ch1.5(2007)
CH铁路货车车种车型车号编码(2009年版)
铁路货车车种车型车号编码(2009年版)-车号域
铁路货车车种车型车号编码(2009年版)-车种编码
铁路货车车种车型车号编码(2009年版)-罐车号域
铁路货车车种车型车号编码(2009年版)-棚车号
铁路货车车种车型车号编码(2009年版)-敞车号
敞车车型对应的车号域
铁路货车车种车型车号编码(2009年版)-自备车号域
P64GK型棚车性能参数:
自重 24.0 t
载重 60.0 t
有效容积 135.0 m3
长度 16438 mm
构造速度 100 km/h
P64GT型通用棚车基本数据:载重:60吨
自重:23.8吨
容积:135立方米
换长:1.5米
铁路货车类型及相应车号范围(一)
铁路货车类型及相应车号范围(十)
作者:北雪编辑来源: 中国铁路更新时间:2008-10-29。
高等教育:概率论基础ch1.5
三、概率的公理化定义
在公理化结构中,概率是针对事件定义的,即
对应于事件域F中的每一个元素A有一个实数P(A)与
之对应。
集合函数:从集合到实数的映射。 概率是定义在事件域F 上的集合函数。
在公理化结构中,只规定概率应满足的性质, 而不具体给出它的计算公式或计算方法。
2019/12/17
数科院
Ch1.5-11
=
lim P(
n
i =1
Ai )
n
记Sn = Ai ,则Sn F , n = 1, 2, ,且Sn Sn+1,即Sn是F i=1
中一个单调不减的集序列,这时上式可一写成
lim
n
P(Sn
)
=
P(lim n
Sn
)
2019/12/17
数科院
Ch1.5-27
下连续的定义
对于F 上的集合函数P,若它对F 中任何一个单
调不减的集序集{Sn}都有
lim
n
P(Sn
)
=
P(lim n
Sn
)成
立,则称集函数P是下连续的.
因此我们有:
2019/12/17
有限可加性 下连续性
数科院
可列可加性
?
Ch1.5-28
定理 若P 是F上满足P()=1的非负集合函数,
则它具有可列可加性的充要条件是 (i) 它是有限可加的 (ii)它是下连续的
•样本点:随机试验的可能结果,用表示; 可以看成是抽象的点
•样本空间:试验的所有可能结果组成的集合,即
样本点的全体,记作 •事件: 样本空间的一个子集,常用大写字母A、
B、C 等表示;事件A发生当且仅当A所包含
异戊烯醇催化合成的工艺研究.pdf
CATAIYTICSYNTHESIS0FPRENYLALCoHoLPRoCESSRESEARCHABSTRACTPrenylalcoholismainlyusedforsynthesisofintermediatestoMethyl一3,3一dimethyl-4-Pentenoateforeffici:ency.andlowtoxicitypesticidesofthepyrethroid,anditsdownstreamproductsdichlorochrysanthemate,3一(2,2一Dichlorovinyl)一2,2一dimethylcyclopropanecarchloride.Withprenylalcoholconstantlyexpandedthescopeofbonylapplicationanddemandrisedceaselessly,strengthenthestudyofsynthesisforprenylalcohol,itisverynecessarytoachievelarge—scaleindustrialproduction.Thispaperselectstheisopreneanddichloroaceticacidcatalyticasrawmaterials‘catalyticsynthesisforprenylester,followedprocess’bysaponificationreactionpreparationofprenylalcoh01.ImprovedcatalyticsynthesisprocessconditionsSOthatthereactionisnotundertheprotectionofinertgas,improvedthesafetyandstabilityoftheprocess.Withtherapiddevelopmentofethyleneindustry,theC5asanimportantbyproducthasbecometheindispensableimportantresource,usingisoprenewhichisbasicIIl5.3.6注入蒸馏水的体积………………………………………..345.4结果与讨论…………………………………………………345.4.1目标产品的红外分析………………………………..…….345.4.2单因素实验结果与讨论………….……………….………..365.4.2.1原料配比(烯酸比)………………………………...….365.4.2.2反应时间……………………………….…………….365.4.2.3催化剂用量……………………………….……’……..375.4.2.4皂化时间……………………………………………..385.4.2.5NaOH溶液浓度…………………………………………385.4.2.6注入蒸馏水的体积………………………………………395.5本章小结…………………………………………………..39第六章结论与展望…………………………………………………………………………406.1结论….…………………………………………………...406.2展望………………………………………………………4l渗考文献…..-_…………一..…………………………_………………..:………■…:……..42致谢…………………………………………………………………………………………47攻读硕士学位期间发表的学术论文目录…………………………………………………..48VIII广西大掌硕士(工程硕士)掌位论文异戊烯醇催化合成的工t.习F究第一章绪论1.1研究背景拟除虫菊酯类精细化工品是上世纪末兴起的一种被应用较广的仿生杀虫剂,2007年1月,我国把甲胺磷类等5种高毒高残留性有机磷农药在全国各地区全面禁用,拟除虫菊酯类农药得到国家大力的提倡和推广,已经被认为是取代高毒性、高残留有机磷类农药的希望之星,在城市卫生类杀虫剂总使用量统计中占一半以上。
专利国家代码
专利国家代码
9Oct
国家代码也是考试命题的范围之一,虽然每年的考试分数不多,一个题就是1.5分而已。
但是这个分数还是一般还是比较容易,因此不妨花几分钟记住一些常考的国家:瑞士CH、瑞典SE、英国GB、俄罗斯RU、德国DE、意大利IT、西班牙ES、欧专局EP、美国US,韩国KR,中国CN即可,其中瑞士CH、瑞典SE、英国GB是几个容易出错的国家,英国可能习惯性被当成EN了,而瑞士和瑞典的缩写也有点天马行空。
(1) 目前仅摘录授权国家颁布的专利。
(2) 本产品/服务中的法语 (FR) 专利资料均由 Institute National de la Propriete
Industrielle (INPI) 提供。
(3) 本产品/服务中的英国专利资料版权属英国皇家所有且经授权提供。
(C) 皇家版权
(4) 本产品/服务中的世界 (WO) 专利资料由世界知识产权组织 (WIPO) 提供。
WIPO 对本
产品中所涵盖数据的完整性及准确性概不负责,尤其对于在 WIPO 控制范围之外发生的任何数据删减、处理或格式重定。
CH559 评估板使用说明书
USB单片机CH559的评估板说明版本:V1.51、硬件部分1.1开发板图1.1.3CH558&9MINIEVT图1.1.1CH559EVT图1.1.2CH559MINIEVT1.2开发板主芯片及功能说明(1)、芯片工作电源选择:芯片电压选择,VCC和+5V短接,VDD33悬空,CH559的工作电压选为5V;VCC 和3V3短接,VDD33和3V3短接,CH559工作电压选为3.3V;(2)、评估板电源输入:通过P1电源适配器插口输入8-15V的电压,如图1.1.1的P1口;通过USB直接输入5V电压,如图1.1.1和图1.1.2的USB口;通过VCC和GND插针直接输入5V或者3.3V电压,图1.1.1和图1.1.2都可以通过VCC和GND供电;(3)、复位:C15默认不焊,若焊接则延长复位时间;(4)、TF卡使用SPI方式进行操作,使用时R1需焊接0Ω电阻;(5)、串行Flash使用SPI0操作,使用时R6需焊接0Ω电阻;(6)、LED指示灯连接P4.0~P4.3,引脚输出低电平点亮相应的LED;(7)、P5.4/P5.5支持iRS485数据收发,使用时R16/R18焊20K电阻,R17接120Ω电阻;(8)、外扩RAM物理连接采用直接地址方式,用法参考例程XBUS.C,使用时需短接J4;2、评估板资料包说明来源:搜索CH559文件名:CH559EVT.ZIP资料包:头文件(C、汇编)评估板原理图PCB图例程2.1CH559.uvproj功能:CH559keil4工程文件,头文件、延时函数、串口0初始化等常用函数定义;2.2ADC文件夹功能:ADC中断(查询)方式手动和自动采集,ADC采样时钟设置,电压比较功能函数定义;2.3CHIP_ID文件夹功能:芯片唯一ID号获取函数定义;2.4DataFlash文件夹功能:DataFlash擦除读写函数定义;2.5Encryption文件夹功能:芯片常用加密方法介绍和说明;2.6GPIO文件夹功能:GPIO设置和GPIO中断使用说明;2.7IAP文件夹功能:CH559用户程序跳转至IAP升级演示和说明文档,提供上位机软件和源码;2.8LED_CTRL文件夹功能:CH559LED控制卡演示,支持U盘更新显示内容和掉电数据不丢失;2.9PWM文件夹功能:PWM1&2初始化,PWM占空比设置函数;2.10SPI0文件夹功能:SPI0主机从机模式初始化和数据收发演示,主机操作CH376,从机连接其他C51MCU;2.11SPI1文件夹功能:SPI0主机模式初始化和数据收发演示,主机操作CH376;2.12Timer0文件夹功能:定时器0初始化和定时器、计数器使用函数定义;2.13Timer1文件夹功能:定时器1初始化和定时器、计数器使用函数定义;2.14Timer2文件夹功能:定时器2初始化和定时器、计数器使用函数定义,定时器2捕捉功能函数定义;2.15Timer3文件夹功能:定时器3初始化和定时器、计数器使用函数定义,定时器3捕捉功能函数定义和PWM3设置及使用;2.16UART0文件夹功能:串口0初始化和中断收发示例;2.17WDOG文件夹功能:看门狗初始化和喂狗;2.18XBUS文件夹功能:并行总线初始化和数据收发函数定义;2.19USB_LIB文件夹功能:USB文件系统库;2.20USB文件夹A.DEVICE文件夹模拟USB键鼠例程,支持部分类命令;模拟厂商自定义设备,需要安装CH372驱动,可以通过372test.exe调试(批量数据收发,中断传输);B.HOST文件夹USB主机应用例子,初始化和枚举USB端口连接的设备,支持一级外部HUB,可以操作USB键鼠和HUB,打印机,包含HID类命令处理;C.U_DISK字节方式读写文件,包括文件创建、删除、修改文件属性,修改文件名;扇区方式读写文件,包括文件创建、删除、修改文件属性,修改文件名;创建文件夹和文件创建;枚举根目录或者指定目下的文件;2.21PUB评估板说明功能:评估板说明、评估板原理图3、MCU ISP下载软件说明3.1下载前准备3.1.1ISP变更重要:因为ISP工具升级更新,芯片BOOT版本V2.30以前的版本需要在V2.40及以上版本ISP工具上选择支持的BOOT版本,以下以ISPTool(V2.40)为例,默认支持最新BOOT。
国标、欧标、美标排放对比
整车 瞬态 汽油 柴油 11.007 1180 120 33.6 160000
整车 瞬态 汽油 柴油 23.26 1800 131.6 46.3 160000
整车 瞬态 汽油 柴油 11.007 1180 120 33.6 160000
整车 瞬态 汽油 柴油 23.26 1800 131.6 46.3 160000
低排放汽车排放标准 LEV1 TLEV LEV ULEV ZEV 1 1 1 1
2阶段 LEV2 LEV ULEV 2 2 SULE ZEV2 V2
日本
10/15工况 11工况
10/15工况+11工况循环 标准 欧盟 1993 欧1 1996 欧2
10/15工况+11工况循环 2000/2002标准
实施日期
2015 ?? 2015 ?? 2015 ?? 2015 ?? 2015 ?? 2015 ??
CO 0.50 0.50 1.0 1.0 0.63 0.63 1.81 1.81 0.74 0.74 2.27 2.27
HC 一 一 0.1 0.1 一 一 0.13 0.13 一 一 0.16 0.16
V1
动力链工作小组 吴昌圣
9
内部文件,注意保密
谢 谢!
V1
动力链工作小组 吴昌圣
10
四.各体系排放限值
