:3,21cos π==A A . ………6分 (2)1sin 2S AB AC A =⋅且cos AB AC AB AC A ⋅=⋅tan 2S A AB AC==⋅ ………12分 21.解:(Ⅰ)因为5x =时11y =,所以81162mm +=⇒=;…………………….(4分) (Ⅱ)由(Ⅰ)知该商品每日的销售量()26863y x x =+--, 所以商场每日销售该商品所获得的利润:()()()()23263866815721083f x x x x x x x ⎡⎤=-+-=+-+-⎢⎥-⎣⎦………….(8分)()()()()22410242446f x x x x x '=-+=--,令()0f x '=得4x =或6x =(舍去) 函数()f x 在(3,4)上递增,在(4,6)上递减,所以当4x =时函数()f x 取得最大值()438f =…………(12分)22.【解析】(1)因为()2mx f x x n =+,所以222222)()(2)()(n x mx mn n x x mx n x m x f +-=+⋅-+='. 又()f x 在1x =处取得极值2,所以()()f 10f 12'=⎧⎪⎨=⎪⎩,即()2(1)0121m n n m n-⎧=⎪+⎪⎨⎪=⎪+⎩解得14n m ==,,经检验满足题意,所以()241xf x x =+ ……………………………………………4分 (2)()24411x f x x x x==++,0x > 时,12x x +≥ 当且仅当1x =时取等号 ()f x ∴的最大值为()12f =. ……8分(3)()()()22411(1)x x f x x -+-'=+,令'0f x =(),得11x x =-=或. 当x 变化时,'f x f x (),()的变化情况如下表:所以f x ()在1x =-处取得极小值12f -=-(),在1x =处取得极大值12f =(),又0x >时,0f x >(),所以f x ()的最小值为12f -=-(), 因为对任意的1x R ∈,总存在2[1,0]x ∈-,使得()()21g x f x ≤, 所以当[1,0]x ∈-时,()222g x x ax a =-+≤-有解,即()2212x a x -≥+在[1,0]-上有解.令21x t -=,则22214t t x ++=,所以[]229,3,14t t at t ++≥∈--. 所以当[]3,1t ∈--时,()1911921424a t t t t ⎡⎤⎛⎫⎛⎫≤++=--+-≤- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦; a ∴的取值范围为1a ≤- ……12分。

2015-2016年高一语文上学期期中试题(含答案)

2015-2016年高一语文上学期期中试题(含答案)

2015-2016年高一语文上学期期中试题(含答案)高一学年期中考试语试题一、阅读下面的字,完成小题.(9分)日前美国《洛杉矶时报》的一则报道一石激起千层浪:“由于使用拼音发手机短信及电脑打字正在取代拥有数千年传统的一笔一画汉字书写,越越多的中国人不记得如何用笔书写汉字。

”显然“提笔忘字”不是个别现象,否则也不会吸引国内诸多媒体纷纷发表报道和评论。

虽然现在用得着手写的地方越越少,但在偶尔出现需要的时候,如写个便条,填个表格,答个试卷等等,“提笔忘字”却并非偶尔。

此时,人们的解决之道颇为典型:不再去翻新华字典,而是掏出手机按几个按键,用拼音打出忘了的字,“键盘依赖症”,就是这样活灵活现。

其实自从选择了现代化发展之路,汉字手写被更为高效和标准的键盘输入替代就是必然结果。

御牛耕地,烧火做饭,这些中国人千百年赖以糊口吃饭的基本技能,都在逐渐退出历史舞台,生存和生活技能的更新换代,是人类明逐渐进步的伴随现象,这是生产力不断上升的结果,是历史的必然。

然而,对于汉字书写的淡忘,却绝对是中华化──至少是传统化的衰退。

相对于其他生存和生活技能,汉字书写还担负着重要的化传承作用,因为中国化之精髓所在就寄托在汉字字形和书写汉字的手脑配合之中,这是汉字区别于其他字母类字的地方,也是台湾地区力主要把繁体汉字申报为世界遗产的原因之一。

倘若大部分中国人都不再会手书汉字,将是以汉字为基础的中国化的重大缺失。

作家王蒙曾言:“遗失了中国的传统化之精髓与汉字原形,我们成了数典忘祖的新盲。

”可是,避免称为“新盲”的目标绝不是一纸政令或者法律法规所能达成的,今天的人们虽然偶尔还会发出“原你写的一手好字啊”这样的惊叹,但基本上人们已经淡忘隽秀字体所带的荣光,因为,写一手好字已经失去了当年的实际作用,比如找到更好的工作甚至找到更好的对象;因为,写一手好字并不能与现在的办公自动化“无缝衔接”,这是实用主义的选择,所以政府不能要求人们从高效低碳的无纸化自动办公环境中返回,也不可能要求人们在打字更高效的场合必须使用手写,就像曾经的清朝,每年的木兰秋闱可以保证八旗子弟不忘骑射,但是并不能提升哪怕是保持军队战斗力。

四川省成都市第七中学2015届高三上学期期中考试文综试题(扫描版)

四川省成都市第七中学2015届高三上学期期中考试文综试题(扫描版)

15届高三文科地理上期半期试题参考答案(注:每道题号前面的红色序号表示该题在得分明细表中填写的对应位置。

)【题1】1.D【题2】2.C【题3】3.B【题4】4.A【题5】5.A【题6】6.B【题7】7.B【题8】8.D【题9】9.A【题10】10.C【题11】11.D【题12】12.B【题13】13.(24分)(1)以山地、丘陵为主;地势西部和南部高,东部和北部低;地势起伏较大。

(6分)(2)北京气温年较差较大;北京夏季受(来自低纬的)东南季风影响,气温高,冬季受(来自高纬的)西北季风影响,气温低;北京距海较远,受海洋的影响较小。

(6分)(3)位于玫瑰主产区,原料丰富;原料品质上乘;生产历史悠久,经验丰富,知名度高;生产技术先进。

(8分)(4)提升城市的知名度;带动旅游业等相关产业的发展;增加经济收入;促进民俗文化传播。

(任答3点给6分)【题14】14.(28分)(1)年降水量从东南向西北减少;东南部年降水量空间差异变化明显,西北部年降水量空间差异变化小(高原内部降水差异小,高原边缘降水差异明显);北部年降水量最小,东南部降水量最大。

(6分)(2)A地为河谷农业(种植业),B地为高寒牧业(畜牧业)。

B区域海拔高,气温低,大部分地区年降水量在400mm以下,植被以高寒荒漠、草甸为主,适宜发展畜牧业。

A地处于高原边缘海拔较低的河谷地区,热量较充足,降水丰富,适宜发展种植业。

(12分)(3)赞同。

理由:该河段水能资源丰富;当地煤、石油等能源缺乏;离拉萨等城市较近,能源需求量较大;变资源优势为经济优势,有利于当地经济发展;大拐弯处人口稀少,淹没损失小,移民数量少。

(任答4点给8分)不赞同。

理由:西藏地区人口城市稀少,经济欠发达,能源需求量小;该地有丰富太阳能、地热能等能源,可满足其需要;大拐弯处地质不稳定、地势起伏大,修水电站易诱发地震、滑坡等地质灾害;修水电站会破坏峡谷生态环境;距我国经济发达地区远,加上群山阻隔,输电投资大。

