八年级下册数学第二章检测卷

合集下载

八年级下册数学第二章检测题(附答案)

八年级下册数学第二章检测题(附答案)

书山有路勤为径;学海无涯苦作舟
八年级下册数学第二章检测题(附答案)
学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。

因此,精品编辑老师为大家整理了八年级下册数学第二章检测题,供大家参考。

一、选择题(每小题3 分,共24 分)
1.下面图形中,既是轴对称图形又是中心对称图形的是( )
2.如图所示,在□中,,,的垂直平分线交于点,则△的周长是( )
A.6
B.8
C.9
D.10
3.如图所示,在矩形中,分别为边的中点.若,
,则图中阴影部分的面积为( )
A.3
B.4
C.6
D.8
4.如图为菱形与△重叠的情形,其中在上.若,,,则( )
A.8
B.9
C.11
D.12
5. (2015•江苏连云港中考)已知四边形ABCD,下列说法正确的是( )
A.当AD=BC,AB∥DC 时,四边形ABCD 是平行四边形
B.当AD=BC,AB=DC 时,四边形ABCD 是平行四边形
C.当AC=BD,AC 平分BD 时,四边形ABCD 是矩形
D.当AC=BD,AC⊥BD 时,四边形ABCD 是正方形
6. (2015•湖北孝感中考)已知一个正多边形的每个外角等于60 度,则这个正多边形是( )
A.正五边形
B.正六边形
C.正七边形
D.正八边形
7.若正方形的对角线长为2 cm,则这个正方形的面积为( )
A.4
B.2
C.
D.
今天的努力是为了明天的幸福。

浙教版八年级下数学第二章一元二次方程单元检测卷及答案

浙教版八年级下数学第二章一元二次方程单元检测卷及答案

浙教版数学八年级下册第二章一元二次方程单元检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中,是关于x的一元二次方程的是()A.x2+3y=1 B.x2+3x=1 C.ax2+bx+c=0 D.2.关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣43.已知(x2+y2)2-(x2+y2)-12=0,则(x2+y2)的值是()A.-3 B.4 C.-3或4 D.3或-44.一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=1006.若方程式的两根均为正数,其中为整数,则的最小值为何?()A.1 B.8 C.16 D.617.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2012 D.20138.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或119.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A. 10只B. 11只C. 12只D. 13只10.设x, x2是方程的两个实数根,则 ( ) .1A. 2016 B. 2017 C. 2018 D. 2019二、填空题(本大题共6小题,每小题4分,共24分)11.方程(x﹣3)(x﹣9)=0的根是.12.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b的值:b=______.13.已知关于的一元二次方程一根为,则________.14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x 的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为.16.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=__________.三、解答题(本大题共8小题,共66分)17.关于x的一元二次方程x(x﹣2)=﹣x﹣2①与一元一次方程2x+1=2a﹣x②.(1)若方程①的一个根是方程②的根,求a的值;(2)若方程②的根不小于方程①两根中的较小根且不大于方程①两根中的较大根,求a的取值范围.18.有一个三角形,面积为30cm2,其中一边比这边上的高的4倍少1cm.若设这边上的高为xcm,请你列出关于x的方程,并判断它是什么方程?若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.19.已知关于x的方程(m+1)+(m-2)x-1=0.(1)m取何值时,它是一元二次方程?并写出这个方程的解;(2)m取何值时,它是一元一次方程?20.解方程:(1)(x+8)2=36; (2)x(5x+4)-(4+5x)=0;(3)x2+3=3(x+1); (4)2x2-x-1=0.21.已知关于x的方程x2﹣mx﹣8=0.(1)当m=2时,求方程的根;(2)设原方程的两个根是x1、x2,若x12+x22﹣4x1x2=97,求m的值.22.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k 为负整数时,试判断|m|≤2是否成立?请说明理由.答案解析一、选择题1.B2. D3. B4. B5. A6. B7. D8. D9. C 10. C二、填空题11. x1=3,x2=9. 12. 3 13.−214. k>且k≠1 15.﹣1. 16. 16.三、解答题17.解:解方程①,得x1=1,x2=2,解方程②,得x=.当=1时,a=2;当=2时,a=.综上所述,a的值是2或;(2)由题可知,1≤≤2,解得2≤a≤.18.解:x(4x-1)=30,是一元二次方程,一般形式为2x2-x-30=0,二次项系数为2,一次项系数为-,常数项为-30.19.解:(1)由解得m=1,∴方程为2x2-x-1=0,∴x1=-,x2=1.(2)当时,解得m=-1;当时,解得m=0,即当m=-1或0时,是一元一次方程.20.解方程:(1)(x+8)2=36;x+8= 6,122,14x x =-=-.(2)x (5x +4)-(4+5x )=0; (4+5x )(x -1)=0,124,15x x =-=.(3)x 2+3=3(x +1);230x x -=,x (x -3)=0,120,3x x ==.(4)2x 2-x -1=0 (2x +1)(x -1)=0,1211,2x x ==-.21.解:(1)m=2时,方程为:x 2﹣2x ﹣8=0,(x+2)(x ﹣4)=0, ∴x 1=﹣2,x 2=4; (2)x 1+x 2=m ,x 1x 2=﹣8,x 12+x 22﹣4x 1x 2=(x 1+x 2)2﹣6x 1x 2=m 2+48, 由已知得:m 2+48=97, 解得:m 1=7,m 2=﹣7.22.解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x ,依题意得:400(1+x )2=484, 解得x 1=0.1=10%,x 2=﹣2.2(舍去).答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%; (2)设甜甜在2017年六一收到微信红包为y 元, 依题意得:2y+34+y=484, 解得y=150所以484﹣150=334(元).答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元. 23.解:(1)设该果农今年收获樱桃x 千克,根据题意得:400﹣x ≤7x , 解得:x ≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.24.解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.。

(北师大版)初中数学八年级下册第二章综合测试02含答案解析

(北师大版)初中数学八年级下册第二章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章综合测试一、单选题(每小题3分,共30分) 1.下列式子中,是不等式的有( )①27x =;②34x y +;③32−<;④230a −≥;⑤1x >;⑥1a b −>. A .5个B .4个C .3个D .1个2.已知a b <,下列式子不成立的是( ) A .55a b −−<B .33a b <C .1122a b −−>D .11a b −+−+<3.下列说法中,错误的是( ) A .不等式5x <的整数解有无数多个 B .不等式5x −>的负整数解集有有限个 C .不等式28x −<的解集是4x −<D .40−是不等式28x −<的一个解4.不等式组31220x x −⎧⎨−⎩>≥的解集在数轴上表示为( )A .B .C .D .5.不等式111246x x +−−>的解是( ) A .5x −<B .10x −>C .10x −<D .8x −<6.如下图,直线y k x b =+交坐标轴于A B 、两点,则不等式0k x b +<的解集是( )A .2x −<B .2x <C .3x −>D .3x −<7.已知函数()1y a x =−的图象过一、三象限,那么a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <8.若不等式13x a x −⎧⎨⎩><恰有3个整数解,那么a 取值范围是( )A .1a ≤B .01a <≤C .01a ≤<D .0a >9.不等式组211420x x −⎧⎨−⎩≥≤的解集在数轴上表示为( )A .AB .BC .CD .D10.若x y >,且()()33a x a y −−<,则a 的值可能是( ) A .0B .3C .4D .5二、填空题(每小题4分,共28分)11.用不等号“>、<、≥、≤”填空:21a +________0. 12.若26m n−−<,则3m ________n .(填“<、>或=”号) 13.不等式组8x x m ⎧⎨⎩<>有解,m 的取值范围是________.14.不等式:2603x −−>的解集________.15.如下图,一次函数2y x =−−与2y x m =+的图象相交于点()4P n −,,则关于x 的不等式220x m x +−−<<的解集为________.16.不等式组1274xx ⎧−⎪⎨⎪−+⎩≤≥的解集是________.17.不等式组()3225123x x x x ⎧++⎪⎨−⎪⎩>≤的最小整数解是________.三、解答题一(每小题6分,共18分)18.解不等式()21132x x +−+≥,并把它的解集在数轴上表示出来.19.解不等式组:()152437x x x +⎧⎨++⎩<>.20.解不等式组:()23423x xxx⎧−−⎪⎨−⎪⎩≤<,并求非负整数解.四、解答题二(每小题8分,共24分)21.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?22.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?23.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.五、解答题三(每小题10分,共20分)24.某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?25.某茶叶销售商计划将m罐茶叶按甲、乙两种礼品盒包装出售,其中甲种礼品盒每盒装4罐,每盒售价240元;乙种礼品盒每盒装6罐,每盒售价300元,恰好全部装完.已知每罐茶叶的成本价为30元,设甲种礼品盒的数量为x盒,乙种礼品盒的数量为y盒.(1)当120m=时.①求y关于x的函数关系式.②若120罐茶叶全部售出后的总利润不低于3 000元,则甲种礼品盒的数量至少要多少盒?(2)若m罐茶叶全部售出后平均每罐的利润恰好为24元,且甲、乙两种礼品盒的数量和不超过69盒,求m的最大值.第二章综合测试答案解析一、 1.【答案】B【解析】解:不等式有:③32−<;④230a −≥;⑤1x >;⑥1a b −>,共4个.故选B . 2.【答案】D【解析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.A .不等式两边同时减5,不等号方向不变,故本选项正确,不符合题意;B .不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C .不等式两边同时乘以12−,不等号方向改变,故本选项正确,不符合题意; D .不等式两边同时乘以1−加1,不等号方向改变,故本选项错误,符合题意。