美国 SU——轻型车 ≤12座的轻型车 限值单位是克/英里 限值单位是克/千米
内部文件,注意保密
1)到2003的柴油车允许1.0/1.25g/英里(mi)的NOx排放
3)非甲烷有机气体(NMOG)代替非甲烷碳氢
2011 欧5+ 2012 欧6
欧洲
13工况 ESC循环+ ELR+ETC循 环
Ch1.5线性规划-单纯形法
2015年6月8日星期一
表1-6
基变量
进基列
bi /ai2,ai2>0
将3/2化为1
(a )
XB
x3 x4 λj x3
x1
2 1 300
x2
1 3/2 400
x3
1 0 0
x4
0 1 0
b
40 30
θi 40 20
出 基 行
4/3
0 1 0 0 1
1 0 0 3/4 -1/2
-2/3 2/3 -800/3 -1/2 1
检验数 目标函数用非基变量表达时的变量系数
本例中λ1=300,λ2=400,λ3=0,λ4=0。参看表1-6(a) 最优解判断标准 当所有检验数λj≤0(j=1,…,n)时, 基本可行解为最优解。 当目标函数中有基变量xi时,利用约束条件将目标 函数中的xi消去即可求出检验数。
1.5 单纯形法 Simplex Method
系数矩阵A及可行基B1 1 0 2 1 1 0 A B1 0 1 1 3 / 2 0 1 r(B1)=2, B1是一个初始基 ,x3、x4为基变量,x1、x2 为非基变量,令 x1=0 、 x2=0 由约束方程知 x3=40 、 x4=30得到初始基本可行解 X(1)=(0,0,40,30)T
条件,还可以用图解法看出具有无界解。
1.5 单纯形法 Simplex Method
2015年6月8日星期一
【例1-19】求解线性规划
max Z 2x1 4x2
x1 2 x 2 4 x 2 x 10 1 2 x1 x 2 2 x1 , x 2 0
1 0 0 0
1 -1 -2 1
可燃气体爆炸极限数据表
常见可燃气体爆炸极限常见可燃性气体爆炸极限三氯氢硅SiHCl31.别名•英文名硅氯仿、硅仿、三氯硅烷;Trichlorosilane、Silicochloroform.2.用途单晶硅原料、外延成长、硅液、硅油、化学气相淀积、硅酮化合物制造、电子气。
3.制法(1)在高温下Si和HCl反应。
(2)用氢还原四氯化硅(采用含铝化合物的催化剂)。
4.理化性质分子量: 135.43熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):13 50kg/m3;相对密度(气体,空气=1): 4.7;蒸气压(-16.4℃):13.3kPa;(14. 5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸下限:9.8%;毒性级别:3;易燃性级别:4;易爆性级别:2三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无色透明液体。
在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl和Cl2:SiHCl3 O2→SiO2 HCl Cl2;三氯硅烷的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。
它的热稳定性比二氯硅烷好,在900℃时分解产生氯化物有毒烟雾(HCl),还生成Cl2和Si。
遇潮气时发烟,与水激烈反应:2SiHCl3 3H2O—→ (HSiO)2O 6HCl;在碱液中分解放出氢气:SiHCl3 3NaOH H2O—→Si (OH)4 3NaCl H2;与氧化性物质接触时产生爆炸性反应。
与乙炔、烃等碳氢化合物反应产生有机氯硅烷:SiHCl3 CH≡CH一→CH2CHSiCl3 、SiHCl3 CH2=CH2—→CH3CH2SiCl3在氢化铝锂、氢化硼锂存在条件下,SiHCl3可被还原为硅烷。
容器中的液态Si HCl3当容器受到强烈撞击时会着火。
可溶解于苯、醚等。
API6182007石油化工和天然气工业用往复式压缩机-5th中文(可编辑)
API 618 2007 石油化工和天然气工业用往复式压缩机-5th中文石油、化学和气体工业设施用往复压缩机API 618 标准第5 版,2007 年12 月美国石油学会特别说明API出版物必要地陈述了一般性质的问题。
关于特殊情况,宜考察地方、州和联邦的法律及法规。
关于本标准中所包含信息的准确性、完整性或实用性,API及API的雇员、转包商、顾问、委员会或其他代理人都不作任何明确或暗示的保证或表示,也不对本出版物揭示的任何信息或方法的使用、或此使用造成的结果承担责任或职责。
API及API的雇员、转包商、顾问或其他代理人都不表示本出版物的使用不会侵犯私人拥有的权利。
要使用API出版物的任何人都可以使用。
学会已尽力保证其中所含资料的准确性和可靠性;然而,学会关于本出版物不做表示、保证或担保,并在此明确声明,对使用资料导致的损失和损害,或对拥有本出版物可能与之有冲突的管辖权的权威机构的侵害,本学会拒绝承担任何责任或职责。
API出版物的发布是为了使经证实的、合理的工程和操作惯例广泛可得。
这些出版物并不意在排除宜利用这些出版物时应用合理的工程判断的需要。
API出版物的编制出版不以任何方式来阻止任何人使用任何其他惯例。
按照API标准的标记要求标记设备或材料的制造方对遵守该标准所有适用要求负全部责任。
API不表示、保证或担保这类产品实际上符合适用的API标准。
前言API出版物中所包含的任何内容都不能被认为暗示或明示地授予专利特许证所涵盖任何方法、设备或产品的制造、销售或使用的权利。
API出版物中所包含的任何内容也不宜被认为保证任何人对专利特许证的侵害不承担责任。
应:用于标准中时,“应”表示为符合规范的最低要求。
宜:用于标准中时,“宜”表示为符合规范的推荐或者建议而非必需的要求。
本文件依照API标准化程序撰写,保证了进展过程中适当的通告和参与,并指定为API标准。
关于本出版物内容的解释的问题,或关于本出版物进展过程的评论和问题,宜用书面形式递交给美国石油学会标准负责人,1220 L Street, N.W., Washington, D.C. 20005。
CH Z 1001-2007《测绘成果质量检验报告编写基本规定》
CH 中华人民共和国测绘行业标准化指导性技术文件CH / Z 1001-2007测绘成果质量检验报告编写基本规定Basic Rules for Testing Report of Surveying andMapping Products Quality2007 –12 –29 发布 2008 –02 –01实施国 家 测 绘 局发布目 次前言 (II)1 范围 (1)2 基本规定 (1)3 正文内容规定 (1)4格式规定 (1)5 检验报告格式样本 (2)附录A (规范性附录)检验报告格式样本 (3)前 言为使测绘项目顺利开展和实施,提高测绘成果质量检验报告编写的质量,统一检验报告格式,规范检验报告的编制,制定本指导性技术文件。
本指导性技术文件的内容将被目前修订的国家标准《测绘成果检查验收规定》和《数字测绘成果检查验收》等标准采用,待标准正式发布时,将替代本指导性技术文件。
附录A为规范性附录。
本指导性技术文件由国家测绘产品质量监督检验测试中心提出,国家测绘局测绘标准化工作委员会归口。
本指导性技术文件起草单位:国家测绘产品质量监督检验测试中心。
本指导性技术文件主要起草人:谭理、曾衍伟、雷凌。
1 范围本指导性技术文件规定了测绘成果质量检验报告编写的基本内容、格式等。
本指导性技术文件适用于测绘成果质量检验单位出具测绘成果质量检验报告的编写。
2 基本规定2.1 测绘成果质量检验单位应按本指导性技术文件的规定编写质量检验报告。
2.2 检验报告编排次序为:封面、注意事项、联系方式、正文、附件。
除封面外,其它页面(包括附件)均应设置页眉、页脚,并统一编制连续页码。
2.3 在附录A中规定的加盖检验单位公章处,加盖检验单位公章,并用检验单位公章加盖骑缝章。
2.4 编制、审核和批准栏中,应由相应人员本人手工签署,不得打印;检验结论中的签发日期应由手工签署。
2.5 报告中的计量单位均应采用法定计量单位。
3 内容规定3.1 检验报告编号为“*测质检(****)第(***)号”,其中的“*”代表检验单位所在省、市和自治区的简称,如:陕、黑、川、琼等;“****”为年号,“***”为流水号。
8015c-2007甲醇
METHOD 8015CNONHALOGENATED ORGANICS BY GAS CHROMATOGRAPHY SW-846 is not intended to be an analytical training manual. Therefore, method procedures are written based on the assumption that they will be performed by analysts who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology.In addition, SW-846 methods, with the exception of required method use for the analysis of method-defined parameters, are intended to be guidance methods which contain general information on how to perform an analytical procedure or technique which a laboratory can use as a basic starting point for generating its own detailed Standard Operating Procedure (SOP), either for its own general use or for a specific project application. The performance data included in this method are for guidance purposes only, and are not intended to be and must not be used as absolute QC acceptance criteria for purposes of laboratory accreditation.1.0SCOPE AND APPLICATION1.1This method may be used to determine the concentrations of various nonhalogenated volatile organic compounds and semivolatile organic compounds by gas chromatography. The following RCRA compounds were quantitatively determined by this method, using the preparative techniques indicated.Compound CAS No.a Purge-and-Trap b Head-space eDirectAqueousInjectionAzeo.Dist.cVacuumDist.dAcetone67-64-1pp / ht x x x x Acetonitrile75-05-8pp ne x x ne Acrolein107-02-8pp ne x x x Acrylonitrile107-13-1pp ne x x x Allyl alcohol107-18-6ht ne x x ne t-Amyl alcohol (TAA)75-85-4ht x ne ne x t-Amyl ethyl ether (TAEE)919-94-8x/ ht x ne ne x t-Amyl methyl ether (TAME)994-05-8x/ ht x ne ne x Benzene71-43-2x x ne ne x t-Butyl alcohol (TBA)75-65-0ht x x x x Crotonaldehyde123-73-9pp ne x x ne Diethyl ether60-29-7x ne x ne ne Diisopropyl ether (DIPE)108-20-3x/ ht x ne ne x Ethanol64-17-5I x x x x Ethyl acetate141-78-6I x x x ne Ethyl benzene100-41-4x x ne ne x Ethylene oxide75-21-8I ne x x ne Ethyl tert-butyl ether (ETBE)637-92-3x/ ht x ne ne x Isopropyl alcohol (2-Propanol)67-63-0pp