ansys基本分析过程
ansys基本过程手册
ANSYS使用手册第1章开始使用ANSYS1.1完成典型的ANSYS分析ANSYS软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
在ANSYS分析指南手册中有关于它开展不同工程应用领域分析的具体过程。
本章下面几节中描述了对绝大多数分析皆适用的一般步骤。
一个典型的ANSYS分析过程可分为三个步骤:●建立模型●加载并求解●查看分析结果1.2建立模型与其他分析步骤相比,建立有限元模型需要花费ANSYS用户更多时间。
首先必须指定作业名和分析标题,然后使用PREP7前处理器定义单元类型、单元实常数、材料特性和几何模型。
1.2.1 指定作业名和分析标题该项工作不是强制要求的,但ANSYS推荐使用作业名和分析标题。
1.2.1.1定义作业名作业名是用来识别ANSYS作业。
当为某项分析定义了作业名,作业名就成为分析过程中产生的所有文件名的第一部分(文件名)。
(这些文件的扩展名是文件类型的标识,如.DB)通过为每一次分析给定作业名,可确保文件不被覆盖。
如果没有指定作业名,所有文件的文件名均为FILE或file(取决于所使用的操作系统)。
可按下面方法改变作业名。
●进入ANSYS程序时通过入口选项修改作业名。
可通过启动器或ANSYS执行命令。
详见ANSYS 操作指南。
●进入ANSYS程序后,可通过如下方法实现:命令行方式:/FILENAMEGUI:Utility Menu>File>Change Jobname/FILENAME命令仅在Begin level(开始级)才有效,即使在入口选项中给定了作业名,ANSYS 仍允许改变作业名。
然而该作业名仅适用于使用/FILNAME后打开的文件。
使用/FILNAME命令前打开的文件,如记录文件Jobname.LOG、出错文件Jobname.ERR等仍然是原来的作业名。
1.2.1.2 定义分析标题/TITLE命令(Utility Menu>File>Change Title)可用来定义分析标题。
ANSYS分析基本步骤
ANSYS分析基本步骤1.定义几何模型:这是进行ANSYS分析的第一步。
在这一阶段,用户需要使用CAD软件等工具定义待分析的几何模型。
然后,将几何模型导入到ANSYS中,并对其进行修整以适应分析需求。
ANSYS提供了多种导入格式,如STEP、IGES等。
2.设定边界条件:边界条件是指在模型周围施加的限制条件,用于模拟实际情况。
在ANSYS分析中,边界条件包括约束条件和加载条件。
约束条件用于固定模型中的一些部分,以模拟固定或支撑结构。
加载条件用于施加外力或外部温度等,以模拟实际工作条件。
用户需要根据实际情况在模型上设定合适的边界条件。
3.网格划分:为了将连续物体离散化为离散单元,需要对模型进行网格划分。
网格划分将模型划分为多个小单元,每个单元在分析过程中代表一个基本力学单元。
网格划分的质量对分析结果的准确性和计算速度有很大影响。
因此,在进行网格划分时,需要考虑网格密度、元素类型、单元尺寸等因素。
4.设置材料属性:在进行力学分析时,需要设置材料的力学性能。
这些属性包括弹性模量、泊松比、屈服强度等。
材料属性的正确设置对于分析结果的准确性非常重要。
ANSYS提供了多种材料模型和性能数据,用户可以根据实际需要选择合适的材料属性。
5.定义分析类型:在ANSYS中,有多种分析类型可供选择,如静态分析、瞬态分析、模态分析等。
用户需要根据分析的目的和要求选择合适的分析类型。
例如,静态分析用于计算结构在静力作用下的响应,瞬态分析用于计算结构在时间变化条件下的响应,模态分析用于计算结构的模态振动特性等。
6.运行分析:在设置完以上参数后,可以运行分析了。
ANSYS会根据用户的设置进行计算,并生成相应的分析结果。
在分析过程中,用户可以监控计算进度和收敛情况,以确保分析的准确性和稳定性。
7.结果评估和后处理:在分析计算完成后,可以对分析结果进行评估和后处理。
ANSYS提供了丰富的后处理功能,包括结果显示、工程图表生成、报告编写等。
ANSYS新手入门手册(完整版)超值上
ANSYS 基本分析过程指南目录第 1 章开始使用 ANSYS1.1 完成典型的 ANSYS 分析1.2 建立模型第2章加载2.1 载荷概述2.2 什么是载荷2.3 载荷步、子步和平衡迭代2.4 跟踪中时间的作用2.5 阶跃载荷与坡道载荷2.6 如何加载2.7 如何指定载荷步选项2.8 创建多载荷步文件2.9 定义接头固定处预拉伸第 3 章求解3.1 什么是求解3.2 选择求解器3.3 使用波前求解器3.4 使用稀疏阵直接解法求解器3.5 使用雅可比共轭梯度法求解器(JCG)3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG)3.7 使用预条件共轭梯度法求解器(PCG)3.8 使用代数多栅求解器(AMG)3.9 使用分布式求解器(DDS)3.10 自动迭代(快速)求解器选项3.11 在某些类型结构分析使用特殊求解控制3.12 使用 PGR 文件存储后处理数据3.13 获得解答3.14 求解多载荷步3.15 中断正在运行的作业3.16 重新启动一个分析3.17 实施部分求解步3.18 估计运行时间和文件大小111 2323 23 24 25 26 27 6877 788584 84 85 86 86 86 86 87 8888 89 92 9697 100 100 111 1133.19 奇异解第 4 章后处理概述4.1 什么是后处理4.2 结果文件4.3 后处理可用的数据类型第5章5.1 概述5.2 将数据结果读入数据库5.3 在 POST1 中观察结果5.4 在 POST1 中使用 PGR 文件5.5 POST1 的其他后处理内容第 6 章时间历程后处理器(POST26)6.1 时间历程变量观察器6.2 进入时间历程处理器6.3 6.4 6.5 6.6 6.7定义变量处理变量并进行计算数据的输入数据的输出变量的评价通用后处理器(POST1)1141161161171171181181181271521601741741761771791811831841871901901901941956.8 POST26 后处理器的其它功能第 7 章选择和组件7.1 什么是选择7.2 选择实体7.3 为有意义的后处理选择7.4 将几何项目组集成部件与组件第 8 章图形使用入门8.1 概述8.2 交互式图形与“外部”图形8.3 标识图形设备名(UNIX 系统)8.4 指定图形显示设备的类型(WINDOWS 系统)198198 198 198 2018.5 与系统相关的图形信息8.6 产生图形显示8.7 多重绘图技术第 9 章通用图形规范9.1 概述9.2 用 GUI 控制显示9.3 多个 ANSYS 窗口,叠加显示9.4 改变观察角、缩放及平移9.5 控制各种文本和符号9.6 图形规范杂项9.7 3D 输入设备支持第 10 章增强型图形10.1 图形显示的两种方法10.2 POWERGRAPHICS 的特性10.3 何时用 POWERGRAPHICS10.4 激活和关闭 POWERGRAPHICS10.5 怎样使用 POWERGRAPHICS10.6 希望从 POWERGRAPHICS 绘图中做什么第 11 章创建几何显示11.1 用 GUI 显示几何体11.2 创建实体模型实体的显示11.3 改变几何显示的说明第 12 章创建几何模型结果显示12.1 利用 GUI 来显示几何模型结果12.2 创建结果的几何显示12.3 改变 POST1 结果显示规范12.4 Q-SLICE 技术12.5 等值面技术12.6 控制粒子流或带电粒子的轨迹显示202 205 207210210 210 210 211 214 217 218219219 219 219 220 220 220223223 223 224233233 233 235 238 238 239第 13 章生成图形24013.1 使用 GUI 生成及控制图13.2 图形显示动作13.3 改变图形显示指定第 14 章注释注释概述二维注释为 ANSYS 模型生成注释三维注释三维查询注释240 240 24124514.1 14.2 14.3 14.4 14.5245 245 246 246 247第 15 章动15.1 动画概述画24824824824824924925025115.2 在 ANSYS 中生成动画显示15.3 使用基本的动画命令15.4 使用单步动画宏15.5 离线捕捉动画显示图形序列15.6 独立的动画程序15.7 WINDOWS 环境中的动画第 16 章外部图形25316.1 外部图形概述16.2 生成中性图形文件16.3 DISPLAY 程序观察及转换中性图形文件16.4 获得硬拷贝图形第 17 章报告生成器17.1 启动报告生成器17.2 抓取图象17.3 捕捉动画17.4 获得数据表格17.5 获取列表17.6 生成报告253 254 255 258259259 260 260 261 264 26417.7 报告生成器的默认设置第 18 章 CMAP 程序18.1 CMAP 概述18.2 作为独立程序启动 CMAP 18.3 在 ANSYS 内部使用 CMAP 18.4 用户化彩色图第 19 章文件和文件管理267 269269 269 271 27127419.1 文件管理概述19.2 更改缺省文件名19.3 将输出送到屏幕、文件或屏幕及文件19.4 文本文件及二进制文件19.5 将自己的文件读入 ANSYS 程序19.6 在 ANSYS 程序中写自己的 ANSYS 文件19.7 分配不同的文件名19.8 观察二进制文件内容(AXU2)19.9 在结果文件上的操作(AUX3)19.10 其它文件管理命令第 20 章内存管理与配置20.1 内存管理20.2 基本概念20.3 怎样及何时进行内存管理20.4 配置文件274274 275 275 278 279 280280 280280 282282 282 283 286第1章开始使用 ANSYS1.1 完成典型的 ANSYS 分析ANSYS 软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
