2018-2019年阜新市数学中考数学押题试卷(2套)附答案
2018年辽宁省阜新市中考数学真题(解析版)
2018年辽宁省阜新市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣2.如图所示,是一个空心正方体,它的左视图是()A.B.C.D.3.某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为144.不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)6.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.8.甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×29.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)10.如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0二、填空题(共6小题)11.函数的自变量x的取值范围是.12.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.13.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为.14.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.15.如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为m(结果保留根号).16.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.三、解答题(共6小题)17.(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.18.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).19.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?20.在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21.如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.22.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2018年辽宁省阜新市中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:B.【知识点】相反数2.【分析】直接利用左视图的观察角度进而得出答案.【解答】解:如图所示:左视图为:.故选:C.【知识点】简单组合体的三视图3.【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断.【解答】解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.【知识点】极差、中位数、加权平均数、众数4.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为,故选:B.【知识点】解一元一次不等式组、在数轴上表示不等式的解集5.【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=﹣6,符合题意;故选:D.【知识点】反比例函数图象上点的坐标特征6.【分析】根据直径得出∠ACB=90°,进而得出∠CAB=25°,进而解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=25°,∵OA=OC,∴∠OCA=∠CAB=25°,故选:A.【知识点】圆周角定理7.【分析】先设阴影部分的面积是x,得出整个图形的面积是7x,再根据几何概率的求法即可得出答案.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=,故选:C.【知识点】菱形的性质、几何概率8.【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得,故选:C.【知识点】由实际问题抽象出分式方程9.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(﹣1,1)故选:D.【知识点】规律型:点的坐标、坐标与图形变化-旋转10.【分析】直接利用二次函数图象与系数的关系进而分析得出答案.【解答】解:A、∵抛物线开口向下,∴a<0,∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B、∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C、∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D、∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选:D.【知识点】抛物线与x轴的交点、二次函数图象与系数的关系二、填空题(共6小题)11.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【知识点】函数自变量的取值范围12.【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【知识点】平行线的性质13.【分析】根据矩形的性质可得AD∥BC,那么△DEF∽△BCF,利用相似三角形对应边成比例即可求出线段BF的长度.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,∵点E为AD中点,∴DE=AD,∴DE=BC,∴=,∴BF=2DF=4.故答案为4.【知识点】相似三角形的判定与性质、矩形的性质14.【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.【知识点】翻折变换(折叠问题)、等腰直角三角形15.【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:∵在点B处测得塔顶A的仰角为30°,∴∠B=30°,∵BC=30m,∴AC=m,故答案为:10【知识点】解直角三角形的应用-仰角俯角问题16.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6【知识点】一次函数的应用三、解答题(共6小题)17.【分析】(1)根据负整数指数幂的意义,二次根式的性质以及特殊角锐角三角函数值即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+3﹣2×=4+3﹣=4+2(2)原式=÷=×=当a=2时,原式==【知识点】分式的化简求值、特殊角的三角函数值、实数的运算、负整数指数幂18.【分析】(1)根据点C移到点C1(﹣2,﹣4),可知向下平移了5个单位,分别作出A、B、C的对应点A1、B1、C1即可解决问题;(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;(3)利用勾股定理计算CC2,可得半径为2,根据圆的周长公式计算即可.【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)∴A1(﹣4,﹣1),B1(﹣2,0);(4分)(2)如图所示,则△A2B2C2为所求作的三角形,(6分)(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2==4,∴点C经过的路径长:×2πr=2π.(8分)【知识点】作图-旋转变换、作图-平移变换、轨迹19.【分析】(1)根据A类的种数除以占的百分比即可得到总人数;再根据总数依次求出即可;(2)求出B的种数是20﹣4﹣6﹣8=2,画出即可;(3)用样本估计总体.【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;(2);(3)120×=36(种),答:估计约有36种属于“豆制品类”.【知识点】扇形统计图、用样本估计总体、条形统计图20.【分析】(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;(2)设购买a个篮球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.【知识点】一元一次不等式的应用、二元一次方程组的应用21.【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出AP=AM,即可得出结论;②先求出BD,再求出∠BMD=60°,最后用三角函数求出DM,即可得出结论.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴BE=AF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠P AM=45°,∴∠P=∠P AM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.【知识点】三角形综合题22.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,∴S△BCP=S△BPE+S CPE=(﹣t2+3t)×3=﹣(t﹣)2+,∵﹣<0,∴当t=时,S△BCP最大=(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=m2﹣3m,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.【知识点】二次函数综合题。
阜新市中考数学试卷
阜新市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列各对数中,互为相反数的是()A . +(﹣5)和﹣(+5)B . ﹣|﹣3|和+(﹣3)C . (﹣1)2和﹣12D . (﹣1)3和﹣132. (2分) (2018八上·东台期中) 下列汽车标志中是轴对称图形的有()A . 5个B . 4个C . 3个D . 2个3. (2分)(2019·永昌模拟) 将14465000元,用科学记数法表示(保留3个有效数字)()A . 1.45×107B . 1.44×107C . 1.40×107D . 0.145×1084. (2分) (2020九下·镇平月考) 如图,在△ABC中,∠A=90°,AB=3,BC=5,则cosB等于()A .B .C .D .5. (2分)(2019·萧山模拟) 已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC为()A . 80°18′B . 50°58′C . 30°10′D . 81°8′6. (2分)如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A . x≤10B . x≥10C . x<10D . x>107. (2分)下列方程有实数根的是A .B .C . +2x−1=0D .8. (2分)已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A .B .C .D .9. (2分)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40o ,则∠OCB的度数为()A . 40°B . 50°C . 65°D . 75°10. (2分)小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A . x=1B . x=2C . x=3D . x=411. (2分) (2020七下·太仓期中) 观察下列等式: ,,,,,,,试利用上述规律判断算式结果的末位数字是()A . 0B . 1C . 3D . 712. (2分)在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A . x>1B . x<1C . x>-1D . x<-1二、填空题 (共4题;共4分)13. (1分)(2020·杭州模拟) 在实数范围内分解因式:2x3-6x=________。
2018年辽宁省阜新市中考数学试卷
2018年辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3.00分)(2018•阜新)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣2.(3.00分)(2018•阜新)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.3.(3.00分)(2018•阜新)某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为144.(3.00分)(2018•阜新)不等式组的解集,在数轴上表示正确的是()A. B. C. D.5.(3.00分)(2018•阜新)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2) C.(﹣2,﹣3)D.(﹣2,3)6.(3.00分)(2018•阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°7.(3.00分)(2018•阜新)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.8.(3.00分)(2018•阜新)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×29.(3.00分)(2018•阜新)如图,在平面直角坐标系中,将正方形OABC绕点O 逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1) B.(0,)C.()D.(﹣1,1)10.(3.00分)(2018•阜新)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0二、填空题(每小题3分,共18分)11.(3.00分)(2018•阜新)函数的自变量x的取值范围是.12.(3.00分)(2018•阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.13.(3.00分)(2018•阜新)如图,在矩形ABCD中,点E为AD中点,BD和CE 相交于点F,如果DF=2,那么线段BF的长度为.14.(3.00分)(2018•阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.15.(3.00分)(2018•阜新)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为m(结果保留根号).16.(3.00分)(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B 地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分) 17.(8.00分)(2018•阜新)(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.18.(8.00分)(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).19.(8.00分)(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?20.(8.00分)(2018•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21.(10.00分)(2018•阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC 于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.22.(10.00分)(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2018年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3.00分)(2018•阜新)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣【考点】14:相反数.