x x x neCompound CAS No.a Purge-and-Trap b Head-space eDirectAqueousInjectionAzeo.Dist.cVacuumDist.dMethanol67-56-1I x x x ne Methyl ethyl ketone (MEK,2-Butanone)78-93-3pp x x x xMethyl tert-butyl ether (MTBE)1634-04-4x/ ht x x ne x N-Nitroso-di-n-butylamine924-16-3pp ne x x ne Paraldehyde123-63-7pp ne x x ne 2-Pentanone107-87-9pp x x x ne 2-Picoline109-06-8pp ne x x ne 1-Propanol (n-Propyl alcohol)71-23-8pp x x x ne Propionitrile (Ethyl cyanide)107-12-0ht ne x x ne Pyridine110-86-1I ne x x ne Toluene108-88-3x x ne ne x o-Toluidine95-53-4I ne x x ne o-Xylene95-47-6x x ne ne x m-Xylene108-38-3x x ne ne x p-Xylene106-42-3x x ne ne xa Chemical Abstract Service Registry Numberb Purge-and-Trap (Methods 5030 or 5035)c Azeotropic distillation (Method 5031)d Vacuum distillation (Method 5032)e Headspace (Method 5021)x Adequate response using this techniqueht Method analyte only when purged at 80 E C (high temperature purge)I Inappropriate technique for this analytene Not evaluatedpp Poor purging efficiency, resulting in higher limits of quantitation. Use of an alternative sample preparative method is strongly recommended. May be amenable to purging at elevatedtemperature.1.2This method may be applicable to the analysis of other analytes, including triethylamine and petroleum hydrocarbons. The petroleum hydrocarbons include gasoline range organics (GRO) and diesel range organics (DRO). The sample preparation techniques are shown in the table below.Appropriate TechniqueCompound CAS No.a Purge-and-Trap Head-spaceDirectAqueousInjectionSolventExtractionTriethylamine121-44-8I ne x I Gasoline range organics (GRO)--x x x I Diesel range organics (DRO)--I x I x a Chemical Abstract Service Registry Numberx:Adequate response using this technique; I:Inappropriate technique for this analyte; ne:Not evaluated1.2.1This method was applied to the analysis of triethylamine in water samplesby direct aqueous injection onto a different GC column than is used for any other analytes. Descriptions of the GC column, temperature program, and performance data for triethylamine are provided in this method (see Secs. 6.2.5 and 11.2.6, and Table 6).1.2.2GRO corresponds to the range of alkanes from C 6 to C 10 and a boilingpoint range of approximately 60 E C - 170 E C (Reference 6). DRO corresponds to the range of alkanes from C 10 to C 28 and a boiling point range of approximately 170 E C - 430E C (Reference 6). The quantitative analyses of these fuel types are based on the procedures described in Sec. 11.11. The identification of specific fuel types may be complicated by environmental processes such as evaporation, biodegradation, or when more than one fuel type is present. Methods from other sources may be more appropriate for GRO and DRO, since these hydrocarbons are not regulated under RCRA. Consult State and local regulatory authorities for any specific regulatory requirements.1.2.3This method may be applicable to classes of analytes and to fuel typesand petroleum hydrocarbons other than those listed in Secs. 1.1 and 1.2. However, in order to be used for additional analytes, fuel types, or petroleum hydrocarbons, the analyst must demonstrate that the gas chromatographic conditions, including the GC column, are appropriate for the analytes of interest. The analyst must also perform the initialdemonstration of proficiency described in Sec. 9.4 and Method 8000. Expansion of this method to other fuel types or petroleum hydrocarbons will also necessitate careful defining of the boiling point range or carbon number range of the material and modification of the quantitation approach to match such ranges. Analysts are advised to consult authoritative sources, such as the American Petroleum Institute (API), for relevant definitions of other fuel types or petroleum fractions.NOTE:Mention of the analyses of other fuel types and petroleum fractions does not imply a regulatory requirement for such analyses, using this or any other method.1.3This method can also be used as a screening tool (for both volatile andsemivolatile organics) to obtain semiquantitative data to prevent overloading the GC/MS system during quantitative analysis. This may be accomplished using a purge-and-trap method (e.g.,Method 5030), an automated headspace method (e.g., Method 5021), direct aqueous injection,or by direct injection, if a solvent extraction method has been utilized for sample preparation. Single-point calibration is acceptable in this situation. Performance data are not provided for screening.1.4Prior to employing this method, analysts are advised to consult the base method for each type of procedure that may be employed in the overall analysis (e.g., Methods 3500,3600, 5000, and 8000) for additional information on quality control procedures, development of QC acceptance criteria, calculations, and general guidance. Analysts also should consult the disclaimer statement at the front of the manual and the information in Chapter Two for guidance on the intended flexibility in the choice of methods, apparatus, materials, reagents, and supplies, and on the responsibilities of the analyst for demonstrating that the techniquesemployed are appropriate for the analytes of interest, in the matrix of interest, and at the levels of concern.In addition, analysts and data users are advised that, except where explicitly specified in a regulation, the use of SW-846 methods is not mandatory in response to Federal testingrequirements. The information contained in this method is provided by EPA as guidance to be used by the analyst and the regulated community in making judgments necessary to generate results that meet the data quality objectives for the intended application.1.5This method is restricted for use by, or under the supervision of, analysts appropriately experienced and trained in the use of a gas chromatograph and skilled in the interpretation of gas chromatograms. In addition, if this method is to be used for the analysis of petroleum hydrocarbons, its use then should be limited to analysts experienced in the interpretation of hydrocarbon data. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1This method provides gas chromatographic conditions for the detection of certain nonhalogenated volatile and semivolatile organic compounds.2.2Depending on the analytes of interest, samples may be introduced into the GC bya variety of techniques, including:•Purge-and-trap (Methods 5030 or 5035)•Equilibrium headspace (Method 5021)•Direct injection of aqueous samples•Injection of the concentrate from azeotropic distillation (Method 5031)•Vacuum distillation (Method 5032)•Following solvent extraction (Methods 3510, 3520, 3535, 3540, 3541, 3545, 3546, 3550, 3560, or other appropriate technique)2.3Groundwater or surface water samples generally need to be analyzed in conjunction with Methods 5021, 5030, 5031, 5032, 3510, 3520, or other appropriate preparatory methods to obtain the necessary lower limits of quantitation. Method 3535 (solid-phase extraction) may also be applicable to some of the target analytes, however, this method has not been validated by EPA in conjunction with this determinative method.2.4Samples to be analyzed for diesel range organics may be prepared by an appropriate solvent extraction method.2.5Gasoline range organics may be introduced into the GC/FID by purge-and-trap (Methods 5030 and 5035), automated headspace (Method 5021), vacuum distillation (Method 5032), or other appropriate technique.2.6Triethylamine may be analyzed by direct injection of aqueous samples. This compound has not been found to be amenable to purge-and-trap techniques.2.7An appropriate column and temperature program are used in the gas chromatograph to separate the organic compounds. Detection is achieved by a flame ionization detector (FID).2.8This method allows the use of capillary or packed columns for the analysis and confirmation of the non-halogenated individual analytes. The GC columns and conditions listed have been demonstrated to provide separation of those target analytes. Other columns and conditions may be employed, provided that the analyst demonstrates adequate performance for the intended application.2.9The quantitative analyses of GRO and DRO are based on the definitions provided in Sec. 1.2.2 and the procedures described in Sec. 11.11.2.10Given the large number of components to be separated, fused-silica capillary columns are necessary for the analysis of petroleum hydrocarbons, including GRO and DRO, and are recommended for all other analytes. A capillary column is also necessary for the analysis of triethylamine.3.0 DEFINITIONSRefer to Chapter One and the manufacturer's instructions for definitions that may be relevant to this procedure.4.0INTERFERENCES4.1Solvents, reagents, glassware, and other sample processing hardware may yield artifacts and/or interferences to sample analysis. All of these materials must be demonstrated to be free from interferences under the conditions of the analysis by analyzing method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be necessary. Refer to each method to be used for specific guidance on quality control procedures and to Chapter Four for general guidance on the cleaning of glassware.4.2When analyzing for volatile organics, samples can be contaminated by diffusion of volatile organics (particularly chlorofluorocarbons and methylene chloride) through the sample container septum during shipment and storage. A trip blank prepared from organic-free reagent water and carried through sampling and subsequent storage and handling will serve as a check on such contamination.4.3Contamination by carryover can occur whenever high-concentration andlow-concentration samples are analyzed in sequence. To reduce the potential for carryover, the sample syringe or purging device needs to be rinsed out between samples with an appropriate solvent. Whenever an unusually concentrated sample is encountered, it should be followed by injection of a solvent blank to check for cross contamination.4.3.1Clean purging vessels with a detergent solution, rinse with distilled water,and then dry in a 105 E C oven between analyses. Clean syringes or autosamplers byflushing all surfaces that contact samples using appropriate solvents.4.3.2All glassware must be scrupulously cleaned. Clean all glassware as soonas possible after use by rinsing with the last solvent used. This should be followed bydetergent washing with hot water, and rinses with tap water and organic-free reagentwater. Drain the glassware and dry it in an oven at 130 E C for several hours or rinse itwith methanol and drain. Store dry glassware in a clean environment.4.4The flame ionization detector (FID) is a non-selective detector. There is a potential for many non-target compounds present in samples to interfere with this analysis. There is also the potential for analytes to be resolved poorly, especially in samples that contain many analytes. The data user should consider this and may wish to alter the target analyte list accordingly.5.0SAFETYThis method does not address all safety issues associated with its use. The laboratory is responsible for maintaining a safe work environment and