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a << B .12a > C .4a < D .4a > 2.若a b >,则下列各式中一定成立的是( )A .22a b -<-B .11a b +>+C .22a b <D .33a b ->- 3.点P 坐标为(m +1,m -2),则点P 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知实数 a 、b ,若 a b >,则下列结论错误的是( ) A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 5.如果a <b ,那么下列不等式中一定成立的是( ) A .a 2<abB .ab <b 2C .a 2<b 2D .a ﹣2b <﹣b 6.等腰三角形的周长为20cm 且三边均为整数,底边可能的取值有( )个.A .1B .2C .3D .4 7.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 8.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 11.已知a <b ,下列变形正确的是( )A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 12.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x…-2-10123…y…3210-1-2…A.x<1 B.x>1 C.x<0 D.x>0二、填空题13.关于x的不等式组3222553xxxm+⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m的取值范围是_____.14.已知关于x的不等式组0,10x ax+>⎧⎨->⎩的整数解共有3个,则a的取值范围是___________.15.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.16.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.17.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.关于x的方程231x k+=的解是非负数,则k的取值范围是___________.19.不等式组210322xx x->⎧⎨<+⎩的整数解为_____.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.已知关于x 、y 的二元一次方程组256217x y m x y +=+⎧⎨-=-⎩的解x 、y 都是正数,且x 的值小于y 的值.(1)求该二元一次方程组的解(用含m 的代数式表示)(2)求m 的取值范围.22.计算:(1)()()148632323-++-. (2)()()2249m n m n +--.(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩.(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩.23.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A ,B 两种钢笔作为奖品,已知A ,B 两种每支分别为10元和20元,设购入A 种x 支,B 种y 支. (1)求y 关于x 的函数表达式;(2)若购进A 种的数量不少于B 种的数量,则至少购进A 种多少支?24.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.25.解不等式:431132x x +-->,并把解集在数轴上表示出来.26.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.3.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.4.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a>b,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B、∵a>b,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C、∵a>b,∴-3a<-3b,故本选项符合题意;D、∵a>b,∴5a>5b,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;B、a<b两边同时乘以b,应说明b>0才得ab<b2,故此选项错误;C、a<b两边同时乘以相同的数,故此选项错误;D、a<b两边同时减2b,不等号的方向不变可得a−2b<−b,故此选项正确;故选D.【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6.D解析:D【分析】设底边为xcm ,根据题意得腰202x -cm 为整数,且x<10,可得出底边的取值. 【详解】设底边为xcm ,根据题意得腰202x -cm 为整数, ∵能构成三角形,∴x<20-x ,x<10,∴x 可取的值为:2、4、6、8,故选:D .【点睛】此题考查三角形的三边关系,利用不等式解决实际问题,设边长时很重要,这腰长的话需要讨论 范围,故设底边较好,根据三角形三边关系就可以解答. 7.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案.【详解】解:根据题意,得:10b a b =⎧⎨+=⎩, 解得a=-1,b=1,则不等式-ax-b <0为x-1<0,解得x <1,故选:A .【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x 的不等式,并熟练掌握解一元一次不等式的步骤和依据.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】 解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.17.55【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最大值为:解析:55【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键. 18.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.解:解方程231x k +=得132k x -= ∵方程的解是非负数 ∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 19.1【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:由①得:x >由②得:x <2∴不等式组的解集为<x <2则不等式组的整数解为1故答案为1【点睛】考查了一元一次不等式组的整数 解析:1【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:210322x x x ->⎧⎨<+⎩①②, 由①得:x >12, 由②得:x <2, ∴不等式组的解集为12<x <2, 则不等式组的整数解为1,故答案为1【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)218x m y m =-⎧⎨=+⎩;(2)192m <<. 【分析】(1)运用加减消元法,即可求得x 和y ;(2)根据x 、y 都是整数,列出不等式组,即可求出m 的取值范围.【详解】解:(1):256217x y m x y +=+⎧⎨-=-⎩①②, 由②得:217x y =-,将217x y =-代入①中,∴()221756y y m -+=+,43456y y m -+=+,5540y m =+,8y m =+,将8y m =+代入217x y =-中,∴()28172161721x m m m =+-=+-=-,∴二元一次方程组的解为:218x m y m =-⎧⎨=+⎩. (2)∵二元一次方程组的解x 、y 是正数,且x 的值小于y 的值,∴21080218x m y m m m =->⎧⎪=+>⎨⎪-<+⎩,∴解得:192m <<, ∴m 的取值范围是:192m <<. 【点睛】本题考查二元一次方程组和不等式的综合,解题的关键是掌握解二元一次方程组的方法.22.(1)1;(2)225265m mn n -+-;(3)373x y =-⎧⎪⎨=-⎪⎩;(4)3x ≥. 【分析】(1)直接用平方差公式,化二次根式为最简,利用运算法则得出答案;(2)直接利用完全平方公式展开合并得出答案.(3)方程组整理后,利用加减消元法求出解即可(4))分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.【详解】(1)22222=-34=-1=.故答案为1(2)()()2249m n m n +-- ()()22224292m mn n m mn n =++--+22224849189m mn n m mn n =++-+-225265m mn n =-+-.故答案为225265m mn n -+-(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩①②将①变形:()()3142y x +=+3348y x +=+,即345y x -=……③,由②+③得:2451x x -=+26x -=3x =-.将3x =-代入231x y -=中,∴()3212317y x =-=⨯--=-, 则73y =-, ∴1243231y x x y ++⎧=⎪⎨⎪-=⎩的解为:373x y =-⎧⎪⎨=-⎪⎩故答案为373x y =-⎧⎪⎨=-⎪⎩(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩①②,解①得:53x ->-2x >,解②得:39x ≥3x ≥,由①②得:3x ≥, 故513841x x x -⎧>-⎪⎨⎪+≤-⎩的解集为:3x ≥.【点睛】本题考察二次根式混合运算,因式分解,解二元一次方程组,解不等式组;熟练掌握化二次根式为最简,平方差公式和完全平方公式;加减消元法;正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键23.(1)y =11202x -+;(2)至少购进A 种钢笔80支(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式;(2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.24.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.25.57x <;数轴见解析根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x的范围,再把所得的x的范围在数轴上表示出来即可.【详解】431132x x+-->,去分母,得()()243316x x+-->,去括号,得28936x x+-+>,移项、合并同类项,得75x->-,系数化为1,得57x<.在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.26.解集为:31x-<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x xx x<+⎧⎪⎨++≥⎪⎩①②,由①得:1x<;由②得:3x≥-,∴不等式组的解集为31x-≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.。

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷一.选择题(共8小题,满分24分)1.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b3.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤14.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+65.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b<0的解集为()A.x B.x<C.x>3 D.x<36.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1 B.2 C.3 D.07.关于x的不等式组有四个整数解,则a的取值范围是()A.B.C.D.8.某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二.填空题(共8小题,满分24分)9.x的3倍与2的差不小于1,用不等式表示为.10.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).11.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.12.不等式1﹣4x≥x﹣8的非负整数解为.13.若不等式组的解集是x<3,则m的取值范围是.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.已知关于x的不等式组有2019个整数解,则m的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.三.解答题(共7小题,满分52分)17.解不等式(组):(1)19﹣3(x+7)≤0 (2)18.解不等式组,并把它的解集在数轴上表示出来.19.已知不等式组:(1)解此不等式组;(2)直接写出x可能取到的所有整数之和为.20.学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.21.字母m、n分别表示一个有理数,且m≠n.现规定min{m,n}表示m、n中较小的数,例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.据此解决下列问题:(1)min{﹣,﹣}=.(2)若min{,2)=﹣1,求x的值;(3)若min{2x﹣5,x+3}=﹣2,求x的值.22.如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分别求出k,b,m的值;(2)求S△ACD.23.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?参考答案一.选择题(共8小题)1.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.2.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.3.【解答】解:由题意,得x≥1,故选:C.4.【解答】解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.5.【解答】解:∵一次函数y=﹣2x+b的图象过A(0,3),∴b=3,∴函数解析式为y=﹣2x+3,当y=0时,x=,∴B(,0),∴不等式﹣2x+b<0的解集为x>,故选:A.6.【解答】解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.7.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:B.8.【解答】解:由题意可得,当各班人数除以10的余数不大于6时,应舍去,当各班人数除以10的余数大于等于7时,就增加一名代表,故y与x的函数关系式是y=[],故选:B.二.填空题(共8小题)9.【解答】解:由题意得:3x﹣2≥1,故答案为:3x﹣2≥1.10.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.11.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0 ∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.12.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.13.【解答】解:解不等式x+8>4x﹣1,得:x<3,∵不等式组的解集为x<3,∴m≥3,故答案为:m≥3.14.【解答】解:设原来每天生产汽车x辆,则改进工艺后每天生产汽车(x+6)辆,根据题意,得:15(x+6)>20x,故答案为:15(x+6)>20x.15.【解答】解:∵解不等式①得:x>1﹣m,解不等式②得:x≤3,∴不等式组的解集是1﹣m<x≤3,∵关于x的不等式组有2019个整数解,∴﹣2016≤1﹣m<﹣2015,解得:2016<m≤2017,故答案为:2016<m≤2017.16.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三.解答题(共7小题)17.【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.18.【解答】解:不等式组整理得:,解得:2<x≤4,表示在数轴上,如图所示:19.【解答】解:(1)解不等式①得:x<2,解不等式②得:x≥﹣4,则不等式组的解集为﹣4≤x<2.(2)∵符合不等式组的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,∴﹣4﹣3﹣2﹣1+0+1=﹣9,故答案为﹣9.20.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.21.【解答】解:(1)根据题中的新定义得:min{﹣,﹣}=﹣;故答案为:﹣;(2)由2>﹣1,得到=﹣1,解得:x=﹣1;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.22.【解答】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),,解得:k=,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,∴点D的横坐标为﹣,将x=﹣代入y=x+3,得:y=,将x=﹣,y=代入y=1﹣mx,解得:m=1;(2)对于y=1﹣x,令y=0,得:x=1,∴点C的坐标为(1,0),∴S△ACD=×[1﹣(﹣2)]×=.23.【解答】解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,根据题意得120x+80(100﹣x)=9600,解得x=40,则100﹣x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,根据题意,得,解得≤m≤35,∵m为整数,∴m=34或m=35,当m=34时,100﹣m=66;当m=35时,100﹣m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.。

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。

数学八下第二章试题及答案

数学八下第二章试题及答案

数学八下第二章试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14B. πC. 0.33333…(3无限循环)D. √42. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 43. 根据勾股定理,直角三角形的斜边长度为:A. 两直角边长度之和B. 两直角边长度之差C. 两直角边长度之积D. 两直角边长度平方和的平方根4. 以下哪个表达式是二次根式的最简形式?A. √12B. √75C. √48D. √645. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是二、填空题(每题2分,共10分)6. 一个数的平方根是2,那么这个数是______。

7. 如果一个三角形的三边长分别为3、4、5,那么这是一个______三角形。

8. √16的值是______。

9. 一个数的立方根是-2,那么这个数是______。

10. 根据勾股定理,如果直角三角形的两直角边长分别为6和8,那么斜边的长度是______。

三、解答题(共80分)11. 计算下列各题,并写出计算过程。

(每题10分,共20分)a. √81b. (-2)^312. 解下列方程,并写出解题步骤。

(每题15分,共30分)a. x^2 - 4x = 0b. √x - 2 = 313. 证明勾股定理,并给出一个具体的例子。

(每题30分,共30分)四、附加题(10分)14. 一个直角三角形的两直角边长分别为a和b,斜边长为c。

如果a和b的比值为黄金分割比,求c的值。

答案:一、选择题1. B2. A3. D4. D5. D二、填空题6. 47. 直角8. 49. -810. 10三、解答题11. a. √81 = 9b. (-2)^3 = -812. a. x^2 - 4x = 0x(x - 4) = 0x = 0 或 x = 4b. √x - 2 = 3√x = 5x = 2513. 证明:设直角三角形的两直角边长分别为a和b,斜边长为c。

八年级数学下册第二章单元测试卷及答案

八年级数学下册第二章单元测试卷及答案

八年级数学下册第二章《一元一次不等式与一元一次不等式组》单元测试卷满分:150分考试时间:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.下列叙述:①若a是非正数,则a≤0;②“a2减去10不大于2”可表示为a2−10<2;③“x的倒数超过10”可表示为1x>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的有()A. 1个B. 2个C. 3个D. 4个2.如果0<x<1,那么下列不等式成立的是()A. x<x2<1x B. x2<x<1xC. 1x<x<x2 D. 1x<x2<x3.已知关于x的不等式x−a<1的解如图所示,则a的取值是()A. 0B. 1C. 2D. 34.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A. 2种B. 3种C. 4种D. 5种5.有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A. x=1,y=3B. x=4,y=1C. x=3,y=2D. x=2,y=36.有不足30个苹果分给若干个小朋友,若每个小朋友分3个,则剩2个苹果;若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个.已知小朋友人数是偶数个,那么苹果的个数是()A. 25B. 26C. 28D. 297.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.4]=1.若[x+23]=5,则x的取值范围是()A. x≥13B. x≤16C. 13≤x<16D. 13<x≤168. 对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作.如果操作恰好进行两次停止,那么x 的取值范围是( )A. 8<x ≤22B. 8≤x <22C. 22<x ≤64D. 8<x ≤649. 已知关于x 的不等式3x −m +1>0的最小整数解为2,则实数m 的取值范围是( )A. 4≤m <7B. 4<m <7C. 4≤m ≤7D. 4<m ≤710. 某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加,检票速度一定,当开放一个大门时,需用40分钟待检观众全部进入大厅,同时开放两个大门,只需10分钟,现在想提前开演,必须在5分钟内全部检完票,则音乐厅应同时开放的大门数是( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共5小题,共20.0分)11. 某次知识竞赛共有20道题,每答对一题得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式为 . 12. 如果不等式组{x <3a +2,x <a −4的解集是x <a −4,那么a 的取值范围是 .13. 已知不等式组{x >2x <a 的解集中共有5个整数,则a 的取值范围为______.14. 学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有______人. 15. 若正数a ,b ,c 满足不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b ac b a c b a c 4112535232611,则a ,b ,c 的大小关系为_______________(用<连接).三、解答题(本大题共10小题,共100.0分)16. (8分)某种导火绳燃烧的速度是0.8cm/s.一位工人点燃导火绳后以6m/s 的速度跑到距爆破点120m 以外的安全区,问导火绳的长至少要多少cm ?17.(10分)已知关于x的不等式2m−mx2>12x−1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.18.(10分)(1)A、B、C三人去公园玩跷跷板,由下面的示意图(1),你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,由下面的示意图(2),你该如何判断这四人的轻重呢?19.(10分)日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x吨(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?20.(10分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)某小区超市老板购进A,B两种香油,其进价和售价如表:(1)若两种香油共140瓶,花去了1000元,求A,B两种香油各多少瓶.(2)若两种香油共140瓶,B香油数量不超过A香油数量的4倍且不低于A香油数量的3倍.所获利润y元,求y的最大值.22.(10分)是否存在整数m,使关于x的不等式1+3xm >x+9m与关于x的不等式x+1>x−2+m3的解集相同?若存在,求出整数m和不等式的解集;若不存在,请说明理由.23.(10分)有一片牧场,牧草每天都在匀速生长(即牧草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)阅读下列材料:数学问题:已知:x−y=2,且x>1,y<0,试确定x+y的取值范围.问题解法:∵x−y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>−1又∵y<0,∴−1<y<0.…………①同理得:1<x<2.…………②由②+①得−1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2完成任务:(1)直接写出数学问题中2x+3y的取值范围:_____.(2)已知:x+y=3,且x>2,y>0,试确定x−y的取值范围;(3)已知:y>1,x<−1,若x−y=a成立,试确定x+y的取值范围(结果用含a的式子表示).答案1.C2.B3.B4.B5.C6.B7.C8.C9.A10.B11.10n−5(20−n)>9012.a≥−313.7<a≤814.4415.b<c<a16.解:设导火线的长度为x,0.8cm=0.008m由题意得,6×x0.008≥120,解得:x≥0.16,答:导火绳的长至少要0.16cm.17.解:(1)当m=1时,不等式为2−x2>x2−1,去分母得:2−x>x−2,解得:x<2;(2)不等式去分母得:2m−mx>x−2,移项合并得:(m+1)x<2(m+1),当m≠−1时,不等式有解,当m>−1时,不等式解集为x<2;当m<−1时,不等式的解集为x>2.18.解:(1)根据题意可得,A <B ,A <C ,∴无法判断B ,C 的大小;(2)根据题意可得,{S >PR +P >Q +S R +Q =S +P,由R +Q =S +P ,可得R =S +P −Q ,然后把R =S +P −Q 代入R +P >Q +S 中, 可得P >Q , ∵R +Q =S +P , ∴S −R =Q −P <0, ∴S <R , ∴R >S >P >Q .19.解:(1)设西施舌的投放量为x 吨,则对虾的投放量为(50−x)吨,根据题意得{9x +4(50−x)≤3603x +10(50−x)≤290, 解之得{x ≤32x ≥30;∴30≤x ≤32.(2)y =30x +20(50−x)=10x +1000; ∵30≤x ≤32, ∴1300≤y ≤1320, ∴y 的最大值是1320,因此当x =32时,y 有最大值,且最大值是1320千元.20.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元,根据题意,得:{20x +15y +7000=2400010x −5y +1000=2000,解得:{x =400y =600,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a 张,则购买乙种办公桌(40−a)张,购买的总费用为y , 则y =400a +600(40−a)+2×40×100 =−200a +32000, ∵a ≤3(40−a), ∴a ≤30,∵−200<0,∴y 随a 的增大而减小,∴当a =30时,y 取得最小值,最小值为26000元.21.解:(1)设A 种香油m 瓶,B 种香油n 瓶,依题意有{m +n =406.5m +8n =1000, 解得{m =80n =60.故A 种香油80瓶,B 种香油60瓶.(2)设A 香油数量为x 瓶,则B 香油数量为(140−x)瓶,依题意有 3x ≤140−x ≤4x , 解得28≤x ≤35,y =(8−6.5)x +(10−8)(140−x)=280−0.5x , 故当x =28时,y 的最大值为266元.22.解:存在。

八年级数学下第二章单元测试试题及答案

八年级数学下第二章单元测试试题及答案

八年级数学第二章单元测试试题(自我综合评价)第I卷(选择题)一、选择题(每小题3分,共36分)1.若a<b,则下列不等式中一定成立的就是 ( )A.a-3>b-3B.a-3<b-3C.3-a<3-bD.3ac<3bc2下面给出的不等式组中①②③④⑤其中就是一元一次不等式组的个数就是( )A.2个B.3个C.4个D.5个3.不等式组整数解的个数就是( )A.个B.个C.个D.个4.不等式组的解集在数轴上可表示为5.若方程组有2个整数解,则的取值范围为…………………( )A、 B、 C、 D、6.不等式组的解集就是( )A、x>3 ;B、x<6;C、3<x<6 ;D、x>6.7.不等式的解集为( )A、 x>2B、 x>1C、 x<1D、 x<28.代数式的值小于0,则可列不等式………………………………( )A、B、C、D、9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为,则可以列得不等式组为:( )A、 B、C、 D、10.如果关于的方程的解不就是负值,那么与的关系就是( )A. B. C. D.11.不等式组的所有整数解的与就是( )A.2B.3C.5D.612.已知,如果,则的取值范围就是( )A. B. C. D.第II卷(非选择题)二、填空题(每小题3分,共12分)13.不等式的解集为 .14.不等式组的整数解为________.15.如图,已知函数与函数的图象交于点P,则不等式的解就是、16.小亮准备用元钱买笔与练习本,已知每去笔元,每本练习本元.她买了本练习本,最多还可以买_________去笔.三、解答题:(共52分)17.(6分)解不等式:18.(6分)解不等式,并把解集表示在数轴上.19.(6分)解不等式组:20、(9分)如图表示一艘轮船与一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图像.根据图像解答下列问题:(1)在轮船快艇中,哪一个的速度较大(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时,快艇在轮船的前面?(3)问快艇出发多长时间赶上轮船?21.(8分)(本题满分6分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包与2本词典。

(完整版)八年级数学下第二章单元测试试题及答案

(完整版)八年级数学下第二章单元测试试题及答案

八年级数学第二章单元测试试题(自我综合评价)第I卷(选择题)一、选择题(每小题3分,共36分)1.若a<b,则下列不等式中一定成立的是()A.a-3>b-3 B.a-3<b-3 C.3-a<3-b D.3ac<3bc2下面给出的不等式组中①②③④⑤其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个3.不等式组整数解的个数是()A.个 B.个 C.个 D.个4.不等式组的解集在数轴上可表示为5.若方程组有2个整数解,则的取值范围为…………………() A. B. C. D.6.不等式组的解集是()A.x>3 ;B.x<6;C.3<x<6 ;D.x>6.7.不等式的解集为( )A. x>2B. x>1C. x<1D. x<2 8.代数式的值小于0,则可列不等式………………………………()A. B. C. D.9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为,则可以列得不等式组为:( )A、 B、C、 D、10.如果关于的方程的解不是负值,那么与的关系是()A. B. C. D.11.不等式组的所有整数解的和是()A.2 B.3 C.5 D.612.已知,如果,则的取值范围是()A. B. C. D.第II卷(非选择题)二、填空题(每小题3分,共12分)13.不等式的解集为.14.不等式组的整数解为________.15.如图,已知函数与函数的图象交于点P,则不等式的解是 .16.小亮准备用元钱买笔和练习本,已知每去笔元,每本练习本元.他买了本练习本,最多还可以买_________去笔.三、解答题:(共52分)17.(6分)解不等式:18.(6分)解不等式,并把解集表示在数轴上.19.(6分)解不等式组:20、(9分)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图像.根据图像解答下列问题:(1)在轮船快艇中,哪一个的速度较大(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时,快艇在轮船的前面?(3)问快艇出发多长时间赶上轮船?21.(8分)(本题满分6分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。

浙教版八年级下册数学第二章测试题及答案

浙教版八年级下册数学第二章测试题及答案

浙教版八年级下册数学第二章测试题及答案第2章检测卷一、选择题(本题有10小题,每小题3分,共30分)1.一元二次方程x2+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.若代数式x2+5x+6与-x+1的值相等,则x的值为()A.-1或-5 B.-6或1C.-2或-3 D.-13.两个实根之和为3的一元二次方程是()A.2x2-3x+1=0 B.x2+1=3xC.x2-3x+4=0 D.3x2+9x-1=04.关于x的一元二次方程(a-4)x2+x+a2-16=0的一个根是0,则a的值是() A.-4 B.4 C.4或-4 D.-4或05.将一元二次方程x2-2x-5=0化为(x+a)2=b的形式,则b=() A.3 B.4 C.6 D.136.已知关于x的方程x2-kx-6=0的一个根是x=3,则实数k的值为() A.1 B.-1 C.2 D.-27.把方程x2-4x-7=0化成(x-m)2=n的形式,则m,n的值是() A.2,7 B.-2,11 C.-2,7 D.2,118.关于x的一元二次方程x2-3x+m=0没有实数根,则实数m的取值范围为()A.m>94B.m<94C.m=94D.m<-949.若关于x的一元二次方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k的值是() A.3或-2 B.-3或2 C.3 D.-210.下面结论错误的是()A.方程x2+4x+5=0,则x1+x2=-4,x1x2=5B.方程2x2-3x+m=0有实数根,则m≤9 8C.方程x2-8x+1=0可配方得(x-4)2=15D.方程x2+x-1=0的两根为x1=-1+52,x2=-1-52二、填空题(本题有6小题,每小题4分,共24分)11.写出二次项系数为5,以x1=1,x2=2为根的一元二次方程:______________________.12.一元二次方程x(x-1)=x-1的解是________________.13.已知关于x的方程mx2+2x-4=0是一元二次方程,则m的取值范围是____________.14.已知方程x2-3x-4=0的两个根为x1和x2,则x21+x22=____________.15.学校课外生物小组的试验园地是长35米、宽20米的长方形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),并使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为__________________.(第15题)16.方程x2-2x-3=0的一个实数根为m,则m2-2m+2 017=________.三、解答题(本题有7小题,共66分)17.(8分)用适当的方法解下列方程:(1)x2+3x-4=0;(2)(x+1)2=4x;(3)(x+4)2=5(x+4); (4)(x-3)(x-1)=3.18.(8分)关于x的方程x2-(k+1)x-6=0的一个根是2,求k的值和方程的另一个根.19.(8分)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50个学生纪念品和10个教师纪念品,其中每个教师纪念品的成本比每个学生纪念品的成本多8元.(1)这两种不同纪念品每个的成本分别是多少?(2)如果商店购进1 200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余的学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2 500元,第二周每个纪念品的销售价格为多少元?20.(10分)关于x的方程(k2+2k-2)x2+(k+1)x-3=0(k为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k的值.(2)求k=1时方程的解.(3)求出一个k(k≠1)的值,使这个k的值代入原方程后,所得的方程有一个解与(2)中方程的其中一个解相同.(本小题只需要求出一个k的值即可)21.(10分)已知a,b,c为一个三角形的三边长,且方程b (x2-1)-2ax+c (x2+1)=0有两个相等的实数根.试判断此三角形的形状,并说明理由.22.(10分)如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的长和宽各为多少米.设与墙平行的一边长为x米.(第22题)(1)填空:与墙垂直的一边长为________米;(用含x的代数式表示)(2)列出方程,并求出问题的解.23.(12分)杭州湾跨海大桥通车后,A地经杭州湾跨海大桥到宁波港的路程比原来缩短了120 km.已知运输车速度不变时,行驶时间将从原来的103h缩短到2 h.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地运到B地的运输费用为8 320元,其中从A地经杭州湾跨海大桥到宁波港每车的运输费用与(2)中相同,从宁波港到B地的海上运费计费方式是:若货物不超过10车,1车800元,货物每增加1车,每车的海上运费就减少20元,问这批货物有几车?答案一、1.D 2.A 3.B 4.A 5.C 6.A7.D8.A9.C10.A二、11.5x2-15x+10=012.x1=x2=113.m≠014.1715.(35-2x)(20-x)=600(或2x2-75x+100=0)16.2 020三、17.解:(1)x2+3x-4=0,x=-3±9+4×42×1=-3±52.∴x1=1,x2=-4.(2)(x+1)2=4x,整理得x2-2x+1=0,即(x-1)2=0,∴x1=x2=1.(3)(x+4)2=5(x+4),整理得(x+4)(x+4-5)=0,即(x+4)(x-1)=0,∴x1=-4,x2=1.(4)(x-3)(x-1)=3,化成一般形式为x2-4x=0,即x(x-4)=0.∴x1=0,x2=4.18.解:把x=2代入x2-(k+1)x-6=0,得4-2(k+1)-6=0,解得k=-2,则原方程为x2+x-6=0,解得x1=2,x2=-3.所以方程的另一个根为-3.19.解:(1)设每个学生纪念品的成本为x元,根据题意得50x+10(x+8)=440,解得x=6,∴x+8=6+8=14.答:每个学生纪念品的成本为6元,每个教师纪念品的成本为14元.(2)第二周单价降低x元后,这周的销售量为(400+100x)个,由题意得400×(10-6)+(10-x-6)(400+100x)+(4-6)[1 200-400-(400+100x)]=2500,即1 600+(4-x)(400+100x)-2(400-100x)=2 500,整理得x2-2x+1=0,解得x1=x2=1,则10-1=9(元).答:第二周每个纪念品的销售价格为9元.20.解:(1)不一定是.当k2+2k-2=0时该方程不是一元二次方程,解得k1=-1+3,k2=-1- 3.(2)把k=1代入原方程得x2+2x-3=0,解得x1=1,x2=-3.(3)把x=1代入原方程得k2+2k-2+k+1-3=0,整理得k2+3k-4=0,(k+4)(k-1)=0,解得k=-4,或k=1(舍去).所以求出的k值为-4.点拨:(3)题答案不唯一,也可以把x=-3代入原方程解得k=-83或k=1(舍去).21.解:此三角形是直角三角形.理由如下:原方程整理得,(b+c)x2-2ax+c-b=0.则(-2a)2-4(b+c)(c-b)=0,整理得a2+b2=c2.∴此三角形是直角三角形.22.解:(1)40-x 2(2)根据题意得x·40-x2=180,整理得x2-40x+360=0,解得x1=20+210,x2=20-210.∵墙长25米,20+210>25,∴x=20+210不合题意,应舍去.∵0<20-210<25,∴x=20-210符合题意,此时40-x2=10+10.答:养鸡场的长是(20-210)米,宽是(10+10)米. 23.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km ,由题意得x +120103=x2,解得x =180.∴A 地经杭州湾跨海大桥到宁波港的路程为180 km. (2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y [800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去), ∴这批货物有8车.。

北师大版八年级数学下册第二章检测卷(附答案)

北师大版八年级数学下册第二章检测卷(附答案)

北师大版八年级数学下册第二章检测卷(附答案)第二章检测卷时间:120分钟。

满分:120分一、选择题1.如果a>b,那么下列结论一定正确的是()A。

a-3<b-3B。

3-a<3-bC。

ac>bcD。

a2>b22.不等式2(x+1)<3x的解集在数轴上表示为()A。

(-∞,-1)B。

(-∞,1)C。

(1,+∞)D。

(-1,+∞)3.不等式组{x-1≥2}的解集是()A。

x>4B。

x≤3C。

3≤x<4D。

无解4.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足()A。

a<-1B。

a≤1C。

a>-1D。

a<05.若不等式组{x+9a+1≥2a-1}有解,则实数a的取值范围是A。

a<-36B。

a≤-36C。

a>-36D。

a≥-366.某次数学竞赛中出了10道题,每答对一题得5分,每答错一题扣3分,若答题只有对错之分,如果至少得10分,那么至少要答对()A。

4题B。

5题C。

6题D。

7题二、填空题7.不等式3x+1<0的解集为{x<-1}.8.已知一次函数y=ax+b的图象如图,根据图中信息写出不等式ax+b≥0的解集为{x≥1}.9.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排6人种茄子.10.若关于x,y的二元一次方程组{2x+y=-3k-1,x+2y=2}的解满足x+y>2,则k的取值范围是{k<-1或k>1}.11.我们定义|a b| = ad-bc,例如|4 3|=2×5-3×4=-2,则不等式组1<|x 2|<3的解集是{x<-1或x>1}.5 a|12.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为6.三、解答题13.(1) 4x+7<5x-2x>92) 根据图可知,x<a+3,即a>x-3.又因为x<a+1,所以a<x-1.综上可得:x-1>a>x-3.14.解不等式组{2x<6,3(x-2)≤x-4},得{x≤2}.15.设不等式组{x+a>0,2x+a≤4,x+2a>0}的整数解为(x1,x2,x3),则有:x1+a>0,2x1+a≤4,x1+2a>0,共有2种情况;x2+a>0,2x2+a≤4,x2+2a>0,共有3种情况;x3+a>0,2x3+a≤4,x3+2a>0,共有2种情况;故共有7种整数解.因为只有5个整数解,所以a的取值范围为空集.16.求解一次函数y=(2-m)x+m-3在第二、第三、第四象限上的取值范围。

数学试卷八年级下册第二章

数学试卷八年级下册第二章

一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()A. √-1B. iC. √4D. √-92. 若x=2,则下列代数式中,值为-1的是()A. x+3B. x-5C. 2x-3D. 5x+23. 下列各数中,是有理数的是()A. √2B. πC. √-1D. 1/24. 若a、b是实数,且a+b=0,则下列结论正确的是()A. a=0B. b=0C. a=-bD. b=-a5. 下列各数中,是无理数的是()A. √9B. √16C. √2D. √-16. 若x=3,则下列代数式中,值为9的是()A. x^2B. 2xC. x^3D. x^47. 下列各数中,是正数的是()A. -1/2B. 0C. 1/3D. -28. 若a、b是实数,且ab>0,则下列结论正确的是()A. a>0,b>0B. a<0,b<0C. a>0,b<0D. a<0,b>09. 下列各数中,是整数的是()A. √25B. √36C. √49D. √-410. 若x=-3,则下列代数式中,值为-27的是()A. x^2B. 2xC. x^3D. 3x二、填空题(每题5分,共20分)11. 完全平方公式是()12. 若a、b是实数,且a^2=b^2,则a=______或a=______。

13. 若x=2,则x^2=______。

14. 若x=5,则|x|=______。

三、解答题(每题10分,共30分)15. 简化下列各式:(1)√36 - √9(2)(√16 + √25) ÷ (√9 - √4)16. 求下列代数式的值:(1)当x=2时,求2x^2 - 3x + 1的值。

(2)当x=-3时,求x^2 + 5x - 2的值。

17. 解下列方程:(1)x^2 - 5x + 6 = 0(2)√x - 2 = 3四、应用题(每题15分,共30分)18. 某班级有男生x人,女生y人,已知男生人数是女生人数的2倍,求男生和女生的人数之和。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。

初二下册数学第二章检测试卷(浙教版带解析)

初二下册数学第二章检测试卷(浙教版带解析)

初二下册数学第二章检测试卷(浙教版带解析)我们经常听见这样的问题:你的数学怎么那么好啊?教教我诀窍吧?其实学习这门课没有什么窍门。

只要你多练习总会有收获的,希望这篇八年级下册数学第二章检测试题,能够帮助到您!【一】选择题(每题3分,共30分)1.(2019兰州中考) 股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.一支股票某天跌停,之后两天时间又涨回到原价,假设这两天此股票股价的平均增长率为x,那么x满足的方程是()A. =B. =C.1+2x=D.1+2x=2. 是关于的一元二次方程,那么的值应为( )A. =2B.C.D.无法确定3.假设是关于的方程的根,那么的值为( )A.1B.2C.-1D.-24.(2019重庆中考)一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B. x1=1,x2=2C. x1=1,x2=-2D. x1=0,x2=25.方程的解是( )A. B.C. D.6.如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是( )A. B. 且C. D. 且7.定义:如果关于x的一元二次方程满足,那么我们称这个方程为凤凰方程. 是凤凰方程,且有两个相等的实数根,那么以下结论正确的选项是( )A. B. C. D.8.(2019广州中考)2是关于x的方程 -2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,那么三角形ABC的周长为( )A.10B.14C.10或14D.8或109.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A. B. C. D.10.(2019湖南衡阳中考)假设关于x的方程x2+3x+a=0有一个根为-1,那么另一个根为( ).A.-2B.2C.4D.-3【二】填空题(每题3分,共24分)11.(2019山东泰安中考)方程:(2x+1)(x-1)=8(9-x)-1的根为________.12.无论取任何实数,多项式的值总是_______数.13.如果,那么的数量关系是________.14.如果关于的方程没有实数根,那么的取值范围为_____________.15.假设( 是关于的一元二次方程,那么的值是________.16. 是关于的方程的一个根,那么 _______.17.(2019南京中考)方程x2+mx+3=0的一个根是1,那么它的另一个根是_____,m的值是______.18.三角形的每条边的长都是方程的根,那么三角形的周长是____________.【三】解答题(共46分)19.(5分)在实数范围内定义运算,其法那么为:,求方程(4 3) 的解.20.(5分)假设关于的一元二次方程的常数项为0,求的值是多少.21.(6分)(2019乌鲁木齐中考)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?22.(6分)假设关于的一元二次方程没有实数根,求的解集(用含的式子表示).23.(8分)在长为,宽为的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.24.(8分)假设方程的两根是和,方程的正根是,试判断以为边长的三角形是否存在.假设存在,求出它的面积;假设不存在,说明理由.25.(8分)(2019四川南充中考)关于x的一元二次方程,p 为实数.(1)求证:方程有两个不相等的实数根.(2)p为何值时,方程有整数解?(直接写出三个,不需说明理由)第2章一元二次方程检测题参考答案1.B 解析:设此股票原价为a元,跌停后的价格为0.9a元.如果每天的平均增长率为x,经过两天涨价后的价格为0.9a ,于是可得方程0.9a =a,即x满足的方程是 = .2.C 解析:由题意得,解得 .应选C.3.D 解析:将代入方程得,∵ ,,.应选D.4.D 解析:由,可知,故或,方程的根是 .5.A 解析:∵ , , .应选A.6.B 解析:依题意得解得且 .应选B.7.A 解析:依题意得代入得 ,, .应选A.8.B 解析:将x=2代入方程可得4-4m+3m=0,解得m=4,那么此时方程为 -8x+12=0,解得方程的根为 =2, =6,那么三角形的三边长为2、2、6,或者为2、6、6.因为2+26,所以无法构成三角形.因此三角形的三边长分别为2、6、6,所以周长为2+6+6=14.9.B 解析:设这两年平均每年绿地面积的增长率是,由题意知所以这两年平均每年绿地面积的增长率是 .10.A 解析:根据根与系数的关系得,-1+ , .11. =-8, =4.5 解析:先将方程化为一般形式,得 +7x-72=0,再用因式分解法或公式法解方程即可.12.正解析: .13. 解析:原方程可化为, .14. 解析:∵= , .15.-3或1 解析:由得或 .16. 或解析:将代入方程得 ,解得 .17.3 4 解析:设方程的另一个根为a,根据根与系数的关系得到a1=3,a+1= m,解得a=3,m= 4.18.6或10或12 解析:解方程,得 , . 三角形的每条边的长可以为2、2、2或2、4、4或4、4、4(2、2、4不能构成三角形,故舍去),三角形的周长是6或10或12.19.解:∵ ,20.解:由题意得即时,关于的一元二次方程的常数项为 .21. 解:设降价x元,那么售价为(60-x)元,销量为(300+20x)件,根据题意,得(60-x-40)(300+20x)=6 080,解得 =1, =4. 又要顾客得实惠,故取x=4,即定价为56元.答:应将销售单价定为56元.22.解:∵ 关于的一元二次方程没有实数根,∵ ,即, .所求不等式的解集为 .23.解:设所截去小正方形的边长为 .由题意得,解得 .经检验,符合题意,不符合题意,舍去. .答:所截去小正方形的边长为 .24.解:解方程,得方程的两根是 .所以的值分别是 .因为,所以以为边长的三角形不存在.25.(1)证明:化简方程,得x2-5x+4-p2 =0.=(-5)2-4(4-p2)=9+4p2.p为实数,p20, 9+4p20,即0,方程有两个不相等的实数根.(2)解:当p为0,2,-2时,方程有整数解.(答案不唯一)为大家推荐的八年级下册数学第二章检测试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!。

八年级数学下册第二章检测卷含答案

八年级数学下册第二章检测卷含答案

第二章检测卷时间:120分钟 满分:150分 题号 一 二 三 总分 得分一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确)1.下列式子中,不是不等式的是( )A .2x <1B .x ≠-2C .4x +5>0D .a =32.“x 的3倍与y 的和不小于2”用不等式可表示为( ) A .3x +y >2 B .3(x +y )>2 C .3x +y ≥2 D .3(x +y )≥2 3.若x >y ,则下列式子中错误的是( )A .x -3>y -3B .x +3>y +3C .-3x >-3y D.x 3>y34.若不等式(a +1)x >a +1的解集是x <1,则a 必须满足( ) A .a <0 B .a <-1 C .a <1 D .a >-15.在解不等式“x 2-x -16>1”时,去分母这步正确的是( )A .3x -x -1>1B .3x -x +1>1C .3x -x -1>6D .3x -x +1>66.一元一次不等式2(x +1)≥4的解集在数轴上表示为( )7.不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( )A .x >4B .x ≤3C .3≤x <4D .无解8.一次函数y =kx +b 的图象如图所示,当y >0时x 的取值范围是( ) A .x >2 B .x <2 C .x >0 D .x <09.在平面直角坐标系内,点P (2x -6,x -5)在第四象限,则x 的取值范围为( ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-310.若关于x 的方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ) A .m >-54 B .m <-54 C .m >54 D .m <5411.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天能生产x 辆,则关于x 的不等式为( )A .15x >20(x +6)B .15(x +6)≥20xC .15x >20(x -6)D .15(x +6)>20x12.在方程组⎩⎪⎨⎪⎧2x +y =1-m ,x +2y =2中,若未知数x ,y 满足x +y >0,则m 的取值范围在数轴上表示正确的是( )13.如图,直线y =kx +b 经过点A (-1,-2)和点B (-2,0),直线y =2x 经过点A ,则不等式组2x <kx +b <0的解集为( )A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <014.若关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,5-2x >1只有5个整数解,则实数a 的取值范围是( )A .-4<a <-3B .-4≤a ≤-3C .-4≤a <-3D .-4<a ≤-315.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带3瓶,则剩余3瓶;若每人带4瓶,则有一人带了矿泉水,但不足3瓶,则这家参加登山的人数为( )A .5人B .6人C .7人D .5人或6人二、填空题(本大题共5小题,每小题5分,共25分)16.如图是关于x 的不等式2x -a ≤-1的解集,则a =________.17.已知一次函数y 1=2x -6,y 2=-5x +1,则当x ________时,y 1>y 2.18.不等式组⎩⎪⎨⎪⎧2x +1>0,x >2x -5的正整数解为____________.19.某人10:10离家赶11:00的火车,已知他家离车站10公里,他离家后先以3公里/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走________公里才能不误当次火车(进站时间忽略不计).20.按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是________.三、解答题(本大题共7小题,各题分值见题号后,共80分) 21.(8分)解下列不等式,并把它们的解集分别表示在数轴上.(1)x +12≥3(x -1)-4;(2)2x -13-5x +12≥1.22.(8分)解不等式组⎩⎪⎨⎪⎧x -1<2 ①,2x +3≥x -1 ②.请结合题意填空.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来; (4)不等式组的解集为__________.23.(10分)关于x 的两个不等式3x +a2<1①与1-3x >0②.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.24.(12分)已知一次函数y1=-x+3,y2=3x-4,在如图所示的坐标系中作出函数图象,并观察图象回答下列问题:(1)当x取何值时,y1=y2?(2)当x取何值时,y1>y2?(3)当x取何值时,y1<y2?25.(12分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价与售价如表所示:进价(元/千克)售价(元/千克)苹果58丑桔913(1)若该水果店售完这两种水果共获利495元,求水果店购进这两种水果各多少千克;(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,则最少应购进苹果多少千克?26.(14分)对x ,y 定义一种新运算T ,规定:T (x ,y )=ax +byx +y (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a ×0+b ×10+1=b .已知T (1,1)=2.5,T (4,-2)=4.(1)求a ,b 的值;(2)若关于m 的不等式组⎩⎪⎨⎪⎧T (4m ,5-4m )≤3,T (2m ,3-2m )>p 恰好有2个整数解,求实数p 的取值范围.27.(16分)去冬今春,我市部分地区遭受了罕见的旱灾.“旱灾无情人有情”,某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件;(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案与解析1.D 2.C 3.C 4.B 5.D 6.A 7.C 8.A 9.A 10.A 11.D 12.B 13.B14.D 解析:解不等式组得a ≤x <2,则整数解是1,0,-1,-2,-3.根据题意得-4<a ≤-3,故选D.15.D 解析:设这家参加登山的有x 人,根据题意得⎩⎪⎨⎪⎧3x +3<4(x -1)+3,3x +3>4(x -1),解得4<x <7.∵x 为整数,∴x =5或6,故选D.16.-1 17.>1 18.1,2,3,4 19.1320.4个 解析:根据运算程序可得第一次的结果是2x -1,第二次的结果是2(2x -1)-1=4x -3,第三次的结果是2(4x -3)-1=8x -7,第四次的结果是2(8x -7)-1=16x -15,则2x -1≤65,4x -3≤65,8x -7≤65,16x -15>65,解得5<x ≤9,则x 的整数值是6,7,8,9.共有4个.21.解:(1)去分母,得x +1≥6(x -1)-8.(1分)去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-8-1.合并同类项,得-5x ≥-15.系数化为1,得x ≤3.(3分)在数轴上表示如图.(4分)(2)去分母,得2(2x -1)-3(5x +1)≥6.(6分)去括号,得4x -2-15x -3≥6.移项,得4x -15x ≥6+2+3.合并同类项,得-11x ≥11.系数化为1,得x ≤-1.(7分)在数轴上表示如图.(8分)22.解:(1)x <3(2分) (2)x ≥-4(4分) (3)在数轴上表示如图.(6分)(4)-4≤x <3(8分)23.解:(1)由①得x <2-a 3,由②得x <13.(3分)∵两个不等式的解集相同,∴2-a 3=13,解得a =1.(6分)(2)∵不等式①的解都是②的解,∴2-a 3≤13,解得a ≥1.(10分)24.解:先作出y 1=-x +3与y 2=3x -4的函数图象,如图.令y 1=y 2,得x =74.故两直线交点的横坐标为74.(3分)(1)当x =74时,y 1=y 2(此时两图象交于一点).(6分)(2)当x <74时,y 1>y 2(y 1的图象在y 2的图象的上方).(9分)(3)当x >74时,y 1<y 2(y 1的图象在y 2的图象的下方).(12分)25.解:(1)设购进苹果x 千克,则购进丑桔(140-x )千克,(1分)依题意得(8-5)x +(13-9)(140-x )=495,解得x =65,(4分)则140-65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(6分)(2)设购进苹果y 千克,由题意得140-y ≤3y ,解得y ≥35.(11分) 答:最少应购进苹果35千克.(12分)26.解:(1)由题意得⎩⎪⎨⎪⎧a +b =5,2a -b =4,解得⎩⎪⎨⎪⎧a =3,b =2.(4分) (2)根据题意得⎩⎨⎧12m +10-8m5≤3①,6m +6-4m3>p ②,(7分)由①得m ≤54,由②得m >32p -3,∴不等式组的解集为32p -3<m ≤54.(10分)∵不等式组恰好有2个整数解,则m =0,1,∴-1≤32p -3<0,解得43≤p <2,即实数p 的取值范围是43≤p <2.(14分)27.解:(1)设饮用水有x 件,则蔬菜有(x -80)件.根据题意得x +(x -80)=320,解得x =200.∴x -80=120.(3分)答:饮用水和蔬菜分别为200件和120件.(4分)(2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆.根据题意得⎩⎪⎨⎪⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.(7分)∵m 为正整数,∴m =2或3或4.(9分)故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆.(10分)(3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).∴方案①运费最少,最少运费是2960元.(15分)答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.(16分)。

八年级数学下册.第二章 专题测试(附答案)

八年级数学下册.第二章 专题测试(附答案)

命题点1:不等式(组)中参数的确定◆类型一 根据不等式(组)的解集求参数1.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( ) A .y =-1 B .y =1 C .y =-2 D .y =22.若不等式2(x +3)>1的最小整数解是方程2x -ax =3的解,则a 的值为________. 3.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.4.若关于x 的不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <1,则(a +b)2018=________.◆类型二 利用整数解求值5.若关于x 的不等式2x +a≥0的负整数解恰好是-3,-2,-1,则a 应满足条件【方法10】( )A .a =6B .a≥6C .a≤6 D.6≤a<86.已知关于x 的不等式2x -m <3(x +1)的负整数解只有四个,则m 的取值范围是________.7.(2017·毕节金沙县校级月考)若关于x 的不等式组⎩⎪⎨⎪⎧x +152>x -3①,2x +23<x +a②只有4个整数解,求a 的取值范围.◆类型三 根据不等式(组)解集的情况确定参数的取值范围 8.已知关于x 的不等式(1-a)x >3的解集为x<31-a,则a 的取值范围是( ) A .a >1 B .a <1 C .a <0 D .a >09.(2017·金华中考)若关于x 的一元一次不等式组⎩⎨⎧x<m ,2x -1>3(x -2)的解集是x <5,则m 的取值范围是【易错6】( )A .m≥5 B.m >5 C .m≤5 D.m <510.若关于x 的不等式组⎩⎨⎧x -m<0,3x -1>2(x -1)无解,则m 的取值范围为【易错6】( )A .m≤-1B .m <-1C .-1<m≤0 D.-1≤m<011.★已知x =2是不等式(x -5)(ax -3a +2)≤0的解,且x =1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a ≤2C .1<a≤2D .1≤a≤2 ◆类型四 方程组与不等式(组)结合求参数12.(2017·毕节咸宁县校级月考)在关于x ,y 的方程组⎩⎨⎧2x +y =m +7,x +2y =8-m 中,x ,y满足x≥0,y >0,则m 的取值范围在数轴上应表示为( )13.已知实数x ,y 满足2x -3y =4,且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.14.已知关于x ,y 的方程组⎩⎨⎧x +y =m ,5x +3y =31的解是非负数,求整数m 的值.命题点2:利用一次函数解决与不等式应用相关的方案问题15.(2017·恩施中考)为积极响应政府提出的“绿色发展·低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?16.(2017·衢州中考)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据图中信息,解答下列问题.(1)设租车时间为x小时,租用甲公司的车所需费用为y元,租用乙公司的车所需费1用为y2元.y1,y2与x的函数关系如图所示,根据图象分别求出y1,y2关于x的函数表达式;(2)请你通过计算帮助小明选择哪个公司合算.17.★贵阳阳光小区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A,B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动.A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA 和yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案与解析 1.D 2.72 3.-124.1 解析:解不等式组⎩⎨⎧x -a >2,b -2x >0,得a +2<x <12b.∵该不等式组的解集为-1<x<1,∴a+2=-1,12b =1,∴a=-3,b =2,∴(a+b)2018=(-3+2)2018=(-1)2018=1.5.D 解析:解不等式2x +a≥0,得x≥-a 2.根据题意得-4<-a2≤-3,解得6≤a<8.6.1<m≤27.解:解不等式①得x <21,解不等式②得x >2-3a ,∴不等式组的4个整数解为20,19,18,17.∵不等式组只有4个整数解,∴16≤2-3a <17,解得-5<a≤-143. 8.A 9.A10.A 解析:解不等式x -m <0,得x <m ,解不等式3x -1>2(x -1),得x >-1.∵不等式组无解,∴m≤-1.故选A.11.C 解析:∵x=2是不等式(x -5)(ax -3a +2)≤0的解,∴(2-5)(2a -3a +2)≤0,解得a≤2.∵x=1不是这个不等式的解,∴(1-5)(a -3a +2)>0,解得a >1,∴1<a≤2.12.C 解析:解方程组⎩⎨⎧2x +y =m +7,x +2y =8-m 得⎩⎨⎧x =m +2,y =3-m.根据题意得⎩⎨⎧m +2≥0,3-m >0,解得-2≤m<3.故选C.13.1≤k<3 解析:联立⎩⎨⎧2x -3y =4,x -y =k ,解得⎩⎨⎧x =3k -4,y =2k -4.由x≥-1,y<2可得⎩⎨⎧3k -4≥-1,2k -4<2,解得1≤k<3. 14.解:解方程组可得⎩⎪⎨⎪⎧x =31-3m 2,y =-31+5m 2.∵x≥0,y≥0,∴⎩⎪⎨⎪⎧31-3m2≥0,5m -312≥0,解得315≤m≤313.∵m 为整数,∴m=7,8,9,10.15.解:(1)设男式单车x 元/辆,女式单车y 元/辆,根据题意得⎩⎨⎧3x =4y ,5x +4y =16000,解得⎩⎨⎧x =2000,y =1500.答:男式单车2000元/辆,女式单车1500元/辆.(2)设购置女式单车m 辆,则购置男式单车(m +4)辆,根据题意得⎩⎨⎧m +m +4≥22,2000(m +4)+1500m≤50000,解得9≤m≤12.∵m 为整数,∴m 的值可以是9,10,11,12,即该社区有四种购置方案.设购置总费用为W 元,则W =2000(m +4)+1500m =3500m +8000.∵3500>0,∴W 随m 的增大而增大,∴当m =9时,W 取得最小值,最小值为3500×9+8000=39500.答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.16.解:(1)设y 1=k 1x +80,把点(1,95)代入得95=k 1+80,解得k 1=15,∴y 1=15x +80(x≥0).设y 2=k 2x ,把(1,30)代入得k 2=30,∴y 2=30x(x≥0).(2)当y 1=y 2时,15x +80=30x ,解得x =163;当y 1>y 2时,15x +80>30x ,解得x <163;当y 1<y 2时,15x +80<30x ,解得x >163,∴当租车时间为163小时时,选择甲、乙公司一样合算;当租车时间小于163小时时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.17.解:(1)y A =(30×10+3×10x)×90%=27x +270,y B =30×10+3(10x -2×10)=30x +240.(2)当y A =y B 时,27x +270=30x +240,解得x =10;当y A >y B 时,27x +270>30x +240,解得x <10;当y A <y B 时,27x +270<30x +240,解得x >10,∴当2≤x<10时,到B 超市购买划算;当x =10时,两家超市都一样;当x >10时,到A 超市购买划算.(3)∵x=15>10,∴①选择在A 超市购买,y A =27×15+270=675(元);②可先在B超市购买10副羽毛球拍,送20个羽毛球,后在A超市购买剩下的羽毛球(10×15-20)=130(个),则共需费用为10×30+130×3×0.9=651(元).∵651<675,∴最省钱的购买方案是先在B超市购买10副羽毛球拍,后在A超市购买130个羽毛球.。

【单元卷】浙教版八年级数学下册:第2章 一元二次方程 单元质量检测卷(一)含答案与解析

【单元卷】浙教版八年级数学下册:第2章 一元二次方程  单元质量检测卷(一)含答案与解析

浙教版八年级数学下册单元质量检测卷(一)第2章一元二次方程姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5 B.x1=1,x2=﹣5C.x1=x2=﹣1 D.x1=﹣1,x2=52.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣33.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=2424.已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k=±4 D.k=±25.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<26.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.67.在《代数学》中记载了求方程x2+8x=33正数解的几何方法:如图1,先构造一个面积为x2的正方形,再以正方形的边为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.小明尝试用此方法解关于x的方程x2+10x+c=0时,构造出如图2所示正方形.已知图2中阴影部分的面积和为39,则该方程的正数解为()A.2B.2 C.3 D.48.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s9.自然数n满足等式,这样n的个数是()A.3 B.4 C.5 D.710.两个关于x的一元二次方程ax2+bx+c=0和cx2+bx+a=0,其中a,b,c是常数,且a+c=0.如果x=2是方程ax2+bx+c=0的一个根,那么下列各数中,一定是方程cx2+bx+a=0的根的是()A.B.﹣C.2 D.﹣2二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.12.如果ax2+3x+=(3x+)2+m,则a,m的值分别是.13.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=.14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.15.某电子产品的首发价为8000元,在经历一年的两次降价后(每次降价的百分率相同),此产品目前的售价已降到6480元,则该产品每次降价的百分率为.16.如图,邻边不等的矩形花园ABCD,它的一边AD利用已有的围墙(墙足够长),另外三边所围的栅栏的总长度是18m,若矩形的面积为36m2,则AB的长度是m.17.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.18.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=﹣.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解下列方程:(1)(y﹣2)(y﹣3)=12;(2)2x2+3x﹣1=0(请用配方法解).20.已知m是方程x2﹣2016x+1=0的一个不为0的根,求m2﹣2015m+的值.21.(1)已知x和y满足:4x2+12x+y2﹣4y+13=0,求(x+y)﹣2.(2)解方程:﹣=1.(3)若关于x的分式方程=2﹣的解为正数,求正整数m的值.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?24.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?25.先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5 B.x1=1,x2=﹣5C.x1=x2=﹣1 D.x1=﹣1,x2=5【答案】A【分析】利用直接开平方法解方程即可.【解答】解:(x+3)2=4,∴x+3=±2,∴x1=﹣1,x2=﹣5,故选:A.【知识点】解一元二次方程-直接开平方法2.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣3【答案】C【分析】根据关于x的方程ax2﹣2ax+1=0的一个根是﹣1,可以得到a+2a+1=0,然后即可得到a的值.【解答】解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故选:C.【知识点】一元二次方程的解3.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=242【答案】C【分析】根据经过两轮传染后患病的人数,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:2(1+x)2=242.故选:C.【知识点】由实际问题抽象出一元二次方程4.已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k=±4 D.k=±2【答案】C【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的方程,解之即可得出k值.【解答】解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.【知识点】根的判别式5.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<2【答案】C【分析】根据根与系数的关系以及不等式的解法即可求出答案.【解答】解:由题意可知:x1+x2=﹣2,x1x2=k+1,∵x1+x2﹣x1x2<﹣1,∴﹣2﹣k﹣1<﹣1,∴k>﹣2,∵△=4﹣4(k+1)≥0,∴k≤0,∴﹣2<k≤0,故选:C.【知识点】根的判别式、根与系数的关系6.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.6【答案】C【分析】先根据根的判别式和一元二次方程的定义求出a的范围,再求出不等式组的解集,再根据题意得出a的值,最后得出选项即可.【解答】解:∵整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,∴△=(2a)2﹣4(a+2)(a﹣1)≥0且a+2≠0,解得:a≤2且a≠﹣2,∴解不等式组得:a<x≤3,∵关于x的不等式组有解且最多有6个整数解,∴﹣3≤a<3,∴a可以为2,1,0,﹣1,﹣3,共5个,故选:C.【知识点】一元二次方程的定义、根的判别式、一元一次不等式组的整数解7.在《代数学》中记载了求方程x2+8x=33正数解的几何方法:如图1,先构造一个面积为x2的正方形,再以正方形的边为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.小明尝试用此方法解关于x的方程x2+10x+c=0时,构造出如图2所示正方形.已知图2中阴影部分的面积和为39,则该方程的正数解为()A.2B.2 C.3 D.4【答案】C【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积等于阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可得解.【解答】解:如图2,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x 的矩形,得到大正方形的面积为:39+()2×4=39+25=64,∴该方程的正数解为﹣×2=3.故选:C.【知识点】一元二次方程的应用8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s【答案】B【分析】设出动点P,Q运动t秒,能使△PBQ的面积为15cm2,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答.【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.【知识点】一元二次方程的应用9.自然数n满足等式,这样n的个数是()A.3 B.4 C.5 D.7【答案】B【分析】分①n2﹣2n=1;②n2﹣2n=﹣1;③n2﹣2n≠±1④n=0⑤当n=0,五种情况讨论即可确定n的所有可能的值.【解答】解:①当n2﹣2n=1 时,无论指数为何值等式成立.解方程得n=1±(不合题意,舍去);②当n2﹣2n=﹣1 时,解得:n=1;③当n2﹣2n≠±1 时,当n为自然数,则n2﹣2n≠0,所以n2+47=16n﹣16等式成立.解方程得n1=7,n2=9.④当n=2时,左边=051=0,右边=016=0,所以左边=右边,n=2成立,⑤当n=0,无意义,综上所述,满足条件的n值有4个.故选:B.【知识点】一元二次方程的应用10.两个关于x的一元二次方程ax2+bx+c=0和cx2+bx+a=0,其中a,b,c是常数,且a+c=0.如果x=2是方程ax2+bx+c=0的一个根,那么下列各数中,一定是方程cx2+bx+a=0的根的是()A.B.﹣C.2 D.﹣2【答案】D【分析】根据一元二次方程的定义以及一元二次方程的解法即可求出答案.【解答】解:∵a≠0,c≠0,∴=﹣1,∴x2+x+=0,x2+x+1=0,∴x2+x﹣1=0,x2﹣x﹣1=0,∵x=2是方程ax2+bx+c=0的一个根,∴x=2是方程x2+x﹣1=0的一个根,∴x=﹣2是方程x2﹣x﹣1=0的一个根,即x=﹣2时方程cx2+bx+a=0的一个根故选:D.【知识点】一元二次方程的解二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.【答案】2【分析】根据一元二次方程的定义得到|m|=2且m+2≠0,由此求得m的值.【解答】解:∵关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程,∴|m|=2且m+2≠0,解得m=2.故答案是:2.【知识点】一元二次方程的定义、绝对值12.如果ax2+3x+=(3x+)2+m,则a,m的值分别是.【分析】根据完全平方公式把等式的右边变形,根据题意列式计算即可.【解答】解:(3x+)2+m=9x2+3x++m,则a=9,+m=,解得,m=,故答案为:9,.【知识点】配方法的应用13.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=.【答案】3【分析】根据一元二次方程的解及根与系数的关系可得出a2﹣a=5,a+b=1,进而可得出a3﹣a2=5a,再结合a3﹣a2+5b﹣2=5(a+b)﹣2即可求出结论.【解答】解:∵a,b是方程x2﹣x﹣5=0的两个不同的实数根,∴a2﹣a=5,a+b=1,∴a3﹣a2=5a,∴a3﹣a2+5b﹣2=5a+5b﹣2=5(a+b)﹣2=5×1﹣2=3.故答案为:3.【知识点】根与系数的关系14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,再把+通分得到,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣2,所以+===.故答案为.【知识点】根与系数的关系15.某电子产品的首发价为8000元,在经历一年的两次降价后(每次降价的百分率相同),此产品目前的售价已降到6480元,则该产品每次降价的百分率为.【答案】10%【分析】解答此题利用的数量关系是:电子产品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种电子产品平均每次降价的百分率为x,根据题意列方程得,8000×(1﹣x)2=6480,解得x1=0.1,x2=﹣1.9(不合题意,舍去);答:这种电子产品平均每次降价的百分率为10%.故答案为:10%.【知识点】一元二次方程的应用16.如图,邻边不等的矩形花园ABCD,它的一边AD利用已有的围墙(墙足够长),另外三边所围的栅栏的总长度是18m,若矩形的面积为36m2,则AB的长度是m.【答案】3【分析】根据栅栏的总长度是18m,AB=xm,则BC=(18﹣2x)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设AB=xm,则BC=(18﹣2x)m.根据题意可得,x(18﹣2x)=36.解得x1=6(舍去),x2=3.答:AB的长为3m.故答案是:3.【知识点】一元二次方程的应用17.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.【知识点】因式分解的应用、一元二次方程的解18.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=﹣.【分析】由根与系数的关系得a n+b n=n+3,a n•b n=﹣3n2,所以(a n﹣3)(b n﹣3)=a n b n﹣3(a n+b n)+9=﹣3n2﹣3(n+3)+9=﹣3n(n+1),则==﹣(﹣),然后代入即可求解.【解答】解:由根与系数的关系得a n+b n=n+3,a n•b n=﹣3n2,所以(a n﹣3)(b n﹣3)=a n b n﹣3(a n+b n)+9=﹣3n2﹣3(n+3)+9=﹣3n(n+1),则==﹣(﹣),∴原式=﹣(1﹣+﹣+﹣+…+﹣)=﹣×(1﹣)=﹣×=﹣,故答案为:﹣【知识点】根与系数的关系三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解下列方程:(1)(y﹣2)(y﹣3)=12;(2)2x2+3x﹣1=0(请用配方法解).【分析】(1)根据因式分解法即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵(y﹣2)(y﹣3)=12,∴y2﹣5y﹣6=0,∴(y﹣6)(y+1)=0,∴y1=6或y2=﹣1.(2)∵2x2+3x﹣1=0,∴2(x2+x)=1,2(x2+x+﹣)=1,∴2(x+)2﹣=1,∴2(x+)2=,∴(x+)2=,∴x=.∴x1=或x2=.【知识点】解一元二次方程-配方法、解一元二次方程-公式法20.已知m是方程x2﹣2016x+1=0的一个不为0的根,求m2﹣2015m+的值.【分析】把x=m代入方程x2﹣2016x+1=0有m2﹣2016m+1=0,变形得m2﹣2015m=m﹣1,m2+1=2016m,再将所求代数式m2﹣2015m+变形为﹣1,将=2016代入,计算即可求出结果.【解答】解:∵m是方程x2﹣2016x+1=0的一个不为0的根,∴m2﹣2016m+1=0,∴m2﹣2015m=m﹣1,m2+1=2016m,∴==,∴m2﹣2015m+=m﹣1+=﹣1=2016﹣1=2015.【知识点】一元二次方程的解21.(1)已知x和y满足:4x2+12x+y2﹣4y+13=0,求(x+y)﹣2.(2)解方程:﹣=1.(3)若关于x的分式方程=2﹣的解为正数,求正整数m的值.【分析】(1)利用配方法对4x2+12x+y2﹣4y+13=0进行变形,由偶次方的非负性可得x与y的值,再代入(x+y)﹣2计算即可.(2)先去分母,将原方程转化为整式方程,求得方程的解,再检验即可得出答案.(3)先去分母,将原方程转化为整式方程,求得方程的解,再根据解为正数及m为正整数求得答案即可.【解答】解:(1)∵4x2+12x+y2﹣4y+13=0,∴4[x2+3x+]+(y2﹣4y+4)(y﹣2)2=0,∴4(x+)2+(y﹣2)2=0,∵4(x+)2≥0,(y﹣2)2≥0,∴x+=0,y﹣2=0,∴x=﹣,y=2,∴(x+y)﹣2=(﹣+2)﹣2==4.(2)在方程﹣=1两边同时乘以(x+1)2得:x2﹣(x+1)=(x+1)2,∴x2﹣x﹣1=x2+2x+1,∴﹣3x=2,∴x=﹣.检验:当x=﹣时,(x+1)2≠0,∴x=﹣是原方程的解.∴原方程的解是x=﹣.(3)方程=2﹣两边同时乘以(x﹣2)得:x=2(x﹣2)+m,∴x=2x﹣4+m,∴x=4﹣m,∵解为正数,∴4﹣m>0,∴m<4,又∵m为正整数,∴m=1或m=2或m=3.∵当x=4﹣m=2时,x﹣2=0,∴m=2不符合题意.∴正整数m的值为1或3.【知识点】负整数指数幂、分式方程的解、非负数的性质:偶次方、配方法的应用、解一元一次不等式、解分式方程22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【知识点】一元二次方程的应用23.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?【分析】(1)设道路宽x米,根据题意列出方程,求出方程的解即可得到结果.(2)设选A种类型步道砖y平方米,根据铺路费用不高于23600元,列出不等式求解即可.【解答】解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.【知识点】一元二次方程的应用24.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【分析】(1)如图,过点P作PE⊥CD于E,设x秒后PQ=10cm,利用勾股定理得出即可.(2)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.【解答】解:(1)过点P作PE⊥CD于E.则根据题意,得设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(2)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤时,则PB=16﹣3y,∴PB•BC=12,即×(16﹣3y)×6=12,解得y=4;②当<x≤时,BP=3y﹣AB=3y﹣16,QC=2y,则BP•CQ=(3y﹣16)×2y=12,解得y1=6,y2=﹣(舍去);③<x≤8时,QP=CQ﹣PQ=22﹣y,则QP•CB=(22﹣y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.【知识点】一元二次方程的应用25.先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)【答案】【第1空】0【第2空】-1【第3空】-1【第4空】1【分析】(1)根据材料二得出的规律,可直接得出答案;(2)先把代数式2x2﹣4x+1变形为2(x﹣1)2﹣1,再根据2(x﹣1)2≥0,得出2(x﹣1)2﹣1≥﹣1,即可求出代数式取得最小值时的x的值.【解答】解:(1)根据题意得:①当x=0时,代数式2x2﹣1有最小值为﹣1;②当x=﹣1时,代数式﹣2(x+1)2+1有最大值为1;故答案为:0,﹣1;﹣1,1.(2)∵2x2﹣4 x+1=2(x2﹣2x)+1=2(x2﹣2x+1﹣1)+1=2(x﹣1)2﹣1,2(x﹣1)2≥0,∴2(x﹣1)2﹣1≥﹣1,即2(x﹣1)2﹣1有最小值﹣1,当x=1时,2(x﹣1)2﹣1取得最小值﹣1.【知识点】配方法的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.“x 的3倍与y 的和不小于2”用不等式可表示为( ) A .3x +y >2 B .3(x +y)>2 C .3x +y ≥2 D .3(x +y)≥2 2.已知a>b>0,下列结论错误的是( )A .a +m>b +mB .ac 2>bc 2(c ≠0) C .-2a>-2b D.a 2>b 23.一元一次不等式2(x +1)≥4的解集在数轴上表示为( ) A. B. C.D.4.不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( )A .x >4B .x ≤3C .3≤x <4D .无解 5.与不等式x -33<-1有相同解集的是( )A .3x -3<4x -5B .2(x -3)<3(4x +1)-1C .3(x -3)<2(x -6)+3D .3x -9<4x -46.在平面直角坐标系内,点P(2x -6,x -5)在第四象限,则x 的取值范围为( ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-37.若关于x 的方程3m(x +1)+1=m(3-x)-5x 的解是负数,则m 的取值范围是( ) A .m >-54 B .m <-54 C .m >54 D .m <548.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-369.如图,直线y =kx +b 经过点A(-1,-2)和点B(-2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( )A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <010.“十一”黄金周期间,王老师一家打算去嵩山游玩,他们要将矿泉水分装在旅行包内带上山.若每人带3瓶,则剩余3瓶;若每人带4瓶,则有一人带了矿泉水,但不足3瓶,则这家参加登山的人数为( )A .5人B .6人C .7人D .5人或6人 二、填空题(每小题3分,共15分)11.不等式-3x +1>-2的解集为________.12.牡丹酥和燕菜是洛阳有名的特产,在此工作的小张春节回家时打算给亲友带这两种特产.已知牡丹酥每盒14元,燕菜每盒20元.如果小张的预算为300元,而他想买8盒牡丹酥和若干盒燕菜,那么他最多可以买________盒燕菜.13.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3k -1,x +2y =2的解满足x +y >2,则k 的取值范围是________.14.对于任意实数m ,n ,定义一种运算m ※n =mn -m -n +3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是__________.15.如图,若开始输入的x 值为正整数,最后输出的结果为144,则满足条件的x 值为________.三、解答题(本大题共8个小题,满分75分)16.(8分)解下列不等式,并把它们的解集分别在数轴上表示出来. (1)x +12≥3(x -1)-4; (2)2x -13-5x +12≥1.17.(9分)解不等式组⎩⎪⎨⎪⎧x -1<2①,2x +3≥x -1②.请结合题意填空,完成本题的解答.(1)解不等式①,得________; (2)解不等式②,得________; (3)把不等式的解集在数轴上表示出来.(4)不等式组的解集为__________;18.(9分)关于x 的两个不等式3x +a2<1①与1-3x >0②.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.19.(9分)在下列平面直角坐标系中画出函数y 1=-x +3,y 2=3x -4的图象.并观察图象,回答下列问题:(1)当x 取何值时,y 1=y 2? (2)当x 取何值时,y 1>y 2? (3)当x 取何值时,y 1<y 2?20.(9分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m ①,2x +3y =2m +4②的解满足不等式组⎩⎪⎨⎪⎧3x +y ≤0,x +5y>0,求满足条件的m 的整数值.21.(10分)今年冬天受寒潮影响,淘宝上的电热取暖器销售火爆.某电商销售每台成本价分别为200元、170元的A 、B 两种型号的电热取暖器,下表是近两天的销售情况:(1)求A 、B 两种型号的电热取暖器的销售单价;(2)若该电商准备用不多于5400元的金额再采购这两种型号的电热取暖器共30台,问A 种型号的电热取暖器最多能采购多少台?22.(10分)阅读下面的材料,回答问题: 已知(x -2)(6+2x)>0,求x 的取值范围.解:根据题意,得⎩⎪⎨⎪⎧x -2>0,6+2x >0或⎩⎪⎨⎪⎧x -2<0,6+2x <0.分别解这两个不等式组,得x >2或x <-3.故当x >2或x <-3时,(x -2)(6+2x)>0.(1)由(x -2)(6+2x)>0,得不等式组⎩⎪⎨⎪⎧x -2>0,6+2x >0或⎩⎪⎨⎪⎧x -2<0,6+2x <0,体现了________思想.(2)试利用上述方法,求不等式(x -3)(1-x)<0的解集.23.(11分)2017年河南部分地区遭受了罕见的旱灾.“旱灾无情人有情”,某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件;(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案与解析1.C 2.C 3.A 4.C 5.C 6.A 7.A 8.C 9.B10.D 解析:设这家参加登山的有x 人,根据题意得⎩⎪⎨⎪⎧3x +3≤4(x -1)+2,3x +3>4(x -1),解得5≤x <7.∵x是正整数,∴x =5或6,故这家参加登山的有5人或6人.11.x <1 12.9 13.k <-5314.4≤a <5 解析:根据题意得2※x =2x -2-x +3=x +1.∵a <x +1<7,∴a -1<x <6.∵解集中有两个整数解,∴3≤a -1<4,∴a 的取值范围为4≤a <5.15.29或6 解析:若5x -1>100,则直接输出,∴5x -1=144,解得x =29;若5x -1<100且经过一轮输出,则5×(5x -1)-1=144,解得x =6;若5x -1<100且经过二轮输出,则5×[5×(5x -1)-1]-1=144,解得x =1.4(舍去),∴满足条件的x 值是29或6.16.解:(1)去分母,得x +1≥6(x -1)-8.(1分)去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-8-1.合并同类项,得-5x ≥-15.系数化为1,得x ≤3.(3分)在数轴上表示如下.(4分)(2)去分母,得2(2x -1)-3(5x +1)≥6.(5分)去括号,得4x -2-15x -3≥6.移项,得4x -15x ≥6+2+3.(7分)合并同类项,得-11x ≥11.系数化为1,得x ≤-1.(7分)在数轴上表示如下.(8分)17.解:(1)x <3(2分) (2)x ≥-4(4分)(3)在数轴上表示如下.(7分)(4)-4≤x <3(9分)18.解:(1)由①得x <2-a 3,由②得x <13.(2分)∵两个不等式的解集相同,∴2-a 3=13,解得a =1.(5分)(2)∵不等式①的解都是②的解,∴2-a 3≤13,解得a ≥1.(9分)19.解:先作出y 1=-x +3与y 2=3x -4的函数图象,令y 1=y 2,得x =74.故两直线交点的横坐标为74,如图所示.(3分)观察图象可知:(1)当x =74时,y 1=y 2(此时两图象交于一点).(5分) (2)当x<74时,y 1>y 2(y 1的图象在y 2的图象的上方).(7分)(3)当x>74时,y 1<y 2(y 1的图象在y 2的图象的下方).(9分)20.解:①+②得3x +y =3m +4③.(2分)②-①得x +5y =m +4④.(4分)将③,④代入不等式组中得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m ≤-43.(7分)故满足条件的m 的整数值为-3,-2.(9分)21.解:(1)设A 、B 两种型号的电热取暖器的销售单价分别为x 元、y 元,依题意得⎩⎪⎨⎪⎧3x +5y =1800,4x +10y =3100,(3分)解得⎩⎪⎨⎪⎧x =250,y =210.答:A 、B 两种型号的电热取暖器的销售单价分别为250元和210元.(5分)(2)设采购A 种型号的电热取暖器a 台,则采购B 种型号的电热取暖器(30-a)台,由题意得200a +170(30-a)≤5400,(8分)解得a ≤10.答:最多能采购A 种型号的电热取暖器10台.(10分) 22.解:(1)转化(3分)(2)由(x -3)(1-x)<0,可得⎩⎪⎨⎪⎧x -3>0,1-x <0或⎩⎪⎨⎪⎧x -3<0,1-x >0,(6分)分别解这两个不等式组,得x >3或x<1.(8分)∴不等式(x -3)(1-x)<0的解集是x >3或x <1.(10分)23.解:(1)设饮用水有x 件,则蔬菜有(x -80)件,根据题意得x +(x -80)=320,解得x =200.(2分)∴x -80=120.答:饮用水和蔬菜分别为200件和120件.(3分)(2)设租用甲种货车m 辆,则租用乙种货车(8-m)辆,根据题意得⎩⎪⎨⎪⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.(5分)∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆.(7分)(3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).∴方案①运费最少,最少运费是2960元.(10分)答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.(11分)。

相关文档
最新文档