【专题】1 :常规题型.【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3.00分)(2018•阜新)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】直接利用左视图的观察角度进而得出答案.【解答】解:如图所示:左视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.3.(3.00分)(2018•阜新)某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为14【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差.【专题】1 :常规题型;542:统计的应用.【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断.【解答】解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.【点评】本题主要考查众数、极差、中位数和平均数,熟练掌握众数、极差、中位数和平均数的定义是解题的关键.4.(3.00分)(2018•阜新)不等式组的解集,在数轴上表示正确的是()A. B. C. D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【专题】1 :常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集得出不等式组的解集是解此题的关键.5.(3.00分)(2018•阜新)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2) C.(﹣2,﹣3)D.(﹣2,3)【考点】G6:反比例函数图象上点的坐标特征.【专题】1 :常规题型.【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=6,符合题意;故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.6.(3.00分)(2018•阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°【考点】M5:圆周角定理.【专题】55:几何图形.【分析】根据直径得出∠ACB=90°,进而得出∠CAB=25°,进而解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=25°,∵OA=OC,∴∠OCA=∠CAB=25°,故选:A.【点评】本题考查了圆周角定理,正确理解圆周角定理是关键.7.(3.00分)(2018•阜新)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.【考点】L8:菱形的性质;X5:几何概率.【专题】1 :常规题型;543:概率及其应用.【分析】先设阴影部分的面积是x,得出整个图形的面积是7x,再根据几何概率的求法即可得出答案.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(3.00分)(2018•阜新)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×2【考点】B6:由实际问题抽象出分式方程.【专题】12 :应用题.【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得,故选:C.【点评】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.9.(3.00分)(2018•阜新)如图,在平面直角坐标系中,将正方形OABC绕点O 逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1) B.(0,)C.()D.(﹣1,1)【考点】D2:规律型:点的坐标;R7:坐标与图形变化﹣旋转.【专题】2A :规律型.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(﹣1,1)故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.10.(3.00分)(2018•阜新)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】1 :常规题型.【分析】直接利用二次函数图象与系数的关系进而分析得出答案.【解答】解:A、∵抛物线开口向下,∴a<0,∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B、∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C、∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D、∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选:D.【点评】此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.二、填空题(每小题3分,共18分)11.(3.00分)(2018•阜新)函数的自变量x的取值范围是x≠3.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(3.00分)(2018•阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,熟练掌握性质并准确识图是解题的关键.13.(3.00分)(2018•阜新)如图,在矩形ABCD中,点E为AD中点,BD和CE 相交于点F,如果DF=2,那么线段BF的长度为4.【考点】LB:矩形的性质;S9:相似三角形的判定与性质.【专题】1 :常规题型.【分析】根据矩形的性质可得AD∥BC,那么△DEF∽△BCF,利用相似三角形对应边成比例即可求出线段BF的长度.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,∵点E为AD中点,∴DE=AD,∴DE=BC,∴=,∴BF=2DF=4.故答案为4.【点评】本题考查了相似三角形的判定与性质,矩形的性质,线段中点的定义,证明出△DEF∽△BCF是解题的关键.14.(3.00分)(2018•阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为5.【考点】KW:等腰直角三角形;PB:翻折变换(折叠问题).【专题】1 :常规题型;554:等腰三角形与直角三角形;558:平移、旋转与对称.【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.【点评】本题主要考查折叠的性质,利用折叠的性质得到AE=A1E是解题的关键,注意勾股定理的应用.15.(3.00分)(2018•阜新)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为10m(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55:几何图形.【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:∵在点B处测得塔顶A的仰角为30°,∴∠B=30°,∵BC=30m,∴AC=m,故答案为:10【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(3.00分)(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B 地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是 3.6km/h.【考点】FH:一次函数的应用.【专题】521:一次方程(组)及应用;533:一次函数及其应用.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12×2解得x=3.6故答案为:3.6【点评】本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分) 17.(8.00分)(2018•阜新)(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.【考点】2C:实数的运算;6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】(1)根据负整数指数幂的意义,二次根式的性质以及特殊角锐角三角函数值即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+3﹣2×=4+3﹣=4+2(2)原式=÷=×=当a=2时,原式==【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).【考点】O4:轨迹;Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13 :作图题.【分析】(1)根据点C移到点C1(﹣2,﹣4),可知向下平移了5个单位,分别作出A、B、C的对应点A1、B1、C1即可解决问题;(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;(3)利用勾股定理计算CC2,可得半径为2,根据圆的周长公式计算即可.【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)∴A1(﹣4,﹣1),B1(﹣2,0);(4分)(2)如图所示,则△A2B2C2为所求作的三角形,(6分)(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2==4,∴点C经过的路径长:×2πr=2π.(8分)【点评】本题考查平移变换、旋转变换、勾股定理等知识,解题的关键是正确作出对应点解决问题,属于中考常考题型.19.(8.00分)(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共20种,扇形统计图中a=40,扇形统计图中A部分圆心角的度数为72°;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型.【分析】(1)根据A类的种数除以占的百分比即可得到总人数;再根据总数依次求出即可;(2)求出B的种数是20﹣4﹣6﹣8=2,画出即可;(3)用样本估计总体.【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;(2);(3)120×=36(种),答:估计约有36种属于“豆制品类”.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.20.(8.00分)(2018•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;(2)设购买a个篮球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据总费用作为不等关系列出不等式求解.21.(10.00分)(2018•阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC 于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.【考点】KY:三角形综合题.【专题】15 :综合题.【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出AP=AM,即可得出结论;②先求出BD,再求出∠BMD=60°,最后用三角函数求出DM,即可得出结论.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴DE=DF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,锐角三角函数,判断出△BDE≌△ADF是解(1)的关键,构造出全等三角形是解(2)的关键.22.(10.00分)(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,∴S△BCP =S△BPE+S CPE=(﹣t2+3t)×3=﹣(t﹣)2+,∵﹣<0,∴当t=时,S△BCP最大=(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=m2﹣3m,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.。
2019年辽宁省阜新市中考数学试卷-(含答案解析)
2019年辽宁省阜新市中考数学试卷一、选择题(共30分)1.-2的绝对值是()A. B. 2 C. D.2.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A. B. C. D.3.商场经理最关注这组数据的()A. 众数B. 平均数C. 中位数D. 方差4.不等式组的解集,在数轴上表示正确的是()A. B.C. D.5.一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A. 12B. 10C. 8D. 66.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A. 3B. 2C.D. 17.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.B.C.D.8.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元9.如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是()A. B. C.D.10.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A. B. C. D.二、填空题(共18分)11.函数y=的自变量x的取值范围是______.12.如图,在△ABC中,CD平分∠ACB,DE∥BC,交AC于点E.若∠AED=50°,则∠D的度数为______.13.如图,在Rt△ABC中,∠C=90°,点D是AC边上的一点,DE垂直平分AB,垂足为点E.若AC=8,BC=6,则线段DE的长度为______.14.如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为______.15.如图,一艘船以40nmile /h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30°方向上,继续航行2.5h,到达B处,测得灯塔P在船的北偏西60°方向上,此时船到灯塔的距离为______nmile.(结果保留根号)16.甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了______h.三、解答题17.(1)计算:-()-1+4sin30°(2)先化简,再求值:÷(1-),其中m=2.18.如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).(1)画出与△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)19.为丰富学生的文体生活,育红学校准备成立“声乐、演讲、舞蹈、足球、篮球”五个社团,要求每个学生都参加一个社团且每人只能参加一个社团.为了了解即将参加每个社团的大致人数,学校对部分学生进行了抽样调查在整理调查数据的过程中,绘制出如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生一共有多少人?(2)将条形统计图补充完整.(3)若全校有学生1500人,请你估计全校有意参加“声乐”社团的学生人数.(4)从被抽查的学生中随意选出1人,该学生恰好选择参加“演讲”社团的概率是多少?20.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?21.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.22.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2的绝对值是:2.故选:B.直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】B【解析】解:A、B、D选项的主视图符合题意;B选项的俯视图符合题意,综上:对应的几何体为B选项中的几何体.