a current awareness file of OSHA regulations regarding the safe handling of the chemicals listed in this method. A reference file of material safety data sheets (MSDSs) should be available to all personnel involved in these analyses.6.0EQUIPMENT AND SUPPLIESThe mention of trade names or commercial products in this manual is for illustrative purposes only, and does not constitute an EPA endorsement or exclusive recommendation for use. The products and instrument settings cited in SW-846 methods represent those products and settings used during method development or subsequently evaluated by the Agency. Glassware, reagents, supplies, equipment, and settings other than those listed in this manual may be employed provided that method performance appropriate for the intended application has been demonstrated and documented.This section does not list common laboratory glassware (e.g., beakers and flasks).6.1Gas chromatograph -- Analytical system equipped with gas chromatograph suitable for solvent injections, direct aqueous injection, headspace, vacuum distillation sample introduction, or purge-and-trap sample introduction, and equipped with all necessary accessories, including detectors, column supplies, recorder, gases, and syringes. A data system for measuring peak heights and/or peak areas is recommended.6.2Recommended GC columnsThe choice of GC column will depend on the analytes of interest, the expected concentrations, and the intended use of the results. The packed columns listed below are generally used for screening analyses. The capillary columns are necessary for petroleum hydrocarbon analyses and for triethylamine analyses and are recommended for all other analyses.The columns listed in this section were the columns used to develop the method. The listing of these columns in this method is not intended to exclude the use of other columns that are available or that may be developed. The laboratory may use either the columns listed in thismethod or other columns and columns of other dimensions, provided that the laboratory documents method performance data (e.g., chromatographic resolution, analyte breakdown, and sensitivity) that are appropriate for the intended application.6.2.1Column 1 -- 8-ft x 0.1-in. ID stainless steel or glass column, packed with1% SP-1000 on Carbopak-B 60/80 mesh or equivalent.6.2.2Column 2 -- 6-ft x 0.1-in. ID stainless steel or glass column, packed withn-octane on Porasil-C 100/120 mesh (Durapak) or equivalent.6.2.3Column 3 -- 30-m x 0.53-mm ID fused-silica capillary column bonded withDB-Wax (or equivalent), 1-µm film thickness.6.2.4Column 4 -- 30-m x 0.53-mm ID fused-silica capillary column chemicallybonded with 5% methyl silicone (DB-5, SPB-5, RTx, or equivalent), 1.5-µm film thickness.6.2.5Column 5 -- 30-m x 0.53-mm ID fused-silica capillary column bonded withHP Basic Wax (or equivalent), 1-µm film thickness. This column is used for triethylamine.6.2.6Wide-bore columns should be installed in 1/4-inch injectors, equippedwith deactivated liners designed specifically for use with these columns.6.3Detector -- Flame ionization (FID)6.4Sample introduction and preparation apparatus6.4.1Refer to the 5000 series sample preparation methods for the appropriateapparatus for purge-and-trap, headspace, azeotropic distillation, and vacuum distillation analyses.6.4.2Samples may also be introduced into the GC via injection of solventextracts or direct injection of aqueous samples.6.5Syringes6.5.15-mL Luer-Lok glass hypodermic and 5-mL gas-tight syringe equippedwith a shutoff valve, for volatile analytes.6.5.2Microsyringes -- 10- and 25-µL equipped with a 0.006-in. ID needle(Hamilton 702N or equivalent) and 100-µL.6.6Volumetric flasks, Class A -- Appropriate sizes equipped with ground-glass stoppers.6.7Analytical balance -- 160-g capacity, capable of measuring to 0.0001 g.7.0REAGENTS AND STANDARDS7.1Reagent-grade chemicals must be used in all tests. Unless otherwise indicated, it is intended that all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. Reagents should be stored in glass to prevent the leaching of contaminants from plastic containers.7.2Organic-free reagent water -- All references to water in this method refer to organic-free reagent water, as defined in Chapter One.7.3Methanol, CH 3OH, pesticide quality or equivalent -- Store away from othersolvents.7.4Fuels, e.g., gasoline or diesel -- Purchase from a commercial source. Low-boiling components in fuel evaporate quickly. As applicable and available, obtain the fuel from the leaking tank on site.7.5Alkane standard -- A standard containing a homologous series of n -alkanes for establishing retention times (e.g., C 10-C 28 for diesel).7.6Standard solutionsThe following sections describe the preparation of stock, intermediate, and workingstandards for the compounds of interest. This discussion is provided as an example, and other approaches and concentrations of the target compounds may be used, as appropriate for the intended application. See Method 8000 for additional information on the preparation of calibration standards.7.7Stock standards -- Stock solutions may be prepared from pure standard materials or purchased as certified solutions. When methanol is a target analyte or when usingazeotropic distillation for sample preparation, standards should not be prepared in methanol. Standards must be replaced after 6 months or sooner, if comparison with check standards indicates a problem.7.8Secondary dilution standards -- Using stock standard solutions, prepare secondary dilution standards, as needed, that contain the compounds