高中高三数学上学期期中试卷 文(含解析)-人教版高三全册数学试题

高中高三数学上学期期中试卷 文(含解析)-人教版高三全册数学试题

某某省某某市潮师高中2015届高三上学期期中数学试卷(文科)一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x23.(5分)设i为虚数单位,则复数等于()A.B.C.D.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣15.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1 7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值X围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=.13.(5分)设函数,若f(x0)>1,则x0的取值X围是.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值X围.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.某某省某某市潮师高中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即B={x|0<x<2},∵A={x|x>1},∴A∩B={x|1<x<2}.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x2考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:根据y=x﹣1=在区间(0,+∞)上单调递减,得A项不符合题意;根据y=log2x的定义域不关于原点对称,得y=log2x不是偶函数,得B项不符合题意;根据y=﹣x2的图象是开口向下且关于x=0对称的抛物线,得y=﹣x2的在区间(0,+∞)上为减函数,得D项不符合题意.再根据函数单调性与奇偶性的定义,可得出只有C项符合题意.解答:解:对于A,因为函数y=x﹣1=,在区间(0,+∞)上是减函数不满足在区间(0,+∞)上单调递增,故A不符合题意;对于B,函数y=log2x的定义域为(0,+∞),不关于原点对称故函数y=log2x是非奇非偶函数,故B不符合题意;对于C,因为函数y=|x|的定义域为R,且满足f(﹣x)=f(x),所以函数y=|x|是偶函数,而且当x∈(0,+∞)时y=|x|=x,是单调递增的函数,故C符合题意;对于D,因为函数y=﹣x2的图象是开口向下的抛物线,关于直线x=0对称所以函数y=﹣x2的在区间(0,+∞)上为减函数,故D不符合题意故选:C点评:本题给出几个基本初等函数,要求我们找出其中的偶函数且在区间(0,+∞)上单调递增的函数,着重考查了基本初等函数的单调性与奇偶性等知识,属于基础题.3.(5分)设i为虚数单位,则复数等于()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以2﹣i,然后整理成a+bi(a,b∈R)的形式即可.解答:解:=.故选A.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣1考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由奇函数的性质可得f(﹣1)=﹣f(1),再根据已知表达式可求得f(1).解答:解:∵f(x)为奇函数,∴f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+x,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选A.点评:本题考查函数奇偶性的性质及其应用,属基础题,定义是解决问题的基本方法.5.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.据此可计算出其体积.解答:解:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.∴V==12π.故选D.点评:由三视图正确恢复原几何体是解决问题的关键.6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式即可得出.解答:解:∵x<0,∴函数f(x)=x+1=+1=﹣1,当且仅当x=﹣1时取等号.因此f(x)有最大值﹣1.故选:D.点评:本题考查了基本不等式的应用,属于基础题.7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由已知函数的图象求出函数解析式,然后看自变量x的变化得答案.解答:解:由图可知,A=1,,∴,即ω=2.由五点作图的第三点可知,+φ=π,得φ=(|φ|<),则f(x)=sin(2x+)=sin2(x+).∴为了得到f(x)的图象,则只要将g(x)=sin2x的图象向左平移个单位长度.故选:C.点评:本题考查由函数的部分图象求函数解析式,考查了函数图象的平移,解答的关键是利用五点作图的某一点求初相,是基础题.8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:利用向量的三角形法则和向量共线定理即可得出.解答:解:===.故选C.点评:熟练掌握向量的三角形法则和向量共线定理是解题的关键.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值X围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]考点:简单线性规划的应用;平面向量数量积的运算.专题:数形结合.分析:先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入•分析比较后,即可得到•的取值X围.解答:解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,•=﹣1×1+1×1=0当x=1,y=2时,•=﹣1×1+1×2=1当x=0,y=2时,•=﹣1×0+1×2=2故•和取值X围为[0,2]解法二:z=•=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故•和取值X围为[0,2]故选:C点评:本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.解答:解:∵函数f (x)=x3﹣4x+a,0<a<2,∴f′(x)=3x2﹣4.令f′(x)=0,得x=±.∵当x<﹣时,f′(x)>0;在(﹣,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(﹣∞,﹣)上是增函数,在(﹣,)上是减函数,在(,+∞)上是增函数.故f(﹣)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,得 x1<﹣,﹣<x2<,x3>.根据f(0)=a>0,且f()=a﹣<0,得>x2>0.∴0<x2<1.故选C.点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=﹣.考点:两角和与差的正切函数.专题:三角函数的求值.分析:先由诱导公式求出cosα的值,再根据角的X围求出sinα,从而可求tana的值.解答:解:sin(+a)=⇒cosα=,∵a∈(﹣,0),=﹣,故tana===﹣.故答案为:﹣.点评:本题主要考察了诱导公式的应用,考察了同角三角函数的关系式的应用,属于基础题.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=1或﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:设切点为P(m,n),求出函数f(x)=的导数,得切线斜率为﹣,再根据切点P既在切线y=﹣x+b上又在函数f(x)=的图象上,列出关于m、n、b的方程组,解之即可得到实数b之值.解答:解:由于函数f(x)=的导数,若设直线y=﹣x+b与函数f(x)=相切于点P(m,n),则解之得m=2,n=,b=1或m=﹣2,n=﹣,b=﹣1综上所述,得b=±1故答案为:1或﹣1点评:本题给出已知函数图象的一条切线,求参数b的值,着重考查了导数的运算公式与法则和利用导数研究曲线上某点切线方程等知识,属于基础题.13.(5分)设函数,若f(x0)>1,则x0的取值X围是(﹣∞,﹣1)∪(1,+∞).考点:指数函数的单调性与特殊点;幂函数的单调性、奇偶性及其应用.专题:计算题;分类讨论.分析:根据函数表达式分类讨论:①当x0≤0时,可得2﹣x﹣1>1,得x<﹣1;②当x0>0时,x0.5>1,可得x>1,由此不难得出x0的取值X围是(﹣∞,﹣1)∪(1,+∞).解答:解:①当x0≤0时,可得2﹣x0﹣1>1,即2﹣x0>2,所以﹣x0>1,得x0<﹣1;②当x0>0时,x00.5>1,可得x0>1.故答案为(﹣∞,﹣1)∪(1,+∞)点评:本题考查了基本初等函数的单调性和值域等问题,属于基础题.利用函数的单调性,结合分类讨论思想解题,是解决本题的关键.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=3.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据正方形网格确定向量的长度和两个向量的夹角,然后利用,可以某某数λ.解答:解:设正方形的边长为1,则AB=1,AC=,∴cos∠CAB=,∵,=,∴,即,∴,解得λ=3.故答案为:3.点评:本题主要考查平面数量积的应用,利用向量垂直和数量积的关系即可求出λ,要根据表格确定向量是解决本题的关键.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.考点:三角函数的周期性及其求法;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(1)根据函数的周期公式即可求ω和的值;(2)将函数g(x)进行化简,然后利用三角函数的性质即可求函数的最大值.解答:解:(1)∵函数的周期是π,且ω>0,∴,解得ω=2.∴.∴.(2)∵=,∴当,即时,g(x)取最大值.此时x的集合为.点评:本题主要考查三角函数的图象和性质,要求熟练掌握函数的周期性和函数最值的求解方法.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(1)根据在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故可得结论;(2)用分层抽样的方法,可求甲班、乙班抽取的人数;(3)利用枚举法确定基本事件的个数,根据古典概型概率公式,可得结论.解答:解:(1)在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故有组别达标不达标总计甲班54 8 62乙班54 4 58合计108 12 120…(3分)(2)由表可知:用分层抽样的方法从甲班抽取的人数为人,…(4分)从乙班抽取的人数为人…(5分)(3)设从甲班抽取的人为a,b,c,d,从乙班抽取的人为1,2;“抽到的两个人恰好都来自甲班”为事件A.…(6分)所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…(8分)其中事件A包含基本事件ab,ac,ad,bc,bd,cd,共6种,…(10分)由古典概型可得…(12分)点评:本题考查概率知识的运用,考查分层抽样,考查枚举法的运用,考查学生分析解决问题的能力,属于中档题.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值X围.考点:平面向量数量积的运算.专题:三角函数的求值.分析:(1)根据两向量的夹角及两向量的求出两向量的数量积,然后再利用平面向量的数量积的运算法则计算,两者计算的结果相等,两边平方且利用同角三角函数间的基本关系化简,得到关于cosB的方程,求出方程的解即可得到cosB的值,由B的X围,利用特殊角的三角函数值即可求出B的度数;(2)由B的度数,把所求的式子利用三角形的内角和定理化为关于A的式子,再利用两角差的正弦函数公式及特殊角的三角函数值化简,最后利用两角和的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的X围求出这个角的X围,根据正弦函数的图象可知正弦函数值的X围,进而得到所求式子的X围.解答:解:(1)∵=(sinB,1﹣cos B),且与=(1,0)的夹角为,∴=2sinB,又=×1×cos=,∴2sinB=,化简得:2cos2B﹣cosB﹣1=0,∴cosB=1(舍去)或cosB=﹣,又∵B∈(0,π),∴B=;(2)sinA+sinC=sinA+sin(﹣A)=sinA+cosA﹣sinA=sinA+cosA=sin(A+),∵0<A<,∴,则,∴sin A+sin C∈(,1].点评:此题考查了平面向量的数量积的运算,向量的数量积表示向量的夹角,三角函数的恒等变换以及同角三角函数间基本关系的运用.学生做题时注意角度的X围,熟练掌握三角函数公式,牢记特殊角的三角函数值,掌握正弦函数的值域.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,A B⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)欲证AB1∥平面BC1D,根据线面平行的判定定理可知只需证AB1与平面BC1D内一直线平行,连接B1C,设B1C与BC1相交于点O,连接OD,根据中位线定理可知OD∥AB1,OD⊂平面BC1D,AB1⊄平面BC1D,满足定理所需条件;(2)根据面面垂直的判定定理可知平面ABC⊥平面AA1C1C,作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,然后求出棱长,最后根据四棱锥B﹣AA1C1D的体积求出四棱锥B﹣AA1C1D的体积即可.解答:解:(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵D为AC的中点,∴OD为△AB1C的中位线,∴OD∥AB1.(3分)∵OD⊂平面BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(6分)(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,(8分)∵AB=BB1=2,BC=3,在Rt△ABC中,,,(10分)∴四棱锥B﹣AA1C1D的体积(12分)==3.∴四棱锥B﹣AA1C1D的体积为3.(14分)点评:本题主要考查了线面平行的判定定理,以及棱锥的体积的度量,同时考查了空间想象能力,计算能力,以及转化与化归的思想,属于基础题.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)由求导公式求出导函数,求出切线的斜率f′(1)及f(1)的值,代入点斜式方程再化为一般式方程;(Ⅱ)先求出函数的定义域,再对导函数进行化简,判断出导函数的符号,即可得函数的单调性即极值情况;(Ⅲ)先对导函数进行化简,再对a进行分类讨论,利用列表格判断出导函数的符号,即可得函数的单调区间.解答:解:(I)当a=1时,f(x)=x+lnx,则,﹣﹣﹣(1分)所以f′(1)=2,且f(1)=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以切线方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)函数的定义域为(0,+∞),由(1)得=,﹣﹣﹣﹣﹣(6分)∵x>0,∴f′(x)>0恒成立﹣﹣﹣﹣﹣(8分)∴f(x)在(0,∞)上单调递增,没有极值﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)由题意得,(x>0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当a≥0时,在(0,∞)时,f′(x)>0,所以f(x)的单调增区间是f′(x)>0;﹣﹣﹣﹣﹣(11分)当a<0时,函数f(x)与f′(x)在定义域上的情况如下:x (0,a)﹣a (﹣a,+∞)f′(x)﹣0 +f(x)↘极小值↗﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)综上,当a≥0时,f(x)的单调增区间是(0,+∞);当a<0时,f(x)的单调增区间是(﹣a,+∞),减区间是(0,a).﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查导数的几何意义,切线方程的求法,以及导数与函数的单调性、极值的应用,考查了分类讨论思想,注意一定先求出函数的定义域,以及把导函数化到最简.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.考点:利用导数研究函数的单调性;二次函数的性质;二次函数在闭区间上的最值.专题:计算题.分析:(1)当a=2时,由g(x)=,x∈[0,3],利用二次函数的性质求出它的值域.(2)利用函数f(x)的导数的符号,分类讨论f(x)单调性,从而求出f(x)的最小值.(3)令 h(x)==﹣,通过h′(x)=的符号研究h(x)的单调性,求出h(x)的最大值为h(1)=﹣.再由f(x)=xlnx在(0,+∞)上的最小值为﹣,且f(1)=0大于h(1),可得在(0,+∞)上恒有f(x)>h(x),即.解答:解:(1)当a=2时,g(x)=,x∈[0,3],当x=1时,;当x=3时,,故g(x)值域为.(2)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增.①若,t无解;②若,即时,;③若,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt,所以 f(x)min=.(3)证明:令 h(x)==﹣,h′(x)=,当 0<x<1时,h′(x)>0,h(x)是增函数.当1<x时.h′(x)<0,h(x)是减函数,故h(x)在(0,+∞)上的最大值为h(1)=﹣.而由(2)可得,f(x)=xlnx在(0,+∞)上的最小值为﹣,且当h(x)在(0,+∞)上的最大值为h(1)时,f(x)的值为ln1=0,故在(0,+∞)上恒有f(x)>h(x),即.点评:本题主要考查利用导数研究函数的单调性,二次函数的性质,函数的恒成立问题,属于中档题.。

四川省成都市第七中学2015届高三上学期期中考试语文试题(扫描版)

四川省成都市第七中学2015届高三上学期期中考试语文试题(扫描版)

15届高三文科语文上期半期考试试题参考答案(注:每道题号前面的红色序号表示该题在得分明细表中填写的对应位置。

)【题1】1.D(D项的读音分别为liǔ/niǔ,kuànɡ/kuāng,jié/jiē,jiàn/xiàn。

A项的读音分别为nìng,xué/xuè,xù/chù,yīng/yìng;B项的读音分别为tòng/dòng,pī/pēi,ju àn/quān,qū;C项的读音分别为fēi/fěi,ān/yīn,zài,chèn/chēng)【题2】2.C(A项瞋目结舌——瞠目结舌,B项敲榨——敲诈,D项三角架——三脚架)【题3】3.C(A项纵然:表示让步关系,相当于“即使”。

此处可以用“固然”等表转折的连词。

B项蜕化:比喻腐化堕落,此处应该使用“退化”。

C项海阔天空:形容大自然的广阔;形容想象或说话毫无拘束。

D项司空见惯:看惯了就不觉得奇怪。

此处可以“熟视无睹”)【题4】4.A(B项搭配不当,“经验阅历”与“大幅度提升”不能搭配;C项否定不当,去掉“切忌”或“不要”。

;D项句式杂糅,可改为“受到了观众的好评”或“观众好评如潮”)【题5】5.D(A项张冠李戴,从原文可知,以游离态形式出现的是谷氨酸,而不是味精。

B 项理解有误,“味精最初是池田菊苗制造的”的表述无中生有,池田菊苗只是发现了一种海带汤蒸发后留下的晶体,而不是制造了味精。

C项表述绝对,原文为“我国味精行业大都采用玉米……”)【题6】6.B(“使其作为发酵工具”表述不合文意,原文为“以谷氨酸产生菌为发酵工具”)【题7】7.C(强加因果)【题8】8.C(察:被推荐)【题9】9.D(D项的“为”均为介词,译为“为”或“替”。

A项第一个“以”介词,可译为“凭借”,第二个“以”连词,可译为“来”。

高三数学-2014-2015学年高三上学期期中数学试卷(文科)

高三数学-2014-2015学年高三上学期期中数学试卷(文科)

2014-2015学年高三(上)期中数学试卷(文科)一、填空题(本大题共14小题,每小题5分,满分70分)只需直接写出结果.1.若复数z满足iz=1+i(i为虚数单位),则z= .2.命题“∀x∈R,x2>0”的否定是.3.设函数f(x)=log2(3﹣x2)的定义域为A,不等式≤﹣1的解集为B,则A∩B= .4.过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是.5.已知、为单位向量,其夹角为60°,则(2﹣)•= .6.以椭圆=1的左焦点为圆心,长轴长为半径的圆的标准方程是.(2013•广东)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a= .(5分)7.8.不等式组表示的平面区域的面积为.9.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:(1)若a∥α且b∥α,则a∥b;(2)若a⊥α且b⊥α,则a∥b;(3)若a∥α且a∥β,则α∥β;(4)若a⊥α且a⊥β,则α∥β.上面命题中,所有真命题的序号是.10.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>2},则f(10x)>0的解集为.11.已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.12.函数y=(x﹣1)|x﹣a|(a>1)在上是减函数,则实数a的取值范围是.13.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣4m=0交于点P,则|+|= .14.已知实数a,b,c满足a+b+c=0,a2+b2+c2=3,则a的最大值是.二、解答题(本大题共6小题,满分90分),解答应写出文字说明、证明过程或演算步骤)15.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).16.如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥面ABCD,点E是PD的中点.(1)求证:AC⊥PB;(2)求证:PB∥平面AEC.17.在平面直角坐标系xOy中,已知点A(2,2),B(0,4),圆C以线段AB为直径(1)求圆C的方程;(2)设点P是圆C上与点A不重合的一点,且OP=OA,求直线PA的方程和△POA的面积.18.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.19.已知椭圆=1(a>b>0)的离心率为e=,且a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,求证:点(m,k)在直线y=2x﹣上.20.已知数列{a n}的前n项和为S n,且(a﹣1)S n=a(a n﹣1)(a>0.n∈N*)(1)证明数列{a n}是等比数列,并求a n;(2)当a=时,设b n=S n+λn+,试确定实数λ的值,使数列{b n}为等差数列;(3)已知集合A={x|x2﹣(a+1)x+a≤0},问是否存在正数a,使得对于任意的n∈N*,都有S n∈A,若存在,求出a的取值范围;若不存在,说明理由.2014-2015学年高三(上)期中数学试卷(文科)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,满分70分)只需直接写出结果.1.若复数z满足iz=1+i(i为虚数单位),则z= 1﹣i .考点:复数代数形式的乘除运算.专题:计算题.分析:由iz=1+i,两边除以i,按照复数除法运算法则化简计算.解答:解:由iz=1+i,得z==1﹣i故答案为:1﹣i.点评:本题考查复数代数形式的混合运算,复数的基本概念.属于基础题.2.命题“∀x∈R,x2>0”的否定是..考点:全称命题;命题的否定.专题:规律型.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:根据全称命题的否定是特称命题得:命题“∀x∈R,x2>0”的否定是:.故答案为:.点评:本题主要考查含有量词的命题的否定,要求熟练掌握全称命题的否定是特称命题,特称命题的否定是全称命题.3.设函数f(x)=log2(3﹣x2)的定义域为A,不等式≤﹣1的解集为B,则A∩B= 简单线性规划.专题:不等式的解法及应用.分析:先标出已知不等式组表示的平面区域,根据围成此区域的多边形特征探求其面积.解答:解:如右图所示,在同一坐标系中分别作出直线l1:x+y=4,l2:x﹣y=2于是得到不等式组表示的平面区域,即四边形OABC(含边界),连结AC,则S四边形0ABC=S Rt△OAC+S△ABC,由A(0,4),C(2,0)知,直线AC的方程为2x+y﹣4=0,且|AC|=,由得B(3,1),从而点B到直线AC的距离d=,所以S△ABC=|AC|•d=,又S Rt△OAC=|OC|•|OA|=,所以S四边形OABC=4+3=7,即原不等式组表示的平面区域的面积为7.故答案为:7.点评: 1.本题主要考查了不等式组表示的平面区域的应用,平面内的距离公式等,考查了数形结合思想、化归思想,解决本题的关键有两个:一是正确作出不等式组表示的平面区域,二是善于将面积进行转化.2.对于面积的求解,首先应弄清区域的形状,若为三角形,一般根据“底×高”求解,底可以由两点间距离公式得到,高可以由点到直线的距离公式得到;若为四边形或四边以上的多边形,一般将其拆分为几个易求的三角形或四边形求解.9.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:(1)若a∥α且b∥α,则a∥b;(2)若a⊥α且b⊥α,则a∥b;(3)若a∥α且a∥β,则α∥β;(4)若a⊥α且a⊥β,则α∥β.上面命题中,所有真命题的序号是(2)(4).考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系.分析:(1)用几何体模型来说明;(2)用垂直同一平面的两直线平行判断;(3)用几何体模型判断;(4)用垂直于同一直线的两平面平行判断.解答:解:(1)若a∥α且b∥α,则a∥b或相交或异面,不正确;(2)若a⊥α且b⊥α,则a∥b,由垂直同一平面的两直线平行知正确;(3)若a∥α且a∥β,则α∥β或相交;(4)若a⊥α且a⊥β,则α∥β,由垂直于同一直线的两平面平行.故填(2)(4).点评:本题主要考查空间中线与线、线与面、面与面的位置关系,要注意常见结论和定理的应用.10.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>2},则f(10x)>0的解集为{x|x<lg2} .考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:一元二次不等式f(x)<0的解集为{x|x<﹣1或x>2},可得﹣1,2是一元二次方程f(x)=0的两个实数根.于是f(10x)>0化为﹣1<10x<2,解得即可.解答:解:∵一元二次不等式f(x)<0的解集为{x|x<﹣1或x>2},∴﹣1,2是一元二次方程f(x)=0的两个实数根.∴f(10x)>0化为﹣1<10x<2,解得x<lg2.∴f(10x)>0的解集为{x|x<lg2}.故答案为:{x|x<lg2}.点评:本题考查了一元二次不等式的解集与相应的一元二次方程的实数根之间的关系、对数的运算性质,属于中档题.11.已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为y=±x .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的右顶点A(a,0),拋物线x2=2py(p>0)的焦点及准线方程,根据已知条件得出及,求出a=b,得双曲线的渐近线方程为:y=±x.解答:解:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,F,∵|FA|=c,∴抛物线的准线方程为由得,,由①②,得=2c,即c2=2a2,∵c2=a2+b2,∴a=b,∴双曲线的渐近线方程为:y=±x,故答案为:y=±x.点评:熟练掌握圆锥曲线的图象与性质是解题的关键.12.函数y=(x﹣1)|x﹣a|(a>1)在上是减函数,则实数a的取值范围是.考点:函数单调性的性质.专题:计算题;数形结合.分析:先对函数化简可得y=(x﹣1)|x﹣a|=,作出函数的图象,结合图象可求a的范围解答:解:y=(x﹣1)|x﹣a|==∵a>1其图象如图所示∵函数y=(x﹣1)|x﹣a|(a>1)在上是减函数∴∴3≤a≤4故答案为:点评:本题主要考查了函数单调性的应用,解题的关键是准确作出函数的图象,体现了数形结合思想的应用.13.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣4m=0交于点P,则|+|= 4 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知直线方程容易求出A(0,0),B(4,0),这两直线的方程联立得方程组,解方程组即得P点坐标,从而可求出向量的坐标,从而求出的坐标,根据向量长度的计算公式即可求得||.解答: 4β解:直线x+my=0过定点A(0,0);由直线mx﹣y﹣4m=0得m(x﹣4)﹣y=0,∴该直线过定点B(4,0);由得;∴;∴,;∴=.故答案为:4.点评:考查过定点的直线系方程,直线的交点坐标和两直线方程联立形成方程组解的关系,以及根据坐标求向量长度.14.已知实数a,b,c满足a+b+c=0,a2+b2+c2=3,则a的最大值是.考点:基本不等式.专题:不等式的解法及应用.分析:由已知条件变形后,利用完全平方式将变形后的式子代入得到b、c是某一方程的两个实数根,利用根的判别式得到有关a的不等式后确定a的取值范围.解答:解:∵a+b+c=0,a2+b2+c2=3∴b+c=﹣a,b2+c2=3﹣a2,∴bc=(2bc)==a2﹣,b、c是方程:x2+ax+a2﹣=0的两个实数根,∴△≥0∴a2﹣4(a2﹣)≥0即a2≤2﹣≤a≤即a的最大值为故答案为:.点评:本题考查了函数最值问题,解决本题的关键是利用根的判别式得到有关未知数的不等式,进而求得a的取值范围二、解答题(本大题共6小题,满分90分),解答应写出文字说明、证明过程或演算步骤)15.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:两角和与差的正弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;(2)利用函数的解析式,通过f(θ)﹣f(﹣θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(﹣θ).解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,∴f()=Asin(+)=Asin=,∴.(2)由(1)可知:函数f(x)=3sin(x+),∴f(θ)﹣f(﹣θ)=3sin(θ+)﹣3sin(﹣θ+)=3=3•2sinθcos=3sinθ=,∴sinθ=,∴cosθ=,∴f(﹣θ)=3sin()=3sin()=3cosθ=.点评:本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.16.如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥面ABCD,点E是PD的中点.(1)求证:AC⊥PB;(2)求证:PB∥平面AEC.考点:直线与平面平行的判定;空间中直线与直线之间的位置关系.专题:证明题.分析:(1)欲证AC⊥PB,可先证AC⊥面PAB,根据直线与平面垂直的判定定理可知只需证AC与面PAB内两相交直线垂直,根据PA⊥面ABCD,AC⊂面ABCD,可得PA⊥AC,又因AB ⊥AC,PA∩AC=A,PA⊂面PAB,AB⊂面PAB,满足定理所需条件;(2)欲证PB∥面AEC,根据直线与平面平行的判定定理可知只需证PB与面AEC内一直线平行即可,连接BD交AC于点O,并连接EO,根据中位线可知EO∥PB,PB⊄面AEC,EO⊂面AEC满足定理所需条件.解答:证明:(1)∵PA⊥面ABCD,AC⊂面ABCD,∴PA⊥AC(2分)又∵AB⊥AC,PA∩AC=A,PA⊂面PAB,AB⊂面PAB∴AC⊥面PAB∴AC⊥PB(7分)(2)连接BD交AC于点O,并连接EO,∵四边形ABCD为平行四边形∴O为BD的中点又∵E为PD的中点∴在△PDB中EO为中位线,EO∥PB∵PB⊄面AEC,EO⊂面AEC∴PB∥面AEC.(14分)点评:本题考查了空间两直线的位置关系,以及直线与平面平行的判定等有关知识,考查学生空间想象能力,逻辑思维能力,是中档题.17.在平面直角坐标系xOy中,已知点A(2,2),B(0,4),圆C以线段AB为直径(1)求圆C的方程;(2)设点P是圆C上与点A不重合的一点,且OP=OA,求直线PA的方程和△POA的面积.考点:直线和圆的方程的应用.专题:综合题;直线与圆.分析:(1)确定圆心与半径,即可求圆C的方程;(2)利用点斜式可得直线PA的方程,求出PA,点O到直线PA的距离,可求△POA的面积.解答:解:(1)设圆C的圆心C(a,b),半径为r,则a=1,b=3﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴圆C的方程为(x﹣1)2+(y﹣3)2=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)∵OP=OA,CP=CA,∴OC是线段PA的垂直平分线﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又OC的斜率为3,∴PA的斜率为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴直线PA的方程为,即x+3y﹣8=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∵点O到直线PA的距离﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)OA=…..(12分)∴…(13分)∴△POA的面积=…(14分)点评:本题考查直线和圆的方程的应用,考查圆的方程,考查三角形面积的计算,属于中档题.18.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.考点:函数模型的选择与应用.专题:压轴题;函数的性质及应用.分析:(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.解答:解:(Ⅰ)∵蓄水池的侧面积的建造成本为200•πrh元,底面积成本为160πr2元,∴蓄水池的总建造成本为200•πrh+160πr2元即200•πrh+160πr2=12000π∴h=(300﹣4r2)∴V(r)=πr2h=πr2•(300﹣4r2)=(300r﹣4r3)又由r>0,h>0可得0<r<5故函数V(r)的定义域为(0,5)(Ⅱ)由(Ⅰ)中V(r)=(300r﹣4r3),(0<r<5)可得V′(r)=(300﹣12r2),(0<r<5)∵令V′(r)=(300﹣12r2)=0,则r=5∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数当r∈(5,5)时,V′(r)<0,函数V(r)为减函数且当r=5,h=8时该蓄水池的体积最大点评:本题考查的知识点是函数模型的应用,其中(Ⅰ)的关键是根据已知,求出函数的解析式及定义域,(Ⅱ)的关键是利用导数分析出函数的单调性及最值点.19.已知椭圆=1(a>b>0)的离心率为e=,且a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,求证:点(m,k)在直线y=2x﹣上.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由题意可得解得即可.(2)由(1)知:A(﹣2,0),B(2,0),D(0,1),可得直线AD的方程为,由题意直线BP的方程为y=k(x﹣2),k≠0,且,联立可得点M的坐标.设P(x1,y1),由直线BP的方程与椭圆的方程联立可得点P的坐标.设N(x2,0),则由P,D,N三点共线得,k DP=k DN.即可证明.解答:(1)解:由解得,∴椭圆C 的方程为.(2)证明:由(1)知:A(﹣2,0),B(2,0),D(0,1),∴直线AD的方程为,由题意,直线BP的方程为y=k(x﹣2),k≠0,且,由解得.设P(x1,y1),则由,得(4k2+1)x2﹣16k2x+16k2﹣4=0.∴,∴.∴.设N(x2,0),则由P,D,N三点共线得,k DP=k DN.即,∴,∴.∴MN的斜率.∴,即点(m,k)在直线上.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆的相交问题转化为方程联立可得跟与系数的关系、斜率计算公式、三点共线,考查了推理能力与计算能力,属于难题.20.已知数列{a n}的前n项和为S n,且(a﹣1)S n=a(a n﹣1)(a>0.n∈N*)(1)证明数列{a n}是等比数列,并求a n;(2)当a=时,设b n=S n+λn+,试确定实数λ的值,使数列{b n}为等差数列;(3)已知集合A={x|x2﹣(a+1)x+a≤0},问是否存在正数a,使得对于任意的n∈N*,都有S n∈A,若存在,求出a的取值范围;若不存在,说明理由.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)利用“当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1”及其等比数列的定义及其通项公式即可得出.(2)当时,由(1)利用等差数列的前n项和公式可得S n=,b n,要使{b n}为等差数列,可得b1+b3=2b2,解出λ即可.(3)对a分类讨论,a≥1时比较简单.若0<a<1,可得A=,利用等比数列的前n项和公式可得S n=.可得.要使S n∈A,必须,解得即可.解答:解:(1)当n=1时,(a﹣1)a1=a(a1﹣1)得a1=a>0.∵(a﹣1)S n=a(a n﹣1),∴当n≥2时,(a﹣1)S n﹣1=a(a n﹣1﹣1),两式相减得(a﹣1)a n=a(a n﹣a n﹣1),化为a n=aa n﹣1.∴a n>0恒成立,且,∴{a n}是等比数列.又{a n}的首项a1=a,公比为a,∴.(2)当时,由(1)得,∴,要使{b n}为等差数列,则b1+b3=2b2,即,解得λ=1,又当λ=1时,b n=n+1,∴{b n}为等差数列,综上所述:λ=1.(3)若a=1,则A={1},S n=n,∴S2∉A,不合题意;若a>1,则A=,,∴S2∉A,不合题意;若0<a<1,则A=,==.∴.要使S n∈A,则,解得,.综上所述,满足条件的正数a存在,a的取值范围为.点评:本题考查了利用“当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1”及其等比数列的定义及其通项公S n式、前n项和公式、集合的性质,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.。

重庆一中2015届高三上学期期中 数学试卷(文科)(解析版)

重庆一中2015届高三上学期期中 数学试卷(文科)(解析版)

重庆一中2015届高三上学期期中数学试卷(文科)一、选择题(每题5分,共10题)1.(5分)已知全集U={1,2,3,4,5,6},A={2,3,6},则∁U A=()A.{1,4,5} B.{2,3,6} C.{1,4,6} D.{4,5,6} 2.(5分)函数f(x)=的定义域为()A.B.C. D.(1)求函数g(x)的极值;(2)若f(x)﹣g(x)在重庆一中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(每题5分,共10题)1.(5分)已知全集U={1,2,3,4,5,6},A={2,3,6},则∁U A=()A.{1,4,5} B.{2,3,6} C.{1,4,6} D.{4,5,6}考点:补集及其运算.专题:集合.分析:由全集U及A,求出A的补集即可.解答:解:∵全集U={1,2,3,4,5,6},A={2,3,6},∴∁U A={1,4,5},故选:A.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.(5分)函数f(x)=的定义域为()A.B.C. D.考点:程序框图.专题:图表型;算法和程序框图.分析:x=4满足条件x>1,则执行y=log24,从而求出最后的y值即可.解答:解:∵x=4满足条件x>1,∴执行y=log24=2.∴输出结果为2.故选C.点评:本题主要考查了条件结构,解题的关键是读懂程序框图.4.(5分)函数y=sinxsin的最小正周期是()A.B.πC.2πD.4π考点:二倍角的正弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.分析:利用诱导公式、二倍角公式对已知函数进行化简,然后代入周期公式即可求解解答:解:∵y=sinxsin=sinxcosx=sin2x∴T=π故选B点评:本题主要考查了诱导公式、二倍角的正弦公式及周期公式的简单应用,属于基础试题5.(5分)直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,则实数a的值为()A.B.C.D.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得3(a﹣1)+a=0,由此能求出结果.解答:解:∵直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,∴3(a﹣1)+a=0,解得a=.故选:D.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.6.(5分)甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如下表:甲乙丙丁平均成绩86 89 89 85方差S2 2.1 3.5 2.1 5.6从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是()A.甲B.乙C.丙D.丁考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:直接由图表看出四人中乙和丙的平均成绩最好,然后看方差,方差小的发挥稳定.解答:解:乙,丙的平均成绩最好,且丙的方差小于乙的方差,丙的发挥较稳定,故选C.点评:本题考查方差和标准差,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,在平均数相差不大的前提下,方差越小说明数据越稳定,这样的问题可以出现在选择题或填空题中.考查最基本的知识点.7.(5分)直线x+y﹣2=0与圆(x﹣1)2+(y﹣2)2=1相交于A,B两点,则弦|AB|=()A.B.C.D.考点:直线与圆的位置关系.专题:直线与圆.分析:利用点到直线的距离公式可得:圆心到直线x﹣y﹣1=0的距离d,即可得出弦长|AB|.解答:解:由圆(x﹣1)2+(y﹣2)2=1,可得圆心M(1,2),半径r=1.∴圆心到直线x+y﹣2=0的距离d==.∴弦长|AB|=2=2×=.故选:D.点评:本题考查了直线与圆的位置关系、点到直线的距离公式,属于基础题.8.(5分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A.πB.2πC.3πD.4π考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:此几何体为圆锥的一半,即可得出.解答:解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.点评:本题考查了由三视图恢复原几何体的体积计算,属于基础题.9.(5分)设实数x和y满足约束条件,且z=ax+y取得最小值的最优解仅为点A(1,2),则实数a的取值范围是()A.B.C.D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出约束条件所对应的可行域,变形目标函数可得y=﹣ax+z,其中直线斜率为﹣a,截距为z,由题意可得﹣a<,解不等式可得.解答:解:作出约束条件所对应的可行域(如图阴影),变形目标函数可得y=﹣ax+z,其中直线斜率为﹣a,截距为z,∵z=ax+y取得最小值的最优解仅为点A(1,2),∴直线的斜率﹣a<,(﹣为直线x+3y﹣7=0的斜率)解不等式可得a>,即实数a的取值范围为(,+∞)故选:C点评:本题考查简单线性规划,准确作图是解决问题的关键,属中档题.10.(5分)已知正数a,b,c满足a+b=ab,a+b+c=abc,则c的取值范围是()A.B.C.D.考点:基本不等式.专题:不等式的解法及应用.分析:由正数a,b,c满足a+b=ab利用基本不等式的性质可得ab≥4.a+b+c=abc,化为c(ab﹣1)=ab,即.利用函数与不等式的性质即可得出.解答:解:∵正数a,b,c满足a+b=ab≥,∴ab≥4.∴a+b+c=abc,化为c(ab﹣1)=ab,即.∴.故选:D.点评:本题考查了函数与不等式的性质、基本不等式的性质,属于基础题.二、填空题(每题5分,共5题)11.(5分)命题“∀x∈R,2x>0”的否定是∃x∈R,2x≤0.考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题“∀x∈R,2x>0”的否定是:∃x∈R,2x≤0.故答案为:∃x∈R,2x≤0.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.12.(5分)已知复数z=(2+i)(x﹣i)为纯虚数,其中i为虚数单位,则实数x的值为﹣.考点:复数的基本概念.专题:数系的扩充和复数.分析:直接由复数代数形式的乘法运算化简复数z,又复数z为纯虚数,则实部为0,虚部不等于0,即可求出实数x的值.解答:解:∵z=(2+i)(x﹣i)=2x﹣2i+xi﹣i2=2x+1+(x﹣2)i,又复数z为纯虚数,∴,解得:.故答案为:.点评:本题考查了复数的基本概念,是基础题.13.(5分)若向量、的夹角为150°,||=,||=4,则|2+|=2.考点:数量积表示两个向量的夹角;向量的模.专题:计算题.分析:本题考查的知识点是向量的模及平面向量数量积运算,由向量、的夹角为150°,||=,||=4,我们易得的值,故要求|2+|我们,可以利用平方法解决.解答:解:|2+|====2.故答案为:2点评:求常用的方法有:①若已知,则=;②若已知表示的有向线段的两端点A、B坐标,则=|AB|=③构造关于的方程,解方程求.14.(5分)在数列{a n}中,a1=1,a n+1=a n+(n∈N*),则a n=.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:根据数列的递推关系,利用累加法和裂项法即可得到结论.解答:解:∵a1=1,a n+1=a n+(n∈N*),∴a n+1﹣a n==﹣,(n∈N*),则a2﹣a1=1﹣,a3﹣a2=,…a n﹣a n﹣1=﹣,等式两边同时相加得a n﹣a1=1﹣,故a n=,故答案为:点评:本题主要考查数列项的求解,根据数列的递推关系,以及利用累加法和裂项法是解决本题的关键.15.(5分)设n为正整数,,计算得,f(4)>2,,f(16)>3,观察上述结果,可推测一般的结论为f(2n)≥(n∈N*).考点:归纳推理.专题:探究型.分析:根据已知中的等式:,f(4)>2,,f(16)>3,…,我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案.解答:解:观察已知中等式:得,f(4)>2,,f(16)>3,…,则f(2n)≥(n∈N*)故答案为:f(2n)≥(n∈N*).点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程)16.(13分)已知等差数列{a n}满足:a5=5,a2+a6=8.(1)求{a n}的通项公式;(2)若b n=a n+2an,求数列{b n}的前n项和S n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)直接根据已知条件建立方程组求得首项和公差,进一步求得通项公式.(2)利用(1)的结论,根据等差和等比数列的前n项和公式求的结果.解答:解:(1)由条件a5=5,a2+a6=8.得知:,解得:,故{a n}的通项公式为:a n=n.(2),故S n=b1+b2+…+b n,.点评:本题考查的知识要点:等差数列通项公式的应用,等差数列和等比数列的前n项和公式的应用.属于基础题型.17.(13分)从2015届高三学生中抽取n名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间又B为三角形内角,∴B=;(2)∵向量=(cos2A+1,3cosA﹣4),=(5,4),且⊥,∴•=0,即5(cos2A+1)+4(3cosA﹣4)=0,整理得:5cos2A+6cosA﹣8=0,解得:cosA=或cosA=﹣2(舍去),又0<A<π,∴A为锐角,∴sinA=,tanA=,则tan(+A)==7.点评:此题考查了正弦、余弦定理,三平面向量的数量积运算,熟练掌握定理是解本题的关键.19.(12分)如图,已知DE⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB=2,且F 是CD的中点.(1)求证:AF∥平面BCE;(2)求四棱锥C﹣ABED的全面积.考点:棱柱、棱锥、棱台的侧面积和表面积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)取CE中点P,连结FP,BP,证明ABPF为平行四边形,然后利用直线余平面平行的判定定理证明AF∥平面BCE.(2)求出S ABED,,S△CDE,S△ABC,S△BCW,然后求出全面积.解答:解:(1)证明:取CE中点P,连结FP,BP∵F为CD的中点,∴又∴∴ABPF为平行四边形,∴AF∥BP又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE.(2)S ABED==3,,S△CDE==2,S△ABC==1,S△BCE===S全=6+.点评:本题考查直线与平面平行的判定定理的应用,几何体的表面积的求法,考查计算能力.20.(12分)已知函数g(x)=+lnx,f(x)=mx﹣﹣lnx,m∈R.(1)求函数g(x)的极值;(2)若f(x)﹣g(x)在mx2﹣2x+m≥0等价于m(1+x2)≥2x,即,而.∴mx2﹣2x+m≤0等价于m(1+x2)≤2x,即在∪∴==当即t2=1时,∴又∴∴点评:求圆锥曲线的方程的一般方法是利用待定系数法;解决直线与圆锥曲线的位置关系一般是将直线的方程与圆锥曲线的方程联立,消去一个未知数得到关于一个未知数的二次方程,利用韦达定理找突破口.。

山东省潍坊2015届高三上学期期中数学试卷(文科)(Word版含解析)

山东省潍坊2015届高三上学期期中数学试卷(文科)(Word版含解析)

山东省潍坊市2015届高三上学期期中数学试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.B.{﹣1,3} C.{﹣1,1} D.{﹣1,1,3}2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5B.6C.7D.85.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b 的大致图象为()A.B.C.D.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1C.2D.7.(5分)若实数x,y满足不等式组,则目标函数z=x﹣2y的最大值是()A.1B.2C.3D.48.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.C.D.9.(5分)已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.D.10.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=x5﹣mx4﹣x2在区间(﹣1,2)上为“凸函数”,则实数m 的取值范围为()A.(﹣∞,]B.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.13.(5分)已知函数f(x)=,则f(6)=.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为m.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是.(请把所有正确命题的序号都填上)三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.17.(12分)已知向量=(sinx,cosx),=(cosx,cosx),函数f(x)=•.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.18.(12分)已知命题p:不等式(a﹣2)x2+2(a﹣2)x﹣4<0,对∀x∈R恒成立;命题q:关于x的方程x2+(a﹣1)x+1=0的一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).山东省潍坊市2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.B.{﹣1,3} C.{﹣1,1} D.{﹣1,1,3}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,由A为奇数集,求出A与B的交集即可.解答:解:由B中不等式变形得:(x+1)(x﹣3)≤0,且x﹣3≠0,解得:﹣1≤x<3,即B=B.利用不等式的基本性质由a<b<0,可得a2>ab>b2;C.取a=﹣1,b=﹣2时,即可判断出;D.由a>b>0,可得<.解答:解:A.c=0时不成立;B.∵a<b<0,∴a2>ab>b2,正确;C.取a=﹣1,b=﹣2时,=﹣1,=﹣,则>不成立;D.若a>b>0,则<,因此不正确.故选:B.点评:本题考查了基本不等式的性质,考查了推理能力,属于基础题.3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先将“函数f(x)=2sin(x+)图象的对称轴”求出其等价命题,然后判断.解答:解:f(x)=2sin(x+)=2cosx,其图象对称轴是x=kπ,k∈Z,“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的充分不必要条件,故选:A.点评:在充要条件判断时,抓住“小能推大,大不能推小”,认真判断,不可出错.4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5B.6C.7D.8考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质和题意求出a5的值,再求出公差d、a n和S n,对S n化简后利用二次函数的性质,求出S n取最小值时对应的n的值.解答:解:由等差数列的性质得,2a5=a3+a7=﹣6,则a5=﹣3,又a1=﹣11,所以d==2,所以a n=a1+(n﹣1)d=2n﹣13,S n==n2﹣12n,所以当n=6时,S n取最小值,故选:B.点评:本题考查等差数列的性质、通项公式,以及利用二次函数的性质求S n最小值的问题.5.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b 的大致图象为()A.B.C.D.考点:对数函数的图像与性质;指数函数的图像变换.专题:函数的性质及应用.分析:由图象可知对数的底数满足0<a<1,且0<f(0)<1,再根据指数函数g(x)=a x+b的性质即可推得.解答:解:由图象可知0<a<1且0<f(0)<1,即即解②得log a1<log a b<log a a,∵0<a<1∴由对数函数的单调性可知a<b<1,结合①可得a,b满足的关系为0<a<b<1,由指数函数的图象和性质可知,g(x)=a x+b的图象是单调递减的,且一定在x轴上方.故选:B.点评:本小题主要考查对数函数的图象、指数函数的图象、对数函数的图象的应用、方程组的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1C.2D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由•=()•,再利用向量和的夹角等于45°,两个向量的数量积的定义,求出•的值.解答:解:由题意得AB=2,△ABC是等腰直角三角形,•=()•=0+=×=1.故选B.点评:本题考查两个向量的数量积的定义,注意向量和的夹角等于45°这一条件的运用.7.(5分)若实数x,y满足不等式组,则目标函数z=x﹣2y的最大值是()A.1B.2C.3D.4考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=x﹣2y为,由图可知,当直线过C(2,)时,直线在y轴上的截距直线,z最大.∴.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.C.D.考点:二次函数的性质.专题:函数的性质及应用.分析:先求出f(1)的值,通过讨论a的范围,得到不等式,从而求出a的范围.解答:解:∵f(1)=﹣3,∴f(a)﹣f(﹣a)≤﹣6,a≥0时,﹣a2﹣2a﹣≤﹣6,整理得:a2+2a﹣3≥0,解得:a≥1,a<0时,a2﹣2a﹣≤﹣6,整理得:a2﹣2a+3≤0,无解,故选:A.点评:本题考查了二次函数的性质,考查了分类讨论思想,是一道基础题.9.(5分)已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.D.考点:两角和与差的正弦函数;函数的零点.专题:三角函数的图像与性质.分析:由题意可知g(x)=sin2x+cos2x与直线y=m在上两个交点,数形结合可得m 的取值范围.解答:解:由题意可得函数g(x)=2sin(2x+)与直线y=m在上两个交点.由于x∈,故2x+∈,故g(x)∈.令2x+=t,则t∈,函数y=h(t)=2sint 与直线y=m在上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤m<2,故选B.点评:本题主要考查方程根的存在性及个数判断,两角和差的正弦公式,体现了转化与数形结合的数学思想,属于中档题.10.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=x5﹣mx4﹣x2在区间(﹣1,2)上为“凸函数”,则实数m 的取值范围为()A.(﹣∞,]B.考点:导数的运算.专题:导数的概念及应用.分析:函数在区间(﹣1,2)上为“凸函数”,所以f″(x)<0,即对函数y=f(x)二次求导,分离参数,求参数的最小值即可;解答:解:∵f(x)=x5﹣mx4﹣x2,∴f′(x)=x4﹣mx3﹣3x,∴f″(x)=x3﹣mx2﹣3(3分)若f(x)为区间(﹣1,3)上的“凸函数”,则有f″(x)=x3﹣mx2﹣3<0在区间(﹣1,2)上恒成立,当x=0时,f″(0)=﹣3<0,恒成立,当x≠0时,mx2>x3﹣3,即m>x﹣,设g(x)=x﹣,则g′(x)=1+=当x∈(0,2),g′(x)>0,函数g(x)为增函数,当x=2时,函数g(2)=2﹣=当x∈(﹣1,0),g(x)<0,故函数g(x)在(﹣1,2)的最大值为g(2)=,故m≥,故实数m的取值范围为故选:C点评:本题考查函数的导数与不等式恒成立问题的解法,关键是要理解题目所给信息(新定义),考查知识迁移与转化能力,属于中档题二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.考点:数列递推式.专题:等差数列与等比数列.分析:首先利用数列的递推关系求出,然后利用相减法得到,进一步求得数列是等比数列,利用关系式直接求出结果.解答:解:已知数列{a n}的前n项和S n=a n+,①根据递推关系式:(n≥2)②所以:①﹣②得:整理得:数列{a n}是以a1为首项,公比为的等比数列.当n=1时,解得:a1=1所以:=故答案为:点评:本题考查的知识要点:数列的递推关系式的应用,等比数列通项公式的求法.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:设与的夹角为θ,则由题意可得4﹣4+=10,求得cosθ的值,再结合θ∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是①②④.(请把所有正确命题的序号都填上)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,令x=﹣1,即可得到f(1)=0;②,利用y=f(x)为周期为2的偶函数,即可得到f(﹣2﹣x)=f(2+x)=f(﹣2+x),从而可判断②;③,利用y=f(x)为周期为2的函数,及x∈时,y=f(x)单调递减,可判断函数y=f(x)在是单调递减函数,可判断③;④,由②知y=f(x)关于x=﹣2对称,从而可判断④.解答:解:对于①,∵f(x+2)=f(x)+f(1),∴f(﹣1+2)=f(﹣1)+f(1),∴f(﹣1)=0,又f(x)为偶函数,∴f(﹣1)=f(1)=0,故①正确;且当x∈时,y=f(x)单调递减,对于②,由①知f(1)=0,∴f(x+2)=f(x),∴y=f(x)为周期为2的偶函数,∴f(﹣2﹣x)=f(2+x)=f(﹣2+x),∴y=f(x)关于x=﹣2对称,故②正确;对于③,∵f(x+2)=f(x),∴y=f(x)为周期为2的函数,又x∈时,y=f(x)单调递减,∴函数y=f(x)在是单调递减函数,故③错误;对于④,∵偶函数y=f(x)在区间上单调递减,∴y=f(x)在区间上单调递增,又y=f(x)为周期为2的函数,∴y=f(x)在区间上单调递增,在区间上单调递减,又y=f(x)关于x=﹣2对称,∴当方程f(x)=m在上的两根为x1,x2时,x1+x2=﹣4,故④正确.综上所述,①②④正确.故答案为:①②④.点评:本题考查考查命题的真假判断与应用,注重考查函数的单调性、周期性、对称性及函数的零点,考查分析与综合应用能力,属于难题.三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取EC中点G,连BG,GF,证明四边形ABGF为平行四边形,可得AF∥BG,利用线面平行的判定定理,即可得出结论;(Ⅱ)证明BG⊥DE,BG⊥CD,可得BG⊥平面CDE,利用面面垂直的判定定理,即可得出结论解答:证明:(Ⅰ)取EC中点G,连BG,GF.∵F是CD的中点,∴FG∥DE,且FG=DE.又∵AB∥DE,且AB=DE.∴四边形ABGF为平行四边形.∴AF∥BG.又BG⊂平面BCE,AF⊄平面BCE.∴AF∥平面BCE.(Ⅱ)∵AB⊥平面ACD,AF⊂平面ACD,∴AB⊥AF.∵AB∥DE,∴AF⊥DE.又∵△ACD为正三角形,∴AF⊥CD.∵BG∥AF,∴BG⊥DE,BG⊥CD.∵CD∩DE=D,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.点评:本题考查线面平行,面面垂直,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.17.(12分)已知向量=(sinx,cosx),=(cosx,cosx),函数f(x)=•.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.考点:余弦定理;平面向量数量积的运算;两角和与差的正弦函数.专题:解三角形.分析:(1)由两向量的坐标,以及平面向量的数量积运算法则列出f(x)解析式,利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的单调性确定出f(x)的递增区间即可;(2)由f(A)=,求出A的度数,利用三角形面积公式列出关系式,把sinA与已知面积代入求出bc的值,再利用余弦定理列出关系式,把a,cosA的值代入,利用完全平方公式变形,把bc的值代入计算求出b+c的值即可.解答:解:(1)∵=(sinx,cosx),=(cosx,cosx),∴f(x)=•=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,令﹣+2kπ≤2x+≤+2kπ,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z,则f(x)的单调递增区间为,k∈Z;(2)由f(A)=,得到sin(2A+)+=,即sin(2A+)=,∴2A+=,即A=,∵a=,S△ABC=,∴由三角形面积公式得:bcsinA=,即bc=2,由余弦定理得:a2=b2+c2﹣2bccosA,即3=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣6,即(b+c)2=9,解得:b+c=3.点评:此题考查了余弦定理,平面向量的数量积运算,熟练掌握余弦定理是解本题的关键.18.(12分)已知命题p:不等式(a﹣2)x2+2(a﹣2)x﹣4<0,对∀x∈R恒成立;命题q:关于x的方程x2+(a﹣1)x+1=0的一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:先根据二次函数的最大值及二次函数的图象求出命题p,q下a的取值范围,再根据p∨q为真命题,p∧q为假命题得到p真q假,和p假q真两种情况,求出每种情况下a 的取值范围再求并集即可.解答:解:由命题p知,函数(a﹣2)x2+2(a﹣2)x﹣4的最大值小于0;a=2时,﹣4<0,∴符合题意;a≠2时,则a需满足:,解得﹣2<a<2;∴命题p:﹣2<a≤2;根据命题q,设f(x)=x2+(a﹣1)x+1,所以:,解得;∴命题q:;若p∨q为真命题,p∧q为假命题,则p,q一真一假:p真q假时,,∴;p假q真时,,∴a∈∅;∴实数a的取值范围为.点评:考查二次函数的最大值的计算公式,注意讨论二次项的系数是否为0的情况,注意结合二次函数图象,以及p∨q,p∧q真假和p,q真假的关系.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.考点:数列的求和;等比数列的通项公式;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)直接利用前n项和公式及等比中项求出数列的通项公式.(Ⅱ)根据(Ⅰ)的结论及等差数列的通项公式,进一步利用乘公比错位相减法求出新数列的前n项和.解答:解:(Ⅰ)设数列{a n}的公比为q,已知S n是等比数列{a n}的前n项和,a1>0,S4,S2,S3成等差数列,则:2S2=S3+S4解得:q=﹣2或1(舍去)由于:16是a2和a8的等比中项解得:a1=1所以:(Ⅱ)等差数列{b n}中,设公差为d,b1=1,前9项和等于27.则:解得:d=所以:令c n=2a n b n==(n+1)(﹣2)n﹣1T n=c1+c2+…+c n﹣1+c n=2•(﹣2)0+3•(﹣2)1+…+(n+1)(﹣2)n﹣1①﹣2T n=2•(﹣2)1+3•(﹣2)2+…+(n+1)(﹣2)n②①﹣②得:3]﹣(n+1)(﹣2)n解得:点评:本题考查的知识要点:等比数列通项公式和前n项和公式,等差数列的通项公式和前n项和公式,利用乘公比错位相减法求数列的和及相关的运算问题20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?考点:根据实际问题选择函数类型.专题:综合题;导数的综合应用.分析:(Ⅰ)根据生产这批试剂厂家的生产成本有三个方面,可得函数关系P(x),利用配方法求出P(x)的最小值;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),利用导数,可得结论.解答:解:(Ⅰ)P(x)=÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.点评:本题考查根据实际问题选择函数类型,考查配方法,考查导数知识的综合运用,属于中档题.21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的单调性.专题:综合题;导数的综合应用.分析:(Ⅰ)求函数f(x)=e x﹣x﹣1的单调递减区间,可以先求函数f(x)=e x﹣x﹣1的导函数,然后由导函数式小于零求出x的范围,从而得到函数的减区间.(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=﹣xlnx(x>0),研究函数h(x)的单调性和最值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,要证明f(g(x))<f(x),只要证明g(x)<x即可.解答:解:(Ⅰ)函数的定义域为(﹣∞,+∞),a=1时,f′(x)=(e x﹣x﹣1)′′=e x﹣1.由f′(x)<0,得e x﹣1<0,e x<1,∴x<0,所以函数的单调减区间为(﹣∞,0),单调增区间是(0,+∞).(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得a=﹣lnx(x>0),令h(x)=﹣lnx(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,2]上单调递增,故h(x)≥h(1)=e﹣1.又h(2)=当a=1时,对∀x>0,有f(x)>f(lna)=0,即e x﹣1>x,即>1,当e﹣1<a<<e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1或a=时,函数F(x)有且仅有一个零点;当a<e﹣1或a>时,函数F(x)没有零点.(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,且f(0)=0;∴对x>0时,有f(x)>0,则e x﹣1>x;故对任意x>0,g(x)=ln(e x﹣1)﹣lnx>0;所以,要证f<f(x),只需证:∀x>0,g(x)<x;只需证:∀x>0,ln(e x﹣1)﹣lnx<x;即证:ln(e x﹣1)<lnx+lne x;即证:∀x>0xe x>e x﹣1;所以,只要证:∀x>0xe x﹣e x+1>0;令H(x)=xe x﹣e x+1,则H′(x)=xe x>0;故函数H(x)在(0,+∞)上单调递增;∴H(x)>H(0)=0;∴对∀x>0,xe x﹣e x+1>0成立,即g(x)<x,∴f<f(x).点评:本题以函数为载体,主要考查导数的几何意义,考查导数在研究函数的单调性和最值中的应用,考查恒成立问题的解决方法,属于中档题.。

2015年第一学期高一语文期中试卷

2015年第一学期高一语文期中试卷

2015学年第一学期期中考试语文试卷适用班级:高一年段一、语言运用(20分。

前8题每题2分,第9题每空格1分)1.下列加点字注音全部正确的一组是()A、佳肴.(yáo)帐簿.(bï)氤.氲(yīn)骋.怀(pìng)B、裙褶.(zhé)背篓.(lîu)粲.然(càn)宁谧.(mi)C、阡.陌(xiān)树阴.(yīn)破绽.(zhàn)婀娜.(nuï)D、赝.品(yàn)租赁.(lìn)霓.虹(ní)嘈.杂(cáo)2.下列词语书写全部正确的一项是()A、消遣销售积毁消骨不肖子孙B、奇诡垝垣诡计多端正襟危坐C、歌诵诵读歌功颂德千古传诵D、家俱具有一应俱全万事具备3.依次填入下列文段横线上的词语,最恰当的一项是()那天夜晚,他抱着吉他即兴演唱了几支歌,脸上是_______的表情,像孩子那样快乐,像农夫那样淳朴。

我_______一次感受到,好的男子汉本质上都是农夫,朴实,宁静,沉湎于自己的园地,_______那是音乐、绘画_______书籍。

A、迷醉不止不管还是B、陶醉不只不管还是C、迷醉不只如果或者D、陶醉不止如果或者4.下列各句中加点的成语使用恰当的一项是()A、图书市场上“穿越”类的历史小说大为畅销,史学家对此或不屑一顾或不卑不亢....。

B、真实的月球与传说中美丽的月亮大相径庭....,它其实是一块冰冷的“大石头”。

C、班长提议3月12日“植树节”去环城公园义务植树,大家随波逐流....,纷纷表示赞同D、这套新版的百科全书,内容涉及各个领域、各门学科,真是汗牛充栋....、丰富多彩。

5.下列各句没有语病且句意明确的一项是()A、我看见,一座座山,一座座山川。

B、看着父亲那灰白的头发,使我不禁热泪盈眶:一家人生活的重担,全压在他的肩上。

C、有没有接触过活禽,成为我们判断是否被H7N9型禽流感传染的标准之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2015届文科班第一学期期中考试复习题
水准仪测量法是
高程测量最精确的方
法之一,它是利用水
准仪提供一条水平视
线进行测量的方法,
如图1中(甲)图所
示进行测量。

据图回
答1~2题。

1.已测得A点的海拔
为53.195米,通过水准仪A标尺的读数为1.386米,B标尺的读数为0.824米,判断B点的海拔高度及与A的相对高度分别是
A.54.581米、1.386米 B.55.405米、2.210米
C.53.757米、0.824米D.53.757米、0.562米
2.图乙所示为一中学地理活动小组用简易方法测得某地高程情况,如果该地降水丰富,根据图中信息判断,图示区域可能有几条较大的溪沟
A.一条 B.二条 C.三条 D.四条
12月22日,我国某中学地理小组进行太阳高度和当地经纬度观测,操作方法是:在操场上选择一点A 处,垂直立一个竹杆(杆长2 米),画一个半径为2米的圆圈,将观测到的杆端点在地面所投影的变化记录在操场平地上。

据此回3~4题。

3.该地的地理坐标约为
A.122.5°E ,21.5°N
B.120°E,45°N
C.117.5°E,21.5°N
D.122.5°E,23.5°N
4.该地一年中有两次出现立杆无影
的奇观,其中一次发生在6月8日
前后,另一次发生的时间为
A.4月4日前后 B.6月22日前后
C.7月5日前后 D.9月9日前后
我国科学家从a地出发到b、c、d三地考察(图中标注的是经纬度位置和抵达时的北京时间)。

读图3,回答5~6题。

5.科学家抵达下列各地时,符合实际的现象是
A. b地--—太阳已经升起
B. c地——当地为正午
C. d地--—太阳位于地平线以下 D.d地——当地日期为19日
6. 在d地观察太阳,观察时间(当地时间)与太阳所在方向组合正确的是
A. 3:00 东北方
B. 8:00 西南方
C. 15:00 西北方
D. 19:00 东南方
图4所示区域在北半球。

弧线a为纬线,Q、P两点的经度差为90°;弧线b
为晨昏线,M点为b线的纬度最高点。

回答7~9题。

7.若此时南极附近是极昼,P点所在经线的地方时是
A.5时B.15时
C.9时 D.19时
8.若此时为7月份,图中M点的纬度数可能为
A.55°N B.65°N
C.75°N D.85°N
9.若Q地的经度为0°,此时正是北京日出。

这个季节
A.洛杉矶地区森林火险等级最高B.长江下游枫叶正红
C.长城沿线桃红柳绿 D.南极地区科考繁忙图5 表示北半球某区域。

a 为纬线,b 为晨昏线。

b 线中M 点纬度值最大,N、P 两点纬度值相等。

据此回答10~11题。

10.M 点的纬度最低为
A.71.5°N B.66.5°N
C.61.5°N D.56.5°N
11.若 Q、R 两点相距 60 个经度,且 R 点为
30°E,图示区域为夏半年。

此时北京时间为
A.6 时B.8 时 C.18 时 D.20 时
图6是某日同一经线日出时刻(地方时)随纬度变化图。

图内三条曲线,其中
一条是正确的。

据正确图示回答12~13题。

12. 若图6表示6月22日状况,则南纬
40°~50°地区的夜长约为
A. 15小时~16小时20分
B. 17小时~19小时20分
C. 19小时20分~21小时20分
D. 22小时40分~23小时20分
13. 若图6表示南半球的状况,当北京时间
12点时,下列四图与之相符的是
北京时间6时40分,在南半球轮船上的船员看见太阳从东南方的海面升起。

据此完成14~15题。

14.该轮船所在位置的经度可能是
A.95°E B.110°E C.135°E D.170°W 15.这段时间内,下列地理现象可能出现的是
A.地球接近公转轨道的远日点 B.东北信风带纬度位置最高
C.东北平原雪花飞舞 D.北极地区冰面缩小
据报道,某年3月9日,我国科考队在中国北极黄河站(78°55′N,11°56′E)观看了极夜后的首次日出。

完成16~18题。

16. 当日,科考队员在黄河站看出日出时,北京时间约为
A. 10时
B. 13时
C. 16时D.19时
17.当日,日落于黄河站的
A. 东方
B. 西方
C. 南方 D.北方
18.据此推算,黄河站此次极夜开始的时间约在前一年的
A. 9月21~30日
B. 10月1日~10日
C. 10月11~20日 D.10月21~30日
图7为北半球中纬度某地某日5次观测到的近地面气温垂直分布示意图。

当日
天气晴朗,日出时间为5时。

读图回答19题。

19. 当地该日
A.日落时间为17时
B.与海口相比白昼较长
C.正午地物影子年内最长
D.正午太阳位于正北方向。

相关文档
最新文档