故选:B.根据几何体的主视图确定A、B、D选项,然后根据俯视图确定B选项即可.考查由视图判断几何体;由俯视图得到底层正方体的个数及形状是解决本题的突破点.3.【答案】A【解析】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:A.众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.考查了众数、平均数、中位数和极差意义,属于基础题,难度不大,只要了解各个统计量的意义就可以轻松确定本题的正确答案.4.【答案】A【解析】解:解不等式①,得x<1;解不等式②,得x≥-2;∴不等式组的解集为-2≤x<1,在数轴上表示为:故选:A.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【答案】D【解析】解:由题意可得,袋子中红球的个数约为:20×=6,故选:D.根据题意,可以计算出袋子中红球的个数,本题得以解决.本题考查用样本估计总体,解答本题的关键是明确题意,求出相应的红球的个数.6.【答案】C【解析】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=|k|,便可求得结果.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.7.【答案】D【解析】解:如图:连接OB,∵OB=OA,∴∠A=∠OBA,∵∠A=25°,∴∠COB=∠A+∠OBA=2∠A=2×25°=50°,∵AB与⊙O相切于点B,∴∠OBC=90°,∴∠C=90°-∠BOC=90°-50°=40°.故选:D.连接OB,CB与⊙O相切于点B,得到∠OBC=90°,根据条件得到∠COB的度数,然后用三角形内角和求出∠C的度数即可.本题考查的是切线的性质及三角形内角和定理,先求出∠COB的度数,然后在三角形中求出∠C的度数.正确作出辅助线是解题的关键.8.【答案】C【解析】解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x-20,解得:x=200.故选:C.设这种衬衫的原价是x元,根据衬衫的成本不变,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】C【解析】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴的右侧,∴a和b异号,∴b<0,∵抛物线与x轴的交点在x轴下方,∴c<0,∴bc>0,所以A选项错误;∵当x=1时,y<0,∴a+b+c<0,所以B选项错误;∵抛物线经过点(-1,0)和点(3,0),∴抛物线的对称轴为直线x=1,即-=1,∴2a+b=0,所以C选项正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,即4ac<b2,所以D选项错误.故选:C.利用抛物线开口方向得到a>0,利用对称轴在y轴的右侧得到b<0,利用抛物线与x 轴的交点在x轴下方得到c<0,则可对A进行判断;利用当x=1时,y<0可对B进行判断;利用抛物线的对称性得到抛物线的对称轴为直线x=-=1,则可对C进行判断;根据抛物线与x轴的交点个数对D进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c 决定抛物线与y轴交点个数:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】B【解析】解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.根据三角形的滚动,可得出:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上,由点A,B的坐标利用勾股定理可求出AB的长,进而可得出点C2的横坐标,同理可得出点C4,C6的横坐标,根据点的横坐标的变化可找出变化规律“点C2n的横坐标为2n×6(n为正整数)”,再代入2n=100即可求出结论.本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.11.【答案】x≥2【解析】解:根据题意得,x-2≥0,解得x≥2.故答案为:x≥2.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.12.【答案】25°【解析】解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°,∵CD平分∠ACB,∴∠BCD=∠ACB=25°,∵DE∥BC,∴∠D=∠BCD=25°,故答案为:25°.根据平行线的性质求得∠ACB度数,然后根据角平分线的定义求得∠DCB的度数,然后利用两直线平行,内错角相等即可求解.本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.13.【答案】【解析】解:∵∠C=90°,AC=8,BC=6,∴AB===10,∵DE垂直平分AB,∴∠DEA=90°,AE==5,∴∠DEA=∠C,又∵∠A=∠A,∴△AED∽△ACB,∴,即∴DE=.故答案为:.先求出AE长,根据相似三角形的判定得出△AED∽△ACB,得出比例式,代入求出DE长即可.本题考查了勾股定理,线段的垂直平分线的性质,相似三角形的性质和判定的应用,能推出△AED∽△ACB是解此题的关键.14.【答案】2【解析】解:连接CE,如图,∵△ABC绕点A逆时针旋转60°,得到△ADE,∴AD=AB=2,AE=AC,∠CAE=60°,∠AED=∠ACB=30°,∴△ACE为等边三角形,∴∠AEC=60°,∴DE平分∠AEC,∴DE垂直平分AC,∴DC=DA=2.故答案为2.连接CE,如图,利用旋转的性质得到AD=AB=2,AE=AC,∠CAE=60°,∠AED=∠ACB=30°,则可判断△ACE为等边三角形,从而得到∠AEC=60°,再判断DE平分∠AEC,根据等腰三角形的性质得到DE垂直平分AC,于是根据线段垂直平分线的性质得DC=DA=2.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.15.【答案】50【解析】解:根据题意,得:∠PAB=60°,∠PBA=30,AB=2.5×40=100(nmile),∴∠P=180°-∠PAB-∠PBA=180°-60°-30°=90°.在Rt△PAB中,PB=AB•sin∠PAB=100×=50(nmile).故答案为:50.利用三角形内角和定理可求出∠P=90°,在Rt△PAB中,通过解直角三角形可求出PB的长,此题得解.本题考查了解直角三角形的应用-方向角问题,通过解直角三角形求出PB的长是解题的关键.16.【答案】10【解析】解:由图可得,甲的速度为:36÷6=6(km/h),则乙的速度为:=3.6(km/h),则乙由B地到A地用时:36÷3.6=10(h),故答案为:10.根据函数图象中的数据可以求得甲的速度和乙的速度,从而可以求得乙由B地到A地所用的时间.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:(1)原式=2-2+4×=2-2+2=2;(2)原式=÷(-)=•=,当m=2时,原式==.【解析】(1)先化简二次根式、计算负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【答案】解:(1)如图,△A l B1C1为所作;(2)如图,△A2BC2为所作;(3)AB==3,所以线段AB在旋转过程中扫过的图形面积==π.【解析】(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2、C2即可;(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.19.【答案】解:(1)被抽查的学生数是:15÷15%=100(人);(2)舞蹈人数有100×20%=20(人),补图如下:(3)根据题意得:1500×=330(人),答:估计全校有意参加“声乐”社团的学生人数有330人;(4)该学生恰好选择参加“演讲”社团的概率是:=.【解析】(1)用足球的人数除以所占的百分比即可得出被抽查的学生数;(2)用总人数乘以舞蹈人数所占的百分比求出舞蹈的人数,从而补全统计图;(3)用全校的总人数乘以参加“声乐”社团的学生人数所占的百分比即可;(4)用参加“演讲”社团的人数除以总人数即可得出答案.本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.20.【答案】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100-y)≤50,解得:y≥60,所以至少需要用电行驶60千米.【解析】(1)根据从甲地行驶到乙地的路程相等列出分式方程解答即可;(2)根据所需费用不超过50元列出不等式解答即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.21.【答案】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE=CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD=CD;(2)解:AD-BD=CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°-∠BAD-∠ABC=90°-∠BAD-45°=45°-∠BAD,∵∠CAE=∠BAC-∠BAD=45°-∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE===CD,∵DE=AD-AE=AD-BD,∴AD-BD=CD.【解析】(1)①根据四边形的内角和得到∠DAC+∠DBC=180°,推出∠DBC=∠EAC,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据垂直的定义得到结论;②由已知条件得到△CDE是等腰直角三角形,求得DE=CD,根据线段的和差即可得到结论;(2)如图2,在AD上截取AE=BD,连接CE,根据等腰直角三角形的性质得到∠BAC=∠ABC=45°,求得∠CBD=∠CAE,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据线段的和差即可得到结论.本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.22.【答案】解:(1)抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,解得:a=-,故抛物线的表达式为:y=-x2-x+2,则点C(0,2),函数的对称轴为:x=1;(2)连接OP,设点P(x,-x2-x+2),则S=S四边形ADCP=S△APO+S△CPO-S△ODC=×AO×y P+×OC×|x P|-×CO×OD=(-x2-x+2)×2×(-x)-=-x2-3x+2,∵-1<0,故S有最大值,当x=-时,S的最大值为;(3)存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(△M1N1O):设点N1的坐标为(x,-x2-x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,∠M1N1E=∠N1OF=90°,ON1=M1N1,∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,即:x+1=-x2-x+2,解得:x=(舍去负值),则点N1(,);N2的情况(△M2N2O):同理可得:点N2(,);②当点N在x轴下方时,点N的位置为N3、N4,同理可得:点N3、N4的坐标分别为:(,)、(,);综上,点N的坐标为:(,)或(,)或(,)或(,).【解析】(1)抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,即可求解;(2)S四边形ADCP=S△APO+S△CPO-S△ODC,即可求解;(3)分点N在x轴上方、点N在x轴下方两种情况,分别求解.本题考查的是二次函数综合运用,涉及三角形全等、等腰直角三角形的性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。
2018年辽宁省阜新市中考数学试卷
2018年辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3分)(2018•阜新)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣2.(3分)(2018•阜新)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.3.(3分)(2018•阜新)某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为144.(3分)(2018•阜新)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(3分)(2018•阜新)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)6.(3分)(2018•阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA 的度数是()A.25°B.35°C.15° D.20°7.(3分)(2018•阜新)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.8.(3分)(2018•阜新)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×29.(3分)(2018•阜新)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)10.(3分)(2018•阜新)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0二、填空题(每小题3分,共18分)11.(3分)(2018•阜新)函数的自变量x的取值范围是.12.(3分)(2018•阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG 平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.13.(3分)(2018•阜新)如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为.14.(3分)(2018•阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.15.(3分)(2018•阜新)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为m(结果保留根号).16.(3分)(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分) 17.(8分)(2018•阜新)(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.18.(8分)(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).19.(8分)(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?20.(8分)(2018•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21.(10分)(2018•阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.22.(10分)(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A (1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2018年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3分)(2018•阜新)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣【解答】解:﹣2018的相反数是2018.故选:B.2.(3分)(2018•阜新)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.【解答】解:如图所示:左视图为:.