of interest, either singly or mixed together. The secondary dilution standards should be prepared at concentrations such that the aqueous calibration standards prepared in Sec. 7.9 will bracket the working range of theanalytical system. Secondary dilution standards should be stored with minimal headspace for volatiles and should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.7.9Calibration standards -- Prepare calibration standards at a minimum of five different concentrations in organic-free reagent water (for purge-and-trap, direct aqueous injection, azeotropic distillation, or vacuum distillation) or in methylene chloride (for solvent injection) from the secondary dilution of the stock standards. For headspace, prepare the standards as directed in Method 5021. One of the standards should be at or below the concentration equivalent to the appropriate lower limit of quantitation for the project. Theremaining concentrations should correspond to the expected range of concentrations found in real samples or should define the working range of the GC. Each standard should contain each analyte to be determined by this method (e.g., some or all of the compounds listed in Sec. 1.1 may be included). In order to prepare accurate aqueous standard solutions, the following precautions need to be observed:7.9.1Do not inject more than 20 µL of methanolic standards into 100 mL ofwater.7.9.2Use a 25-µL Hamilton 702N microsyringe or equivalent (variations inneedle geometry will adversely affect the ability to deliver reproducible volumes ofmethanolic standards into water).7.9.3Rapidly inject the primary standard into the filled volumetric flask.Remove the needle as fast as possible after injection.7.9.4Mix diluted standards by inverting the flask three times only.7.9.5Fill the sample syringe from the standard solution contained in theexpanded area of the flask (do not use any solution contained in the neck of the flask).7.9.6The negative pressure generated by pipettes makes them inappropriatefor routine use in the transfer of spiked solutions. As such, use of pipettes to dilute ortransfer aqueous standards should be avoided. When sample transfer is absolutelynecessary, (such as in the performance of headspace sample preparation for watersamples) only high quality, automatic pipettes should be used, and then with extremecare.7.9.7Aqueous standards used for purge-and-trap analyses (Method 5030) arenot stable and should be discarded after 1 hr, unless held in sealed vials with zeroheadspace. If so stored, they may be held for up to 24 hrs. Aqueous standards used for azeotropic distillation (Method 5031) may be stored for up to a month inpolytetrafluoroethylene (PTFE)-sealed screw-cap bottles with minimal headspace, at #6E C, and protected from light.7.9.8Standards for direct aqueous injection of triethylamine are prepared bydissolving an appropriate weight of neat triethylamine in organic-free reagent water and diluting to volume in a volumetric flask.7.10Internal standards (if internal standard calibration is used) -- To use this approach, the analyst needs to select one or more internal standards that are similar in analytical behavior to the compounds of interest. The analyst needs to further demonstrate that the measurement of the internal standard is not affected by method or matrix interferences. Because of these limitations, no internal standard can be suggested that is applicable to all samples. The following internal standards are recommended when preparing samples by azeotropic distillation (Method 5031): 2-chloroacrylonitrile, hexafluoro-2-propanol, andhexafluoro-2-methyl-2-propanol.7.11Surrogate standards -- Whenever possible, the analyst should monitor both the performance of the analytical system and the effectiveness of the method in dealing with eachsample matrix, by spiking each sample, standard, and blank with one or two surrogate compounds which are not affected by method interferences.8.0SAMPLE COLLECTION, PRESERVATION, AND STORAGE8.1See the introductory material to Chapter Four, "Organic Analytes," and Method 5035.8.2If the headspace technique is used, also see Method 5021.9.0QUALITY CONTROL9.1Refer to Chapter One for guidance on quality assurance (QA) and quality control (QC) protocols. When inconsistencies exist between QC guidelines, method-specific QC criteria take precedence over both technique-specific criteria and those criteria given in Chapter One, and technique-specific QC criteria take precedence over the criteria in Chapter One. Any effort involving the collection of analytical data should include development of a structured and systematic planning document, such as a Quality Assurance Project Plan (QAPP) or a Sampling and Analysis Plan (SAP), which translates project objectives and specifications into directions for those that will implement the project and assess the results. Each laboratory should maintain a formal quality assurance program. The laboratory should also maintain records to document the quality of the data generated. All data sheets and quality control data should be maintained for reference or inspection.9.2Refer to Method 8000 for specific determinative method QC procedures. Refer to Methods 3500 and 5000 for QC procedures to ensure the proper operation of the various sample preparation and/or sample introduction techniques. If an extract cleanup procedure is performed, refer to Method 3600 for the appropriate QC procedures. Any more specific QC procedures provided in this method will supersede those noted in Methods 8000, 3500, 5000, or 3600.9.3Quality control