ANSYS稳态热分析的基本过程和实例
ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
ANSYS 分析基本步骤
第一章 A NSYS 分析基本步骤(黑小2)本章目标(黑小3)学习完本章后,学员应该能够初步掌握A NSY S分析问题得基本操作步骤、(揩小4)L ess on A 。
分析过程2—1。
ANSYS 分析过程中得三个主要步骤。
2—2. ANSYS 分析步骤在G UI 中得体现。
Les son B、 文件管理2-3。
A NSYS 文件系统:a. ANSYS 在分析过程中怎样使用文件。
ﻩﻩb 、 ANSYS 使用得文件名称得格式。
ﻩﻩc.确定 AN SYS 默认得文件名。
2-4。
A NSYS 得数据库:a.ANSYS 数据库中存储得数据.ﻩb 。
ﻩ数据库得存储操作。
ﻩc 、 数据库得恢复操作、ﻩﻩd 。
ﻩ怎样通过存储及恢复数据库文件修改错误.L esson C、 AN SY S分析基本步骤训练 2—5。
ANSYS 分析过程实例演练、L es so n A. 分析过程A NSY S分析采用得就是有限元分析技术、在分析时,必须将实际问题得模型转化为有限元模型。
有限元分析(FEA) 就是对物理现象(几何及载荷工况)得模拟,就是对真实情况得数值近似。
通过划分单元,求解有限个数值来近似模拟真实环境得无限个未知量。
1-1、 ANSYS 分析过程中得三个主要步骤、ObjectiveLesson Objectives1、 创建有限元模型 – 创建或读入几何模型. – 定义材料属性。
– 划分单元 (节点及单元)。
2、 施加载荷进行求解 – 施加载荷及载荷选项. – 求解.3。
查瞧结果 – 查瞧分析结果、– 检验结果. (分析就是否正确)分析得三个主要步骤可在主菜单中得到明确体现。
主菜单中各部分得顺序基本上就是按着常规问题分析顺序设置得。
1.建立有限元模型2.施加载荷求解3.查看结果主菜单1。
第一步创建有限元模型之主菜单体现主要部分:2-2、 ANSYS 分析步骤在GUI 中得体现、Procedure1、 、、、、、2、 、第二步施加荷载求解之主菜单体现主要部分: 第三步查瞧结果之主菜单体现主要部分:Les so n B. 文件管理ANSYS 文件及工作文件名:ANSY S在分析过程中需要读写文件。
ANSYS分析的基本步骤
10. 保存ANSYS数据库到文 件 beammesh.db. a. Utility Menu: File > Save as b.输入文件名: beammesh.db. c. 选择 OK 保存文件并 退出对话框.
这次用表示已经划分网格后 的文件名存储数据库.
练习 - 悬壁梁(续)
交互操作 解释
e. 选择 OK 接受单元类 型并关闭对话框. f. 选择 Close 关闭单元 类型对话框. 6. 定义实常数. a. Main Menu: Preprocessor > Real Constants b.选择 Add . . .
有些单元的几何特性,不能仅 用其节点的位置充分表示出来 ,需要提供一些实常数来补充 几何信息。 典型的实常数有壳单元的厚 度,梁单元的横截面积等。
练习 - 悬壁梁(续)
交互操作 c. 选择 OK 定义BEAM3的实 常数. d. 选择 Help 得到有关单元 BEAM3的帮助. e. 查阅单元描述. f. File > Exit 退出帮助系统. g. 在AREA框中输入 0.8 ( 横截面积). h. 在IZZ框中输入1.07e-3 ( 惯性矩). i. 在HEIGHT框中输入 0.4 (梁的高度). 解释
11. 施加载荷及约束. a. Main Menu: Solution > -LoadsApply > -StructuralDisplacement > On Nodes b.拾取最左边的节点. c. 在拾取菜单中选择 OK. d. 选择All DOF. e. 选择 OK. (如果不输 入任何值,位移库中选择一个或几个适合您 的分析的单元类型. 单元类型决 定了附加的自由度(位移、转角 、温度等)。 许多单元还要设置一些单元的 选项,诸如单元特性和假设,单 元结果的打印输出选项等。 对于本问题,只须选择 BEAM3 并默认单元选项即可.
Ansys教程基本分析过程2D_Model分析
实体建模的概念 工作平面 2-D 体素 图元的绘制、编号、删除 布尔操作
INTRODUCTION TO ANSYS 5.6
001289 12 Mar,2000 4-1
培训资料(内部参考)
创建2D有限元模型
目的
Module Objective
学习完本章后,给定一个简单的物理现象,学员应该能够使 用ANSYS创建一个2D的有限元模型.
Option A 1. Build solid model. 2. Defeature as needed. 3. Export solid model. CAD Package ANSYS 1. Build solid model. 2. Mesh finite element model. 1. 2. 3. C 1. 2. 3. 4. Build solid model Defeature as needed. Mesh finite element model. Export finite element model.
Lesson A. 实体建模的概念 1. 区别实体模型和有限元模型. 2. 四种创建几何模型的可行方法. 3. 四类实体模型图元以及它们之间的层次关系. Lesson B. 工作平面 4.定义工作平面. 5.显示工作平面,工作平面辅助网格的开关及改变网格间距. 6.捕捉开关,捕捉增量设置. 7.移动工作平面. Lesson C. 2D体素“primitive” 8.定义术语体素 “primitive.” 9.列出并创建三类 2-D体素.
INTRODUCTION TO ANSYS 5.6
Lesson Objectives
培训资料(内部参考)
001289 12 Mar,2000 4-3
ANSYS的基本步骤讲解
ANSYS的基本步骤讲解1.创建几何模型:ANSYS提供了多种几何建模工具,可以通过绘制、导入或其他方式创建几何模型。
几何模型是仿真分析的基础,它必须准确地表示所研究的物体的形状和尺寸。
2.网格划分:在几何模型上进行网格划分是进行模拟和分析的关键步骤。
ANSYS提供了强大的网格生成工具,可以将几何模型划分成小网格单元,以便进行数值计算。
网格的划分质量直接影响仿真结果的准确性和计算速度。
3.定义物理属性和材料属性:在进行仿真分析之前,需要定义模型中各个部分的物理属性和材料属性。
物理属性可以包括温度、流体速度、载荷等信息,而材料属性可以包括材料的弹性模量、热传导系数等。
ANSYS提供了丰富的材料模型和物理属性设置选项。
4.定义约束条件:在仿真过程中,需要对模型施加适当的约束条件,以保持模型的真实性和可靠性。
例如,可以固定一些点或边界,或者施加一定的力或温度条件。
设定约束条件时需要考虑实际问题的边界条件。
5.定义分析类型:根据仿真分析的目的,可以选择不同的分析类型。
ANSYS提供了多种分析类型,比如静态结构分析、动态分析、热传导分析、流体力学分析等。
选择适当的分析类型对于准确地模拟和预测所研究物体的行为非常重要。
6.设定求解器和求解参数:使用适当的求解器和求解参数可以提高仿真计算的效率和准确性。
ANSYS拥有多个求解器,可根据问题的特点选择最合适的求解器。
求解参数包括收敛准则、迭代次数、收敛精度等。
7.进行仿真计算:在完成以上各项设置后,可以开始进行仿真计算。
ANSYS会根据所设定的条件和参数,对模型进行数值计算,并生成结果。
这个过程可能需要一定的时间,特别是对于复杂的模型和大规模的网格。
8.分析和解释结果:得到仿真计算结果后,需要对结果进行分析和解释。
ANSYS提供了强大的后处理工具,可以对仿真结果进行可视化分析、数据剖析、曲线绘制等。
通过分析结果,可以了解模型的物理行为,并为工程设计提供参考。
9.优化和改进设计:在分析结果的基础上,可以优化和改进设计。
Ansys教程基本分析过程布尔操作
工作平面
A1
A2
A3
工作平面
V3
V1
V2
September 30, 1998
Introduction to ANSYS - Release 5.5 (001128)
C-9
切分的选项
Main Menu: Preprocessor > -Modeling- Operate > -Booleans-
再保留原来边界。
September 30, 1998
Introduction to ANSYS - Release 5.5 (001128)
C-2
面与面相减举例
• A1 - A2 = A3 • A3 是A1减去 A2与A1重叠
部分的区域。
September 30, 1998
Introduction to ANSYS - Release 5.5 (001128)
C-15
相交的选项(续)
Main Menu: Preprocessor > -Modeling- Operate > -Booleans-
Intersect
4. 多个体相交
4
同类图元相交得到它
5
们的相互之间的一组
6
公共部分图元。
5. 多个面相交
6. 多条线相交
September 30, 1998
Introduction to ANSYS - Release 5.5 (001128)
C-6
粘接
粘接操作是将多个图元进行连接,并生成具有公共边界的图元。
只有公共区域的维数低于粘接图元的维数,粘接操作才有效。如果粘接操作没 有新的图元产生,就通过合并关键点获得粘接结果。
14ANSYS分析基本过程
2006\5
6
定义单元常数
单元实常数是由单元类型的特性决定的。 并不是所有的单元类型都需要实常数, 同类型的不同单元也可以有不同的实常 数。
定义单元实常数的菜单命令为: Main Menu>Preprocessor>Real Constants>Add/Edit/Delete。
2006\5
7
二、定义材料特性
更改工程名的命令是:UtilityMenu> Jobname。建议在ANSYS启动时指定工程名。
2006\5
2
定义分析标题的命令是: Utility Menu> Title。系统将在所有的图形显示、求 解输出中包含该标题。
2006\5
3
定义单位
ANSYS软件没有为系统指定单位,除磁场分析以外,可 以在工程分析中使用任意一种单位制,只要保证使用的 所有数据都使用同一单位制即可。
2006\5
16
求解
求解可使用以下方法:菜单命令: Main Menu>Solution>Solve Current LS或
命令行命令SOLVE。
2006\5
17
五、查看分析计算结果
完成计算后,可以通过ANSYS的后处理 来查看计算结果。ANSYS后处理由POST1 和POST26两个后处理器组成。
根据应用范围不同材料特性有以下三种: 1、 线形和非线形; 2、 各向同性、正交异性、各向异性; 3、 不随温度变化和随温度变化。
2006\5
8
定义材料特性
和单元类型、实常数一样,每一组材料特性都 有一个材料参考号,与材料特性组对应的材料 参考号表称为材料表。在一个分析中,可以有 多个材料特性组,相应的模型中有多种材料, ANSYS通过独特的参考号来识别每个材料特性 组。 指定材料特性的命令为MP或者菜单命令: Main Menu>Preprocessor>Material Props> Material Models。
ansys分析的基本步骤
在求解之前,对模型进行仔细检查,确保其完整性、正确性和有效性。
开始求解
运行求解器,进行计算求解。
求解监视
在求解过程中,监视求解的进展情况,确保其正常进行。
结果存储
将求解结果存储在指定的目录中,以便后续处理和分析。
结果后处理
结果查看
在后处理模块中查看求解结果,如位移、应 力、应变等。
结果优化
06
结论
分析结果总结
1 2
模型建立与简化
通过ANSYS软件,我们成功地建立了分析模型, 并进行了必要的简化,以减少计算量并提高分析 效率。
边界条件与载荷设置
根据实际工况,我们为模型施加了准确的边界条 件和载荷,确保了分析的准确性。
3
求解与后处理
通过合理的求解设置,我们得到了满意的分析结 果,并对结果进行了有效的后处理,以便于理解 和使用。
对未来工作的建议
模型优化
建议在未来的分析中进一步优化 模型,例如通过更精细的网格划 分来提高分析精度。
参数研究
建议进行参数研究,以了解各参 数对分析结果的影响,从而为优 化设计提供更多依据。
与其他软件的比较
为了验证分析结果的可靠性,建 议将ANSYS的分析结果与其他知 名CAE软件的结果进行比较。
载荷施加
在模型的相应位置施加载荷,并设置合适的 载荷值和方向。
约束施加
在模型的相应位置施加约束,限制不必要的 自由度。
求解和后处理
求解器选择
根据实际问题的性质和规模,选择合适的求解器,如静力求解器、 模态求解器、瞬态求解器等。
求解参数设置
设置合适的求解参数,如迭代次数、收敛准则等。
后处理
查看分析结果,如应力、应变、位移等,并进行结果分析和评估。
有限元分析的基本步骤
一个典型的ANSYS分析过程可分为以下6个步骤:1定义参数2创建几何模型3划分网格4加载数据5求解6结果分析1定义参数1.1指定工程名和分析标题启动ANSYS软件,选择Jobname命令选择Title菜单命令1.2定义单位(2) 设置计算类型ANSYS Main Menu: Preference→Material Props →Material Models →Structural →OK(3) 定义分析类型ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK1.3定义单元类型选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令单击[Options]按钮,在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定1.4定义单元常数在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令单击[Add]按钮,进行下一个[Choose Element Type]对话框1.5定义材料参数在ANSYS程序主界面,选择Main Menu→Preprocessor→Material Props→Material Models命令(1)选择对话框右侧Structural→Linear→Elastic→Isotropic命令,并单击[Isotropic]选项,接着弹出如下所示[Linear Isotropic Properties for Material Number 1]对话框。
在[EX]文本框中输入弹性模量“200000”,在[PRXY]文本框中输入泊松比“0.3”,单击OK2创建几何模型在ANSYS程序主界面,选择Main Menu→Preprocessor→Modeling→Creat→Areas→Rectangle →By 2Corners命令选择Main Menu→Preprocessor→Modeling→Creat→Areas→Circle→Solid Circle命令3网格划分(之前一定要进行材料的定义和分配)选择Main Menu→Preprocessor→Modeling→Operate→Booleans→Subtract→Arears Circle命令选择Main Menu→Preprocessor→Meshing→Mesh→Areas→Free命令,弹出实体选择对话框,单击[Pick All]按钮,得到如下所示网格4加载数据(1)选择Main Menu→Preprocessor→Loads→Define Loads→Apply→Structural→Displacement→On Lines命令,出现如下所示对话框,选择约束[ALL DOF]选项,并设置[Displacement value]为0,单击OK。
Ansys教程基本分析过程从底向上建模
THANKS
感谢观看
教程简介
简要介绍本教程的内容和结构,包括各个章节的主题和重点 。
简要介绍ANSYS软件的基本操作界面和常用工具,为后续学 习打下基础。
02
ANSYS软件介绍
软件特点
高效仿真
ANSYS软件采用先进的数值仿真 技术,能够快速准确地模拟各种 工程问题。
集成化环境
ANSYS提供了一个集成化的仿真 环境,用户可以在一个平台上完 成建模、求解和后处理等操作。
热分析
ANSYS可以对热传导、对流和辐射等 热现象进行仿真分析,以优化产品的 热性能。
03
从底向上建模过程
创建模型
确定分析类型
01
根据分析需求,选择合适的分析类型,如结构分析、流体分析
等。
创建模型
02
在ANSYS中,使用建模工具创建模型,可以通过导入外部CAD
模型或手动创建。
设置模型单位
03
根据分析需求,设置合适的模型单位,如长度单位、质量单位
云技术和网格计 算的应用
随着云计算和网格计算的发 展,ANSYS将进一步探索这 些技术在仿真领域的应用。 通过云技术和网格计算,用 户可以更加灵活地利用计算 资源,提高仿真的效率和可 扩展性。
人工智能和机器 学习的应用
人工智能和机器学习技术在 工程仿真领域的应用前景广 阔。ANSYS将积极探索这些 技术在仿真中的运用,如自 动建模、自动材料属性赋值 和自动优化等,以进一步提 高仿真的智能化水平。
06
总结与展望
总结
• ANSYS软件介绍:ANSYS是一款功能强大的工程仿真软件,广泛应用于流体 动力学、结构力学、电磁场等领域。通过ANSYS教程的学习,用户可以掌握 从底向上建模的基本分析过程,提高解决实际工程问题的能力。
第2章ANSYS有限元分析基本步骤
第2章ANSYS有限元分析基本步骤ANSYS有限元分析是一种常用的工程分析方法,可以用于解决各种结构力学问题。
本文将对ANSYS有限元分析的基本步骤进行详细介绍。
1.确定分析目标:在进行有限元分析之前,首先需要明确分析的目标和要求。
包括确定所要分析的结构或零件的几何形状、材料特性、受力情况等。
2.建立有限元模型:建立有限元模型是有限元分析的关键步骤之一、在ANSYS软件中,可以通过几何建模功能来定义结构的几何形状和尺寸。
然后,根据要分析的问题类型,选择适当的单元类型,并使用网格划分功能将结构分割成适当大小的单元。
3.定义材料特性:在进行有限元分析之前,需要定义结构的材料特性。
包括弹性模量、泊松比、密度等。
可以根据实际情况输入已知的材料特性值,也可以通过实验或理论计算来获得。
4.定义边界条件:边界条件是有限元分析中的重要概念,它用于描述结构在系统中的限制条件。
在ANSYS中,可以通过节点约束和节点载荷来定义边界条件。
常见的边界条件包括固定边界条件、力载荷和位移约束。
5.生成网格:当有限元模型、材料特性和边界条件都定义好之后,可以使用ANSYS软件中的划分工具生成有限元网格。
生成网格的目的是将结构分割成适当大小和形状的单元,以便进行数值计算。
6.设置分析类型:在进行有限元分析之前,需要选择适当的分析类型。
根据具体问题的要求,可以选择其中的静态分析、动态分析、热分析等多种分析类型。
7.执行分析计算:当有限元模型、材料特性、边界条件和网格都设置好之后,可以执行分析计算。
ANSYS软件会根据设置的分析类型和边界条件进行数值计算,并给出相应的结果。
8.结果分析与后处理:分析计算完成后,可以进行结果的分析和后处理。
ANSYS软件提供了丰富的后处理功能,可以对应力、位移、变形、应变等结果进行可视化和分析。
9.结果验证和优化设计:完成有限元分析后,需要对结果进行验证和评估。
与实际情况进行对比,确定结果的可靠性和准确性。
ANSYS稳态热分析的基本过程和实例
ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型•如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state•如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种教荷(边界条件):a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI: Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时, 尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
ansys有限元分析基本流程
第一章实体建模第一节基本知识建模在ANSYS 系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。
建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。
一、实体造型简介1.建立实体模型的两种途径①利用ANSYS 自带的实体建模功能创建实体建模:②利用ANSYS 与其他软件接口导入其他二维或三维软件所建立的实体模型。
2.实体建模的三种方式(1) 自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。
(2) 自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。
(3) 混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。
自由网格划分时,实体模型的建立比较1e 单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。
二、ANSYS 的坐标系ANSYS 为用户提供了以下几种坐标系,每种都有其特定的用途。
①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。
②显示坐标系:定义了列出或显示几何对象的系统。
③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
④单元坐标系:确定材料特性主轴和单元结果数据的方向。
1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。
在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。
总体坐标系是一个绝对的参考系。
ANSYS 提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y- 柱坐标系。
4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian), 1是柱坐标系(Cyliadrical) , 2 是球坐标系(Spherical),5 是Y-柱坐标系(Y-aylindrical),如图2-1 所示。
ANSYS分析报告基本步骤
ANSYS分析报告基本步骤第一步:报告概述在报告的开头,应该简要介绍分析的背景和目的。
这部分内容通常包括项目的背景信息、仿真分析的目标以及报告的组织结构。
概述部分应该简洁明了,引人入胜,让读者对整份报告有一个快速的了解。
第二步:模型准备在报告的第二部分,应该详细介绍在ANSYS软件中建立的模型。
包括模型的几何形状、材料属性、约束条件和加载条件等。
此外,还应该说明模型中所用到的单元类型、网格密度和其他相关参数设置。
这一部分的详细描述可以帮助读者了解分析的基础条件和假设。
第三步:分析方法在报告的第三部分,应该解释分析所用的方法和技术。
包括仿真分析的类型(静力分析、动力分析、热分析等)、求解器的选择、收敛准则的设定以及解决问题的具体步骤等。
这部分内容应该帮助读者了解建模和求解过程,理解分析的可靠性和合理性。
第四步:结果展示在报告的第四部分,应该展示分析的结果。
包括模型的受力、应变、位移等结果,以及可能的问题和局限性。
结果展示通常包括图表、表格、动画等形式,以便读者直观地了解分析结果。
此外,还可以通过比较不同方案的结果,分析其优缺点,为后续的决策提供参考。
第五步:结果分析在报告的第五部分,应该对结果进行深入分析和讨论。
包括对受力情况的评估、对应力分布的解释、对变形和位移的影响分析等。
通过对结果的详细分析,可以帮助读者理解问题的本质和关键因素,为后续的优化和改进提供建议。
第六步:结论与建议在报告的最后部分,应该给出总结性的结论和建议。
结论部分应该总结分析的结果和发现,回答问题的关键点,提出解决方案的建议。
建议部分可以针对问题的不足之处或可能存在的风险,提出相应的改进和预防措施,为后续工作提供指导。
通过以上基本步骤,编写一份完整的ANSYS分析报告,可以帮助工程师和决策者更全面地了解仿真分析的结果和结论,从而为设计优化和产品改进提供依据和参考。
在编写报告的过程中,应该注重逻辑性和连贯性,保持数据准确性和可靠性,以确保报告的可读性和说服力。
ANSYS分析基本步骤
第一章 ANSYS 分析基本步骤黑小2本章目标黑小3学习完本章后;学员应该能够初步掌握ANSYS 分析问题的基本操作步骤.揩小4Lesson A. 分析过程2-1. ANSYS 分析过程中的三个主要步骤.2-2. ANSYS 分析步骤在GUI 中的体现. Lesson B. 文件管理2-3. ANSYS 文件系统: a. ANSYS 在分析过程中怎样使用文件. b. ANSYS 使用的文件名称的格式.c.确定 ANSYS 默认的文件名.2-4. ANSYS 的数据库: a.ANSYS 数据库中存储的数据.b. 数据库的存储操作.c.数据库的恢复操作.d. 怎样通过存储及恢复数据库文件修改错误. Lesson C. ANSYS 分析基本步骤训练 2-5. ANSYS 分析过程实例演练.Lesson A. 分析过程ANSYS 分析采用的是有限元分析技术..在分析时;必须将实际问题的模型转化为有限元模型..有限元分析FEA 是对物理现象几何及载荷工况的模拟;是对真实情况的数值近似..通过划分单元;求解有限个数值来近似模拟真实环境的无限个未知量..ObjectiveLesson Objectives1. 创建有限元模型 – 创建或读入几何模型. – 定义材料属性. – 划分单元 节点及单元.2. 施加载荷进行求解 – 施加载荷及载荷选项. – 求解.3. 查看结果 – 查看分析结果.– 检验结果. 分析是否正确分析的三个主要步骤可在主菜单中得到明确体现..主菜单中各部分的顺序基本上是按着常规问题分析顺序设置的..1.建立有限元模型2.施加载荷求解3.查看结果主菜单2-2. ANSYS 分析步骤在GUI 中的体现.1-1. ANSYS 分析过程中的三个主要步骤.Procedure1. .....2. .....3. .....1. 第一步创建有限元模型之主菜单体现主要部分:定义单元类型定义实常数定义材料建立实体模型等转变为有限元模型建立有限元模型2. 第二步施加荷载求解之主菜单体现主要部分:定义分析类型施加约束与荷载定义载荷步求解施加荷载求解3. 第三步查看结果之主菜单体现主要部分:读入结果显示图形结果显示列表结果定义单元表查看结果Lesson B. 文件管理ANSYS 文件及工作文件名:ANSYS 在分析过程中需要读写文件..生成的文件有的是程序自动生成的如日志文件;有的是在使用者控制下生成的..文件格式为 jobname.ext ; 其中 jobname 是设定的工作文件名; ext 是由ANSYS 定义的扩展名;用于区分文件的用途和类型.. 默认的工作文件名是 file ..使用时建立自己的工作文件名..一些特殊的文件ANSYS 的数据库;是指在前处理、求解及后处理过程中;ANSYS 保存在内存中的数据..数据库既存储输入的数据;也存储结果数据:• 输入数据 - 必须输入的信息 模型尺寸、材料属性、载荷等. • 结果数据 - ANSYS 计算的数值 位移、应力、应变、温度等.存储操作将ANSYS 数据库从内存中写入一个文件..数据库文件以db 为扩展名是数据库当前状态的一个备份..2-4b. 存储数据库操作.2-4a. ANSYS 数据库中存储的数据.2-3a. ANSYS 怎样在分析中使用文件. 2-3b. ANSYS 使用的文件格式. 2-3c. 确定默认的ANSYS 文件名.Definition恢复操作将数据库文件中的数据读入内存中;在这个过程中;将首先清除目前内存中的数据;将之替换成数据库文件中的数据..立即恢复名为Jobname.db 的文件.Jobname 为在ANSYS 启动对话框中设定的工作文件名.“Resume from ”读入给定文件名的数据库文件.但当前的工作文件名不变.立即保存数据库到jobname.db 文件中.其中jobname 为工作文件名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本分析过程
1
制订分析方案
SSRC
通常考虑的分析因素
制订分析方案是很重要的。
一般考虑下列问题:
SSRC
通常考虑的分析因素(续)
制订的分析方案好坏直接影响分析的精度和成本
(人耗工时,计算机资源等),但通常情况下精度和
SSRC SSRC
SSRC SSRC SSRC SSRC SSRC SSRC
SSRC SSRC
软件分析基本过程
SSRC SSRC SSRC
SSRC SSRC
SSRC X Y Z
Structure Research Center, HIT, CHINA
SSRC
SSRC SSRC
SSRC
Center, HIT, CHINA
SSRC
实体单元
FEA 模型
网格划分
SSRC
SSRC
网格划分
单元类型是一个重要的选项,该选项决定如下的单元特性:
(DOF)设置. 例如,一个热单元类型有一个自由度:TEMP,而一个结构单元类型可能有6个自由度:UX, UY, UZ, Space Structure Research Center, HIT, CHINA
SSRC
网格划分
et,1,solid92
SSRC
SSRC SSRC
SSRC SSRC Preprocessor > Material Props
C:\Program Files\Ansys
SSRC SSRC
SSRC SSRC
Center, HIT, CHINA
SSRC SSRC
SSRC SSRC
40/60
ANSYS数据库是当用户在建模求解SSRC SSRC
SSRC SSRC
SSRC SSRC
SSRC SSRC SSRC SSRC SSRC SSRC
SSRC SSRC SSRC SSRC
SSRC 注意由于力P对结构引起的A点的变形.
变形值在图形的右边标记为“DMX”. 可
以将此结果与手算的结果进行对比:
SSRC
SSRC。