故选:C.3.(3分)(2018•阜新)某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为14【解答】解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.4.(3分)(2018•阜新)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为,故选:B.5.(3分)(2018•阜新)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=﹣6,符合题意;故选:D.6.(3分)(2018•阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA 的度数是()A.25°B.35°C.15° D.20°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=25°,∵OA=OC,∴∠OCA=∠CAB=25°,故选:A.7.(3分)(2018•阜新)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=,故选:C.8.(3分)(2018•阜新)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×2【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得,故选:C.9.(3分)(2018•阜新)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(﹣1,1)故选:D.10.(3分)(2018•阜新)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0【解答】解:A、∵抛物线开口向下,∴a<0,∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B、∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C、∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D、∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选:D.二、填空题(每小题3分,共18分)11.(3分)(2018•阜新)函数的自变量x的取值范围是x≠3.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.12.(3分)(2018•阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG 平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.13.(3分)(2018•阜新)如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为4.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,∵点E为AD中点,∴DE=BC,∴=,∴BF=2DF=4.故答案为4.14.(3分)(2018•阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为5.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.15.(3分)(2018•阜新)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为10m(结果保留根号).【解答】解:∵在点B处测得塔顶A的仰角为30°,∵BC=30m,∴AC=m,故答案为:1016.(3分)(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是 3.6km/h.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分) 17.(8分)(2018•阜新)(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.【解答】解:(1)原式=4+3﹣2×=4+3﹣=4+2(2)原式=÷=×=当a=2时,原式==18.(8分)(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)∴A1(﹣4,﹣1),B1(﹣2,0);(4分)(2)如图所示,则△A2B2C2为所求作的三角形,(6分)(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2==4,∴点C经过的路径长:×2πr=2π.(8分)19.(8分)(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共20种,扇形统计图中a=40,扇形统计图中A部分圆心角的度数为72°;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;(2);(3)120×=36(种),答:估计约有36种属于“豆制品类”.20.(8分)(2018•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.21.(10分)(2018•阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴BE=AF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.22.(10分)(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A (1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,=S△BPE+S CPE=(﹣t2+3t)×3=﹣(t﹣)2+,∴S△BCP∵﹣<0,∴当t=时,S=△BCP最大(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=m2﹣3m,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m 的值为,﹣,1,2.第21页(共21页)。
2018年辽宁省阜新市中考数学试卷含答案解析版
2018年辽宁省阜新市中考数学) 含答案解析版(试卷.282第页(共页)283第页(共页)第4页(共28页)20﹣4ac>0 B.b<A.ac0>D.bC.对称轴是直线x=2.5)分共18二、填空题(每小题3分,.的取值范围是的自变量x11.(3.00分)(2018?阜新)函数(2018?阜新)如图,已知AB∥CD,点E12.(. AEF 上,,CD,F在直线AB3.00分)的度数为平分∠BEF交CD于点G,∠EGF=64°,那么∠EGCE中点,BD和(2018?阜新)如图,在矩形ABCD中,点E为AD13.(3.00分). DF=2,那么线段BF的长度为相交于点F,如果EF分)(2018?阜新)如图,将等腰直角三角形ABC(∠B=90°)沿(14.3.00.,那么线段边的中点A处,BC=8AE的长度为 A折叠,使点落在BC1B30°,点A的仰角为处测得塔顶3.0015.(分)(2018?阜新)如图,在点B.(结果保留根号)m 的高度为那么塔30mBCC到塔底的水平距离是,AC第5页(共28页)BB两地相向而行,他们距(2018?阜新)甲、乙两人分别从A,16.(3.00分). km/hkm)与时间t(h)的关系如图所示,那么乙的速度是s地的距离()52分、22题每题10分,共21三、解答题(17、18、19、20题每题8分,﹣2cos45°;2﹣+1)计算:()8.0017.(分)(2018?阜新)(.1+),其中a=2(2)先化简,再求值:÷(在平面直角坐标系内,顶点的坐标分分)(2018?阜新)如图,△ABC.18(8.00.1)),C(﹣2,B别为A(﹣4,4),(﹣2,5,并写出CB4),画出平移后的△A(﹣1()平移△ABC,使点C移到点C2,﹣1111的坐标;点A,B11(2)将△ABC绕点(0,3)旋转180°,得到△ABC,画出旋转后的△ABC;222222(3)求(2)中的点C旋转到点C时,点C经过的路径长(结果保留π).2第6页(共28页)19.(8.00分)(2018?阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a= ,扇形统计图中A部分圆心角的度数为;)补全条形统计图;(2(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?(2018?阜新)在运动会前夕,育红中学都会购买篮球、足球作为8.00分)20.(元,且购买一个篮球比购买一个足球共花费300010个篮球和15奖品.若购买元.个足球多花50)求购买一个篮球,一个足球各需多少元?1(个,恰逢商场在搞促销活动,篮10(2)今年学校计划购买这种篮球和足球共元,则最多1050球打九折,足球打八五折,若此次购买两种球的总费用不超过可购买多少个篮球?BC⊥,AD分)(2018?阜新)如图,在△ABC中,∠BAC=90°,AB=AC21.(10.00.于点D;BE=AF,ABAC上,且∠EDF=90°.求证:)如图11,点E,F在(上,且∠BMN=90°.ACAD,M2)点,N分别在直线(;AMAB+AN=①如图2,当点MAD的延长线上时,求证:在的长.AM之间,且∠AMN=30°时,已知DAB=2,直接写出线段,在点②当点MA第7页(共28页)2轴于x+bx+3分)(2018?阜新)如图,已知二次函数y=ax的图象交(22.10.00.y轴于点C,交,B(3,0))(点A1,0)求这个二次函数的表达式;(1面积的最大值;下方抛物线上的一动点,求△BCPBC(2)点P是直线是等腰三角形时,BMNN,当△,分别交直线(3)直线x=mBC和抛物线于点M的值.m直接写出第8页(共28页)年辽宁省阜新市中考数学试卷2018参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3.00分)(2018?阜新)﹣2018的相反数是()2018 D..﹣.﹣2018 BAC.±2018 :相反数.【考点】14【专题】1 :常规题型.只有符号不同的两个数叫做互为相反数.【分析】.的相反数是2018【解答】解:﹣2018.故选:B【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3.00分)(2018?阜新)如图所示,是一个空心正方体,它的左视图是().D .A B.C.:简单组合体的三视图.【考点】U2:常规题型.【专题】1直接利用左视图的观察角度进而得出答案.【分析】解:如图所示:【解答】第9页(共28页).左视图为:.C故选:此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.【点评】名队员的年龄情况如下表:123.00分)(2018?阜新)某中学篮球队3.(16141315年龄/岁12212人数43)名队员的年龄,下列说法中正确的是(关于这1214D.平均数为C.中位数为13 A.众数为14 B.极差为3:极差.W6:众数;:加权平均数;W4:中位数;W5【考点】W2:统计的应用.542【专题】1 :常规题型;根据众数、中位数、平均数与极差的定义逐一计算即可判断.【分析】,正确;12个数据的众数为【解答】解:A、这14,错误;12=4、极差为B16﹣C、中位数为=14,错误;D、平均数为=,错误;.故选:A【点评】本题主要考查众数、极差、中位数和平均数,熟练掌握众数、极差、中位数和平均数的定义是解题的关键.>4.(3.00分)(2018?阜新)不等式组的解集,在数轴上表示正确的)是(..DAC B..【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.第10页(共28页):常规题型.【专题】1【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.>解:【解答】,>﹣2∵解不等式①得:x,x≤2解不等式②得:∴不等式组的解集为﹣2<x≤2,,在数轴上表示为.故选:B本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能【点评】根据不等式的解集得出不等式组的解集是解此题的关键.,下列各点),﹣2分)(2018?阜新)反比例函数y=的图象经过点(35.(3.00)在图象上的是()3.(﹣2,.(﹣2,﹣3) D22A.(﹣3,﹣) B.(3,) C:反比例函数图象上点的坐标特征.G6【考点】:常规题型.【专题】1直接利用反比例函数图象上点的坐标特点进而得出答案.【分析】,)3,﹣2【解答】解:∵反比例函数y=的图象经过点(,xy=k=﹣6∴,不合题意;)=6﹣3×(﹣2,此时A、(﹣3,﹣2)xy=,不合题意;xy=3×2=6,此时B、(3,2),不合题意;=62),此时)xy=﹣3×(﹣2C、(﹣,﹣3,符合题意;3=6﹣2×,此时2D、(﹣,3)xy=.故选:D的值是k【点评】此题主要考查了反比例函数图象上点的坐标特征,正确得出解题关键.页(共11第28页)6.(3.00分)(2018?阜新)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是().20°DC.15° BA.25°.35°:圆周角定理.【考点】M5:几何图形.【专题】55根据直径得出∠ACB=90°,进而得出∠CAB=25°,进而解答即可.【分析】的直径,O解:∵AB是⊙【解答】∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=25°,,OA=OC∵∠CAB=25°,∴∠OCA=.A故选:本题考查了圆周角定理,正确理解圆周角定理是关键.【点评】(2018?阜新)如图所示,阴影是两个相同菱形的重合部分,假设3.00分)7.()可以随机在图中取点,那么这个点取在阴影部分的概率是(.D. C. A.B:几何概率.L8:菱形的性质;X5【考点】:概率及其应用.:常规题型;543【专题】1,再根据几何概x先设阴影部分的面积是,得出整个图形的面积是7x【分析】第12页(共28页)率的求法即可得出答案.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=,.C故选:【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的)发生的概率.A比例,这个比例即事件(8.(3.00分)(2018?阜新)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特),根据题意可列方程为(快列车的平均行驶速度为xkm/h=4.A.B=42D.C.=4 ×=4【考点】B6:由实际问题抽象出分式方程.:应用题.12 【专题】【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得,.故选:C【点评】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.9.(3.00分)(2018?阜新)如图,在平面直角坐标系中,将正方形OABC绕点O 逆时针旋转45°后得到正方形OABC,依此方式,绕点O连续旋转2018次得到111)的坐标为(),那么点B 01A,如果点CB正方形OA的坐标为(,2018201820182018 2813第页(共页),. C1,1))( D).(﹣,0.(1A.(1,) B:坐标与图形变化﹣旋转.D2【考点】:规律型:点的坐标;R7:规律型.【专题】2A为半径的圆上运动,由旋转OB在以O为圆心,以【分析】根据图形可知:点B 相当于将线,OABCOABC绕点O逆时针旋转45°后得到正方形可知:将正方形111次一循8的坐标,根据规律发现是O逆时针旋转45°,可得对应点B段OB绕点环,可得结论.,OA=1OABC是正方形,且【解答】解:∵四边形,1)B(1,∴,OB连接,OB=由勾股定理得:,=…==OB=OB由旋转得:OB=OB312,BC逆时针旋转45°后得到正方形OA∵将正方形OABC绕点O111∠=∠BOB次得到∠AOB=针OB绕点O逆时旋转45°,依线相当于将段1=…=45°,OBB21),0),…,,B(﹣,B),(∴B0,(﹣11321,÷8=252…余次一循环,所以20182发现是8)1,∴点B的坐标为(﹣12018.故选:D第14页(共28页)本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋【点评】转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.2)0轴于点(﹣1,分)(2018?阜新)如图,抛物线y=axx+bx+c交(10.3.00)),那么下列说法正确的是(和(4,020.b<﹣4acA.ac>0 B0>x=2.5 D.bC.对称轴是直线轴的交点.x:二次函数图象与系数的关系;HA:抛物线与【考点】H4:常规题型.【专题】1 直接利用二次函数图象与系数的关系进而分析得出答案.【分析】、∵抛物线开口向下,【解答】解:A,0∴a<轴交在正半轴上,∵抛物线与y,0>∴c,故此选项错误;ac∴<0个交点,xB、∵抛物线与轴有2 15第页(共28页)2,故此选项错误;0﹣4ac∴b>2+bx+c交x轴于点(﹣1,0)和(4,、∵抛物线Cy=ax0),∴对称轴是直线x=1.5,故此选项错误;轴右侧,a<0,抛物线对称轴在yD、∵异号,∴a,b,故此选项正确.∴b>0.故选:D【点评】此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.二、填空题(每小题3分,共18分)11.(3.00分)(2018?阜新)函数的自变量x的取值范围是 x≠3 .【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.,0﹣3≠【解答】解:由题意得,x.≠3解得x故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式;的分母不能为0(3)当函数表达式是二次根式时,被开方数非负.12.(3.00分)(2018?阜新)如图,已知AB∥CD,点E,F在直线AB,CD上,EG 平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为 52°.:平行线的性质.【考点】JA页)28页(共16第:线段、角、相交线与平行线.551【专题】【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.,∠EGF=64°,CDAB∥【解答】解:∵∠EGF=64°,∴∠BEG=,BEF又∵EG平分∠∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,熟练掌握性质并准确识图是解题的关键.13.(3.00分)(2018?阜新)如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为 4 .:相似三角形的判定与性质.LB:矩形的性质;S9【考点】:常规题型.1 【专题】,利用相似三角形对BCFDEF∽△AD∥BC,那么△【分析】根据矩形的性质可得的长度.BF应边成比例即可求出线段是矩形,解:∵四边形ABCD【解答】,AD=BC∴AD∥BC,,∴△DEF∽△BCF,=∴中点,为AD∵点E,∴DE=AD,DE=∴BC页)28页(共17第,=∴∴BF=2DF=4..4故答案为【点评】本题考查了相似三角形的判定与性质,矩形的性质,线段中点的定义,是解题的关键.BCF证明出△DEF∽△14.(3.00分)(2018?阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A处,BC=8,那么线段AE的长度为 5 .1.:翻折变换(折叠问题)【考点】KW:等腰直角三角形;PB:平移、旋转与:等腰三角形与直角三角形;558【专题】1 :常规题型;554对称.,AB=4﹣x,且AE=AE,可设AE=AE=x,则BE=8【分析】由折叠的性质可求得111中,利用勾股定理可列方程,则可求得答案.BERt△A在1解:【解答】,E由折叠的性质可得AE=A1,BC=8ABC为等腰直角三角形,∵△,∴AB=8的中点,为BC∵A1,AB=4∴1,x,则E=xBE=8﹣设AE=A1222,),解得=xx=54A在Rt△BE 中,由勾股定理可得8+(﹣x1.故答案为:5是解题的关键,AE=A利用折叠的性质得到E本题主要考查折叠的性质,【点评】1注意勾股定理的应用.18第28页(共页)15.(3.00分)(2018?阜新)如图,在点B处测得塔顶A的仰角为30°,点B .结果保留根号)m (10 AC的高度为BC是30m,那么塔到塔底C的水平距离:解直角三角形的应用﹣仰角俯角问题.TA【考点】:几何图形.【专题】55根据三角函数和直角三角形的性质解答即可.【分析】30°,A的仰角为【解答】解:∵在点B处测得塔顶∴∠B=30°,,∵BC=30m,m AC=∴10故答案为:此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并【点评】解直角三角形.注意方程思想与数形结合思想的应用.BB两地相向而行,他们距(2018?阜新)甲、乙两人分别从A,(16.3.00分).km/h 3.6 h(km)与时间t()的关系如图所示,那么乙的速度是地的距离s:一次函数的应用.【考点】FH:一次函数及其应用.533【专题】521:一次方程(组)及应用;小时两人相遇,可以用方,乙出发后2.56km/h【分析】根据题意,甲的速度为程思想解决问题.,两小时后,6km/h【解答】解:由题意,甲速度为.当甲开始运动时相距36km页(共第1928页)小时两人相遇.乙开始运动,经过2.5xkm/h设乙的速度为 2.5×(6+x)=36﹣12×2x=3.6解得故答案为:3.6【点评】本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)﹣2cos45°;2﹣+()(2018?阜新)(1)计算:17.(8.00分).,其中a=2)先化简,再求值:÷(1+)(2:特:负整数指数幂;T56D:分式的化简求值;6F【考点】2C:实数的运算;殊角的三角函数值.【专题】11 :计算题.【分析】(1)根据负整数指数幂的意义,二次根式的性质以及特殊角锐角三角函数值即可求出答案.(2)根据分式的运算法则即可求出答案.×﹣2=4+3)原式(1【解答】解:﹣=4+3=4+2÷)原式=2(×==当a=2时,=原式=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属第20页(共28页)于基础题型.18.(8.00分)(2018?阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).(1)平移△ABC,使点C移到点C(﹣2,﹣4),画出平移后的△ABC,并写出1111的坐标;,B点A11(2)将△ABC绕点(0,3)旋转180°,得到△ABC,画出旋转后的△ABC;222222(3)求(2)中的点C旋转到点C时,点C经过的路径长(结果保留π).2:作图﹣旋转变换.Q4:作图﹣平移变换;R8【考点】O4:轨迹;:作图题.【专题】13个单位,分别5),可知向下平移了2移到点C(﹣,﹣4【分析】(1)根据点C1即可解决问题;CB、、C的对应点A、作出A、B111即可;、CAC的对应点、B(2)根据中心对称的性质,作出A、B、222,根据圆的周长公式计算即可.2,可得半径为(3)利用勾股定理计算CC2分)为所求作的三角形,C(2解:(1)如图所示,则△AB【解答】111分)(4,(﹣20);4∴A(﹣,﹣1),B11分)C为所求作的三角形,(6(2)如图所示,则△AB222为直径的半圆,C经过的路径长:是以()为圆心,以CC0,33()点2,由勾股定理得:CC==42分)8(π.r=22经过的路径长:∴点C×π第21页(共28页)本题考查平移变换、旋转变换、勾股定理等知识,解题的关键是正确【点评】作出对应点解决问题,属于中考常考题型.(2018?阜新)为了完成“舌尖上的中国”的录制,节目组随机抽分)(8.0019..豆制品类”四类特DC.面制品类,查了某省“A.奶制品类,B.肉制品类,色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:,扇形统计a= 40 )这次抽查了四类特色美食共 20 种,扇形统计图中(1;部分圆心角的度数为 72°图中A)补全条形统计图;(2种,请你估计约有多少种属于“豆制品1203)如果全省共有这四类特色美食(类”?:条形统计图.VB:扇形统计图;VC【考点】V5:用样本估计总体;:常规题型.1 【专题】类的种数除以占的百分比即可得到总人数;再根据总数依A【分析】(1)根据次求出即可;第22页(共28页),画出即可;﹣8=2﹣4﹣6(2)求出B的种数是20)用样本估计总体.3(【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,,20=0.4=40%÷∵8,∴a=40360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;;2)(,(种))120×=36(3种属于“豆制品类”.答:估计约有36本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,【点评】用样本估计总体等知识点,两图结合是解题的关键.(2018?阜新)在运动会前夕,育红中学都会购买篮球、足球作为分).(8.0020元,且购买一个篮球比购买一300015个足球共花费个篮球和奖品.若购买10元.个足球多花50)求购买一个篮球,一个足球各需多少元?(1个,恰逢商场在搞促销活动,篮)今年学校计划购买这种篮球和足球共10(2元,则最多1050球打九折,足球打八五折,若此次购买两种球的总费用不超过可购买多少个篮球?:一元一次不等式的应用.:二元一次方程组的应用;C99A【考点】:应用题.【专题】1223第页(共28页)【分析】(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;(2)设购买a个篮球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,,解得:答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,,≤4解得:a答;最多可购买4个篮球.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据总费用作为不等关系列出不等式求解.21.(10.00分)(2018?阜新)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.;AMAB+AN=在AD的延长线上时,求证:2①如图,当点M②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.:三角形综合题.【考点】KY:综合题.【专题】15页)28页(共24第【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=,即可得出结论;ADF,进而判断出△BDE≌△∠ADF(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可,即可得出结论;AM AP=判断出AP=AB+AN,再判断出②先求出BD,再求出∠BMD=60°,最后用三角函数求出DM,即可得出结论.【解答】解:(1)∵∠BAC=90°,AB=AC,∠C=45°,B=∴∠,BC∵AD⊥∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∠ADC=90°,EDF=∵∠,ADF∴∠BDE=∠,)ADF(ASA∴△BDE≌△;∴DE=DF (2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∠PAM=45°,∴∠P=,AM=PM∴∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),,∴AN=PB∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,,AM AP=∴第25页(共28页);AM AB+AN=∴,②在Rt△ABDAB=中,AD=BD=∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,,=BDM中,DM=△在Rt﹣.DM=∴AM=AD﹣此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角【点评】)的关键,构造1≌△ADF是解(形的判定和性质,锐角三角函数,判断出△BDE)的关键.出全等三角形是解(22轴于的图象交(2018?阜新)如图,已知二次函数y=axx+bx+3分)22.(10.00.C,交y轴于点B,(3,0),点A(10))求这个二次函数的表达式;(1面积的最大值;下方抛物线上的一动点,求△BCP)点P是直线BC2(是等腰三角形时,,当△BMN,分别交直线x=mBC和抛物线于点MN)直线(3的值.直接写出m第26页(共28页):二次函数综合题.HF【考点】:函数的综合应用.537【专题】)根据待定系数法,可得函数解析式;(1【分析】轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可y2)根据平行于(可得答案;根据二次函数的性质,PE的长,根据面积的和差,可得二次函数,得的方程,根据解方程,可得答案.m(3)根据等腰三角形的定义,可得关于)代入函数解析式,得3,0,(1,0)B(1【解答】解:()将A,,解得2;﹣这个二次函数的表达式是y=x4x+3,时,y=3,即点C(0),3)当(2x=0)代入函数解析式,得3(0,(3,0)点CBBC设的表达式为y=kx+b,将点,解这个方程组,得,y=的解析是为﹣x+3BC直线第27页(共28页),轴作PE∥y过点P,),﹣t+3交直线BC于点E(t2t,+3t=﹣t+3PE=﹣﹣(t﹣4t+3)22,﹣)++3t)×3=﹣(t∴S=S+S=(﹣t CPE△BCPBPE△=S,∴当t=时,∵﹣<0最大△BCP2)﹣(m,m4m+33)M(m,﹣m+3),N(,3||m﹣2BM=3mMN=m,﹣)﹣,解得m=3,(m23m=mMN=BM 时,①﹣当3(m﹣),解得m=﹣2﹣﹣3m=②m∠BMN=45°,当BN=MN 时,∠NBM=2(舍)m=1或m=3﹣m4m+3=0,解得∠BNM=45°,BMN=当BM=BN 时,∠2,(舍)或﹣﹣﹣(m4m+3)=m+3,解得m=2m=3.2,1,﹣,的值为BMN当△是等腰三角形时,m)2本题考查了二次函数综合题,解(1)的关键是待定系数法;解(【点评】)的的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3的方程,要分类讨论,以防遗漏.关键是利用等腰三角形的定义得出关于m第28页(共28页)。
【数学】2018年辽宁省阜新市中考真题(解析版)
2018年辽宁省阜新市中考数学真题一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.﹣2018的相反数是()A.﹣2018B.2018C.±2018D.﹣2.如图所示,是一个空心正方体,它的左视图是()A.B.C.D.3.某中学篮球队12名队员的年龄情况如下表:年龄/岁12 13 14 15 16人数 1 3 4 2 2关于这12名队员的年龄,下列说法中正确的是()A.众数为14B.极差为3C.中位数为13D.平均数为14 4.不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)6.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.8.甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为x km/h,根据题意可列方程为()A.=4B.=4C.=4D.=4×29.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1 B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)10.如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0B.b2﹣4ac<0C.对称轴是直线x=2.5D.b>0二、填空题(每小题3分,共18分)11.函数的自变量x的取值范围是.12.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.13.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为.14.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.15.如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为m(结果保留根号).16.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.18.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C (﹣2,1).(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).19.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?20.在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21.如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.22.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【参考答案】一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.B【解析】﹣2018的相反数是2018.故选B.2.C【解析】如图所示:左视图为:.故选C.3.A【解析】A.这12个数据的众数为14,正确;B.极差为16﹣12=4,错误;C.中位数为=14,错误;D.平均数为=,错误;故选A.4.B【解析】∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.5.D【解析】∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A.(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B.(3,2),此时xy=3×2=6,不合题意;C.(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D.(﹣2,3),此时xy=﹣2×3=6,符合题意;故选D.6.A【解析】∵AB是⊙O的直径,∴∠ACB=90°.∵∠ABC=65°,∴∠CAB=25°.∵OA=OC,∴∠OCA=∠CAB=25°.故选A.7.C【解析】设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选C.8.C【解析】设特快列车的平均行驶速度为x km/h,由题意得.故选C.9.D【解析】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=.∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O 逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252…余2,∴点B2018的坐标为(﹣1,1)故选D.10.D【解析】A.∵抛物线开口向下,∴a<0.∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B.∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C.∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D.∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选D.二、填空题(每小题3分,共18分)11.x≠3【解析】由题意得:x﹣3≠0,解得x≠3.故答案为:x≠3.12.52°【解析】∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°.又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°.故答案为:52°.13.4【解析】∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=.∵点E为AD中点,∴DE=AD,∴DE=BC,∴=,∴BF=2DF=4.故答案为:4.14.5【解析】由折叠的性质可得AE=A1E.∵△ABC为等腰直角三角形,BC=8,∴AB=8.∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x.在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5.故答案为:5.15.10【解析】∵在点B处测得塔顶A的仰角为30°,∴∠B=30°.∵BC=30m,∴AC=m.故答案为:10.16. 3.6【解析】由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为x km/h2.5×(6+x)=36﹣12×2解得x=3.6故答案为:3.6.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.解:(1)原式=4+3﹣2×=4+3﹣=4+2(2)原式=÷=×=当a=2时,原式==18.解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)∴A1(﹣4,﹣1),B1(﹣2,0);(4分)(2)如图所示,则△A2B2C2为所求作的三角形,(6分)(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2==4,∴点C经过的路径长:×2πr=2π.(8分)19.解:(1)这次抽查了四类特色美食共4÷20%=20种.∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°.故答案为:20,40,72°;(2);(3)120×=36(种),答:估计约有36种属于“豆制品类”.20.解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.21.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD.∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴DE=DF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°.∵∠P AM=45°,∴∠P=∠P AM=45°,∴AM=PM.∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN.∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN.在Rt△AMP 中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=.∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°.在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.22.解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,∴S△BCP=S△BPE+S CPE=(﹣t2+3t)×3=﹣(t﹣)2+.∵﹣<0,∴当t=时,S△BCP最大=(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=m2﹣3m,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.。
2019年辽宁省阜新市中考数学试题及参考答案(word解析版)
2019年辽宁省阜新市中考数学试题及参考答案(word解析版)2019年辽宁省阜新市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.求-2的绝对值,即|-2|,结果为2,选项B。
2.由主视图可以看出是一个正方体,选项A。
3.最关注这组数据的是销售量的集中趋势,即众数,选项A。
4.不等式组的解集是x≥-2或x≤-4,选项C。
5.摸到红球的概率为30/100,即3/10,假设袋子中红球有x个,则3/10=x/20,解得x=6,选项D。
6.AB是反比例函数y=1/x的图象上的一点,所以AB的长度为1,BC的长度为2,因此△ABC的面积为1,选项D。
7.∠A=25°,所以∠COB=50°,由切线定理可知∠C=90°-∠COB/2=65°,选项C。
8.设原价为x元,则6x/10-x/10=40,解得x=200,选项C。
9.代入点(-1,0)和(3,0)得到两个方程,解得a=-1/4,b=3/2,c=-1/4,所以2a+b=1,选项C。
10.由于点A和B的坐标已知,可以求出△ABO的面积为6,将△ABO沿x轴滚动到△ABC的位置时,△ABO的底边在x轴上的投影不变,高增加1,所以△ABC的面积为7,以此类推,可以得到C的坐标为(600.700),选项C。
二、填空题(本大题共6小题,每小题3分,共18分)11.函数y=√(x+2)的自变量x的取值范围为x≥-2,因为√(x+2)的值必须非负。
12.根据角平分线定理可知∠D=∠BAC/2,因此只需求出∠BAC的度数。
由于DE∥BC,可得∠___∠ACB,又因为CD平分∠ACB,所以∠___∠BDE,因此△BDE是等腰三角形,即∠BED=∠BDE,所以∠AED=∠BDE+∠BED=2∠BDE,又因为DE∥BC,所以∠___∠ACB,因此∠AED=2∠ACB,即∠ACB=50/2=25,所以∠D=12.5.4.从被抽查的学生中随机选出一个人,该学生参加“演讲”社团的概率是多少?8.某品牌油电混合动力汽车从甲地到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元。
辽宁省阜新市2024届中考数学押题卷含解析
辽宁省阜新市2024届中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°2.计算211aaa---的结果是()A.1 B.-1 C.11a-D.2211+-aa3.下列图形中,既是中心对称图形又是轴对称图形的是( ) A.B.C.D.4.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=5.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.1167.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()A.31°B.32°C.59°D.62°8.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.59.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1 C.a=﹣1 D.a=±111.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-112.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知点()13,y -、()215,y -都在反比例函数()ky k 0x=≠的图象上,若12y y >,则k 的值可以取______(写出一个符合条件的k 值即可).14.如图,等腰△ABC 中,AB =AC =5,BC =8,点F 是边BC 上不与点B ,C 重合的一个动点,直线DE 垂直平分BF ,垂足为D .当△ACF 是直角三角形时,BD 的长为_____.15.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 16.分解因式:2x 2﹣8xy+8y 2= .17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm . 18.抛物线y=﹣x 2+4x ﹣1的顶点坐标为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在矩形ABCD 中,AB =6,AD =8,点E 是边AD 上一点,EM ⊥EC 交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项.如图1,求证:∠ANE =∠DCE ;如图2,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长;连接AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.20.(6分)如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.21.(6分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A 型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?22.(8分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD为45°,BC 部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:2≈1.414,3≈1.732)23.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O 为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.25.(10分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?26.(12分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?27.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【题目详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA), ∴AO =CO , ∵AB =BC , ∴BO ⊥AC , ∴∠BOC =90°, ∵∠DAC =26°,∴∠BCA =∠DAC =26°, ∴∠OBC =90°﹣26°=64°. 故选B . 【题目点拨】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质. 2、C 【解题分析】原式通分并利用同分母分式的减法法则计算,即可得到结果. 【题目详解】解:()()22111=111a a a a a a a a +-------=2211a a a -+-=11a -, 故选:C. 【题目点拨】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 3、C 【解题分析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误; B. 是轴对称图形,不是中心对称图形,故本选项错误; C. 既是中心对称图又是轴对称图形,故本选项正确; D. 是轴对称图形,不是中心对称图形,故本选项错误. 故选C.4、A【解题分析】利用待定系数法即可求解. 【题目详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.5、A【解题分析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【题目详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【题目点拨】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.6、B【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【题目详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.7、A【解题分析】根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.【题目详解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°−118°,解得:∠B=31°,故选A.【题目点拨】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.8、C【解题分析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【题目点拨】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.9、C【解题分析】根据旋转的性质和三角形内角和解答即可.【题目详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【题目点拨】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10、C【解题分析】根据一元一次方程的定义即可求出答案.【题目详解】由题意可知:1012aa-≠⎧⎨⎩+=,解得a=−1故选C.【题目点拨】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.11、A【解题分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【题目详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.12、A【解题分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【题目详解】解:大正方形的面积-小正方形的面积=22a b -,矩形的面积=()()a b a b +-,故22()()a b a b a b +-=-,故选:A .【题目点拨】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1【解题分析】利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出k 0<,据此可得k 的取值.【题目详解】 解:点()13,y -、()215,y -都在反比例函数()k y k 0x=≠的图象上,12y y >, ∴在每个象限内,y 随着x 的增大而增大,∴反比例函数图象在第一、三象限,k 0∴<,k ∴的值可以取1-等,(答案不唯一)故答案为:1-.【题目点拨】本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.14、2或78【解题分析】分两种情况讨论:(1)当AFC 90∠︒=时,AF BC ⊥,利用等腰三角形的三线合一性质和垂直平分线的性质可解; (2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,证明AMC FAC ∽,列比例式求出FC ,从而得BF ,再利用垂直平分线的性质得BD .【题目详解】解:(1)当AFC 90∠︒=时,AF BC ⊥, 142AB AC BF BC BF =∴=∴= ∵DE 垂直平分BF ,8122BC BD BF =∴== .(2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,AB AC =BM CM =∴在Rt AMC 与Rt FAC 中,AMC FAC 90C C ∠∠∠∠︒==,=,AMC FAC ∴∽,AC MC FC AC= 2AC FC MC∴= 15,42254AC MC BC FC ===∴= 2578441728BF BC FC BD BF ∴=-=-=∴== .故答案为2或78.【题目点拨】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.15、k>1【解题分析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【题目详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【题目点拨】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.16、1(x﹣1y)1【解题分析】试题分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案为:1(x﹣1y)1.考点:提公因式法与公式法的综合运用17、8【解题分析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等18、(2,3)【解题分析】试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).考点:二次函数的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)4924;(1)DE的长分别为92或1.【解题分析】(1)由比例中项知AM AEAE AN=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知DE DCDC AD=,据此求得AE=8﹣92=72,由(1)得∠AEM=∠DCE,据此知AM DEAE DC=,求得AM=218,由求得AM AEAE AN=MN=4924;(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【题目详解】解:(1)∵AE是AM和AN的比例中项∴AM AE AE AN=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴DE DC DC AD=,∵DC=AB=6,AD=8,∴DE=92,∴AE=8﹣92=72,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴AM DE AE DC=,∴AM=218,∵AM AE AE AN=,∴AN=143,∴MN=49 24;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=92;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=68 EH DCAH AD==,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为92或1.【题目点拨】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.20、(1)26°;(2)1.【解题分析】试题分析:(1)根据垂径定理,得到AD DB,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC ,在Rt △AOC 中,OC=3,OA=5,由勾股定理求AC 即可得到AB 的长. 试题解析:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD DB =,∴∠DEB=12∠AOD=12×52°=26°; (2)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AC=BC ,即AB=2AC ,在Rt △AOC 中,,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.21、(1)一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①y =﹣200x +50000;②购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【解题分析】(1)根据3台A 型无人机和4台B 型无人机共需6400元,4台A 型无人机和3台B 型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y 与x 的函数关系式;②根据①中的函数关系式和B 型无人机的数量不少于A 型无人机的数量的2倍,可以求得购进A 型、B 型无人机各多少台,才能使总费用最少.【题目详解】解:(1)设一台A 型无人机售价x 元,一台B 型无人机的售价y 元,346400436200x y x y +=⎧⎨+=⎩, 解得,8001000x y =⎧⎨=⎩, 答:一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①由题意可得,y 800x 100050x 200x 50000++=(﹣)=﹣,即y 与x 的函数关系式为y 200x 50000+=﹣; ②∵B 型无人机的数量不少于A 型无人机的数量的2倍,50x 2x ﹣∴≥, 解得,2163x ≤, y 200x 50000+=﹣,∴当x 16=时,y 取得最小值,此时y 20016500004680050x 34⨯+=﹣=,﹣=, 答:购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【题目点拨】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.22、33层.【解题分析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD 和CE 的长,二者的和乘以100后除以20即可确定台阶的数.【题目详解】解:在Rt △ABD 中,m ,在Rt △BEC 中,EC=12BC=3m ,∴∵改造后每层台阶的高为22cm ,∴改造后的台阶有(×100÷22≈33(个)答:改造后的台阶有33个.【题目点拨】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.23、(1)3,补图详见解析;(2)712【解题分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【题目详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人), 则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712P =. 【题目点拨】 此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键24、(1)作图见解析;(2)A 1(0,1),点B 1(﹣2,2).(3)22【解题分析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【题目详解】解:(1)画出△A 1OB 1,如图.(2)点A 1(0,1),点B 1(﹣2,2).(3)OB 1=OB ==2.【题目点拨】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键. 25、(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解题分析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【题目详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【题目点拨】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.26、(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【解题分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【题目详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t≤1时,设s=mt+n,由题意得:200303000m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【题目点拨】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.27、R=或R=【解题分析】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.考点:圆与直线的位置关系.。
阜新中考数学试题及答案
阜新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 3.14C. √2D. 0.33333答案:A2. 如果一个三角形的两边长分别为3和4,第三边的长x满足以下哪个条件?A. x > 1B. x > 7C. 1 < x < 7D. x = 7答案:C3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 4 × 0D. 5 ÷ 5答案:B4. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 3(题目中应给出具体方程,此处假设方程为x^2 - 4x + 4 = 0)答案:A6. 以下哪个是正比例函数?A. y = 2x + 1B. y = 3xC. y = 4/xD. y = x^2答案:B7. 如果一个数的立方根等于它自己,这个数可能是?A. 1B. -1C. 0D. 所有选项答案:D8. 以下哪个是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a < b,那么a - c < b - cC. 如果a > b,那么ac > bcD. 如果a < b,那么ac < bc答案:A9. 以下哪个是几何平均数?A. 平均数B. 中位数C. 众数D. 调和平均数答案:A10. 以下哪个是统计图?A. 条形图B. 折线图C. 饼图D. 所有选项答案:D二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个角是直角的一半,那么这个角的度数是______。
答案:45°13. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是______。
辽宁省阜新市中考数学二模试卷
辽宁省阜新市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单项选择题 (共8题;共16分)1. (2分) (2018七上·如皋期中) 下列各组数中,结果相等的是().A . 与B . 与C . 与D . 与2. (2分)(2018·济宁模拟) 下列运算正确的是()A . (a+b)2=a2+b2B . (﹣1+x)(﹣x﹣1)=1﹣x2C . a4•a2=a8D . (﹣2x)3=﹣6x 33. (2分) (2017九上·长春月考) 下图中几何体的正视图是()A .B .C .D .4. (2分)(2019·松北模拟) 关于x的不等式组无解,那么m的取值范围是()A . m<5B . m≤5C . m>5D . m≥55. (2分) (2016九上·自贡期中) 将x2+4x﹣5=0进行配方变形,下列正确的是()A . (x+2)2=9B . (x﹣2)2=9C . (x+2)2=1D . (x﹣2)2=16. (2分) (2019八下·北京期中) 在直角三角形ABC中,斜边AB=1,则AB²+BC²+AC²=()A . 2B . 4C . 6D . 87. (2分) (2019九上·定边期中) 如图,在Rt△ABC中,,,过点作,垂足为,则的值为()A .B .C .D .8. (2分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是()A . 45°B . 90°C . 135°D . 180°二、填空题 (共6题;共7分)9. (2分) (2019七上·确山期中) 绝对值等于它本身的数是________和________.10. (1分)分式方程的解是________.11. (1分) (2017九下·江都期中) 小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是________分.12. (1分)(2018·和平模拟) 如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是________.13. (1分)(2017·荔湾模拟) 如图,将正方形ABCD的边AB沿AE折叠,使点B落在对角线AC上,则∠BAE 的度数为________.14. (1分) (2019九上·凤山期中) 如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则BC′=________.三、解答题 (共8题;共65分)15. (5分)(2012·深圳) 已知a=﹣3,b=2,求代数式的值.16. (5分) (2018九上·汝阳期末) 小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、黑色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.17. (5分) (2016七下·河源期中) 如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.18. (15分) (2019八上·临泽期中) 如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且 .(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.19. (5分)如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2 .求tanB的值.20. (12分)(2018·鄂尔多斯模拟) 某校为进一步推进“一校一球队、一级一专项、一人一技能”的体育活动,决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班对足球和排球感兴趣的人数分别是________、________;(2)若该校共有学生3500名,请估计有多少人选修足球?(3)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.21. (8分) (2019八上·秀洲期末) 一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系如图中线段OC所示.根据图像进行以下研究:(1)甲、乙两地之间的距离为________km;(2)线段AB的表达式为________,线段OC的表达式为________;(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数表达式,并画出函数的图像.22. (10分)如图,D是⊙O弦BC的中点,A是⊙O上的一点,OA与BC交于点E,已知AO=8,BC=12.(1)求线段OD的长;(2)当EO= BE时,求DE的长.四、解答题 (共2题;共16分)23. (10分) (2020九上·德城期末) 正方形ABCD和正方形AEFG的边长分别为2和,点B在边AG上,点D在线段EA的延长线上,连接BE.(1)如图1,求证:DG⊥BE;(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,当点B恰好落在线段DG上时,求线段BE的长.24. (6分) (2018七上·顺德月考) 已知三棱柱、四棱柱和五棱柱的顶点数、棱和面数之间的关系如下表所示。
阜新中考数学试题及答案
阜新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3y = 5B. 3x - 2y = 6C. 4x + 5y = 9D. 5x - 4y = 8答案:C2. 一个圆的半径是3厘米,那么它的周长是多少?A. 6π厘米B. 9π厘米C. 12π厘米D. 18π厘米答案:C3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. 只有3答案:C4. 哪个函数的图像是一条直线?A. y = x^2B. y = 2x + 3C. y = 5D. y = 1/x答案:B5. 一个等差数列的前三项分别是2,5,8,那么第四项是多少?A. 11B. 12C. 13D. 14答案:A6. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 540度答案:B7. 哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A8. 一个长方体的长宽高分别是2厘米,3厘米,4厘米,那么它的体积是多少?A. 24立方厘米B. 12立方厘米C. 6立方厘米D. 8立方厘米答案:B9. 一个等腰三角形的底边长是5厘米,两腰长分别是6厘米,那么它的周长是多少?A. 17厘米B. 18厘米C. 19厘米D. 20厘米答案:B10. 一个数的绝对值是5,那么这个数是多少?A. 5B. -5C. 5或-5D. 只有5答案:C二、填空题(每题4分,共20分)11. 一个数的相反数是-7,那么这个数是______。
答案:712. 一个数的立方是-8,那么这个数是______。
答案:-213. 如果一个数的平方根是3,那么这个数是______。
答案:914. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么它的斜边长是______。
答案:5厘米15. 一个数的倒数是1/4,那么这个数是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学靠前押题试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.(4分)若a与1互为相反数,则|a+1|等于()A .﹣1 B.0 C.1 D.22.(4分)如图是某几何体的三视图,该几何体是()A 圆柱B 圆锥C正三棱柱 D 正三棱锥3.(4分)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A .6.7×10﹣5B.6.7×10﹣6C.0.67×10﹣5D.6.7×10﹣64.(4分)在天水市汉字听写大赛中,10名学生得分情况如表人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的中位数和众数分别是()A .85和82.5 B.85.5和85 C.85和85 D.85.5和805.(4分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A .﹣3 B.﹣1 C.2 D.36.(4分)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A .B.C.或D.或7.(4分)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A .65°B . 55°C . 50°D .25°8.(4分)如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P 在四边形ABCD 的边上.若点P 到BD 的距离为,则点P 的个数为( )A . 2B . 3C . 4D .59.(4分)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B .C .D .10.(4分)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A . ①④B . ①③C . ②③④D .①②④二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.(4分)相切两圆的半径分别是5和3,则该两圆的圆心距是 .12.(4分)不等式组的所有整数解是.13.(4分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.14.(4分)一元二次方程x2+3﹣2x=0的解是.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。
解答时写出必要的文字说明及演算过程。
)19.(9分)计算:(1)(π﹣3)0+﹣2cos45°﹣(2)若x+=3,求的值.20.(9分)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)21.(10分)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。
)22.(8分)钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)23.(8分)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?24.(10分)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.25.(12分)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB 于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.26.(12分)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.B 2.B 3.A 4.C 5.D 6.C 7.C 8.A 9.B 10.A二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.2或8 12.0 13.14.x1=x2=15.8 16.4π17.3 18.(,0)三、解答题(本大题共3小题,共28分。
解答时写出必要的文字说明及演算过程。
)19.20.21.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。
)22.636420 23.24.25.26.2018中考数学押题试卷一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>13.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b24.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,147.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣28.(3分)如图,正三棱柱的主视图为()A.B.C.D.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y210.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=度.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?24.(9分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作A B的平行线EF交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.六、解答题(本大题共2道小题,每小题10分,满分20分)25.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.26.(10分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.2018中考数学押题试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:2015的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>1考点:绝对值.分析:根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.解答:解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A点评:此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.解答:解:A、原式=a3,错误;B、原式=2a2,错误;C、原式=a9,正确;D、原式=a2+b2﹣2ab,错误,故选C.点评:此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握运算法则是解本题的关键.4.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≤1;由②得:x>﹣2,∴不等式组的解集为﹣2<x≤1,表示在数轴上,如图所示:,故选B.点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,14考点:众数;中位数.分析:根据众数与中位数的意义分别进行解答即可.解答:解:15出现了6次,出现的次数最多,则众数是15,把这组数据从小到大排列,最中间的数是15;故选C.点评:本题考查了众数与中位数的意义,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣2考点:代数式求值.专题:计算题.分析:原式前两项提取变形后,将已知等式代入计算即可求出值.解答:解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.8.(3分)如图,正三棱柱的主视图为()A.B.C.D.考点:简单几何体的三视图.分析:根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.解答:解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y2考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数y=﹣中k=﹣2<0可判断出此函数图象在二、四象限,再根据x1<0<x2,可判断出A、B两点所在的象限,根据各象限内点的坐标特点即可判断出y1与y2的大小关系.解答:解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.点评:本题考查的是反比例函数图象上点的坐标特点及各象限内点的坐标特点,先根据k <0判断出该函数图象所在象限是解答此题的关键.10.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.考点:函数的图象.分析:开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.解答:解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.点评:本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为 1.08×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数解答:解:10.8万=1.08×105.故答案为:1.08×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.考点:概率公式.分析:由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1.考点:根的判别式.专题:探究型.分析:先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.解答:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.点评:本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为22.考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=50度.考点:圆周角定理.分析:由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由圆周角定理,可求得∠B=∠ACD=40°,继而求得答案.解答:解:∵在⊙O中,AB为直径,∴∠ADB=90°,∵∠B=∠ACD=40°,∴∠BAD=90°﹣∠B=50°.故答案为:50.点评:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为(﹣3﹣,3).考点:相似三角形的判定与性质;坐标与图形性质.分析:过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△COA,设点B 坐标为(x,y),根据相似三角形的性质即可求解.解答:解:过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴∠BCD+∠CAO=90°,∴△BCD∽△COA,∴=,设点B坐标为(x,y),则=,y=﹣3x﹣9,∴BC==,AC==,∵∠B=30°,∴==,解得:x=﹣3﹣,则y=3.即点B的坐标为(﹣3﹣,3).故答案为:(﹣3﹣,3).点评:本题考查了全等三角形的判定与性质以及坐标与图形的性质,解答本题的关键是作出合适的辅助线,证明三角形的相似,进而求解.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+3﹣+2×=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.考点:分式的化简求值.专题:计算题.分析:先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.解答:解:原式=•+=+==,当x=0时,原式==﹣.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由B等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、B、D的人数求得C等的人数,再画直方图;(3)用样本估计总体,先计算出D等学生所占的百分比,再乘以1000即可解答.解答:解:(1)∵B等人数为100人,所占比例为50%,∴抽取的学生数=100÷50%=200(名);(2)C等的人数=200﹣100﹣40﹣10=50(人);如图所示:(3)D等学生所占的百分比为:=5%,故该校今年有九年级学生1000人,其中D等学生的人数为:1000×5%=50(人).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?。