procedures necessary to evaluate the GC system operation are found in Method 8000 and include evaluation of retention time windows, calibration verification and chromatographic analysis of samples.9.4Initial demonstration of proficiencyEach laboratory must demonstrate initial proficiency with each sample preparation and determinative method combination it utilizes, by generating data of acceptable accuracy and precision for target analytes in a clean matrix. If an autosampler is used to perform sample dilutions, before using the autosampler to dilute samples, the laboratory should satisfy itself that those dilutions are of equivalent or better accuracy than is achieved by an experienced analyst performing manual dilutions. The laboratory must also repeat the demonstration of proficiency whenever new staff members are trained or significant changes in instrumentation are made. See Methods 5000 and 8000 for information on how to accomplish a demonstration of proficiency.9.5Initially, before processing any samples, the analyst should demonstrate that all parts of the equipment in contact with the sample and reagents are interference-free. This is accomplished through the analysis of a method blank. As a continuing check, each time samples are extracted, cleaned up, and analyzed, and when there is a change in reagents, a method blank should be prepared and analyzed for the compounds of interest as a safeguard against chronic laboratory contamination. If a peak is observed within the retention time window of any analyte that would prevent the determination of that analyte, determine the source and eliminate it, if possible, before processing the samples. The blanks should be carried through all stages of sample preparation and analysis. When new reagents or chemicals are received, the laboratory should monitor the preparation and/or analysis blanks associated with samples for any signs of contamination. It is not necessary to test every new batch of reagents or chemicals prior to sample preparation if the source shows no prior problems. However, if reagents are changed during a preparation batch, separate blanks need to be prepared for each set of reagents.9.6Sample quality control for preparation and analysisThe laboratory must also have procedures for documenting the effect of the matrix on method performance (precision, accuracy, method sensitivity). At a minimum, this should include the analysis of QC samples including a method blank, a matrix spike, a duplicate, and a laboratory control sample (LCS) in each analytical batch and the addition of surrogates to each field sample and QC sample when surrogates are used. Any method blanks, matrix spike samples, and replicate samples should be subjected to the same analytical procedures (Sec. 11.0) as those used on actual samples.9.6.1Documenting the effect of the matrix should include the analysis of atleast one matrix spike and one duplicate unspiked sample or one matrix spike/matrix spike duplicate pair. The decision on whether to prepare and analyze duplicate samples or a matrix spike/matrix spike duplicate must be based on a knowledge of the samples in the sample batch. If samples are expected to contain target analytes, then laboratories may use one matrix spike and a duplicate analysis of an unspiked field sample. If samples are not expected to contain target analytes, laboratories should use a matrix spike and matrix spike duplicate pair. Consult Method 8000 for information on developing acceptancecriteria for the MS/MSD.9.6.2 A laboratory control sample (LCS) should be included with each analyticalbatch. The LCS consists of an aliquot of a clean (control) matrix similar to the samplematrix and of the same weight or volume. The LCS is spiked with the same analytes at the same concentrations as the matrix spike, when appropriate. When the results of the matrix spike analysis indicate a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.Consult Method 8000 for information on developing acceptance criteria for the LCS.9.6.3Also see Method 8000 for details on carrying out sample quality controlprocedures for preparation and analysis. In-house method performance criteria forevaluating method performance should be developed using the guidance found in Method 8000.。
刹车片通用对照表
北京吉普汽车
BJ213-87款(4×2) BJ213-92款(4×4) 大切诺基BJ2021G(LaredoI-6)2004款 大切诺基4×4,4700 吉普旗舰(ABS)8缸1999-2000大切诺基 BJ202G(Limited V8),01,02款 Jeep 2500 2.4L Jeep 2500 05版4×2 Jeep 2500 05版4×4 Jeep 2700 4×4 Jeep 2500 4×4 Jeep 2500 4×2
排量 2.7 2.0 2.0 2.7 2.5 2.4 3.0 2.4 3.0 3.4
变速箱 4AT 5MT 4AT 4AT 4AT 5MT 5MT 5MT 5MT 4AT
上市年份 2004 2004 2004 2004 2005
前片 D864 D924 D924 D864 D924 L0315 D436 D436 D436 D436 D436 D303
变速箱 5MT 5MT 5MT 5MT 5MT 5MT 5MT 5MT 5MT 4MT 4MT 4MT 4MT 4MT 4MT 4MT 4AT 5MT 5MT 4AT 5MT 5MT 4AT 5MT 4AT 5MT 5MT 5MT 5MT 5MT 5MT 5MT 4AT/5MT 5MT 5MT 5MT 5MT 5MT 5MT 4/5MT 5MT 4/5MT 5MT 5MT 5MT 5MT 5MT 5MT 5MT
V6 V8 V6 V6 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 V6 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4
2.7 5.7 3.5 2.7 1.8 1.8 1.6 1.6 1.6 1.6 1.4 1.4 1.4 1.4 1.6 2.0 2.0 2.0 2.7 1.6 1.6 1.8 1.8 1.6 1.6 1.8 1.8 1.8 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.0 2.0 2.0 2.4 2.4 2.0 2.0
矩阵(ch1.5)
14
例 设 n 阶矩阵 A 满足aA2 bA cE O, 证明 A 为可逆
矩阵, 并求A1,(其中a, b, c为常数且c 0 ).
解 由 aA2 bA cE O 可得
aA2 bA O cE cE
即 A(aA bE) cE
又因为 c 0 , 所以 1 A(aA bE) E
9
三. 求逆矩阵方法
⑴ 先求| A | , 当| A | 0 时A不可逆, 当 | A | 0时A可逆,
逆矩阵 A1 存在;
(2)求A*;
(3) 求 1 A* A1. | A|
10
1 1 1
例
判断矩阵
A
2
1
0
是否可逆,
若可逆,
求
A1.
1 1 0
解 | A | 1 0, 所以 A1 存在. 又
, n),
an
则 A 可逆,且 1
a1
1
A1
a2
1
an
25
5 0 0
例
设
A
0
3 1 ,
求A1.
0 2 1
5
解
A
0 0
0 3 2
0 1 1
A1 O
O
A2
,
A1 (5),
A2
3 2
11,
又
A11
1 5
,
A21
1 2
1
3
,
故
A1
A11 O
1
O A21
10
11
11
A11 1
0
0,
A21
1
0
1, A31
1
1, 0
2 A12 1
各类质子的化学位移
各类质子的化学位移碳上质子的化学位移值取决于质子的化学环境。
因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。
各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:碳上的氢(H)脂肪族CH(C上无杂原子) 0——2.0β-取代脂肪族CH 1.0——2.0炔氢 1.6——3.4α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0烯氢 4.5——7.5苯环、芳杂环上氢 6.0——9.5 醛基氢 9——10.5氧上的氢(OH)醇类 0.5——5.5 酚类 4.0——8.0 酸 9——13.0氮上的氢(NH)脂肪族0.6——3.5 芳香胺 3.0——5.0 酰胺 5——8.5对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。
0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。
化学位移地次序CH>CH2>CH3.。
如果有更多的取代基化学位移移向低场。
2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。
1.5-2ppm:烯丙位碳H卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.53.0-4.5 ppm:醚区域。
即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。
5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。
炔氢化学位移2-3。
7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。
同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。
一般芳环酚羟基更趋于低场。
醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5大多数的-NHR, -NH2和醇一样,可被交换,在2-3 ppm 区域显示宽峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1−a
1−a
3
yuezhengyou
第 1.5 节 卷积
2007-3-3
1.5.2 连续信号的卷积
1.定义
任意连续信号都可由δ (t) 组合而成
信号分解:按矩形信号分解:
用阶梯信号 xa(t)近似 x(t) , 图中, xa(k∆) = x(k∆)
x (t)
x a(t)
显然
lim
∆ →0
xa
(t)
平移:边际坐标
x2 (t-τ)
1
-2
分段相乘、积分
(1). t<− 1 2
s(t)=0
t-2
tτ
x2 (t-τ)
x1(τ)
1
t-2
t
τ
6
yuezhengyou
第 1.5 节 卷积
2007-3-3
(2). − 1 <t<1 2
s(t)=
t
∫
1⋅1 (t−τ )dτ
−1/ 2 2
= 1 (t+ 1)2
条件:收敛
2.计算
⑴ 按定义式计算
⑵ 借助图解、分段卷积
⑶ 变换法
步骤:反褶、平移、相乘、积分
例:若
x1(t)
=
u(t
+
1) 2
−
u(t
−1)
,
x2
(t)
=
1 2
t[u(t)
−
u(t
−
2)]
求 s(t) = x1(t)∗ x2(t)
x1 (t) 1
x2 (t) 1
-1/2
1
反褶:
x2 (-τ) 1
2
m
n≥
N
;
s[n]
=
N∑−1a
m=0
n−
m
−1
=
an
−1
⋅1−a − N 1−a−1
x2[n-m]
作图:趋势、最大值
N-1 n-1 m
按定义式计算
m
N
∞ ∑
a
m
−1u[m
−1]⋅(u[n−m]−u[n−
N
−m])
m =−∞
=
∞ ∑
a
m
−1u[m
−1]⋅
u[n
−
m]
−
∞ ∑
a
m
−1u[m
−1]⋅
u[n
am =
1
u[n]
|a|<1
m=0 1−a
⑵ 借助图解分区间卷积;反褶、平移、相乘、求和
⑶ 变换法求解
例: 已知
x1[n] = u[n]− u[n − N ] x2[n] = an−1u[n −1] 0<a<1 求 s[n] = x1[n]∗ x2[n] 解:图解法,注意边际坐标的确定及求和限的变化
=
x(t)
定义矩形脉冲:
δ∆ (t)
1/∆
∆
任意位置的矩形脉冲
δ∆ (t-k∆)
1/∆
δ
∆
(t)=
1 ∆
[u(t)−u(t
−∆)]
δ
∆
(t
−k∆)=
1 ∆
[u(t
−k∆)−u(t
−k∆−∆)]
k∆ (k+1)∆
于是
∞
xa(t)= ∑ x(k∆)[u(t−k∆)−u(t−k∆−∆)]
k =−∞ ∞
= ∑ x(k∆)δ∆(t−k∆)⋅∆ k =−∞
yuezhengyou
第 1.5 节 卷积
1.5 卷积
1.5.1 离散信号的卷积 1.定义
任意离散信号都可由δ [n] 组合而成
x (n)
2007-3-3
x[n]=Lx[−1]δ [n+1]+ x[0]δ [n]+ x[1]δ [n−1]+ x[2]δ [n−2]+L
=
∞
∑
x[m]δ
[n
−
m]
m=−∞
N-1
m
1
m
⑴ n −1< 0 s[n]=0
x2[n-m]
n-1
N-1
m
2
yuezhengyou
第 1.5 < N −1,
1≤n<
N
;s[n]
=
n∑−1a
m=0
n−m
−1
=
a
n−1
⋅1−a − n 1−a −1
x2[n-m]
⑶ n −1≥ N −1
n-1 N-1
x[n] =
∞ ∑
x[m]δ
[n−m]
m = −∞
四种运算的综合:反褶、平移、相乘、求和
m 是运算变量
n 是移动变量,也是求和运算的观察时刻
n = 3,
x[3] =
∞ ∑
x[m]δ
[3−m]
=
x[3]
m = −∞
一般情况:
x1[n]∗
x2[n]
=
m
∞ ∑
x1[m]x2[n−m]
= −∞
2.计算
⑴ 按定义计算,注意求和结果存在区间的表示
−
N
−
m]
m =−∞
m =−∞
=
n ∑
a
m
−1
−
n
−N ∑
a
m
−1
m =1
m =1
=
n∑−1a m
−
n
−N ∑
−1a
m
m=0
m=0
= 1−an ⋅u[n −1]−1−an−N ⋅u[n − N −1]
1−a
1−a
= 1−an ⋅(u[n −1]− u[n − N −1]) − an 1−a−N ⋅u[n − N −1]
x (τ) 1
x (-τ) 1
s(0) = − 1 − 1 = −1 22
s(1) = (−1) • (−1) = 1
-1/2 -1
1 -1
1/2
-1
s(−1) = 0
按公式运算求得 s(t) 后再求函数值 借助图解求得 s(t) 后再求函数值 利用卷积的概念和图形求解 t 是移动变量也是观察变量
11
2007-3-3
24
23 56 8
246 2
23 568
2/π 23 56 8
10
yuezhengyou
第 1.5 节 卷积
2007-3-3
( 3 ) 信 号 x(t) 的 波 形 如 图 所 示 , 若 卷 积 信 号
s(t) = x(t) ∗ x(t) ,试求 s(0) 、 s(1) 和 s(−1) 的函数值。
∞
卷积的定义: x(t) = ∫ x(τ )δ (t−τ )dτ =x(t)∗δ (t)
−∞
∞
x1(t)∗ x2(t) = ∫ x1(τ )x2(t−τ )dτ −∞ ∞ = ∫ x1(t−τ )x2(τ )dτ −∞
5
yuezhengyou
第 1.5 节 卷积
2007-3-3
线性运算,反褶、平移、相乘、积分
2
+
1 2
t
+
3 4
t<− 1,t>3 2
− 1 <t<1 2
1<t< 3 2
3 <t <3 2
1 t-2
tτ
15/16 9/16 -1/2 1 1/2 3
7
yuezhengyou
第 1.5 节 卷积
2007-3-3
按定义计算
s(t
)
=
∞
∫ [u(τ
−∞
+
1 2
)−u(τ
−1)]⋅
1 2
(t
−τ
)[u(t
42
x2 (t-τ)
x1(τ)
1
t-2 -1/2 t 1 τ
(3). 1<t< 3 , t>1 t−2<− 1
2
2
s(t)=
1
∫
1⋅1 (t−τ )dτ
−1/ 2 2
=1t− 3
4 16
x1(τ) x2 (t-τ) 1
t-2 -1/2 1 t τ
(4). 3<t<3, − 1 <t−2<1
2
2
s(t)=
= s(t −t1 −t2 )
9
yuezhengyou
例:求下列卷积 (1)
第 1.5 节 卷积
x1(t)
1
-3 -2 -1
123
x2(t)
(1)
-2
2
2 s(t)
-5
-3 -1
13
5
s(t) = x1(t)∗[δ (t + 2) +δ (t − 2)]
=x1(t+2)+ x1(t−2) (2)例 1.9(a)
−τ
)−u(t
−τ
−2)]dτ
4 项,分别积分
s1(t)
=
∞
∫ [u(τ
−∞
+
1 2
)⋅1 2
(t
−τ
)u(t
−τ
)dτ
=
t
∫
1 (t −τ )dτ
−1/ 2 2
= 1 (t + 1)2u(t + 1)
42
2
同理可求得其它三项,最后结果同上。
1.5.3 卷积的性质
1.分配律、结合律、交换律 交换律: x1(t)∗ x2(t) = x2(t)∗ x1(t) 结合律:e(t)∗[h1(t)∗h2(t)] =[e(t)∗h2(t)]∗h1(t) 分配律: