华师大八年级数学下 期中试卷(含答案)
华师大版数学八年级下册期中考试试卷带答案
三ቤተ መጻሕፍቲ ባይዱ解答题
15.计算: ÷ ;
16.计算: +
17.解分式方程: = ;
18.先化简,再求值: ÷ ,其中 = ;
22.如图,在平面直角坐标系 中,双曲线 = 经过□ 的顶点 、 ,点 的坐标为( , 1),点 在 轴上,且 ∥ 轴,平行四边形 的面积是8.
(1)求双曲线和AB所在直线的解析式;
(2)点 ( , )、 ( , )是双曲线 = ( <0)图象上的两点,若 > ,则 ;(填“<”、“=”或“>”)
23.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.
10.计算: =_______
11.在 中,∠ +∠ =220°,则∠ =________;
12.如图,将 放置在平面直角坐标系 中,O为坐标原点,若点 的坐标是(5,0).点 的坐标为(1,-3),则点 的坐标是___________;
13.如图,已知反比例函数 = ( 为常数, ≠0)的图象经过点 ,过 点作 ⊥ 轴,垂足为 ,点 为 轴上的一点,若△ 的面积为 ,在 的值为__________;
①求k的值;
②结合图象,当 > 时,写出 的取值范围.
(3)过原点的一条直线交 = ( >0)于 、 两点(点 在点 的右侧),分别过点 、 作 轴和 轴的平行线,两平行线交于点 ,则△ 的面积是.
25.快车和慢车分别从甲、乙两地同时出发,匀速相向而行,快车到达乙地后,慢车继续前行,设出发 小时后,两车相距 千米,图中折线表示从两车出发至慢车到达甲地的过程中 与 之间的函数关系式,根据图中信息,解答下列问题.
【华东师大版】八年级数学下期中试卷(带答案)
C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
故选:A.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
【详解】
∵ ,
∴ ,
∴ .
故选A.
【点睛】
本题考查二次根式的性质与化简,掌握二次根式的意义以及化简方法为解题关键.
6.C
解析:C
【分析】
根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.
【详解】
解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.
(1)判断下列两个命题是真命题还是假命器(填“真”或“假”)
①等边三角形必存在“和谐分割线”
②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.
命题①是_______命题,命题②是______命题;
(2)如图2, . , , ,试探索 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由.
20.已知一个三角形三边的长分别为 ,则这个三角形的面积是_________________.
三、解答题
21.如图,菱形 的对角线 相交于点 是 的中点,点 在 上, .
(1)判断四边形 的形状;
(2)若 ,求菱形 的面积和 的长.
华师大版八年级下学期数学《期中考试试题》附答案
华东师大版八年级下学期期中测试卷一、选择题:1. 在1x,12,3xyπ,3x y+,1am+,中分式的个数有()A. 2个B. 3个C. 4个D. 5个2. (11·大连)在平面直角坐标系中,点P(-3,2)所在象限( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 对于函数y=2x﹣1,下列说法正确的是()A. 它的图象过点(1,0)B. y值随着x值增大而减小C. 它的图象经过第二象限D. 当x>1时,y>04. 若分式211 xx-+的值为0,则x的值为()A.0 B. 1 C. ﹣1 D. ±1 5. 下列各式变形正确的是()A. x y x y x y x y-++=--- B. 22a b a b c d c d--=++C. 0.20.03230.40.0545a b a b c d c d--=++ D. a b b a b c c b--=--6. 函数y=113x x+--自变量x的取值范围是( ) A. x≥1 B. x≥1且x≠3 C. x≠3 D. 1≤x≤37. 如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A. x >2B. x <2C. x >﹣1D. x <﹣18. 关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A. ﹣5B. ﹣8C. ﹣2D. 59. 一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A. B. C. D.10. 如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题:11. 用科学记数法表示:0. 0000002467=_______.12. 在平面直角坐标系中,把直线y =3x-3向上平移3个单位长度后,其直线解析式___________________13. 已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为______.14. 若分式253(1)xx -+-值为负,则x 的取值范围是___________________三、解答题15. (1)计算:()114200823-⎛⎫+--+- ⎪⎝⎭(2)3212232(3)(5)x y z xy z ---⋅16. 先化简代数式22321124-+⎛⎫-÷ ⎪+-⎝⎭a a a a ,再从22a -≤≤中选一个恰当的整数作为a 的值代入求值. 17. 已知关于x 的方程233x m x x -=--解为正数,求m 的取值范围. 18. 某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度是多少千米/小时? 19. 解方程(1)3233x x x =+-- (2)100307x x =- 20. 心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?四、填空题21. 若点A (a ,3a -b ),B (b ,2a +b -2)关于x 轴对称,则ab =_______22. 若直线y =3x +2不动,将平面直角坐标系xOy 沿铅直方向向下平移5个单位,则平移后直线与y 轴的交点坐标为_____________23.若111a ba b-=+,则3b aa b--的值是__________.24. 如图,在平面直角坐标系中,BA⊥y轴于点A,BC⊥x轴于点C,函数(0)ky kx=>的图象分别交BA,BC于点D,E当AD:BD=1:3且BDE∆的面积为18时,则k的值是__________________五、解答题25. 如图,直线6y x=+与反比例函数kyx=的图像交点A. 点B,与x轴相交于点C,其中点A的坐标为(-2,4),点B的纵坐标为2.(1)当x为何值时,一次函数的值大于反比例函数的值. (直接写出来)(2)求△AOB的面积.26. 健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心. 组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个. 公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?27. 如图,直线y=k x-1与x轴、y轴分别交于B、C两点,OB:OC=12(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内的直线y=k x-1上的一个动点,当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)在(2)的条件下,当点A运动到什么位置时,△AOB的面积是1 4 .答案与解析一、选择题:1. 在1x,12,3xyπ,3x y+,1am+,中分式的个数有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】根据分式的定义进行判断;【详解】1x,12,3xyπ,3x y+,1am+中分式有:1x,3x y+,1am+共计3个.故选B.【点睛】考查了分式的定义,解题关键抓住分式中分母含有字母.2. (11·大连)在平面直角坐标系中,点P(-3,2)所在象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】分析:直接利用第二象限内点的符号特点进而得出答案.详解:第二象限内点横坐标为负,纵坐标为正,故点(−3,2)所在的象限在第二象限.故选B.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3. 对于函数y=2x﹣1,下列说法正确的是()A. 它的图象过点(1,0)B. y值随着x值增大而减小C. 它的图象经过第二象限D. 当x>1时,y>0【答案】D【解析】画函数的图象,选项A,点(1,0)代入函数,01=,错误.由图可知,B,C错误,D,正确. 选D.4. 若分式211xx-+的值为0,则x的值为()A. 0 B. 1 C. ﹣1 D. ±1【答案】B【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式2x1x1-+的值为零,∴21010xx-=⎧⎨+≠⎩,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.5. 下列各式变形正确的是()A.x y x yx y x y-++=---B.22a b a bc d c d--=++C. 0.20.03230.40.0545a b a bc d c d--=++D.a b b ab c c b--=--【答案】D【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案.【详解】A 、原式x yx y-=+,所以A 选项错误; B 、原式=2a b c d -+(),所以B 选项错误;C 、原式=203405a bc d -+,所以C 选项错误;D 、a b b a b c c b--=--,所以D 选项正确.故选D .【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变. 6. 函数y =113x x +--自变量x 的取值范围是( ) A. x ≥1 B. x ≥1且x ≠3C. x ≠3D. 1≤x ≤3【答案】B 【解析】 由题意得, x -1≥0且x -3≠0, ∴x ≥1且x ≠3. 故选B.7. 如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A. x >2B. x <2C. x >﹣1D. x <﹣1【答案】D 【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+,可化为23x x ->+,解不等式可得:1x <-,故选D. 8. 关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A. ﹣5 B. ﹣8C. ﹣2D. 5【答案】A 【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .9. 一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A. B. C. D.【答案】C 【解析】 【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置. 【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0, 满足ab<0, ∴a−b>0, ∴反比例函数y=a bx- 的图象过一、三象限, 所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0, 满足ab<0, ∴a−b<0, ∴反比例函数y=a bx-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0, ∴a−b>0, ∴反比例函数y=a bx-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0, 满足ab>0,与已知相矛盾 所以此选项不正确; 故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小 10. 如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C .考点:反比例函数与一次函数的交点问题.二、填空题:11. 用科学记数法表示:0. 0000002467=_______.【答案】2. 467×10-7 【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0. 0000002467=2. 467×10-7 故答案为2. 467×10-7 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 在平面直角坐标系中,把直线y =3x-3向上平移3个单位长度后,其直线解析式为___________________【答案】y=3x【解析】【分析】根据一次函数平移规律上加下减规律得出即可.【详解】直线y =3x-3向上平移3个单位长度后,其直线解析式为y =3x-3+3=3x故答案为y=3x【点睛】此题主要考查了一次函数图象与几何变换,正确记忆平移规律是解题关键.13. 已知点M (3,2)与点N (x ,y )在同一条平行于x 轴直线上,且点N 到y 轴的距离为5,则点N 的坐标为______.【答案】(﹣5,2)或(5,2)【解析】试题分析:根据点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,可得点M 的纵坐标和点N 的纵坐标相等,由点N 到y 轴的距离为5,可得点N 的横坐标的绝对值等于5,从而可以求得点N 的坐标. ∵点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上, ∴点M 的纵坐标和点N 的纵坐标相等. ∴y=2. ∵点N 到y 轴的距离为5, ∴|x|=5. 得,x=±5. ∴点N 的坐标为(﹣5,2)或(5,2). 考点:坐标与图形性质.14. 若分式253(1)x x -+-值为负,则x 的取值范围是___________________ 【答案】x >5【解析】【分析】先根据非负数的性质,判断出分母必是正数,故若使分式的值是负值,则分子的值为负数即可,从而列出不等式,求此不等式的解集即可.【详解】∵()210x -≥∴()2310x +-> ∵分式()2531x x -+-值为负∴5-x<0即x>5故答案为x >5【点睛】本题考查不等式的解法和分式值的正负条件,解不等式时要根据不等式的基本性质.三、解答题15. (1)()101200823-⎛⎫--+- ⎪⎝⎭ (2)3212232(3)(5)x y z xy z ---⋅【答案】(1)2 (2)84825 9z x y【解析】【分析】(1)首先根据平方根的定义、0指数幂、负整数指数幂、绝对值定义进行化简,然后进行有理数的加减运算即可;(2)根据积的乘方和幂的乘方去括号,再根据单项式乘以单项式的法则运算即可.【详解】(1)原式=2+1-3+2=2;(2)原式=6422461259x y z x y z --- 488259x y z --= 848259z x y= 【点睛】本题考查平方根的定义、0指数幂、负整数指数幂、绝对值定义及积的乘方和幂的乘方,熟练掌握各种运算的法则是关键.16. 先化简代数式22321124-+⎛⎫-÷ ⎪+-⎝⎭a a a a ,再从22a -≤≤中选一个恰当的整数作为a 的值代入求值. 【答案】21a a --,当0a =时,原式2= 【解析】【分析】根据分式的运算法则即可化简,再代入使分式有意义的值即可求解. 【详解】22321124-+⎛⎫-÷ ⎪+-⎝⎭a a a a 22232124a a a a a +--+=÷+- 21(2)(2)2(1)a a a a a -+-=⋅+- 21a a -=-, 当0a =时,原式02201-==-. 【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则. 17. 已知关于x 的方程233x m x x -=--解为正数,求m 的取值范围. 【答案】m <6且m ≠3【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求m 的取值范围.【详解】去分母,得x ﹣2(x ﹣3)=m ,解得:x =6﹣m ,∴6﹣m>0,∴m<6,且x≠3,∴m≠3.∴m<6且m≠3.【点睛】解答本题时,易漏掉m≠3,这是因为忽略了x﹣3≠0这个隐含的条件而造成的,这应引起同学们的足够重视.18. 某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度是多少千米/小时?【答案】中巴车的速度为50千米/小时.【解析】试题分析:根据中巴车走40千米所用时间860=旅游车走40千米所用时间列出方程,求出方程的解即可.试题解析:设中巴车速度为x千米/小时,则旅游车的速度为1. 2x千米/小时.依题意得404081.260x x-=,解得x=50,经检验:x=50是原方程的解,且符合题意,∴1. 2x=60(千米/小时)答:中巴车的速度为50千米/小时,旅游车的速度为60千米/小时.19. 解方程(1)3233 xx x=+--(2)100307 x x=-【答案】(1)x=3是增根,无解;(2)x=10 【解析】【分析】根据解分式方程的一般步骤求解、检验即可.【详解】(1)3233 xx x=+--方程两边同时乘以(x-3)得:x =2(x-3)+3x=3检验:当x=3时,x-3=0∴x=3是原方程的增根,原方程无解.(2)100307 x x=-方程两边同时乘以x(x-7)得:100(x-7)=30x100x-30x=700x=10检验:当x=10时,x(x-7)≠0∴x=10是原方程的根.【点睛】本题考查了解分式方程,关键要找到最简公分母去分母,分式方程必须检验.20. 心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)第30分钟注意力更集中;(2)老师能在学生注意力达到所需的状态下讲解完成这道题目. 【解析】【分析】(1)先用代定系数法分别求出AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断.(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【详解】解:(1)由题意得y1=2x+20(0≤x≤10),y2=1000x(x≥25),当x 1=5时,y 1=30,当x 2=30时,y 2=1003, ∴y 1<y 2,∴第30分钟注意力更集中(2)令y 1=36,∴36=2x +20,∴x =8,令y 2=36,∴36=1000x ,∴x =100036≈27. 8, ∵27. 8-8=19. 8>19,∴老师能在学生注意力达到所需的状态下讲解完成这道题目点睛:本题主要考查了函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.四、填空题21. 若点A (a ,3a -b ),B (b ,2a +b -2)关于x 轴对称,则ab =_______ 【答案】425【解析】【分析】直接利用关于x 轴对称点的性质得出a ,b 的方程组进而得出答案.【详解】∵点A (a ,3a-b ),B (b ,2a+b-2)关于x 轴对称, ∴()3220a b a b a b =⎧⎨-++-=⎩解得:2525a b ⎧=⎪⎪⎨⎪=⎪⎩∴ab =425故答案为425【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.22. 若直线y =3x +2不动,将平面直角坐标系xOy 沿铅直方向向下平移5个单位,则平移后直线与y 轴的交点坐标为_____________【答案】(0,7)【解析】【分析】直线y =3x +2不动,将平面直角坐标系xOy 沿铅直方向向下平移5个单位,即相当于坐标系不动,直线直线y =3x +2沿铅直方向向上平移5个单位,利用一次函数平移规律左加右减,上加下减进而得出答案.【详解】直线y =3x +2不动,将平面直角坐标系xOy 沿铅直方向向下平移5个单位,即相当于坐标系不动,直线直线y =3x +2沿铅直方向向上平移5个单位,则平移后的直线解析式为:y =3x +2+5= 3x +7 ∴当x=0时,y=7即与y 轴的交点坐标为:(0,7)【点睛】本题考查是是一次函数在平面直角坐标系中的平移,关键是熟记平移规律:左加右减,上加下减. 23. 若111a b a b -=+,则3b a a b--的值是__________. 【答案】-2【解析】【分析】原等式两边同时乘以(a+b),可得b a a b-的具体数值,据此进行解答即可. 【详解】解:原等式两边同时乘以(a+b),则111a b a b b a a b a b ++-=+--=,即1b a a b-=, 则3b a a b --=1-3=-2. 故答案为-2.【点睛】通过对原等式的变形从而求解出b a a b-的值是本题关键点. 24. 如图,在平面直角坐标系中,BA ⊥y 轴于点A ,BC ⊥x 轴于点C ,函数(0)k y k x =>的图象分别交BA ,BC 于点D ,E 当AD :BD =1:3且BDE ∆的面积为18时,则k 的值是__________________【答案】16【解析】【分析】首先设B (4a ,b ),E (4a ,d ),利用AD :BD=1:3,则D (a ,b ),进而利用△BDE 的面积为18得出ab-ad=12,结合反比例函数图象上的性质得出ab=4ad ,进而得出ad 的值,即可得出答案.【详解】如图,过点D 作DF ⊥x 轴于点F ,过点E 作EG ⊥y 轴于点G .设B (4a ,b ),E (4a ,d ).∵AD :BD=1:3,∴D (a ,b ).又∵△BDE 的面积为18,∴BD=3a ,BE=b-d , ∴12×3a (b-d )=18, ∴a (b-d )=12,即ab-ad=12, ∵D ,E 都在反比例函数图象上,∴ab=4ad ,∴4ad-ad=12,解得:ad=4,∴k=4ad=16.故答案为16【点睛】此题主要考查了反比例函数综合应用以及三角形面积求法等知识,根据已知得出ab=4ad 是解题关键.五、解答题25. 如图,直线6y x =+与反比例函数k y x=的图像交点A. 点B ,与x 轴相交于点C ,其中点A 的坐标为(-2,4),点B 的纵坐标为2.(1)当x 为何值时,一次函数的值大于反比例函数的值. (直接写出来)(2)求△AOB 的面积.【答案】(1)-4<x <-2,(2)6【解析】【分析】(1)根据A 点的坐标,求出反比例函数解析式,代入B 点的纵坐标,求出B 点坐标,观察图象,一次函数图象在反比例图象上的部分即可确定x 的取值范围;(2)求出C 点坐标,根据A 、B 点的坐标,利用△AOC 的面积-△BOC 的面积即可求得△AOB 的面积.【详解】(1)把A (-2,4)代入k y x =得: k=-8 ∴8y x=- 把y=2代入6y x =+得:x= - 4∴B 点的坐标为(-4,2)根据图象可得:当4x 2-<<-时,一次函数的值大于反比例函数的值.(2)把y=0代入6y x =+得:x= - 6∴C 点的坐标为(-6,0)∴OC=6 ∴116462622AOB AOC BOC S S S =-=⨯⨯-⨯⨯= 【点睛】本题是反比例函数和一次函数综合题,是常考的题型,关键是要算出交点坐标,并以交点作为分界点,观察一次函数与反比例函数的位置关系,确定x 的取值范围.26. 健身运动已成为时尚,某公司计划组装A 、B 两种型号健身器材共40套,捐给社区健身中心. 组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个. 公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号健身器材时,共有多少种组装方案?(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?【答案】(1)组装A 、B 两种型号的健身器材共有9种组装方案;(2)总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套【解析】【分析】(1)设公司组装A 型器材x 套,则组装B 型器材(40-x)套,依题意得()()73402404640196x x x x ⎧+-≤⎪⎨+-≤⎪⎩,解不等式组可得;(2)总的组装费用:y =20x +18(40-x)=2x +720,可分析出最值.【详解】(1)设公司组装A 型器材x 套,则组装B 型器材(40-x)套,依题意得()()73402404640196x x x x ⎧+-≤⎪⎨+-≤⎪⎩, 解得:22≤x≤30 ,由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30,∴组装A 、B 两种型号的健身器材共有9种组装方案;(2)总的组装费用:y =20x +18(40-x)=2x +720 ,∵k =2>0,∴y 随x 的增大而增大,∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元, 总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.27. 如图,直线y =k x -1与x 轴、y 轴分别交于B 、C 两点,OB :OC =12. (1)求B 点的坐标和k 的值.(2)若点A(x ,y )是第一象限内的直线y =k x -1上的一个动点,当点A 运动过程中,试写出△AOB 的面积S 与x 的函数关系式;(3)在(2)的条件下,当点A 运动到什么位置时,△AOB 的面积是14.【答案】(1)B (12,0),k =2 (2)S = 2x −14,(x >12) (3)A(1,1) 【解析】【分析】 (1)可先求出OC 长,并用k 的代数式表示点B 的坐标及OB 的长,然后在△BOC 中运用三角函数可求出∠OCB 的度数,再运用三角函数就可解决问题.(2)过点A 作AH ⊥x 轴于H ,由于点A 在直线y=kx-1上,因此可用x 的代数式表示y ,进而可得到S 与x 的函数关系式.(3)把S=14代入(2)中的解析式就可得到点A 的横坐标,进而可得到点A 的纵坐标. 【详解】(1).∵C x =0,∴C y =0−1=−1.∴OC =1.∵12OB OC , ∴OB =12. ∴B 的坐标为(12,0) 将B (12,0)代入y=kx+b ,得0=12k-1,解得k=2.(2)过点A作AH⊥x轴于H,如图.则有AH=y=2x−1,x>1 2 .∴S=12OB⋅AH=12×12×(2x−1)=2x−14,(x>12).(3)当S△AOB=14时,2x−14=14.解得;x=1.∴y=2x −1=1∴点A的坐标为(1,1).∴当点A运动到点(1,1)的位置时,△AOB的面积是1 4 .【点睛】本题是函数与三角形相结合的问题,在图形中渗透运动的观点是中考中经常出现的问题.。
华师大版八年级下学期数学《期中考试题》及答案
[答案]
[解析]
[分析]
首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA.
[详解]解:直线 与x轴、y轴分别交于A、B两点,求出点 ,B(0,2),
8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
[答案]B
[解析]
[详解]0.056用科学记数法表示为:0.056= ,故选B.
9.如图,平行四边形的对角线 与 相交于点 , ,若 , ,则 的长是( )
A. B. C. D.
[答案]B
[解析]
[分析]
由平行四边形对角线互相平分的性质可知OA长,根据勾股定理求出BO长可得BD长.
[详解]解: 四边形ABCD是平行四边形,
,
故选:B
[点睛]本题考查了平行四边形的性质及勾股定理,灵活应用平行四边形对角线互相平分求线段长是解题的关键.
10.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴, .∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数 的图象过点C.当以CD为边的正方形的面积为 时,k的值是()
故答案为1
[点睛]本题考查了分式的混合运算,熟练掌握运算法则和整体代换的思想是解题的关键.
13.对于函数 , 的值随 值的增大而_______.
[答案]减小
[解析]
[分析]
根据一次函数的性质可知.
华师大版八年级下册数学期中考试试题带答案
华师大版八年级下册数学期中考试试卷一、单选题1.下列方程不是分式方程的是()A .1x x-=B .21235x x -=C .21111x x+=-+D .263x x =-2.点P (1,-3)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.下列函数中,y 随x 的增大而增大的函数是()A .y=-5xB .y=-5x+1C .y=-x-5D .y=x-54.新冠病毒是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为()米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10115.一次函数y x m =+的图象与反比例函数6y x=的图象的其中一个交点的横坐标为3-,则m 的值为()A .2-B .1-C .1D .26.方程21211x x =--的解为()A .1B .-1C .-2D .无解7.一次函数y=ax+b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是()A .B .C .D .8.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD的周长为28,则ABE的周长为()A.28B.24C.21D.149.在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从,A B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算,a b的值分别为()A.39,26B.39,26.4C.38,26D.38,26.410.正比例函数y=x与反比例函数y=1x的图象相交于A、C两点,AB⊥x轴于点B,CD⊥x轴于点D(如图),则四边形ABCD的面积为()A.1B.32C.2D.52二、填空题11.在▱ABCD中,∠A=42°,则∠C=_____°.12.已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1_____x2(填“>”“<”或“=”).13.已知一次函数y 2x 6=-与y x 3=-+的图象交于点P ,则点P 的坐标为______.14.对于函数2y x=,当函数值y <﹣1时,自变量x 的取值范围是_______________.15.若关于x 的方程ax 41x 2x 2=+--无解,则a 的值是___.16.如图,反比例函数y =kx(k≠0)的图象经过△ABD 的顶点A ,B ,交BD 于点C ,AB 经过原点,点D 在y 轴上,若BD =4CD ,△OBD 的面积为15,则k 的值为_____.三、解答题17.计算:22012( 3.14)2π-⎛⎫-+- ⎪⎝⎭18.解方程7232(3)32x x -=++19.先化简,再求值22111211a a a a -⎛⎫÷+ ⎪-+-⎝⎭,其中a =2.20.如图,已知四边形ABCD 是平行四边形,点E ,F 是对角线BD 上的两点,且BE=DF ,连接AE ,CF .求证:AE ∥CF 且AE=CF .21.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.22.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣mx>0的解集.23.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:21,11x x x x -+-这样的分式就是假分式;再如:232,11x x x ++这样的分式就是真分式.假分数74可以化成31+4(即314)带分数的形式,类似的,假分式也化为带分式.如:1(1)221111x x x x x -+-==-+++解决下列问题:(1)分式3x是填(“真分式”或“假分式”);假分式64x x ++化为带分式形式;(2)如果分式42x x --的值为整数,求满足条件的整数x 的值;(3)若分式22251x x ++的值为m ,则m 的取值范围是(直接写出答案).24.在如图的平面直角坐标系中,直线n过点A(0,﹣2),且与直线l交于点B(3,2),直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若△ABC的面积为9,求点C的坐标;(3)若△ABC是等腰三角形,求直线l的函数表达式.25.如图1,函数y=﹣x+4的图象与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称.(1)填空:m=;(2)点P在平面上,若以A、M、N、P为顶点的四边形是平行四边形,直接写出点P的坐标;(3)如图2,反比例函数的图象经过N、E(x1,y1)、F(x2,y2)三点.且x1>x2,点E、F关于原点对称,若点E到直线MN的距离是点F到直线MN的距离的3倍,求E、F两点的坐标.参考答案1.B【解析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】解:A.10xx-=方程分母中含未知数x,所以是分式方程B.21235x x-=方程分母中不含未知数,故不是分式方程C.21111x x+=-+方程分母中含未知数x,所以是分式方程D.263x x=-方程分母中含未知数x,所以是分式方程故选:B.2.D【解析】根据各象限内点的坐标特征解答.【详解】点P(1,-3)所在的象限是第四象限.故选:D.3.D【解析】利用正比例函数的性质和一次函数的性质,对每个选项进行判断,即可得到答案.【详解】解:A、∵k=-5<0,∴y随x的增大而减小,选项A不符合题意;B、∵k=-5<0,∴y随x的增大而减小,选项B不符合题意;C、∵k=-1<0,∴y随x的增大而减小,选项C不符合题意;D、∵k=1>0,∴y随x的增大而增大,选项D符合题意.4.C 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m =1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.5.C 【解析】把3x =-代入6y x=,得到y=2-,再把x 、y 的值代入y x m =+,即可求出m 的值.【详解】解:根据题意,把3x =-代入6y x=,∴236y =-=-,把3x =-,2y =-代入y x m =+,∴23m -=-+,∴1m =;故选:C .【点睛】本题考查了反比例函数的解析式,一次函数的解析式,解题的关键是熟练掌握待定系数法进行解题.6.D 【解析】【分析】先去分母转换为整式方程,求解验根即可.解:21211x x =--去分母得:12x +=,解得:1x =,将1x =代入(1)(1)0x x +-=,故1x =是分式方程的增根,故原分式方程无解,故选:D .【点睛】本题考查了解分式方程,熟知解分式方程的一般步骤是解题的关键,解分式方程注意验根.7.C 【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小8.D 【解析】【分析】根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴OB OD =,AB CD =,AD BC =,∵平行四边形的周长为28,∴14AB AD +=∵OE BD ⊥,∴OE 是线段BD 的中垂线,∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=,故选D .【点睛】本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.9.B 【解析】【分析】根据函数图象可得:速度和为:24(3018)÷-米/秒,由题意得:24333b b-=,可解得:b ,因此慢车速度为:243b -米/秒,快车速度为:20.8 1.2-=米/秒,快车返回追至两车距离为24米的时间:(26.424)(1.20.8)6-÷-=秒,可进一步求a 秒.【详解】速度和为:24(3018)2÷-=米/秒,由题意得:24333b b-=,解得:b=26.4,因此慢车速度为:240.83b -=米/秒,快车速度为:20.8 1.2-=米/秒,快车返回追至两车距离为24米的时间:(26.424)(1.20.8)6-÷-=秒,因此33639a =+=秒.故选B .【点睛】考核知识点:从函数图象获取信息.理解题意,从图象获取信息是关键.10.C 【解析】【分析】由正比例函数解析式与反比例函数解析式组成的方程组可得到A 点和C 点的坐标,然后根据题意即可求解.【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩得:1111x y =⎧⎨=⎩,2211x y =-⎧⎨=-⎩,即:正比例函数y=x 与反比例函数y=1x的图象相交于两点的坐标分别为A (1,1),C (﹣1,﹣1),所以D 点的坐标为(﹣1,0),B 点的坐标为(1,0)因为,AB ⊥x 轴于点B ,CD ⊥x 轴于点D 所以,△ABD 与△BCD 均是直角三角形则:S 四边形ABCD=12BD•AB+12BD•CD=12×2×1+12×2×1=2,即:四边形ABCD 的面积是2.故选:C .【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是理解反比例函数与一次函数的图形的交点坐标是其解析式联立而成的方程组的解11.42【解析】【分析】由平行四边形的性质对角相等,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C=42°,故答案为:42.【点睛】本题主要考查平行四边形的性质,解答本题的关键是掌握平行四边形各种性质.12.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.13.(3,0)【解析】解方程组263y x y x =-⎧⎨=-+⎩,可得交点坐标.【详解】解方程组263y x y x =-⎧⎨=-+⎩,得30x y =⎧⎨=⎩,所以,P(3,0)故答案为(3,0)【点睛】本题考核知识点:求函数图象的交点.解题关键点:解方程组求交点坐标.14.﹣2<x <0.【解析】【详解】试题分析:∵当y=﹣1时,x=﹣2,∴当函数值y <﹣1时,﹣2<x <0.故答案为﹣2<x <0.考点:反比例函数的性质.15.1或2【解析】【详解】试题分析:方程去分母,得:ax=4+x ﹣2,①解得2x a 1=-,∴当a=1时,方程无解.②把x=2代入方程得:2a=4+2﹣2,解得:a=2.综上所述,当a=1或2时,方程无解.16.-6【解析】连接OC.作CE⊥x轴于E,BF⊥x轴于F.根据题意设C(m,km),则B(4m,k4m),证明S△OBC=S梯形CEFB,用k表示S△OBC,由BD=4CD,△OBD的面积为15,求得S△OBC,进而列出k的方程,即可解决问题.【详解】解:连接OC.作CE⊥x轴于E,BF⊥x轴于F.根据题意设C(m,km),则B(4m,k4m),∵S△OBC=S四边形OCBF﹣S△OBF=S四边形OCBF﹣S△OEC=S梯形CEFB,∴S△OBC=12(﹣km﹣k4m)•(4m﹣m)=﹣158k,∵BD=4CD,△OBD的面积为15,∴34544 OBC OBDS S==,∴1545 84k-=,∴k=﹣6.故答案为:﹣6.【点睛】本题考查反比例函数系数k的几何意义,三角形的面积、等高模型等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.17.1【解析】【分析】通过负指数幂、零指数幂和乘方的计算即可;解:原式=22=221-+=441-+=1【点睛】本题主要考查了实数的混合运算,熟练掌握负指数幂、零指数幂和乘方的计算法则,准确计算是解题的关键.18.2x =-【解析】【分析】先找出最简公分母,把原方程化为一元一次方程,再解一元一次方程,最后验根即可.【详解】解:去分母得:()74=33x -+去括号得:74=39x -+解得:=2x -经检验得=2x -是原方程的解.【点睛】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,不要忘记验根.19.1a a +;32.【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=2(1)(1)(1)a a a +--÷1a a -=2(1)(1)(1)a a a +--•1a a -=1a a+,当a=2时,原式=3 2.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.证明见解析.【解析】【详解】试题分析:由平行四边形的性质得∠ABE=∠CDF,由已知条件和三角形全等的判定方法即可证明△ABE≌△CDF,得出∠AEB=∠DFC,进而可得∠AED=∠BFC,得出AE∥CF即可.试题解析:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,AB CD ABE CDFBE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),∴∠AEB=∠DFC,AE=CF,∴∠AED=∠BFC,∴AE∥CF,∴AE∥CF且AE=CF.【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质与三角形全等的判定方法是解题的关键.21.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.22.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.【解析】【详解】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B (2,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<2.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.23.(1)真分式,214x++;(2)0,1,3,4;(3)25<≤m【解析】【分析】(1)根据“真分式”的意义判断即可,根据“假分式”化成“带分式”的方法转化即可;(2)将42xx--化成1−22x-,只要22x-为整数即可求出x的值;(3)将22251xx++化为2+231x+,只需判断231x+的取值范围即可.【详解】解:(1)根据“真分式”的意义可得,3x是真分式,64xx++=4244xx x++++=214x++,故答案为:真分式,214x++;(2)42xx--=1−22x-,只要22x-为整数即可,又∵x为整数,∴x−2=±1,x−2=±2,∴x=3,x=1,x=4,x=0,因此x的值为0,1,3,4;(3)22251xx++=2+231x+,而0<231x+≤3,∴2<22251xx++≤5∴2<m≤5,故答案为:2<m≤5.【点睛】本题考查分式的加减运算,掌握计算法则是正确计算的前提,理解“假分式”“带分式”的意义和转化方法是解决问题的关键.24.(1)y=43x﹣2;(2)C(0,4)或(0,﹣8);(3)直线l的解析式为:y=﹣13x+3或y=3x﹣7或y=﹣43x+6或y=724x+98【解析】【分析】(1)用待定系数法求直线n的函数解析式;(2)根据△ABC的面积为9可求得AC的长,确定OC的长,可得结论;(3)分类讨论,分四种情况:①AB=AC时,②AB=AC=5,③AB=BC,④AC=BC,利用待定系数法可得结论.【详解】解:(1)设直线n的解析式为:y=kx+b,∵直线n:y=kx+b过点A(0,﹣2)、点B(3,2),∴232bk b=-⎧⎨+=⎩,解得:432kb⎧=⎪⎨⎪=-⎩,∴直线n的函数表达式为:y=43x﹣2;(2)∵△ABC的面积为9,∴9=12•AC•3,∴AC=6,∵OA=2,∴OC=6﹣2=4或OC=6+2=8,∴C(0,4)或(0,﹣8);(3)分四种情况:①如图1,当AB=AC时,∵A(0,﹣2),B(3,2),∴AB5,∴AC=5,∵OA=2,∴OC=3,∴C(0,3),设直线l的解析式为:y=mx+n,把B(3,2)和C(0,3)代入得:323m nn+=⎧⎨=⎩,解得:133mn⎧=-⎪⎨⎪=⎩,∴直线l的函数表达式为:y=13-x+3;②如图2,AB=AC=5,∴C(0,﹣7),同理可得直线l的解析式为:y=3x﹣7;③如图3,AB=BC,过点B作BD⊥y轴于点D,∴CD=AD=4,∴C(0,6),同理可得直线l的解析式为:y=43-x+6;④如图4,AC=BC,过点B作BD⊥y轴于D,设AC=a,则BC=a,CD=4﹣a,根据勾股定理得:BD2+CD2=BC2,∴32+(4﹣a)2=a2,解得:a=25 8,∴OC=258﹣2=98,∴C(0,9 8),同理可得直线l的解析式为:y=724x+98;综上,直线l的解析式为:y=13-x+3或y=3x﹣7或y=43-x+6或y=724x+98.【点睛】本题主要考察了一次函数的综合应用和等腰三角形的性质,掌握等腰三角形存在性的讨论方法是解题关键.25.(1)2;(2)点P的坐标为(0,0)、(8,0)或(﹣4,4);(3)E(1,﹣4),F(﹣1,4)或E(4,﹣1),F(﹣4,1)【解析】【详解】解:(1)∵点M(2,m)是直线AB:y=﹣x+4上一点,∴m=﹣2+4,解得:m=2.故答案为2;(2)连接AN,以A、M、N、P为顶点的平行四边形分三种情况,∵直线y=﹣x+4的图象与坐标轴交于A、B两点,∴A(4,0),B(0,4),∵点N与点M关于y轴对称,点M(2,2),∴N(﹣2,2).以A、M、N、P为顶点的平行四边形分三种情况:①当线段AN为对角线时,∵A(4,0)、M(2,2)、N(﹣2,2),∴点P的坐标为(4﹣2﹣2,0+2﹣2),即(0,0);②当线段AM为对角线时,∵A(4,0)、M(2,2)、N(﹣2,2),∴点P的坐标为(4+2﹣(﹣2),0+2﹣2),即(8,0);③当线段MN为对角线时,∵A(4,0)、M(2,2)、N(﹣2,2),∴点P的坐标为(2﹣2﹣4,2+2﹣0),即(﹣4,4).综上可知:若以A、M、N、P为顶点的四边形是平行四边形,点P的坐标为(0,0)、(8,0)或(﹣4,4).(3)∵反比例函数的图象经过N(﹣2,2)、E(x1,y1)、F(x2,y2)三点,∴k=﹣2×2=﹣4,∴反比例函数解析式为.∵点E、F关于原点对称,∴x1=﹣x2,y1=﹣y2,∵x1>x2,∴点E在第四象限,点F在第二象限.直线MN的关系式为y=2,点E到直线MN的距离是点F到直线MN的距离的3倍.①当点F在直线MN的上方时,点E到直线MN的距离是:2﹣y1,点F到直线MN的距离是:y2﹣2,∴3(y2﹣2)=2﹣y1,y1=﹣y2,∴y1=﹣4,y2=4,∴点E(1,﹣4),点F(﹣1,4);②当点F在直线MN的下方时,点E到直线MN的距离是:2﹣y1,点F到直线MN的距离是:2﹣y2,∴3(2﹣y2)=2﹣y1,y1=﹣y2,∴y1=﹣1,y2=1,∴点E(4,﹣1),点F(﹣4,1).综上所述:E(1,﹣4),F(﹣1,4)或E(4,﹣1),F(﹣4,1).。
华师大版八年级下册数学期中考试试题及答案
华师大版八年级下册数学期中考试试卷一、单选题1.在下列分式中,最简分式是()A .11a a --B .22a ba b -+C .-bab b D .1352-ab2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 3.下列计算正确的是()A .3x x x =B .11a a b b +=+C .2+1﹣1=﹣1D .a ﹣3=(a 3)-14.若把分式2xy x y +的x.y 同时扩大3倍,则分式值()A .扩大3倍B .缩小3倍C .不变D .扩大9倍5.已知反比例函数y =21k x+的图上象有三个点(2,y 1),(3,y 2),(﹣1,y 3),则y 1,y 2,y 3的大小关系是()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 16.函数y =m x与y =mx ﹣m (m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .7.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣348.ABCD 中,∠A :∠B :∠C :∠D 的值可以是()A .1:2:3:4B .1:2:2:1C .2:2:1:1D .2:1:2:19.下列说法错误的是()A .平行四边形的对角相等B .平行四边形的对角互补C .平行四边形的对边相等D .平行四边形的内角和是360°10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是()A .15000(120)0x -﹣1500x =2B .1500x =2+15000(120)0x -C .15000(1+20)0x ﹣1500x =2D .1500x =2+15000(1+20)0x 二、填空题1121()2--+(π﹣3.14)0=___.12.函数y =x 的取值范围是__________.13.已知点P(2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为_____.14.若点A (a ,b )在反比例函数y =5x -的图象上,则代数式ab ﹣4的值为_____.15.一个y 关于x 的函数同时满足两个条件:图象过(2,1)点;当x >0时,y 随x 的增大而减小.这个函数解析式为_________________.(写出一个即可)三、解答题16.解下列方程:(1)11322x x x -+=--.(2)6123x x x =--+.17.先化简,再求值:2x 2x 1x 4xx 2x 4x 4+--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x 71+>的负整数解.18.已知y=y1+y2,其中y1与x成正比例,y2与x成反比例,并且当x=﹣1时,y=﹣1;当x=2时,y=5,求①y与x的函数关系式;②当x=﹣2时y的值.19.如图,甲、乙两人分别骑自行车和摩托车沿相同路线由A地到B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)______先出发,提前______小时;(2)______先到达B地,早到______小时;(3)A地与B地相距______千米;(4)甲乙两人在途中的速度分别是多少?20.某村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入此活动,并且该环保组织植树的速度是水源村植树速度的1.5倍,整个植树过程共用了13天,水源村每天植树多少亩?21.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E,(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.22.如图,一次函数y=ax+b的图象与反比例函数y=mx图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)在第二象限内,观察函数图像,直接写出不等式ax+b <m x 的解集.23.某商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1.B【解析】根据最简分式的定义:分子,分母中不含有公因式,不能再约分的分式即可解答.【详解】解:A 、11111()--==----a a a a ,故A 选项不符合题意;B 、22a b a b -+是最简分式,故B 选项符合题意;C 、1(1)1==---b b ab b b a a ,故C 选项不符合题意;D 、1313521344-=-=-⋅a a a b b b,故D 选项不符合题意;故选:B .【点睛】此题考查最简分式的定义,分式的化简,首先要把分子、分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意.2.C【解析】【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法3.D【解析】【分析】分子和分母同乘以(或除以)一个不为0的数,分数的值不变.【详解】A 、32x x x=,故本选项错误;B 、11=11a a a b b b++≠++,故本选项错误;C 、1213-+=,故本选项错误;D 、()133a a --=,故本选项正确;故选D .【点睛】本题主要考查分式的性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.4.A【解析】【分析】根据分式的性质即可化简判断.【详解】分式2xyx y+的x.y同时扩大3倍,变为2331823333()x y xy xyx y x y x y⨯⨯==⨯+++故选A.【点睛】此题主要考查分式的性质,解题的关键是把变化后的分式进行约分化简即可.5.A【解析】【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx+的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选A.【点睛】本题考查了反比例函数图象的性质,对于反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.6.C【解析】【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A、由反比例函数的图象在可一、三象限知m>0时,-m<0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.7.B【解析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m m x x++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32.故答案选B .8.D【解析】【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D.故选D.【点睛】本题主要考查了平行四边形的性质.其性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.9.B【解析】【分析】根据平行四边形性质逐项分析即可.【详解】解:A.平行四边形的对角相等,该选项正确;B.平行四边形的对角相等,该选项错误;C.平行四边形的对边相等,该选项正确;D.平行四边形的内角和是360°,该选项正确;故选B.10.D【解析】【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【详解】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得1500x=2+()1500120%x+.故选D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.0【解析】【分析】根据算术平方根的性质、负指数幂和零指数幂计算即可;【详解】原式=3410-+=;故答案为0.【点睛】本题主要考查了实数的计算,结合负指数幂、零指数幂计算是解题的关键.12.x≥-2且x≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得2010 xx+≥⎧⎨-≠⎩解得x≥-2且x≠1故答案为:x≥-2且x≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.13.(﹣1,﹣1).【解析】【详解】试题分析:根据第三象限点的坐标性质得出a的取值范围,进而得出a的值:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴20270aa-<⎧⎨-<⎩,解得:2<a<3.5,因为a为整数,故a=3,代入计算,则点P坐标为:(﹣1,﹣1).故答案为(﹣1,﹣1).考点:点的坐标.14.-9【解析】【分析】由点A在反比例函数图象上,可得出ab=-5,将其代入代数式ab-4中即可得出结论.【详解】解:∵点A(a,b)在反比例函数y=5x-的图象上∴ab=-5∴ab-4=-5-4=-9.故答案为:-9.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是找出ab=2.本题属于基础题,难度不大,解决该题型题目时,由点在反比例函数图象上可以得出点的横纵坐标之积为定值,将其代入代数式即可.15.y=【解析】【详解】符合题意的函数解析式可以是y=,y=﹣x+3,y=﹣x2+5等,(本题答案不唯一)16.(1)无解;(2)43 x=-.【解析】【分析】(1)方程两边同时乘以(2)x -约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根;(2)方程两边同时乘以(2)(3)x x -+约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根.【详解】解:(1)11322x x x -+=--约去分母,得:13(2)1x x +-=-,解得:2x =,检验:当2x =时,2220x -=-=,∴2x =是增根,原分式方程无解;(2)6123x x x =--+约去分母,得:6(3)(2)(2)(3)x x x x x +=---+,解得:43x =-,检验:当43x =-时,4450(2)(3)(2)(3)0339x x -+=---+=-≠,∴原分式方程的解为43x =-.【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的基本步骤,特别注意要检验是否是原方程的根.17.x 2x-;3【解析】【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x 的值求值.【详解】解:原式=()()()()2222x 2x 4x x x 4x 4x 2==x x 2x x 2x 4x x 2---+---÷⋅----解3x 71+>得x 2>-,负整数解为x=1-将x=1-代入原式=12=3 1---18.①y=3x-2x;②-5【解析】【分析】①设y1=kx,y2=nx则y=y1+y2=kx+nx,再把当x=-1时,y=-1,当x=2时,y=5代入求出k、n的值,进而可得答案;②把x=-2代入(1)所得的函数解析式即可.【详解】解:①设y1=kx,y2=nx则y=y1+y2=kx+nx,∵当x=-1时,y=-1,当x=2时,y=5,∴1522k nnk-=--⎧⎪⎨=+⎪⎩,解得:32 kn=⎧⎨=-⎩,∴y关于x的函数关系式为y=3x-2 x;②把x=-2代入y=3x-2x得:y=-6+1=-5.【点睛】此题主要考查了待定系数法求函数的解析式,关键是正确表示出函数解析式.19.(1)甲,3;(2)乙,3;(3)80;(4)10千米/小时,40千米/小时【解析】【分析】(1)由图象可得出甲先出发3小时;(2)乙在3小时后出发,且比甲先到终点3小时;(3)根据图象可得出A,B两地之间的距离;(4)根据路程除以时间等于速度,可得出答案.【详解】(1)由图象可得甲,3;(2)由图象可得乙,3;(3)由图象可得80;(4)甲:80÷8=10(千米/小时)乙:80÷2=40(千米/小时).故答案为甲,3;乙,3;80.【点睛】本题考查了函数的图象,利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.8【解析】【分析】根据整个植树过程共用了13天,以及环保组织植树的速度是全村植树速度的1.5倍表示出两者的植树天数得出等式求解即可.【详解】解:设全村每天植树x亩则由题意得4020040131.5x x x-+=+,即40160132.5x x+=∴10016013 2.5x+=∴解得8x=把8x=代入原分式方程中,方程左右两边相等∴8x=是方程的解答:水源村每天植树8亩.【点睛】本题主要考查了分式方程的实际应用,根据植树的天数得出等式是解题关键. 21.(1)详见解析;(2).【解析】【详解】试题分析:(1)由平行四边形的性质和角平分线易证∠BAE=∠BEA,根据等腰三角形的性质可得AB=BE;(2)易证△ABE是等边三角形,根据等边三角形的性质可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS证明△ADF≌△ECF,即△ADF的面积=△ECF的面积,因此平行四边形ABCD 的面积=△ABE 的面积=12AE•BF ,即可得出结果.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD ,∴∠B+∠C=180°,∠AEB=∠DAE ,∵AE 是∠BAD 的平分线,∴∠BAE=∠DAE ,∴∠BAE=∠AEB ,∴AB=BE ,∴BE=CD ;(2)解:∵AB=BE ,∠BEA=60°,∴△ABE 是等边三角形,∴AE=AB=4,∵BF ⊥AE ,∴AF=EF=2,∴BF=,∵AD ∥BC ,∴∠D=∠ECF ,∠DAF=∠E ,在△ADF 和△ECF 中,D ECF DAF E AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ECF (AAS ),∴△ADF 的面积=△ECF 的面积,∴平行四边形ABCD 的面积=△ABE 的面积=12AE•BF=12考点:全等三角形的判定与性质;平行四边形的性质.22.(1)y =﹣2x ,y=522x +(2)154(3)﹣5<x <﹣4或﹣1<x <0【解析】【分析】(1)将点A (-1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数解析式.(2)求得C 点的坐标后利用S AOB S AOC S BOC =- 求面积即可.(3)根据图像即可得到结论.【详解】(1)将点A (﹣1,2)代入函数y =m x ,解得:m =﹣2,∴反比例函数解析式为y =﹣2x,将点A (﹣1,2)与点B (﹣4,12)代入一次函数y =ax+b ,解得:a =12,b =52∴一次函数的解析式为y =x 2+52;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣54=154;(3)由图象知,不等式ax+b <m x的解集为:﹣5<x <﹣4或﹣1<x <0.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.23.(1)A ,B 两种纪念品的进价分别为20元、30元;(2)应进A 种纪念品30件,B 种纪念品l0件,才能使获得利润最大,最大值是220元.【解析】【详解】分析:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元,件数×进价=付款,可得到一个二元一次方程组,解即可.(2)获利=利润×件数,设购买A 商品a 件,则购买B 商品(40﹣a )件,由题意可得到两个不等式,解不等式组即可.详解:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元.由题意得:78380106380x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩.答:A 种纪念品的进价为20元、B 种纪念品的进价为30元.(2)设商店准备购进A 种纪念品a 件,则购进B 种纪念品(40﹣a )件.由题意得:2030409005740216a a a a +-≤⎧⎨+-≥⎩()(),解得:30≤a≤32.设总利润为w .总获利w=5a+7(40﹣a )=﹣2a+280.∵w 是a 的一次函数,且w 随a 的增大而减小,∴当a=30时,w 最大,最大值w=﹣2×30+280=220,∴40﹣a=10,∴当购进A 种纪念品30件,B 种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.点睛:利用了总获利=A 利润×A 件数+B 利润×B 件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.。
华师大版八年级下册数学期中考试试题及答案
华师大版八年级下册数学期中考试试卷一、单选题1.下列代数式中,是分式的是( )A .12-B .xy πC .23x y -D .2x2.在平面直角坐标系中,点P (–2,–3)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数42y x =-中,自变量x 的取值范围是( ) A .2x = B .2x ≠ C .2x ≥ D .2x > 4.数据0.00008用科学计数法表示为( )A .70.810-⨯B .60.810-⨯C .5810-⨯D .68010-⨯ 5.若把分式a a b+中的a 和b 同时扩大为原来的2倍,则分式的值( ) A .扩大4倍 B .扩大2倍 C .保持不变 D .缩小2倍 6.甲、乙两班学生参加植树造林.已知甲每天比乙少植2棵树,甲植60棵树所用天数与乙植70棵树所用天数相等.若设甲每天植树x 棵,依题意列出方程正确的是( ) A .6070x 2x =+ B .6070x x 2=+ C .6070x 2x =- D .6070x x 2=- 7.对于反比例函数6y x=,下列说法正确的是( ) A .图象分布在第二、四象限 B .y 随x 的增大而增大 C .函数图象关于y 轴对称 D .图象经过()2,3--8.若分式方程1533x a x x -=+--有增根,则a 的值为( ) A .2 B .3 C .4 D .59.在同一直角坐标系中,函数k y x=和2y kx =-+的图象大致是( )A B C D10.如果规定[x]表示不大于x 的最大整数,例如[2.3]=2,那么函数y=x ﹣[x]的图象为( )A .B .C .D .二、填空题11.在括号填入适当的整式,使等式成立:()124y xy=. 12.把直线y =2x 向上平移5个单位得到直线l ,则直线l 的解析式为___.13.点()2,4P -到y 轴的距离是______.14.若113-=a b ,则2ab a b-的值是______. 15.如图,一次函数y=kx+b (k 、b 为常数,且k≠0)和反比例函数4y x=(x >0)的图象交于A 、B 两点,利用函数图象直接写出不等式4x<kx+b 的解集是_______.16.如图,已知双曲线y =k x(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =_____.三、解答题17.计算:21202183-⎛⎫---⎪⎝⎭.18.解方程:212133xx x++=--.19.先化简,再求值:2269222x xx x-+⎛⎫-÷⎪--⎝⎭,其中x=10.20.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.21.某市为了治理城市污水,需要铺设一段全长为3000米的污水排放管道,铺设1000米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加25%,结果共用了65天完成了这一任务,求原计划每天铺设管道多少米?22.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与反比例函数12yx=-的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,点A的横坐标与点B的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积.23.某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x 之间的函数关系式(不要求写出x的取值范围);(2)若要使商店的进货成本在4300元的限额内,请你列出商店获利最大的进货方案,并求出最大利润是多少?24.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围);(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米? (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a 百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值.25.如图1,已知函数132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称.(1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,如图2,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q .△若PQB △的面积为94,求点M 的坐标; △连接BM ,如图,若BMP BAC ∠=∠,直接写出点P 的坐标.参考答案1.D判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:A、它的分母中不含有字母,不是分式,故本选项不符合题意.B、它的分母中不含有字母,不是分式,故本选项不符合题意.C、它的分母中不含有字母,不是分式,故本选项不符合题意.D、它的分母中含有字母,是分式,故本选项符合题意.故选:D.2.C【解析】应先判断出点P的横纵坐标的符号,进而判断其所在的象限.【详解】解:△点P的横坐标-2<0,纵坐标为-3<0,△点P(-2,-3)在第三象限.故选:C.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.B【解析】x-≠,即可求解.根据分式有意义的条件可得20【详解】x-≠,解:根据题意得:20x≠.解得:2故选:B.4.C【解析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数【详解】解:0.00008=5810-⨯.故选C.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成a×10-n的形式,其中1≤|a|<10,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).5.C【解析】【分析】依题意分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.【详解】解:原式=222aa b+=22()aa b+=aa b+,所以分式的值不变,故选:A.【点睛】本题考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.B【解析】【分析】甲班植60棵树所用的天数与乙班植70棵树所用的天数相等,等量关系为:甲班植60棵树所用的天数=乙班植70棵树所用的天数,根据等量关系列式:【详解】设甲班每天植树x棵,乙班每天植树x+2棵,则甲班植60棵树所用的天数为60x,乙班植70棵树所用的天数为70x2+,所以可列方程:6070x x2=+.故选B【解析】【分析】根据反比例函数的性质结合其图像逐一进行判断即可.【详解】解:A 、反比例函数6y x=,60k =>, △经过一、三象限,故此选项错误,不符合题意;B 、反比例函数6y x=,y 随x 的增大而减小, 故此选项错误,不符合题意;C 、反比例函数6y x=关于原点中心对称, 故此选项错误,不符合题意;D 、当2x =-时,则632y ,△ 图象经过()2,3--,故此选项正确,符合题意;故选:D .【点睛】此题主要考查了反比例函数的性质,关键是掌握(1)反比例函数y =k x(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.8.A【解析】【分析】先求出整式方程的根144a x -=,再根据题意可得30x -=,得到关于a 的方程,即可求解.【详解】解:方程两边同时乘以()3x - ,得:15(3)x x a -=-+ ,解得:144a x -=, △分式方程1533x a x x -=+--有增根, △30x -=,即:14304a --=, 解得:2a = .故选:A .【点睛】 本题主要考查了分式方程的增根问题,熟练掌握最简公分母等于零时,分式方程产生增根是解题的关键.9.A【解析】【分析】首先根据反比例函数图象所经过的象限判断出k 的符号;然后由k 的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项.【详解】解:A 、反比例函数y =k x(k≠0)的图象经过第一、三象限,则k >0, 所以一次函数2y kx =-+的图象经过第二、四象限,且与y 轴交于正半轴,故本选项符合题意;B 、反比例函数y =k x(k≠0)的图象经过第一、三象限,则k >0, 所以一次函数2y kx =-+的图象经过第二、四象限,且与y 轴交于正半轴,故本选项不符合题意;C 、反比例函数y =k x(k≠0)的图象经过第二、四象限,则k <0, 所以一次函数2y kx =-+的图象经过第一、三象限,且与y 轴交于正半轴,故本选项不符合题意;D 、反比例函数y =k x(k≠0)的图象经过第一、三象限,则k >0, 所以一次函数2y kx =-+的图象经过第二、四象限,且与y 轴交于正半轴,故本选项不符合题意,故选:A .【点睛】本题考查了反比例函数的图象和一次函数的图象,熟悉两函数的性质是解题的关键.10.A【解析】【详解】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.11.2x【解析】【分析】设括号内的整式为W,则124Wy xy=,根据分式的基本性质:分式的分子分母同时乘以或除以一个不为零的数和整式,分式的值不变,据此左边分式分子分母同时乘以2x即可得到答案.【详解】解:设括号内的整式为W△124W y xy=△左边分式分子分母同时乘以2x得:244 x W xy xy=△2W x=故答案为:2x.【点睛】本题主要考查了分式的性质,解题的关键在于能够熟练掌握相关知识进行求解. 12.y=2x+5.【解析】【详解】试题分析:直线平移变换的规律:对直线y=kx+b 而言:直线平移时,k 不变,b 值加减(上下平移时,b 的值上加下减).掌握其中变与不变的规律是解决直线平移变换的好方法.所以平移后解析式为:y=2x+5.故填:y=2x+5.考点:一次函数图象与几何变换.13.2【解析】【分析】根据点到y 轴的距离等于横坐标的绝对值解答.【详解】解:点P (-2,4)到y 轴的距离为2.故答案为:2.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.14.23- 【解析】【分析】先通分,根据倒数的意义整体代入求值.【详解】解:△113-=a b, △3b a ab -=,即3a b ab -=-, △13ab a b =--, △2ab a b-=23-. 故答案为:23-. 【点睛】本题考查了分式的加减法及倒数的意义.解决本题的关键是发现化简后的分式和要求的分式间的倒数关系.15.1<x<4【解析】【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【详解】解:△由图象可知:A(1,4),B(4,1),x>0,△不等式4x<kx+b的解集为1<x<4,故答案为:1<x<4.【点睛】本题考查反比例函数与一次函数的交点问题.16.2【解析】【详解】解:过D点作DE△x轴,垂足为E,△Rt△OAB中,△OAB=90°,△DE△AB,△D为Rt△OAB斜边OB的中点D,△DE为Rt△OAB的中位线,△△OED△△OAB,△两三角形的相似比为,△双曲线,可知,,由,得,解得17.-16【解析】【分析】分别计算零次幂,负整数指数幂,绝对值,再合并即可得到答案.【详解】解:原式=198--=16-【点睛】本题考查的是绝对值的含义,零次幂的含义,负整数指数幂的含义,掌握零次幂与负整数指数幂的运算是解题的关键.18.2x=-【解析】【分析】方程两边同乘x-3,化为整式方程求解,再验根即可.【详解】解:方程两边同乘x-3,约去分母,得2+x-3=1+2x,解得x=-2,检验:当x=-2时,x-3=-5≠0,所以x=-2是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.19.22,37 x-【解析】【分析】先计算括号内的分式的减法运算,同时把除法转化为乘法,约分后可得化简的结果,再把x 的值代入化简后的代数式计算即可得到答案.【详解】解: 原式=()23242222x x x x x --⎛⎫-÷ ⎪---⎝⎭, =()()223223x x x x --⨯--, =23x -, 当x=10时,原式=221037=-. 【点睛】本题考查的是分式的化简求值,掌握分式的混合运算是解题的关键.20.(1)2372y x =+ ,是一次函数;(2)a 为-1. 【解析】【分析】(1)根据正比例函数的定义可设y-3=k (3x+1),再把x=2,y=6.5代入可计算出12k =,则2372y x =+,然后根据一次函数的定义进行判断; (2)根据一次函数图形上点的坐标特征,把(a ,2)代入(1)中的解析式中即可得到a 的值.【详解】解: (1)设y−3=k(3x+1),把x=2,y=6.5代入得6.5−3=k(6+1),解得12k =, 所以y−3=12 (3x+1), 所以2372y x =+ ,y 是x 的一次函数; (2)把(a,2)代入2372y x =+ 得372,22a +=解得a=−1.21.40米【解析】【分析】设原计划每天铺设管道x 米,根据“结果共用了65天完成了这一任务”列方程求解即可.【详解】解:设原计划每天铺设管道x 米,依题意得:10003000100065(125%)x x-+=+, 解得 x=40,经检验,x=40是原方程的解,且符合题意,答:原计划每天铺设管道40米.【点睛】本题考查了列分式方程解实际问题的应用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.22.(1)y =-x -1;(2)72【解析】【分析】(1)根据题意得出A ,B 点坐标,进而利用待定系数法得出一次函数解析式; (2)求出一次函数与x 轴交点,进而利用三角形面积求法得出答案.【详解】解:(1)把x =3代入12y x=-,得y =-4, 故A (3,-4),把y =3代入12y x =-,得x =-4, 故B (-4,3), 把A ,B 点代入y =kx+b 得:3443k b k b +=-⎧⎨-+=⎩, 解得:11k b =-⎧⎨=-⎩,故直线解析式为:y=-x-1;(2)由(1)知:当y=0时,x=-1,故C点坐标为:(-1,0),则△AOB的面积为:12×1×3+12×1×4=72.【点睛】本题主要考查了反比例函数与一次函数的交点问题以及待定系数法求一次函数解析式、三角形面积求法等知识,正确得出A,B点坐标是解题关键.23.(1)y=5x+1200;(2)当购买篮球43个,排球17个时利润最大,最大利润为1415元【解析】【分析】(1)设商店所获利润为y元,购进篮球x个,则购进排球(60-x)个,根据总利润=单个利润×购进数量,即可得出y与x之间的函数关系式;(2)设购进篮球x个,则购进排球(60-x)个,根据进货成本在4300元的限额内即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合(1)的结论利用一次函数的性质即可解决最值问题.【详解】解:(1)设商店所获利润为y元,购进篮球x个,则购进排球(60-x)个,根据题意得:y=(105-80)x+(70-50)(60-x)=5x+1200,△y与x之间的函数关系式为:y=5x+1200.(2)根据题意得:()8050604300x x+-≤解得:1303 x≤△y=5x+1200中,k=5>0,△y随x增大而增大,△x为整数,△当x=43时,y有最大值,y最大=5×43+1200=1415,60-43=17(个),答:当购买篮球43个,排球17个时利润最大,最大利润为1415元.【点睛】本题考查了一次函数的应用,以及一元一次不等式的应用,解题的关键是:(1)根据数量关系,找出y 与x 之间的函数关系式;(2)根据一次函数的性质解决最值问题.24.(1)甲,y=20x ;(2)3百万米;(3)158154a b ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】(1)根据图象可得OB 表示的轮胎比OA 表示的轮胎磨损慢,据此即可确定是甲或乙,利用待定系数法即可求得函数解析式;(2)利用待定系数法求得OA 的函数解析式,然后求得当y=100时对应的x 的值即可; (3)根据两个轮胎的磨损度都是100,即可列出方程组求解.【详解】解:(1)线段OB 表示的是甲,设OB 的解析式是y=kx ,则1.5k=30,解得:k=20,则OB 的表达式是y=20x .故答案是:甲,y=20x ;(2)设直线OA 的表达式为y=mx ,根据题意得:1.5m=50, 解得:1003m =, 则OA 的解析式是1003y x =. 当y=100时,100100=3x , 解得:x=3. 答:这辆自行车最多可骑行3百万米.(3)根据题意,得()()100201003100201003a b a a b a ⎧+-=⎪⎪⎨⎪+-=⎪⎩,解这个方程组,得158154a b ⎧=⎪⎪⎨⎪=⎪⎩ . 25.(1)132y x =-+;(2)△M ⎫⎪⎪⎝⎭或者M ⎛⎫ ⎪ ⎪⎝⎭,△39,24⎛⎫- ⎪⎝⎭或315,24⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)先表示出PQ ,最后用三角形面积公式即可得出结论;(3)分点M 在y 轴左侧和右侧,设M 点坐标为(x ,0),然后表示出点P 的坐标,由对称得出△BAC=△ACB ,△BMP+△BMC=90°,所以,当△MBC=90°即可,利用勾股定理建立方程即可x 2+9+45=(6-x )2;【详解】解:(1)对于132y x =+ 由0x =得:3y =,△()0,3B由0y =得:132y x =+,解得6x =-﹐△()6,0A -, △点C 与点A 关于y 轴对称,△()6,0C设直线BC 的函数解析式为y kx b =+,则360b k b =⎧⎨+=⎩,解得:123k b ⎧=-⎪⎨⎪=⎩, △直线BC 的函数解析式为132y x =-+, (2)设(),0M m ,则1,32P m m ⎛⎫+ ⎪⎝⎭、1,32Q m m ⎛⎫-+ ⎪⎝⎭如图,过点B 作BD PQ ⊥于点D ,113322PQ m m m ⎛⎫⎛⎫=-+-+= ⎪ ⎪⎝⎭⎝⎭,BD m = , 2119224PQB S PQ BD m =⋅==△,解得m =△3M ⎛⎫ ⎪ ⎪⎝⎭或者3M ⎛⎫-⎪ ⎪⎝⎭.(3)如图,当点M 在y 轴的左侧时, △点C 与点A 关于y 轴对称 △AB BC =,BAC BCA ∠=∠ △BMP BAC ∠=∠,BMP BCA ∠=∠ △90BMP BMC ∠+∠=︒,△90BMC BCA ∠+∠=︒ △1(9)800MBC BMC BCA ∠=︒-∠+∠=︒ △222BM BC MC +=设(),0M x ,则1,32P x x ⎛⎫+ ⎪⎝⎭△22229BM OM OB x =+=+,()226MC x =- ,222226345BC OC OB =+=+=, △()229456x x ++=-,解得32x =-, △39,24P ⎛⎫- ⎪⎝⎭.当点M 在y 轴的右侧时,如图, 同理可得315,24P ⎛⎫⎪⎝⎭.综上,点P的坐标为39,24⎛⎫-⎪⎝⎭或315,24⎛⎫⎪⎝⎭.。
华师大版八年级下册数学期中考试试题及答案
华师大版八年级下册数学期中考试试卷一、单选题1.若a b ¹,则下列分式化简正确的是()A .22a ab b+=+B .22a ab b-=-C .22a a b b=D .1212aa b b =2.某细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A .9.5×10﹣7米B .9.5×10﹣8米C .9.5×10﹣9米D .9.5×10﹣10米3.下列分式是最简分式的是()A .29x B .226x x yC .2x x xy-D .2121x x x --+4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A .y =2xB .y =﹣2xC .y =8xD .y =﹣8x5.有下列几种说法:(1)到y 轴的距离是2的点的纵坐标是2;(2)点(﹣2,3)与点(3,﹣2)关于原点对称;(3)直线:y =2x ﹣5和y =﹣x +1,它们的交点坐标(2,﹣1)就是方程组251y x y x =-⎧⎨=-+⎩的解21x y =⎧⎨=-⎩;(4)第一象限内的点的横坐标与纵坐标均为正数。
其中正确的有()个A .1B .2C .3D .46.下列计算正确的是()A .(﹣0.1)2=0.2B .a•a ﹣1=1(a≠0)C .(23002-)0=﹣1D .11011a a+=+-7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,观察图象可得()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.我国古代著作《四元玉鉴》记载“买橡多少”问题:“六贯二百一十钱,倩人去买几株椽,每株脚钱三文足,无钱准与一株椽.”,其大意为:现请人代买一批橡,这批橡的价钱为6210文.如果每株橡的运费是3文,那么少拿一株橡后,剩下的橡的运费恰好等于一株椽的价钱,试问6210文能买多少株橡,设这批橡的数量为x 株,则符合题意的方程是()A .621031=-x B .621031-=x xC .62103(1)1x x -=-D .62103=x9.一次函数y =﹣3x +1的图象过点(x 1,y 1),(x 1+1,y 2),(x 1+2,y 3),则()A .y 1>y 2>y 3B .y 2>y 3>y 1C .y 1>y 3>y 2D .y 3>y 2>y 110.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程(km)y 与它们的行驶时间(h)x 之间的函数关系.小欣同学结合图像得出如下结论:①快车途中停留了0.5h ;②快车速度比慢车速度多20km/h ;③图中340a =;④快车先到达目的地。
华东师大版八年级数学下学期期中考试试题(含答案解析)
华东师大版八年级数学下学期期中考试试题一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1B.2C.3D.43.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3B.m C.m<3D.m<3或m6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.7.若关于x的方程无解,则m的值是()A.3B.2C.1D.﹣18.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3B.﹣3C.1D.09.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是()A.将l1向左平移3个单位B.将l1向左平移9个单位C.将l1向下平移3个单位D.将l1向上平移9个单位12.不论m取何值,如果点P(2m,m+1)都在某一条直线上,则这条直线的解析式是()A.y=2x﹣1B.y=2x+1C.y=x﹣1D.y=二、填空題(每小题3分,共18分)13.若代数式有意义,则x的取值范围是.14.如果分式的值为5,把式中的x,y同时扩大为原来的3倍,则分式的值是.15.若y=3x1﹣2k为反比例函数,则一次函数y=x﹣2k不经过第象限.16.双曲线y1,y2在第一象限的图象如图,y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴与C,若△AOB的面积为1,则y2的解析式是.17.已知,则=.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy ﹣2).(要求结果中不出现负整数指数幂)20.(6分)先化简,再求值:,其中x =.21.(7分)在同一坐标系中分别画出y =2x +1和y =﹣x ﹣2的图象,它们的交点为A ,求点A 的坐标.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n 为正整数)(2)(++…+.24.(8分)如图,在平面直角坐标系中,直线y =﹣2x +4分别交x 轴、y 轴于点A 、B ,将△AOB 绕点O 顺时针旋转90°后得到△A ′OB ′.(1)求直线A ′B ′所对应的函数表达式.(2)若直线A ′B ′与直线AB 相交于点C ,求△A ′BC 的面积.25.(8分)如图,一次函数y =ax +b 的图象与反比例函数y =图象相交于点A (﹣1,2) 与点B (﹣4,n ).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.(3)在第二象限内,求不等式ax +b <的解集(请直接写出答案).26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?参考答案与试题解析一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.【分析】根据函数的定义可知y与自变量x是一一对应的,从而可以判断各个选项中的图象是否是函数图象,从而可以解答本题.【解答】解:由函数的定义可知,选项B中的图象不是函数图象,故选:B.【点评】本题考查函数的图象、函数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1B.2C.3D.4【分析】根据分式的定义即可求出答案.【解答】解:﹣,,是分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x +2)=3形式的出现.5.直线y =﹣3x +m 与直线y =2x +3的交点在第二象限,则m 的取值范围是( )A .﹣<m <3B .mC .m <3D .m <3或m【分析】首先联立解方程组求得交点的坐标,再根据交点在第二象限列出不等式组,从而求得m 的取值范围.【解答】解:根据题意,得﹣3x +m =2x +3,解得x =,则y =.又交点在第二象限,则x <0,y >0,即<0,,解得. 故选:A .【点评】考查了两条直线相交或平行问题,能够根据二元一次方程组求两条直线的交点,同时根据所在象限的位置确定字母的取值范围.6.函数y =﹣与y =mx ﹣m (m ≠0)在同一平面直角坐标系中的大致图象是( )A .B .C .D .【分析】先根据反比例函数的性质判断出m 的取值,再根据一次函数的性质判断出m 取值,二者一致的即为正确答案.【解答】解:A 、由双曲线在一、三象限,得m <0.由直线经过一、二、四象限得m <0.正确;B 、由双曲线在二、四象限,得m >0.由直线经过一、四、三象限得m >0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.7.若关于x的方程无解,则m的值是()A.3B.2C.1D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.【解答】解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.8.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3B.﹣3C.1D.0【分析】根据题意,对题目中的函数解析式变形,即可求得所求式子的值.【解答】解:∵P(x,y)是直线y=x﹣上的点,∴4y=2x﹣6,∴2x﹣4y=6,∴2x﹣4y﹣3=6﹣3=3,故选:A.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.9.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.【分析】根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.【解答】解:由矩形的面积公式可得xy=6,∴y=(x>0,y>0).图象在第一象限.故选:C.【点评】考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是()A.将l1向左平移3个单位B.将l1向左平移9个单位C.将l1向下平移3个单位D.将l1向上平移9个单位【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l1:y=﹣3x+3平移后,得到直线l2:y=﹣3x﹣6,∴﹣3(x+a)+3=﹣3x﹣6,解得:a=3,故将l1向左平移3个单位长度.故选:A.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.不论m取何值,如果点P(2m,m+1)都在某一条直线上,则这条直线的解析式是()A.y=2x﹣1B.y=2x+1C.y=x﹣1D.y=【分析】分别计算自变量为2m时四个函数的函数值,然后根据一次函数图象上点的坐标特征进行判断.【解答】解:当x=2m时,y=2x﹣1=4m﹣1;y=2x+1=4m+1;y=x﹣1=m﹣1;y=x+1=m+1,所以点P(2m,m+1)在直线y=x+1上.故选:D.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.二、填空題(每小题3分,共18分)13.若代数式有意义,则x的取值范围是x≥0且x≠2.【分析】令被开方数大于或等于0和分母不为0即可求出x的范围【解答】解:∵解得:x≥0且x≠2故答案为:x≥0且x≠2【点评】本题考查二次根式以及分式有意义的条件,解题的关键是根据条件列出不等式组,本题属于基础题型.14.如果分式的值为5,把式中的x,y同时扩大为原来的3倍,则分式的值是.【分析】直接利用分式的性质将原式变形进而得出答案.【解答】解:∵分式的值为5,把式中的x,y同时扩大为原来的3倍,∴原式==×=.故答案为:.【点评】此题主要考查了分式的基本性质,正确将原式变形是解题关键.15.若y=3x1﹣2k为反比例函数,则一次函数y=x﹣2k不经过第二象限.【分析】先根据反比函数的定义求出k的值,再根据一次函数的性质判断出一次函数y=x﹣2k 经过的象限即可.【解答】解:∵y=3x1﹣2k为反比例函数,∴1﹣2k=﹣1,解得k=1,∴一次函数y=x﹣2k的解析式为y=x﹣2,∴函数图象经过一、三、四象限,不经过第二象限.故答案为:二.【点评】本题考查的是反比例函数的定义及一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k>0,b<0时函数的图象在一、三、四象限.16.双曲线y1,y2在第一象限的图象如图,y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴与C,若△AOB的面积为1,则y2的解析式是y=.【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为1.5,进而得出△CBO面积为2.5,即可得出y2的解析式.【解答】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S=×3=1.5,△AOC=1,∵S△AOB∴△CBO面积为2.5,∴k=xy=5,∴y2的解析式是:y2=.故答案为:y2=.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出△CAO的面积为1.5,进而得出△CBO面积为2.5是解决问题的关键.17.已知,则=﹣3.【分析】将已知等式左边通分可得:=3,再将所求式子分子提公因式、约分后,代入可得结论.【解答】解:∵,∴=3,则===﹣3.故答案为:﹣3.【点评】本题考查了分子的加减法和因式分解,熟练掌握分式的加减法法则是关键.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是(1,﹣1).【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2018=201×10+2+3+2+1可得出当t=2018秒时点P在点D上方一个单位长度处,再结合点D的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,=2(AB+AD)=10.∴C矩形ABCD∵2018=201×10+2+3+2+1,∴当t=2018秒时,点P在点D上方一个单位长度处,∴此时点P的坐标为(1,﹣1).故答案为:(1,﹣1).【点评】本题考查了规律型中点的坐标,根据点P的运动规律找出当t=2018秒时点P在点D上方一个单位长度处是解题的关键.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy﹣2).(要求结果中不出现负整数指数幂)【分析】直接利用积的乘方运算法则化简,进而利用分式的乘除运算法则计算得出答案.【解答】解:原式=××=.【点评】此题主要考查了分式的乘除运算,正确掌握积的乘方运算法则是解题关键.20.(6分)先化简,再求值:,其中x=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(7分)在同一坐标系中分别画出y=2x+1和y=﹣x﹣2的图象,它们的交点为A,求点A的坐标.【分析】利用瞄点法画出直线即可,解方程组求交点坐标即可;【解答】解:列表描点画出图象:列方程组,解方程组得,∴两直线交点A的坐标是(﹣1,﹣1).【点评】本题考查一次函数的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?【分析】设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.【解答】解:设摩托车的是xkm/h,=+x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.【点评】本题考查分式方程的应用,设出速度,以时间做为等量关系可列方程求解.23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n为正整数)(2)(++…+.【分析】(1)根据题意得出拆项规律,即可得到结果;(2)原式利用得出的拆项变形,计算即可得到结果.【解答】解:(1)原式===(2)原式====【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.24.(8分)如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB 绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′所对应的函数表达式.(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.【分析】(1)先根据一次函数的解析式求出AB两点的坐标,再由图形旋转的性质求出A′、B′的坐标,用待定系数法求出直线A′B′的解析式即可;(2)直接根据A′BC的坐标,利用三角形的面积公式进行计算即可.【解答】解:(1)∵直线y=﹣2x+4分别交x轴、y轴于点A、B,∴点A、B的坐标分别为(2,0)、(0,4).由旋转得,点A′、B′的坐标分别为(0,﹣2)、(4,0).设直线A′B′所对应的函数表达式为y=kx+b.∴,解得.∴直线A′B′所对应的函数表达式为.(2)依题意有,解得.∴点C的横坐标为.∵A′B=4﹣(﹣2)=6,∴.【点评】本题考查的是一次函数的图象与及几何变换、一次函数的性质及三角形的面积公式,根据题意求出直线A′B′的解析式是解答此题的关键.25.(8分)如图,一次函数y=ax+b的图象与反比例函数y=图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.(3)在第二象限内,求不等式ax +b <的解集(请直接写出答案).【分析】(1)将点A (﹣1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数的解析式;(2)求得C 点的坐标后利用S △AOB =S △AOC ﹣S △BOC 求面积即可;(3)根据图象即可得到结论.【解答】解:(1)将点A (﹣1,2)代入函数y =,解得:m =﹣2,∴反比例函数解析式为y =﹣,将点A (﹣1,2)与点B (﹣4,)代入一次函数y =ax +b ,解得:a =,b =∴一次函数的解析式为y =+;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣=;(3)由图象知,不等式ax +b <的解集为:﹣5<x <﹣4或﹣1<x <0.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?【分析】(1)根据题意和函数图象中的数据可以求得y与x之间的函数关系式;(2)根据题意可以列出相应的不等式组,从而可以解答本题;(3)根据(1)和(2)中的结果,利用一次函数的性质可以解答本题.【解答】解:(1)由题意可得,y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000,即y与x之间的函数关系式是y=300x+12000;(2)由题意得,,解得,10≤x≤,∵x为整数,∴x=10,11,12,∴有三种购买方案,方案1:购买空调10台,彩电20台,方案2:购买空调11台,彩电19台,方案3:购买空调12台,彩电18台;(3)∵y=300x+12000,∴该函数y随x的增大而增大,∴当x=12时,y取得最大值,此时y=300×12+12000=15600,答:x=12时,利润最大,最大利润为15600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.。
华师大版数学八年级下学期《期中考试卷》及答案
三、解答题
15.计算:
(1) (2)
16.解方程:(1) (2)
17.解方程
(1) (2)
18.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者 支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
A. B. C. D.
[答案]C
[解析]
[分析]
结合已知条件和反比例函数的性质,根据反比例函数图象上点的特性,即可看出y1与y2的大小关系.
[详解]∵反比例函数 (k<0)的图象在第二、四象限内,在每个象限内,y随x的增大而增大,
∵点 两点在该反比例函数的图象上,且 ,
∴A,B两点分别在第二,四象限的曲线上,
A.(3,5)B.(3,-5)C.(-3,5)D.(-3,-5)
[答案]B
[解析]
[分析]
关于x轴的对称的点的坐标的特征:横坐标相同,纵坐标互为相反数.
[详解]点P(3,5)关于x轴的对称点的坐标为(3,-5)
故选B
[点睛]考核知识点:轴对称和点的坐标.熟记规律是关键.
6.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()
A. B. C. D.
3.若分式 的值为零,则 的值是
A. B. C. D.
4.下列计算正确的是
A. B. C. D.
5.在平面直角坐标系中,点P(3,5)关于 轴对称的点的坐标是()
A.(3,5)B.(3,-5)C.(-3,5)D.(-3,-5)
华师大版数学八年级下学期《期中检测卷》带答案
华师大版八年级下学期数学期中测试卷一.选择题(共10小题,满分30分,每小题3分)1.对于2y x +,213a +,13a ,x z y-+,(2)k n n -,2x x ,其中分式有( ) A .1个 B .2个 C .3个 D .4个2.有一种球状细菌的直径用科学记数法表示为32.1610-⨯米,则这个直径是( )A .216 000米B .0. 002 16米C .0. 000 216米D .0. 000 021 6米 3.平面直角坐标系中,点(1,)A a 和点(1,)B b -关于原点对称,则a b +的值分别是( )A .1B .1-C .0D .无法确定 4.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 5.化简211x x x x ---的结果是( ) A .1x + B .1x - C .x D .x -6.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是( )A .30︒B .36︒C .45︒D .60︒7.若正比例函数(4)y a x =-( )A .3a -B .3a -C .2(3)a -D .2(3)a -8.如下图所示,在直角坐标系内,原点O 恰好是ABCD 对角线的交点,若A 点坐标为(2,3),则C 点坐标为( )A .(3,2)--B .(2,3)-C .(2,3)--D .(2,3)- 9.已知反比例函数2k y x =的图象经过点(1,2),则k 的值为( ) A .1- B .0 C .1 D .2 10.如图所示,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC .若ABC ∆的面积为5,则k 的值为( )A .5B .5-C .10D .10-二.填空题(共5小题,满分15分,每小题3分)11.若式子21(1)(2)x x x --+的值为零,则x 的值为 . 12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(2,3)--,棋子B 的坐标为(1,2)-,那么棋子C 的坐标是 .13.方程3122x x x -=+-的解x = . 14.如图,在平行四边形ABCD 中,以顶点A 为圆心,AD 长为半径,在AB 边上截取AE AD =,用尺规作图法作出BAD ∠的角平分线AG ,若5AD =,6DE =,则AG 的长是 .15.如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,⋯,按此做法进行下去,点4A 的坐标为 ,点n A .三.解答题(共8小题,满分75分)16.(8分)如图,一次函数122y x =-的图象与y 轴交于点A ,一次函数2y 的图象与y 轴交于点(0,6)B ,点C 为两函数图象交点,且点C 的横坐标为2.(1)求一次函数2y 的函数解析式;(2)求ABC ∆的面积;(3)问: 在坐标轴上,是否存在一点P ,使得2ACP ABC S S ∆∆=,请直接写出点P 的坐标.17.(9分)已知: 2320a a +-=,求代数235(2)22a a a a a -÷+---的值.18.(9分)如图,在ABCD 中,45ACB ∠=︒,AE BC ⊥于点E ,过点C 作CF AB ⊥于点F ,交AE 于点M .点N 在边BC 上,且AM CN =,连结DN .(1)若10AB 4AC =,求BC 的长;(2)求证: 2AD AM DN +=.19.(9分)4y +与3x +成正比例,且4x =-时2y =-;(1)求y 与x 之间的函数表达式(2)点11(,)P m y 、22(1,)Pm y +在(1)中所得函数的图象上,比较1y 与2y 的大小.20.(9分)某县为落实”精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成: 若乙队单独施工,则完成工程所需天数是规定天数的1. 5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?21.(10分)P 为ABCD 对角线BD 上一点,M 为边AD 上一点,PM CD =,AMP ABD ∠=∠,60ABC ∠=︒,5AB =,3BP =,求ABCD 的面积.22.(10分)如图,已知点(1,)A a 是反比例函数1m y x =的图象上一点,直线21122y x =-+与反比例函数1m y x=的图象的交点为点B 、D ,且(3,1)B -,求: (Ⅰ)求反比例函数的解析式;(Ⅱ)求点D 坐标,并直接写出12y y >时x 的取值范围;(Ⅲ)动点(,0)P x 在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.23.(11分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?答案与解析一.选择题(共10小题,满分30分,每小题3分)1.对于2y x +,213a +,13a ,x z y-+,(2)k n n -,2x x ,其中分式有( ) A .1个 B .2个 C .3个 D .4个【解答】解: 213a +,x z y-+,(2)k n n -,2x x 是分式,共4个; 故选: D .2.有一种球状细菌的直径用科学记数法表示为32.1610-⨯米,则这个直径是( )A .216 000米B .0. 002 16米C .0. 000 216米D .0. 000 021 6米 【解答】解: 32.16100.00216-⨯=米故选: B .3.平面直角坐标系中,点(1,)A a 和点(1,)B b -关于原点对称,则a b +的值分别是( )A .1B .1-C .0D .无法确定 【解答】解: 点(1,)A a 和点(1,)B b -关于原点对称,a b ∴=-,0a b ∴+=.故选: C .4.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 【解答】解: 22777()7()()a b a b a b a b a b ++==+++, 故选: B .5.化简211x x x x ---的结果是( ) A .1x +B .1x -C .xD .x - 【解答】解: 原式(1)1x x x x -==-, 故选: C .6.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是( )A .30︒B .36︒C .45︒D .60︒【解答】解: 设平行四边形的一个内角为x ︒,则另一个内角为(4)x ︒, 根据平行四边形对边平行,同旁内角互补,得(4)180x x ︒+︒=︒,解得36x =.故选: B .7.若正比例函数(4)y a x =-的图象经过第一、三象限,化简2(3)a -的结果是( )A .3a -B .3a -C .2(3)a -D .2(3)a -【解答】解: 若正比例函数(4)y a x =-的图象经过第一、三象限,则40a ->,解得: 4a >;2(3)|3|3a a a -=-=-.故选: A . 8.如下图所示,在直角坐标系内,原点O 恰好是ABCD 对角线的交点,若A 点坐标为(2,3),则C 点坐标为( )A .(3,2)--B .(2,3)-C .(2,3)--D .(2,3)- 【解答】解: 原点O 恰好是ABCD 对角线的交点,∴点C 与点A 关于原点对称,又关于原点对称的两个点的坐标,横纵坐标互为相反数,A 点坐标为(2,3), C ∴点坐标为(2,3)--.故选: C .9.已知反比例函数2k y x =的图象经过点(1,2),则k 的值为( ) A .1- B .0C .1D .2 【解答】解: 把(1,2)代入2k y x =得212k =⨯,解得1k =.故选: C . 10.如图所示,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC .若ABC ∆的面积为5,则k 的值为()A .5B .5-C .10D .10- 【解答】解: 连结OA ,如图,AB x ⊥轴,//OC AB ∴,5OAB ABC S S ∆∆∴==,而1||2OAB S k ∆=,∴1||52k =,0k <,10k ∴=-.故选: D .二.填空题(共5小题,满分15分,每小题3分)11.若式子21 (1)(2)xx x--+的值为零,则x的值为1-.【解答】解: 式子21(1)(2)xx x--+的值为零,210x∴-=,(1)(2)0x x-+≠,解得: 1x=-.故答案为: 1-.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(2,3)--,棋子B的坐标为(1,2)-,那么棋子C的坐标是(2,1).【解答】解: 由点A、B坐标可建立如图所示平面直角坐标系,则棋子C的坐标为(2,1),故答案为: (2,1).13.方程3122xx x-=+-的解x=25-.【解答】解: 去分母得: 222436x x x x--+=+,解得:25x=-,经检验25x=-是分式方程的解,故答案为:25-14.如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE AD=,用尺规作图法作出BAD ∠的角平分线AG ,若5AD =,6DE =,则AG 的长是 8 .【解答】解: 如图设AG 交BD 于H .由题意AG 垂直平分线线段DE ,3DH EH ∴==,四边形ABCD 是平行四边形,//CD AB ∴,AGD GAB ∴∠=∠,DAG GAB ∠=∠,DAG DGA ∴∠=∠,DA DG ∴=,DE AG ⊥,AH GH ∴=,在Rt ADH ∆中,2222534AH AD DH =-=-=,28AG AH ∴==.故答案为8.15.如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,⋯,按此做法进行下去,点4A 的坐标为 83(9,0) ,点n A .【解答】解: 由1A 坐标为(1,0),可知11OA =,把1x =代入直线3y x =中,得3y =,即113A B =, 111113tan A B B OA OA ∠==,所以,1130B OA ∠=︒,则2111cos3033OA OB OA OA ==÷︒==,232()33OA OA ==,343()33OA OA ==, 故点4A 的坐标为83(,0),点1(()3n n A -,0).故答案为: 83(,0),123(()n -,0). 三.解答题(共8小题,满分75分)16.(8分)如图,一次函数122y x =-的图象与y 轴交于点A ,一次函数2y 的图象与y 轴交于点(0,6)B ,点C 为两函数图象交点,且点C 的横坐标为2.(1)求一次函数2y 的函数解析式;(2)求ABC ∆的面积;(3)问: 在坐标轴上,是否存在一点P ,使得2ACP ABC S S ∆∆=,请直接写出点P 的坐标.【解答】解: (1)当2x =时,1222y x =-=,(2,2)C ∴,设2y kx b =+,把(0,6)B ,(2,2)C 代入可得622b k b =⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴一次函数2y 的函数解析式为226y x =-+.(2)一次函数122y x =-的图象与y 轴交于点A ,(0,2)A ∴-,1(62)282ABC S ∆∴=+⨯=;2ACP ABC S S ∆∆=,16ACP S ∆∴=当P 在y 轴上时, ∴1162C AP x =,即12162AP =,16AP ∴=,(0,14)P ∴或(0,18)-;当P 在x 轴上时,设直线122y x =-的图象与x 轴交于点D ,(1,0)D ∴,11||1622ACP ADP PCD C S S S PD y PD OA ∆∆∆∴=+=+=,∴1(22)162PD +=, 8PD ∴=,(7,0)P ∴-或(9,0),综上,在坐标轴上,存在一点P ,使得2ACP ABC S S ∆∆=,P 点的坐标为(0,14)或(0,18)-或(7,0)-或(9,0).17.(9分)已知: 2320a a +-=,求代数235(2)22a a a a a -÷+---的值. 【解答】解: 原式23(2)(2)5[]222a a a a a a a -+-=÷----2234522a a a a a ---=÷--32(2)(3)(3)a a a a a a --=-+-1(3)a a =+;2320a a +-=,232a a ∴+=,∴原式21132a a ==+.18.(9分)如图,在ABCD 中,45ACB ∠=︒,AE BC ⊥于点E ,过点C 作CF AB ⊥于点F ,交AE 于点M .点N 在边BC 上,且AM CN =,连结DN .(1)若10AB =,4AC =,求BC 的长;(2)求证: 2AD AM DN +=.【解答】(1)解: 45ACB ∠=︒,AE BC ⊥,90AEC AEB ∴∠=∠=︒,ACE ∆是等腰直角三角形,45EAC ∴∠=︒,2222AE CE ====由勾股定理得: 221082BE AB AE =-=-=BC BE CE ∴=+=(2)证明: 延长AD 至G ,使DG AM =,连接CG ,如图所示:AM CN =,DG CN ∴=,四边形ABCD 是平行四边形,AB CD ∴=,//AD BC ,B ADC ∠=∠,//DG CN ∴,∴四边形CGDN 是平行四边形,CG DN ∴=,CF AB ⊥,90CFB AEB CEA ∴∠=︒=∠=∠,BAE MCE ∴∠=∠,在ABE ∆和CME ∆中,AEB CEMBAE MCEAE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CME AAS ∴∆≅∆,AB CM ∴=,B CME ∠=∠,CM CD ∴=,CME ADC ∠=∠,AMC GDC ∴∠=∠,在ACM ∆和GCD ∆中,AM DGAMC GDCCM CD=⎧⎪∠=∠⎨⎪=⎩, ()ACM GCD SAS ∴∆≅∆,45G MAC ∴∠=∠=︒,//AD BC ,45DAC ACB ∴∠=∠=︒,ACG ∴∆是等腰直角三角形,AG ∴=,AG AD DG AD AM =+=+,CG DN =, 2AD AM DN ∴+=.19.(9分)4y +与3x +成正比例,且4x =-时2y =-;(1)求y 与x 之间的函数表达式(2)点11(,)P m y 、22(1,)Pm y +在(1)中所得函数的图象上,比较1y 与2y 的大小. 【解答】解: (1)因为4y +与3x +成正比例,因此设4(3)y k x +=+,把4x =-,2y =-代入得;24(43)k -+=-+,解得,2k =-,42(3)y x ∴+=-+,即: 210y x =--, (2)20k =-<,y ∴随x 的增大而减小,又1m m <+,12y y ∴>.20.(9分)某县为落实”精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成: 若乙队单独施工,则完成工程所需天数是规定天数的1. 5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?【解答】解: (1)设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工,依题意,得: 1551511.5x x ++=,解得: 30x =,经检验,30x =是原方程的解,且符合题意.答: 这项工程的规定时间是30天.(2)由(1)可知: 甲队单独施工需要30天完工,乙队单独施工需要45天完工, 111()183045÷+=(天).答: 甲乙两队合作完成该工程需要18天.21.(10分)P 为ABCD 对角线BD 上一点,M 为边AD 上一点,PM CD =,AMP ABD ∠=∠,60ABC ∠=︒,5AB =,3BP =,求ABCD 的面积.【解答】解: 在BD 上取点E ,连接AE ,使得AB AE =,过B 作BF AD ⊥,交DA 的延长线于点F则ABE AEB ∠=∠,AMP ABD ∠=∠,AMP AEP ∴∠=∠,DM P DEA ∴∠=∠,四边形ABCD 是平行四边形,AB CD ∴=,//AD BC ,CD PM =,AE PM ∴=,在ADE ∆和PDM ∆中,AED PMD ADE PDMAE PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE PDM AAS ∴∆≅∆,AD PD ∴=,设AD PD x ==,则3BD x =+,60ABC ∠=︒,//AD BC ,60BAF ABC ∴∠=∠=︒, 5sin6032BF AB ∴=︒=, 5cos 602AF AB =︒=,52DF AD AF x ∴=+=+,222DF BF BD +=∴22255()(3)(3)22x x ++=+,16x ∴=,ABCD ∴的面积为: 51634032AD BF =⨯=.22.(10分)如图,已知点(1,)A a 是反比例函数1m y x=的图象上一点,直线21122y x =-+与反比例函数1m y x=的图象的交点为点B 、D ,且(3,1)B -,求: (Ⅰ)求反比例函数的解析式;(Ⅱ)求点D 坐标,并直接写出12y y >时x 的取值范围;(Ⅲ)动点(,0)P x 在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.【解答】解: (Ⅰ)点(3,1)B -在1my x =图象上,∴13m =-,3m ∴=-,∴反比例函数的解析式为3y x =-; (Ⅱ)31122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩ 31122x x ∴-=-+,即260x x --=,则(3)(2)0x x -+=,解得: 13x =、22x =-,当2x =-时,32y =,3(2,)2D ∴-;结合函数图象知12y y >时20x -<<或3x >;(Ⅲ)点(1,)A a 是反比例函数3y x =-的图象上一点3a ∴=-(1,3)A ∴-设直线AB 为y kx b =+,则331k b k b +=-⎧⎨+=-⎩∴14k b =⎧⎨=-⎩,∴直线AB 解析式为4y x =-令y=,则4x= (4,0)P∴.23.(11分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?【解答】解: (1)设甲每小时做x个零件,则乙每小时做(8)x+个零件,依题意,得: 1201508x x=+,解得: 32x=,经检验,32x=是原方程的解,且符合题意,840x∴+=.答: 甲每小时做32个零件,乙每小时做40个零件.(2)404325⨯÷=(小时).答: 甲做5小时与乙做4小时所做机械零件数相等.。
华东师大版八年级数学下学期期中考试试卷含答案解析
华东师大版八年级数学下学期期中考试试卷一、选择题(共10小题,每小题3分,共30分)1.如果分式的值为零,那么x等于()A.1B.﹣1C.0D.±12.下列计算正确的是()A.=x B.=C.2÷2﹣1=﹣1D.a﹣3=(a3)﹣13.点M(﹣2,1)在第()象限.A.一B.二C.三D.四4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3B.1.2×10﹣3C.1.239×10﹣2D.1.239×10﹣45.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是()A.B.C.D.6.如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC 的面积为2,则k的值为()A.4B.3C.2D.17.某中学要购买一批校服,已知甲做5件与乙做6件的时间相等,两人每天共完成55件,设甲每天完成x件,则下列方程不正确的是()A.=B.=C.=D.6x=5(55﹣x)8.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .249.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )A .B .C .D .10.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC . 其中正确结论的个数为( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,共15分)11.计算+=.12.如图,AB∥DC,AD∥BC,如果∠B=50°,那么∠D=度.13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 y2.(填“>”或“<”).14.若分式方程的解为正数,则a的取值范围是.15.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标为.三、解答题(共8小题,75分)16.(8分)先化简÷(﹣1),然后选取一个合适的数代入再求值.17.(9分)已知在▱ABCD中,∠BDA=90°,AC=10cm,BD=6cm,求AD的长.18.(9分)解方程﹣3=.19.(9分)如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2),求直线和双曲线的解析式.20.(9分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为千元,印刷费为平均每个元,甲厂的费用y l与证书数量x 之间的函数关系式为.(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个元;(3)当印制证书数量超过2千个时,求乙厂的总费用y2与证书数量x之间的函数关系式;(4)若该单位需印制证书数量为8千个,该单位应选择哪个厂更节省费用?请说明理由.21.(10分)超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由.22.(10分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.其中,b=;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.23.(11分)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(提示:小学已学过梯形面积计算方法)(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请写出S关于t的函数解析式.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.如果分式的值为零,那么x等于()A.1B.﹣1C.0D.±1【分析】根据分式的值为0的条件及分式有意义的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=﹣1.故选:B.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.2.下列计算正确的是()A.=x B.=C.2÷2﹣1=﹣1D.a﹣3=(a3)﹣1【分析】分子和分母同乘以(或除以)一个不为0的数,分数值不变.【解答】解:A、,错误;B、,错误;C、2÷2﹣1=4,错误;D、a﹣3=(a3)﹣1,正确;故选:D.【点评】此题考查分式的基本性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变解答.3.点M(﹣2,1)在第()象限.A.一B.二C.三D.四【分析】根据各象限内点的坐标特征解答.【解答】解:点M(﹣2,1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3B.1.2×10﹣3C.1.239×10﹣2D.1.239×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239g/cm3,则用科学记数法表示该数为1.239×10﹣3g/cm3.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是()A.B.C.D.【分析】等腰三角形的两个底角相等,由内角和定理可知:x+x+y=180,从而得y=180﹣2x,由y>0得x<90,又x>0,故0<x<90,据此可得答案.【解答】解:由等腰三角形的性质知y=180﹣2x,且0<x<90,故选:C.【点评】本题考查了三角形内角和定理,一次函数的实际应用及其图象画法,熟练掌握等腰三角形的性质及一次函数图象的画法是解题的关键.6.如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC 的面积为2,则k的值为()A.4B.3C.2D.1【分析】首先表示出BC,AB的长,再利用三角形面积得出k的值.【解答】解:设CO=BO=a,则AB=,∵△ABC的面积为2,∴×2a×=2,解得:k=2.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出三角形面积是解题关键.7.某中学要购买一批校服,已知甲做5件与乙做6件的时间相等,两人每天共完成55件,设甲每天完成x件,则下列方程不正确的是()A.=B.=C.=D.6x=5(55﹣x)【分析】本题用到的等量关系是:工作时间=工作总量÷工作效率,可根据关键语“甲做5件与乙做6件所用的时间相同”来列方程即可.【解答】解:设甲每天作x件,则乙每天做(55﹣x)件.由题意得:.或,或6x=5(55﹣x),故选:C.【点评】此题考查分式方程的应用,本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到合适的等量关系是解决问题的关键.8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED 的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x (单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.【分析】根据题意求出电费与用电量的分段函数,然后根据各分段内的函数图象即可得解.【解答】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100),=60+0.8x﹣80,=0.8x﹣20,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选:C.【点评】本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点评】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.二、填空题(共5小题,每小题3分,共15分)11.计算+=.【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:原式==.故答案为:.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.12.如图,AB∥DC,AD∥BC,如果∠B=50°,那么∠D=50度.【分析】先根据已知,证明所给四边形是平行四边形,然后根据平行四边形的性质对角相等求解.【解答】解:∵AB∥DC、AD∥BC∴四边形ABCD是平行四边形∴∠D=∠B=50°故答案为50.【点评】本题主要考查了平行四边形的判定定理和性质,属于基础题,比较简单.13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,y2.∴y1<故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.若分式方程的解为正数,则a的取值范围是a<8,且a≠4.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.【解答】解:分式方程去分母得:x=2x﹣8+a,解得:x=8﹣a,根据题意得:8﹣a>0,8﹣a≠4,解得:a<8,且a≠4.故答案为:a<8,且a≠4.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.15.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标为(3,2).【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故答案为(3,2).【点评】本题考查了点的坐标表示方法,点的坐标与平行线的关系.三、解答题(共8小题,75分)16.(8分)先化简÷(﹣1),然后选取一个合适的数代入再求值.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=﹣(x﹣1)=1﹣x∵x≠﹣2和﹣1∴当x=0时,原式=1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)已知在▱ABCD中,∠BDA=90°,AC=10cm,BD=6cm,求AD的长.【分析】在Rt△ADO中,求出OD、OA,再利用勾股定理即可解决问题;【解答】解:∵四边形ABCD是平行四边形∴OA=AC,OD=BD,∵AC=10cm,BD=6cm,∴OD=3cm,OA=5cm,∵∠BDA=90°,∴AD ===4(cm ).【点评】本题考查平行四边形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.18.(9分)解方程﹣3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;【解答】解:去分母得:x ﹣1﹣3x +6=1, 解得:x =2,经检验x =2是增根,分式方程无解.【点评】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(9分)如图,直线y 1=ax +b 与双曲线y 2=交于A 、B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(﹣3,﹣2),求直线和双曲线的解析式.【分析】利用待定系数法即可解决问题.【解答】解:∵点B (﹣3,﹣2)在双曲线y 2=上,∴=﹣2,∴k =6,∴双曲线的解析式为y 2=.把y =6代入y 2=得:x =1,∴A的坐标为(1,6),∵直线y1=ax+b经过A、B两点,∴,解得:,∴直线的解析式为直线y1=2x+4;【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法确定函数解析式,属于中考常考题型.20.(9分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为1千元,印刷费为平均每个0.5元,甲厂的费用y l与证书数量x之间的函数关系式为y l=0.5x+1.(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个 1.5元;(3)当印制证书数量超过2千个时,求乙厂的总费用y2与证书数量x之间的函数关系式;(4)若该单位需印制证书数量为8千个,该单位应选择哪个厂更节省费用?请说明理由.【分析】(1)结合图象便可看出y是关于x的一次函数,从图中可以观察出甲厂的制版费为1千元,一次函数的斜率为0.5即为证书的单价;(2)用2到6千个时的费用除以证件个数计算即可得解;(3)设函数解析式后用待定系数法解答即可;(4)分别求出甲乙两车的费用y关于证书个数x的函数,将x=8分别代入两个函数,可得出选择乙厂可省500元.【解答】解:(1)制版费1千元,y l=0.5x+1,证书单价0.5元;故答案为:1;0.5;y l=0.5x+1;(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个=3÷2=1.5元,故答案为:1.5;(3)设y2=kx+b,由图可知,当x=6时,y2=y1=0.5×6+1=4,所以函数图象经过点(2,3)和(6,4), 所以把(2,3)和(6,4)代入y 2=kx +b ,得,解得,所以y 2与x 之间的函数关系式为;(4)当x =8时,y 甲=×8+1=5,y 乙=×8+=;5﹣=0.5(千元)即,当印制8千张证书时,选择乙厂,节省费用500元.【点评】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.21.(10分)超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t 的一组对应值如下表:(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由. 【分析】根据数据猜想v 是t 的反比例函数,应用待定系数法求k ,将t =10﹣7.5=2.5代入比较即可.【解答】解:(1)根据表格中数据,可知V = ∵v =75时,t =4, ∴k =75×4=300∴V =经检验,其它数据满足该函数关系式. (2)不能 ∵10﹣7.5=2.5∴t =2.5时,V ==120>100,∴汽车上午7:30从超越公司出发,不能在上午10:00之前到达新时代市场【点评】本题为反比例函数的应用题,考查了反比例函数的待定系数法及应用函数解析式解决实际问题.22.(10分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0.【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.23.(11分)如图,在平面直角坐标系中,四边形ABCD 的边AD 在x 轴上,点C 在y 轴的负半轴上,直线BC ∥AD ,且BC =3,OD =2,将经过A 、B 两点的直线l :y =﹣2x ﹣10向右平移,平移后的直线与x 轴交于点E ,与直线BC 交于点F ,设AE 的长为t (t ≥0). (1)四边形ABCD 的面积为 20 ;(提示:小学已学过梯形面积计算方法)(2)设四边形ABCD 被直线l 扫过的面积(阴影部分)为S ,请写出S 关于t 的函数解析式.【分析】(1)根据函数解析式得到OA =5,求得AC =7,得到OC =4,于是得到结论; (2)①当0≤t ≤3时,根据已知条件得到四边形ABFE 是平行四边形,于是得到S =AE •OC =4t ;②当3≤t <7时,如图1,求得直线CD 的解析式为:y =2x ﹣4,直线E ′F ′的解析式为:y =﹣2x +2t ﹣10,解方程组得到G (,t ﹣7),于是得到S =S 四边形ABCD ﹣S △DE ′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣,③当t ≥7时,S =S 四边形ABCD =20, 【解答】解:(1)在y =﹣2x ﹣10中,当y =0时,x =﹣5, ∴A (﹣5,0), ∴OA =5, ∴AD =7,把x =﹣3代入y =﹣2x ﹣10得,y =﹣4, ∴OC =4,∴四边形ABCD 的面积=(3+7)×4=20; 故答案为:20;(2)①当0≤t ≤3时,∵BC ∥AD ,AB ∥EF , ∴四边形ABFE 是平行四边形, ∴S =AE •OC =4t ;②当3≤t <7时,如图,∵C (0,﹣4),D (2,0), ∴直线CD 的解析式为:y =2x ﹣4, ∵E ′F ′∥AB ,BF ′∥AE ′, ∴BF ′=AE =t , ∴F ′(t ﹣3,﹣4),直线E ′F ′的解析式为:y =﹣2x +2t ﹣10,解得,,∴G (,t ﹣7),∴S =S 四边形ABCD ﹣S △DE ′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣, ③当t ≥7时,S =S 四边形ABCD =20,综上所述:S 关于t 的函数解析式为:S =.【点评】本题考查了一次函数图象与几何变换,解(1)的关键是利用自变量与函数值的对应关系得出A,C点的坐标;解(2)的关键是利用分类讨论的思想,以防遗漏.。
华师大版数学八年级下学期《期中检测卷》及答案
故答案为:(﹣7,﹣2).
[点睛]本题考查了坐标确定位置:直角坐标系中点与有序实数对一一对应.记住各象限点的坐标特征和坐标轴上点的坐标特征.
13.已知 ,则 _____________________;
①甲乙两地之间的路程是100km;
②前半个小时,货车的平均速度是40km/h;
③8∶00时,货车已行驶的路程是60km;
④最后40 km货车行驶的平均速度是100km/h;
⑤货车到达乙地的时间是8∶24,
其中,正确的结论是()
A. ①②③④B. ①③⑤C. ①③④D. ①③④⑤
[答案]D
[解析]
[分析]
(1)求 的值;
(2)函数图象在哪些象限?在每个象限内, 随 的增大而怎样变化?
(3)当 时,求 的取值范围。
21.如图,已知一次函数 图象与反比例函数 的图象交于点 ,与 轴交于点 ,过点 作 轴,垂足是 ,且 .
(1)求 的值.
(2)若一次函数 的图象与 轴交于点 ,求 的面积.
22.某公司生产 两种设备,已知每台 种设备的成本是 种设备的1.5倍,公司若投入6万元生产 种设备,投人15万元生产 种设备,则可生产两种设备共40台.请解答下列问题:
华 东 师 大 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
第Ⅰ卷选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)
1.函数 的自变量 的取值范围是( )
∵ ,
华师大版数学八年级下册期中考试试卷含答案
华师大版数学八年级下册期中考试试题一、单选题1.已知分式的值是零,那么x 的值是( ) A .﹣1B .0C .1D .±12.函数y =x ﹣3的自变量x 的取值范围是( ) A .x >3B .x <3C .x ≠3D .x 为任意实数3.下列说法正确的是( ) A .形如AB 的式子叫分式B .整式和分式统称有理式C .当x ≠3时,分式xx−3无意义D .分式2a 2b 与1ab的最简公分母是a 3b 2 4.若把分式aa+b 中的a 和b 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍 B .缩小6倍 C .缩小3倍 D .保持不变5.若关于x 的方程x+2x−1=m+1x−1产生增根,则增根是( )A .﹣1B .1C .﹣2D .因为含有m ,所以无法确定6.把直线y =3x 向下平移2个单位,得到的直线是( ) A .y =3x ﹣2B .y =3(x ﹣2)C .y =3x +2D .y =3(x +2)7.已知y =(m +3)x m 2−8是正比例函数,则m 的值是( )A .8B .4C .±3D .38.已知点P (a ,b )且ab =0,则点P 在( ) A .x 轴上B .y 轴上C .坐标原点D .坐标轴上9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是( )A .这一天中最高气温是26℃B .这一天中最高气温与最低气温的差为16℃C .这一天中2时至14时之间的气温在逐渐升高D .这一天中14时至24时之间的气温在逐渐降低10.已知点()12,2P a a --关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程12x x a+=-的解是( ). A .5x = B .1x =C .3x =D .不能确定二、填空题11.在括号内填入适当的单项式,使等式成立:1xy =()2xy _____.12.点P (﹣3,2)到x 轴的距离是_____. 13.用科学记数法表示0.000031,结果是_____.14.在平面直角坐标系中,已知反比例函数y =6x 的图象经过P 1(2,y 1)、P 2(3,y 2)两点,若则y 1_____y 2.(填“>”“<”“=”)15.如图,一次函数y=kx+b (k 、b 为常数,且k≠0)和反比例函数y =4x (x >0)的图象交于A 、B 两点,利用函数图象直接写出不等式4x<kx+b 的解集是_______.16.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3),(3,3),若直线y =nx 与线段AB 有公共点,则n 的值可以为_____(写出一个即可)三、解答题17.计算:20190﹣2﹣2﹣|﹣2|.18.计算:(1+6x−3)·x 2−6x+9x+3.19.解方程:11322x x x -+=--20.已知y =y 1﹣y 2,y 1与x 成正比例,y 2与x 成反比例.当x =1时,y =0;当x =2时,y =3.求当x =6时,y 的值是多少.21.为了锻炼同学的体魄,学校组织同学到6千米远的郊区进行拓展训练.老师带领同学们步行先走,45分钟后,后勤人员乘坐汽车装载着所需材料出发,结果他们同时到达.已知汽车的速度是步行速度的8倍,求步行的速度.(用列方程的方法解答)22.下图是某汽车行驶的路程S ()km 与时间t (分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 . (2)汽车在中途停了多长时间?(3)当1630t ≤≤时,求S 与t 的函数关系式23.某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A 型节能台灯为x 盏,销售完这批台灯时可获利为y 元,求y 关于x 的函数解析式;(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.已知A 、B 两地相距60km ,甲、乙两人沿同一公路从A 地出发到B 地,甲骑摩托车,乙骑自行车,图中CD ,OE 分别表示甲、乙离开A 地的距离y (km )与时间x (h )的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发 小时,乙的速度是 km /h ;(2)甲到达B 地后,原地休息0.5小时,从B 地以原来的速度和路线返回A 地. ①求甲、乙两人第二次相遇时距离A 地多少千米? ②求甲在整个过程中与乙相距10km 时,对应x 的值.(x>0)的图象上:25.已知,点A(1,3)和点B(3,m)在反比例函数y=kx(1)求m的值;(2)点O是原点,求△AOB的面积;(3)在平面直角坐标系xOy中,已知点M(0,﹣3),点N(a,﹣a+3),求MN+ON的最小值.参考答案1.C【解析】试题解析:若=0,则x﹣1=0且x+1≠0,故x=1,故选C.考点:分式的值为零的条件.2.D【解析】【分析】根据函数自变量的范围解答即可.【详解】函数y=x﹣3的自变量x的取值范围是x为任意实数,故选:D.【点睛】考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B【解析】【分析】根据分式的定义,分式有意义的条件以及最简公分母进行解答.【详解】A、形如A且B中含有字母的式子叫分式,故本选项错误.BB、整式和分式统称有理式,故本选项正确.C、当x≠3时,分式x有意义,故本选项错误.x−3D、分式2a2b 与1ab的最简公分母是a2b,故本选项错误.故选:B.【点睛】考查了最简公分母,分式的定义以及分式有意义的条件.因为0不能做除数,所以分式的分母不能为0.4.D【解析】【分析】若把分式aa+b中的a和b同时扩大为原来的3倍,则分式的分母、分子同时扩大为原来的3倍,根据分式的基本性质,可得:分式的值保持不变.【详解】把分式aa+b中的a和b同时扩大为原来的3倍,分母变为3(a+b),分子变为3a,所以分式的分母、分子同时扩大为原来的3倍,所以分式的值保持不变.故选:D.【点睛】考查了分式的基本性质和应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5.B【解析】【分析】由分式方程有增根得到最简公分母为0,确定出x的值即可.【详解】由分式方程有增根,得到x﹣1=0,解得:x=1,故选:B.【点睛】考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6.A【解析】【分析】平移时k的值不变,只有b发生变化.【详解】原直线的k=3,b=0;向下平移2个单位长度得到了新直线,那么新直线的k=3,b=0﹣2=﹣2.所以新直线的解析式为y=3x﹣2.故选:A.【点睛】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后k不变这一性质.7.D【解析】【分析】直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+3)x m2﹣8是正比例函数,∴m2﹣8=1且m+3≠0,解得m=3.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.8.D【解析】试题分析:根据ab=0,得出a、b的值,分类讨论得出结果.解:∵点P(a,b)且ab=0,∴a=0或b=0,如果a=0,点P在y轴上;如果b=0,点P在x轴上;如果a=0,b=0,则点在坐标原点.所以点P在坐标轴上,故选D.点评:解答此题的关键是熟记平面直角坐标系中坐标轴上的点的表示,x轴纵坐标为0,y 轴上横坐标为0.9.A【解析】【分析】根据函数图象的纵坐标,可得气温,根据函数图象的增减性,可得答案.【详解】A、由纵坐标看出,这一天中最高气温是24℃,错误,故A符合选项;B、由纵坐标看出最高气温是24℃,最低气温是8℃,温差是24﹣8=16℃,正确,故B不符合选项;C、由函数图象看出,这一天中2时至14时之间的气温在逐渐升高,故C正确;D、由函数图象看出,这一天中0时至2时,14时至24时气温在逐渐降低,故D错误;故选:A.【点睛】考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.10.C【解析】【详解】因为点P(1-2a,a-2)关于原点的对称点在第一象限内,所以点P(1-2a,a-2)在第三象限内,所以120 {20aa--<<,所以12 2a<<,又a为整数,所以a=1,所以分式方程12xx a+=-是121xx+=-,解得x=3,经检验可知x=3是分式方程的解, 故选C.考点:1.点的坐标特点2.不等式组3.分式方程. 11.2y 【解析】 【分析】分式的基本性质是指分式的分子和分母同时乘以或除以一个不为零的数或整式,分式的值不变.据此可知:分母由xy 变为2xy 2是分母xy 乘以2y 得来的,故分子也得乘以2y ,问题可求. 【详解】由题意,分式的分母分子同时乘以一个不为0的数或式时,分式的值不变, 分母乘以2y ,则分子也要乘以2y , 故答案为2y . 【点睛】本题考查对分式的基本性质的掌握情况,规律为:①BA =B×MA×M ,(M ≠0);②BA =BA÷M (M ≠0). 12.2 【解析】点P (-3,-2)到x 轴的距离是|2|=2.13.3.1×510- 【解析】试题分析:0.000 031=53.110-⨯.故答案为53.110-⨯. 考点:科学记数法—表示较大的数. 14.> 【解析】 【分析】根据反比例函数的增减性,结合横坐标的大小关系,即可得到答案. 【详解】∵反比例函数y=6,k>0,x∴x>0时,y随着x的增大而减小,又∵2<3,∴y1>y2,故答案为:>.【点睛】考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的增减性是解题的关键.15.1<x<4【解析】试题分析:先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,考点:反比例函数与一次函数的交点问题16.2【解析】【分析】由直线y=nx与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【详解】∵直线y=nx与线段AB有公共点,∴3n≥3,∴n≥1.故答案为:2.【点睛】考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.17.−54【解析】【分析】直接利用负指数幂的性质以及绝对值的性质分别化简得出答案.【详解】原式=1−14−2=−54.【点睛】考查了实数运算,正确化简各数是解题关键.18.x-3.【解析】【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】原式=(x−3x−3+6x−3)⋅(x−3)2x+3 =x+3x−3×(x−3)2x+3=x ﹣3.【点睛】考查了分式的混合运算,正确掌握运算法则是解题关键.19.无解;【解析】试题分析:去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 试题解析:解方程:11322x x x -+=-- 解:13(2)1x x +-=-1361x x +-=-24x =2x =.经检验,2x =是原方程的增根,所以,原方程无解.考点:解分式方程.20.1123.【解析】【分析】先根据y1与x成正比例,y2与x成反比例得出y1=k1x,y2=k2x,再根据y=y1﹣y2可得出y=k1x﹣k2x,再把当x=1时,y=0;当x=2时,y=3代入即可求出k1与k2的值,故可得出y与x的函数关系式,再把x=6代入求解即可.【详解】设y1=k1x,y2=k2x,∵y=y1﹣y2∴y=k1x−k2x,∵当x=1时,y=0;当x=2时,y=3,则{k1−k2=02k1−k22=3,解得{k1=2k2=2,∴y=2x−2x,当x=6时,y=1123.【点睛】考查的是用待定系数法求反比例函数的关系式,先根据题意得出y1=k1x,y2=k2x,是解答此题的关键.21.步行的速度为7km/h.【解析】【分析】设步行的速度为xkm/h,则汽车的速度是8xkm/h,根据它们同样行驶8千米的路程的时间差为45分钟列出方程并解答.【详解】设步行的速度为x,依题意得6x −68x=4560.解得 x =7.经检验:x =7是原方程的解,且符合题意.答:步行的速度为7km /h .【点睛】考查分式方程的应用,设出速度,以时间作为等量关系可列方程求解.22.(1) 80/km h ;(2)7分钟;(3)220=-S t .【解析】【分析】(1)根据函数图象中的数据可以求得汽车在前9分钟内的平均速度;(2)根据函数图象中的数据可以求得汽车在中途停了多长时间;(3)根据函数图象中的数据可以求得当16≤t≤30时,S 与t 的函数关系式.【详解】解:(1)由图可得,汽车在前9分钟内的平均速度是:12÷9=43km/min ; (2)由图可得,汽车在中途停了:16-9=7min ,即汽车在中途停了7min ;(3)设当16≤t≤30时,S 与t 的函数关系式是S=at+b ,把(16,12)和(30,40)代入得 16123040a b a b +=⎧⎨+=⎩, 解得220a b =⎧⎨=-⎩, 即当16≤t≤30时,S 与t 的函数关系式是S=2t-20.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.(1)y =﹣5x +2000;(2)B 型台灯进货75台,A 型台灯进货25台时获利最多,此时利润为1875元.【解析】【分析】(1)根据题意列出方程即可;(2)根据一次函数的增减性求解即可.【详解】(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).【点睛】考查了一次函数的应用,解题的关键是理解题意,正确列出方程.24.(1)1,15;(2)①求甲、乙两人第二次相遇时距离A地42千米;②对应x的值分别为10 9,149,4415,83.【解析】【分析】(1)根据函数图象可以解答本题;(2)①根据题意和函数图象可以求得当甲出发多长时间时,两人相遇;②根据题意可以求得甲的函数解析式和乙的函数解析式,从而可以解答本题.【详解】(1)由图象可得,甲比乙晚出发1小时,乙的速度是:30÷2=15km/h,故答案为1,15;(2)①设乙出发x小时,两人第二次相遇.依题意得15x+60(x﹣1.5)=60×2,解得x=145,经检验,x=145是原方程的解且符合题意当x =145时,15×145=42(km),答:甲、乙两人第二次相遇时距离A 地42千米;②设OE 所在直线的解析式为:y =k 1x ,30=2k 1,解得k 1=15∴OE 所在直线的解析式为:y =15x ,设CD 所在直线的解析式为:y =k 2x +b 2,则{0=k 2+b 260=2k 2+b 2 ,解得{k 2=60b 2=−60, ∴CD 所在直线的解析式为:y =60x ﹣60,设甲在返回时对应的函数解析式为:y =k 3x +b 3则{60=2.5k 3+b 30=3.5k 3+b 3 ,解得{k 3=−60b3=210 ∴甲在返回时对应的函数解析式为:y =﹣60x +210,分两种情况:①甲到达B 地之前|15x ﹣(60x ﹣60)|=10,解得x 1=109, x 2=149, ②甲到达B 地之后返回|15x ﹣(﹣60x +210)|=10,解得x 1=4415, x 2=83,综上所述,甲在整个过程中与乙相距10km 时,对应x 的值分别为109,149,4415,83.【点睛】考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.(1)1;(2)4;(3)ON +MN 的最小值是3√5.【解析】【分析】(1)将A 、B 点代入反比例函数解析式中,即可求出克m .(2)过点 A ,作AC ⊥y 轴于点C ,过点 B 作BD ⊥x 轴于点D ,延长CA 、DB 交于点E 构造正方形CODE .即可求出△AOB 的面积.(3)由已知可知N 在直线y =﹣x +3上,根据将军饮马模型,作O 点关于直线y =﹣x +3的对称点E ,连接ME ,ME 即MN +ON 的最小值.【详解】(1)∵点A ,和点B 在反比例函数y =k x的图象上 ∴{3=k 1m =k 3, 解得{k=3m=1,∴m=1.(2)过点A,作AC⊥y轴于点C,过点B作BD⊥x轴于点D,延长CA、DB交于点E得正方形CODE.如图1S△AOB=S正方形CODE﹣S△AOC﹣S△BOD﹣S△ABE,=OC×OD﹣120C⋅AC−12OD⋅BD−12AE•BE,═3×3﹣12×3×1−12×3×1−12×2×2,=4.(3)如图2,由已知可得点N在直线y=﹣x+3上,∵点A,(1,3)、B(3,1),∴点C(0,3)、D(3,0),∴直线y=﹣x+3过C、D两点,∵点O与点E关于直线AC对称,∴ON=EN,∴ON+MN=EN+MN≥ME,当点M、N、E三点共线时,ON+MN=ME此时,ON+MN的值最小.∵ME=√CM2+CE2=√62+32=3√5.∴ON+MN的最小值是3√5.【点睛】反比例函数的综合应用,涉及待定系数法、最短路径问题、方程思想等知识.在(1)中注意函数图象上的点的坐标满足函数解析式,在(2)中把△AOB面积放在矩形中求解解题的关键,在(3)中发现N在y=﹣x+3的直线是解题的关键.。
华师大版八年级下册数学期中考试试题含答案
华师大版八年级下册数学期中考试试卷一、单选题1.分式方程111x mx x -=++有增根,则m 的值为()A .1B .2C .-2D .02.函数11y x =-的自变量x 的取值范围为()A .1x =B .1x =-C .1x ≠D .1x ≠-3.已知点()1,2P m m --在y 轴上,则m 的值是()A .1B .2C .-1D .-24.已知点()1,3A --在反比例函数ky x=的图象上,则k 的值为()A .3B .13C .-3D .13-5.下列变形从左到右错误的是()A .22y y x x x--=B .222b b a a ⎛⎫= ⎪⎝⎭C .am abm b=D .1y xx y y x+=--6.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣7.学校计划购买篮球和足球.若每个足球的价格比篮球的价格贵25元,且用800元购买篮球的数量与用1000元购买足球的数量相同.设每个足球的价格为x 元,则可列方程为()A .100080025x x=-B .100080025x x=+C .100080025x x =-D .100080025x x =+8.一次函数2y x m =-+与2y x =+图象的交点位于第二象限,则m 的值可能是()A .-4B .1C .2D .39.在平面直角坐标系xOy 中,点()4,0A ,点()0,3B -,点C 在坐标轴上,若ABC 的面积为12,则符合题意的点C 有()A .1个B .2个C .3个D .4个10.如图所示,一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,下列判断错误的是()A .关于x 的方程3kx x b -=-+的解是2x =B .关于x 的不等式3x b kx -+>-的解集是2x >C .当0x <时,函数3y kx =-的值比函数y x b =-+的值小D .关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩二、填空题11.计算:()02-=______________.12.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.13.若22x -的值为正数,则x 的取值范围为______________.14.将直线2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为_______________.15.若正比例函数()1y m x =--的函数值y 随x 的增大而减小,且函数图像上的点到两坐标轴距离相等,则m 的值为______________.16.如图,过x 轴上的点P 作y 轴的平行线,与反比例函数m y x =、ny x=分别交于点A 、B ,若AOB 的面积为3,则m n -=______________.三、解答题17.解方程:1212 x x=-+.18.先化简,再求值:221224x x xx x x-⎛⎫-÷⎪---⎝⎭,其中1x=-.19.一水果经营户从水果批发市场批发了草莓和葡萄共60千克(每种水果不少于10千克),到市场去卖,草莓和葡萄当天的批发价和零售价如下表表示:品名草莓葡萄批发价/(元/千克)1610零售价/(元/千克)2214设全部售出60千克水果的总利润为y(元),草莓的批发量x(千克),请写出y与x的函数关系式,并求最大利润为多少?20.漳武高速公路南靖至永定段正在加速建设,高速全长40千米,预计2022年竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高60%,那么行驶40千米的高速公路比行驶同等长度的普通公路所用时间将会缩短14小时,求该汽车在高速公路上的平均速度.21.观察以下等式:第1个等式:131 1223⎛⎫-÷=⎪⎝⎭;第2个等式:241 1362⎛⎫-÷=⎪⎝⎭;第3个等式:353 14125⎛⎫-÷=⎪⎝⎭;第4个等式:462 15203⎛⎫-÷=⎪⎝⎭;第5个等式:575 16307⎛⎫-÷=⎪⎝⎭;……按照以上规律,解决下列问题:(1)写出第7个等式:_____________;(2)写出你猜想的第n个等式(n为正整数),并证明.22.如图,在平面直角坐标系xOy中,直线AB与反比例函数myx=交于()2,3A-,()4,B n两点.(1)求直线AB 和反比例函数的表达式;(2)连接AO ,求AOB 的面积.23.如图,在平面直角坐标系中,()1,4A ,()3,3B ,()2,1C .(1)作ABC 关于原点对称的111A B C △.(2)在y 轴上找一点P ,使得PB PC +最小,试求点P 的坐标.24.小琳根据学习函数的经验,对函数12y x =+-的图象与性质进行了探究,下面是小琳的探究过程,请你补充完整.x…-4-3-2-1012…y …1-1-2-1m…(1)列表:①m =_____________;②若()6,3A -,(),3B n 为该函数图象上不同的两点,则n =_________;(2)描点并画出该函数的图象;(3)①根据函数图象可得:该函数的最小值为______________;②观察函数12y x =+-的图象,写出该图象的两条性质__________;__________;③已知直线1112y x =--与函数12y x =+-的图象相交,则当1y y <时,x 的取值范围为是_____________.25.如图,直线l :y =﹣12x+2与x 轴,y 轴分别交于A ,B 两点,在y 轴上有一点C (0,4),动点M 从点A 出发以每秒1个单位的速度沿x 轴向左移动.(1)求A ,B 两点的坐标;(2)求△COM 的面积S 与点M 的移动时间t 之间的函数关系式;(3)当t =6时,①直接写出直线CM 所对应的函数表达式;②问直线CM 与直线l 有怎样的位置关系?请说明理由.参考答案1.C 【解析】将原式化为整式方程,根据分式方程111x mx x -=++有增根得出x 的值,将x 的值代入整式方程即可求得m 的值.【详解】解:方程两边都乘(1)x +,得:1x m -=,根据分式方程111x mx x -=++有增根,∴10x +=,∴1x =-,∴112m =--=-,故选:C .【点睛】本题考查了分式方程无解的情况,增根问题可按如下步骤进行:1、让最简公分母为0确定增根;2、化分式方程为整式方程;3、把增根代入整式方程即可求得相关参数的值.2.C 【解析】根据分式的分母不等于零列式解答.【详解】解:由题意得10x -≠,解得1x ≠,故选:C .3.A 【解析】根据在y 轴上的点的横坐标为0,求出m 的值即可.【详解】解:∵点()1,2P m m --在y 轴上,∴10m -=,∴1m =,故选A .【点睛】本题主要考查了在y 轴上点的坐标特征,解题的关键在于能够熟记y 轴上的点的横坐标为0.4.A 【解析】将点A 的坐标代入解析式计算即可;【详解】解:将点()1,3A --代入反比例函数解析式ky x=中,得:31k-=-,解得:3k =,故选择:A .【点睛】本题主要考查求反比例函数解析式,利用待定系数法求函数解析式时常用的方法.5.D 【解析】【分析】根据分式的基本性质对各选项进行判断.【详解】解:A 、22y y x x x--=,此选项正确,不符合题意;B 、222b b a a ⎛⎫= ⎪⎝⎭,此选项正确,不符合题意;C 、am abm b =,此选项正确,不符合题意;D 、1y x x y y x+=---,此选项错误,符合题意;故选:D .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的数或整式,分式的值不变.6.D 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.7.C 【解析】【分析】根据用800元购买篮球的数量与用1000元购买足球的数量相同列分式方程.【详解】解:设每个足球的价格为x 元,则每个篮球(x-25)元,根据题意得100080025x x =-,故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意,找到等量关系列出方程是解题的关键.8.B 【解析】【分析】根据题意将两个函数联立方程组,再根据交点在第二象限列不等式组,即可求出m 的取值范围.【详解】解:∵一次函数y =-2x+m 和y =x+2图象相交,∴22y x m y x =-+⎧⎨=+⎩,解得2343m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点位于第二象限,∴203403m m -⎧<⎪⎪⎨+⎪>⎪⎩①②,解不等式①得2m <,解不等式②得4m >-,∴不等式的解集为42m -<<,∴m 的值可能为1,故选B .【点睛】本题考查了解不等式及两直线相交:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.9.D 【解析】【分析】分类讨论:当C 点在y 轴上,设C (0,t ),根据三角形面积公式得到12|t+3|•4=12,当C 点在x 轴上,设C (m ,0),根据三角形面积公式得到12|m-4|•3=12,然后分别解绝对值方程求出t 和m 即可得到C 点坐标.【详解】解:分两种情况:①当C 点在y 轴上,设C (0,t ),∵三角形ABC 的面积为12,∴12•|t+3|•4=12,解得t =3或−9.∴C 点坐标为(0,3),(0,−9),②当C 点在x 轴上,设C (m ,0),∵三角形ABC 的面积为12,∴12•|m-4|•3=12,解得m =12或−4.∴C 点坐标为(12,0),(−4,0),综上所述,C 点有4个,故选:D .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长,也考查了三角形面积公式.10.B 【解析】【分析】根据条件结合图象对各选项进行判断即可.【详解】解:∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x 的方程3kx x b -=-+的解是2x =,选项A 判断正确,不符合题意;∵由图可知,直线y x b =-+在直线3y kx =-上方时,都在点()2,1A 的左侧,∴关于x 的不等式3x b kx -+>-的解集是2x <,选项B 判断错误,符合题意;∵当x <0时,直线y x b =-+在直线3y kx =-上方,∴当x <0时,函数3y kx =-的值比函数y x b =-+的值小,选项C 判断正确,不符合题意;∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程(组),一次函数与一元一次不等式,一次函数的性质.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.1【解析】【分析】由于01(0)a a =≠,即任何不为0的0次幂为1,根据零指数幂的意义完成即可.【详解】()02-=1故答案为:1【点睛】本题考查了零指数幂的意义,这里要注意的是,底数不能为0.12.-2【解析】【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.13.x>2【解析】【分析】根据除法运算的符号法则:同号得正,异号得负,由分子为正,则分母也为正,可得关于x 得不等式,解不等式即可.【详解】∵202x >-,且2>0∴20x ->∴2x >故答案为:2x >【点睛】本题考查了解一元一次不等式,分式的值,除法的符号法则等知识,根据除法的符号法则得到关于x 的不等式是解题的关键.14.21y x =+【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为:21y x =+,故答案为:21y x =+.【点睛】本题考查的是一次函数图像与几何变换,熟知“上加下减”的原则是解题的关键.15.2【解析】【分析】根据函数值y 随x 的增大而减小,可得出k 的正负,根据函数图像上的点到两坐标轴距离相等可得出m 的值.【详解】解:∵正比例函数()1y m x =--的函数值y 随x 的增大而减小,∴(1)0m --<,解得:1m >,∵函数图像上的点到两坐标轴距离相等,∴11m -=,解得:2m =,故答案为:2.【点睛】本题考查了一次函数的性质,熟知一次函数的性质是解题的关键.16.6【解析】【分析】设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t ),即可得到111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,再根据3AOB AOP BOP S S S =+=△△△求解即可.【详解】解:设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t),∴111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,∵3AOB AOP BOP S S S =+=△△△,∴11322m n ⎛⎫+-= ⎪⎝⎭,∴6m n -=,故答案为:6.【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握相关知识进行求解.17.x=4【解析】【分析】方程两边都乘最简公分母(1)(2)x x -+,化成一元一次方程,解一元一次方程即可.【详解】方程两边都乘最简公分母(1)(2)x x -+,得:22(1)x x +=-解方程得:x=4当x=4时,(1)(2)x x -+=18≠0所以原方程的解为x=4【点睛】本题考查了分式方程的解法,解分式方程时一定要检验.18.2x x+,-1【解析】【分析】先计算括号内的同分母分式减法,将除法化为乘法,再计算除法,最后将1x =-代入求值即可.【详解】解:原式=1(2)(2)2(1)x x x x x x -+-⋅--=2x x +,当1x =-时,原式=-1.【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则是解题的关键.19.2240y x =+;340【解析】【分析】根据题意可以求得y 与x 的关系式,进而可以求得y 的最大值.【详解】由题意可得,()()()22161410602240y x x x =-+-⨯-=+,1050x ≤≤ ,∴当50x =时,2240y x =+取得最大值,此时340y =,即y 与x 的函数关系式是2240y x =+,最大利润为340元.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.20.96千米/小时【解析】【分析】设汽车在普通公路上的平均速度为x 千米/小时,然后根据题意列出方程求解即可.【详解】解:设汽车在普通公路上的平均速度为x 千米/小时,由题意得:()40401160%4x x -=+,解得60x =,经检验,60x =是原方程的解集,∴汽车在高速公路上的平均速度=60×(1+60%)=96千米/小时,答:汽车在高速公路上的平均速度为96千米/小时.【点睛】本题主要考查了分式方程的应用,解题的关键在于准确找到等量关系列方程求解.21.(1)17978569⎛⎫-÷= ⎪⎝⎭;(2)121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++,证明见解析;【解析】【分析】(1)根据题目中的等式的规律,可以写出第7个等式;(2)根据题目中的等式的规律,猜想出第n 个等式,然后将等号左边的式子化简,即可证明猜想成立;【详解】解:(1)由第1个等式:1311223⎛⎫-÷= ⎪⎝⎭;第2个等式:24121=3624⎛⎫-÷= ⎪⎝⎭;第3个等式:35314125⎛⎫-÷= ⎪⎝⎭;第4个等式:4624152036⎛⎫-÷= ⎪⎝⎭;第5个等式:57516307⎛⎫-÷= ⎪⎝⎭;依次可得:第6个式子为:16867428⎛⎫-÷= ⎪⎝⎭;第7个式子为:17978569⎛⎫-÷= ⎪⎝⎭;故答案为:17978569⎛⎫-÷= ⎪⎝⎭;(2)根据每个式子结构相同,每一项的分子分母随项数的变化规律可猜想:第n 个等式为:121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++;证明如下:∵左边=21(11)n n n n n ⎛⎫-÷ ⎪+⎭+⎝+,=1(1)12n n n n +⨯++,=2n n +,=右边,∴121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++成立,【点睛】本题主要考查规律型:数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的式子.22.(1)直线AB :3342y x =-+;反比例函数:6y x -=(2)92【解析】【分析】(1)将点A 的坐标代入反比例函数解析式即可求得m 的值,即可得反比例函数解析式,将点B 的坐标代入反比例函数解析式求得n 的值,然后运用待定系数法求一次函数解析式即可;(2)设一次函数与x 轴的交点为D ,则AOB 的面积=AOD △的面积+BOD 的面积,计算即可.【详解】解:(1)∵直线AB 与反比例函数m y x =交于()2,3A -,()4,B n 两点,将()2,3A -代入m y x =中得:32m =-,解得:6m =-,∴反比例函数解析式为:6y x -=,将()4,B n 代入6y x-=中得:32n =-,∴34,2B ⎛⎫- ⎪⎝⎭,设一次函数解析式为:y kx b =+,则32342k b k b =-+⎧⎪⎨-=+⎪⎩,解得3432k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为:3342y x =-+;(2)设一次函数与x 轴的交点为D,∵一次函数的解析式为:3342y x =-+,令0y =得:33042x =-+,解得:2x =,∴点D 的坐标为:(2,0),∴2OD =,∴113932222AOB AOD BOD S S S OD OD =+=+-= .【点睛】本题考查了反比例函数与一次函数的交点问题,解决此类问题中,三角形面积的问题时,尽可能选择与坐标轴平行的边为底边,有利于问题的解决.23.(1)见解析;(2)见解析,点P 的坐标为(90,5)【解析】【分析】(1)根据轴对称的性质分别找到三点的对应点1A ,1B ,1C ,连线即可解答;(2)根据轴对称的性质作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小,再利用待定系数法求函数解析式.【详解】解:(1)如图:111A B C △即为所求;(2)如图,作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小.则B 2(-3,3),设直线B 2C 的解析式为y=kx+b ,∴3321k b k b -+=⎧⎨+=⎩,解得2595k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B 2C 的解析式为2955y x =-+,当x=0时,95y =,∴点P 的坐标为(90,5).【点睛】此题考查轴对称的性质,最短路径问题作图,作关于某点对称的图形,利用待定系数法求一次函数的解析式,熟记轴对称的性质确定特殊点的对称点是解题的关键.24.(1)①1;②4;(2)见解析;(3)①-2;②当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③0x >或4x <-【解析】【分析】(1)①把2x =代入12y x =+-即可得到答案;②把3y =代入12y x =+-即可得到答案;(2)根据表格中的点坐标,描点,连线,画出函数图像即可;(3)①根据(2)中所画的函数图像求解即可;②根据(2)中所画的函数图像写出相应的性质即可;③画出函数1112y x =--的图像,然后利用图像法求解即可.【详解】解:(1)①把2x =代入12y x =+-得2121y =+-=,∴1m =,故答案为:1;②把3y =代入12y x =+-得312x =+-,即15x +=,∴6x =-或4x =,∵()6,3A -,(),3B n 为该函数图象上不同的两点∴4n =,故答案为:4;(2)如图所示,即为所求:(3)①如图所示,由函数图像可知,该函数的最小值为-2,故答案为:-2;②由函数图像可知,当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③如图所示,画出函数1112y x =--,由图像可知,两直线的交点分别为(-4,1),(0-,1),∴当0x >或4x <-时1y y <.【点睛】本题主要考查了画函数图像,求函数的自变量和函数值,函数图像的性质,根据函数图像的交点解不等式等等,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)A(4,0),B (0,2);(2)82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①直线CM 的函数表达式为y=2x+4;②直线CM 与直线l 垂直,见解析.【解析】【分析】(1)令x=0和y=0,分别计算即可;(2)当0≤t≤4时,OM=4-t ;当t >4时,OM=t-4,按照三角形的面积公式分别计算即可;(3)当t =6时,确定M 的坐标为(-2,0);①利用待定系数法确定解析式;②利用三角形全等,垂直的定义判断即可.【详解】(1)∵y =﹣12x+2,∴当x=0时,y=2,∴点B 的坐标(0,2);∴当y=0时,﹣12x+2=0,∴x=4,∴点A 的坐标为(4,0);(2)当0≤t≤4时,AM=t ,∵OM+AM=OA ,∴OM+t=4,∴OM=4-t ,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=8-2t ;当t >4时,AM=t ,∵OA+AM=OM ,∴OM+4=t ,∴OM=t-4,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=2t-8;∴△COM 的面积S 与点M 的移动时间t 之间的函数关系式为:82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①当t =6时,OM=t-4=2,∵M 在x 轴的负半轴,∴点M 的坐标为(-2,0),设直线CM 的解析式为y=kx+b ,把(-2,0)和(0,4)分别代入解析式,得204k b b -+=⎧⎨=⎩;解得24k b =⎧⎨=⎩,∴直线CM 的解析式为y=2x+4;②设直线CM 1与直线l 交于点D ,∵OB=O 1M =2,OA=OC=4,∠CO 1M =∠AOB=90°,∴△CO 1M ≌△AOB ,∴∠1M CO=∠BAO ,∵∠C 1M O+∠1M CO =90°,∴∠C 1M O+∠BAO =90°,∴∠1M DA =90°,∴AD ⊥C 1M .【点睛】本题考查了一次函数解析式的确定,坐标与线段的转换,三角形的全等,直线之间的位置关系,熟练运用待定系数法,坐标与线段的关系,三角形的全等是解题的关键.。
华师大版八年级下册数学期中考试试题含答案
华师大版八年级下册数学期中考试试卷一、单选题1.在下列各式:2xyπ,2a ,2a b -,5ab ,2x ﹣2y 中,是分式的共有()A .1个B .2个C .3个D .4个2.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±13.下列各分式中,最简分式是()A .34()51()x y x y -+B .2222x y x y xy ++C .22y x x y-+D .22222-++x y x xy y4.要使式子1m -有意义,则m 的取值范围是()A .m >﹣1B .m≥﹣1C .m >﹣1且m≠1D .m≥﹣1且m≠15.若把分式22x yxy+中的x 和y 都扩大10倍,那么分式的值()A .扩大10倍B .不变C .缩小10倍D .缩小100倍6.若()252m y m x -=+是反比例函数,则m 的值为()A .2B .﹣2C .±2D .无法确定7.函数y ax a =-与(0)ay a x=≠在同一坐标系中的图象可能是()A .B .C .D .8.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s (千米)与时间t(时)之间的关系可以用图中的折线表示.现有如下信息:①小李到达离家最远的地方是14时;②小李第一次休息时间是10时;③11时到12时,小李骑了5千米;④返回时,小李的平均速度是10千米/时.其中,正确的有()A.1个B.2个C.3个D.4个9.反比例函数6yx=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y110.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.611.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.270020x-=4500xB.2700x=450020x-C.270020x+=4500xD.2700x=450020x+12.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A .(12,0)B .(1,0)C .(32,0)D .(52,0)二、填空题13.用科学记数法表示0.000000025=_____.14.在正比例函数y=﹣3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第___象限.15.一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为________.16.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行,且经过点A (1,﹣2),则kb=__.17.若关于x 的方程222x mx x-+--=﹣2有增根,则m 的值是_____.18.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为_____.三、解答题19.(1)计算(﹣12)﹣1π﹣3.14)0﹣2|(2)化简:(222m mm m -+-)÷24m m -.20.解分式方程:(1)2393x x x +--=1.(2)2x x -﹣1=284x -.21.先化简,再求值:22x 4x 31(x 1)(x 2)x 1⎡⎤-++÷⎢⎥+--⎣⎦,其中x =6.22.若分式方程2311x x ++-=21m x -的解是正数,求m 的取值范围.23.小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A 款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 款手机每部售价多少元?(2)该店计划新进一批A 款手机和B 款手机共60部,且B 款手机的进货数量不超过A 款手机数量的两倍,应如何进货才能使这批手机获利最多?A ,B 两款手机的进货和销售价格如下表:A 款手机B 款手机进货价格(元)11001400销售价格(元)今年的销售价格200024.如图,已知A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x =(0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.25.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t 分后甲、乙两遥控车与B 处的距离分别为d 1,d 2(单位:米),则d 1,d 2与t 的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v 2=________米/分;(2)写出d 1与t 的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰参考答案1.C 【分析】根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式即可求解.【详解】解:2a,5ab,2x﹣2y是分式,共3个,故选:C.2.B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211xx-+的值为零,∴21010xx⎧-=⎨+≠⎩,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键. 3.B【解析】【分析】利用约分可对各选项进行判断.【详解】解:A、34()2()51()3()x y x yx y x y--=++,故A错误;B、2222x yx y xy++是最简分式,故B正确;C、22()()y x y x y x y xx y x y-+-==-++,故C错误;D、22222()()2()x y x y x y x yx xy y x y x y-+--==++++,故D错误.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.4.D 【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:1010m m +⎧⎨-≠⎩,解得:m≥﹣1且m≠1.故选D 【点睛】此题主要考查二次根式的性质和分式的有意义的条件,熟练掌握二次根式的性质和分式的有意义的条件即可解题.5.C 【解析】【分析】利用分式的基本性质,x 和y 都扩大10倍,则分子扩大10倍,分母扩大100倍,则分式的缩小10倍.【详解】解:把分式22x yxy+中的x 和y 都扩大10倍,得2101010(2)12210101002102x y x y x yx y xy xy⨯+++==⨯⨯ ,∴分式的值缩小10倍.故选:C .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式6.A【解析】【分析】利用反比例函数的定义得到m+2≠0且m2﹣5=﹣1,然后解方程即可.【详解】解;根据题意得m2﹣5=﹣1,解得m=2或m=-2.又∵m+2≠0,即m≠-2,∴m=2故选:A.【点睛】本题考查了反比例函数的定义:形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.7.B【解析】【分析】首先知道直线经过定点(1,0),讨论a与0的关系,得到各自经过的象限,得到答案.【详解】解:根据函数y=ax−a经过定点(1,0),a>0时经过1,3,4象限,而ayx=在1,3象限;a<0时,函数y=ax−a经过定点(1,0),经过1,2,4象限,而ayx=在2,4象限;故选:B.【点睛】本题考查了一次函数与反比例函数图象;正确从a的符号讨论图象的可能性是关键.8.C【解析】【分析】(1)从图象上可以知道,小亮到达离家最远的地方是在14时,最远距离是30千米;(2)在图象开始处于水平状态的时刻就是小亮第一次休息的时刻;(3)在这段时刻,我们看纵坐标时,两点对应的路程差即是小亮骑车的路程;(4)由图形可知,回去时小亮是匀速行驶,中间没有休息,故速度是路程除以所用的时间.【详解】(1)由图象知,在图形的最高点就是小亮到达离家最远30千米的地方.此时对应的时刻是14时.正确;(2)休息的时候路程为0,即开始出现的第一个水平状态的时刻,由图象可知,小亮第一次休息的时刻是在10时.正确;(3)由图象知,在这段时间内,小亮只在11时到12时运动,对应的路程差为5km.正确;(4)返回时,小亮为匀速运动,路程为30千米,所用时间是2小时,故速度为15千米/小时.错误.所以,共3个信息正确.故选C.【点睛】考查函数的图象问题,关键是考查学生的识图能力,要求学生学会使用数形结合的思想.9.A【解析】【详解】解:k=6>0,所以反比例函数图像位于一三象限,并且当x<0时,y随着x的增大而减小,所以y2<y1<y3.故选A.【点睛】已知反比例函数解析式和点的横坐标要比较纵坐标大小,可以数形结合,借助图像的性质进行比较.10.D【解析】【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S2.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6.故选D.11.D【解析】【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【详解】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得2700450020 x x=+故选:D【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P (52,0),故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.13.2.5×10﹣8【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000025=2.5×10﹣8,故答案为:2.5×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.二【解析】【详解】∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为二15.x=-1【解析】【分析】先根据题意求出一次函数解析式,然后求出其与x轴的交点坐标即可.【详解】解:∵一次函数y=kx+b过(2,3),(0,1)点,∴321k bb=+⎧⎨=⎩,解得:11kb=⎧⎨=⎩.∴一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(-1,0)点,∴关于x的方程kx+b=0的解为x=-1,故答案为:x=-1.【点睛】本题考查一次函数图像与方程之间的联系,掌握函数与方程之间的关系是解题关键.16.-8【解析】【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b 值,再代入代数式进行计算即可.【详解】解:∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∵y=kx+b的图象经过点A(1,﹣2),∴2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为:﹣8.17.0【解析】【分析】先把方程化为2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,利用增根的定义得到2﹣m=2,从而得到m的值.【详解】解:去分母得2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,当x=2时,原方程有增根,即2﹣m=2,解得m=0.故答案为0.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.18.12(1) n n-【解析】【详解】解:设OA1=A1A2=A2A3=…=A n-2A n-1=A n-1A n=a,∵当x=a时,1ya=,∴P1的坐标为(a,1a),当x=2a时,12ya=,∴P2的坐标为(2a,12a),……∴Rt△P1B1P2的面积为111() 22aa a-,Rt△P2B2P3的面积为111() 223aa a-,Rt△P3B3P4的面积为111() 234aa a-,……∴Rt △P n -1B n -1P n 的面积为1111111··1()2(1)212(1)a n a na n n n n ⎡⎤-=⨯⨯-=⎢⎥---⎣⎦.故答案为:12(1)n n -19.(11;(2)m ﹣6【解析】【分析】(1)根据负整数指数幂、零指数幂、绝对值的意义和二次根式的性质计算;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】解:(1)原式=﹣2+4﹣2﹣1;(2)原式=2(2)(2)(2)(2)(2)(2)m m m m m m m m m--++-+- =22242m m m m m---=26m m m-=m ﹣6.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的运算.20.(1)x =﹣4;(2)无解【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:3+x (x+3)=x 2﹣9,解得:x =﹣4,经检验:x =﹣4是分式方程的解;(2)去分母得:x (x+2)﹣x 2+4=8,解得:x =2,经检验x =2是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.解:原式=()()()2(x 1)(x 2)+2x 4x+3x 2(x 1)(x 1)x +x 6x 1x 1===x 1(x 1)(x 2)x 3x 2x 3x 2x 3+---+----⋅⋅⋅-+-+-+-+.当x =6时,原式=6-1=5.【解析】【详解】分式的化简求值.【分析】先把括号里面的分子分解因式,再约分化简,然后再通分计算,再把括号外的除法运算转化成乘法运算,再进行约分化简,最后把x=6代入即可求值.22.m >1且m≠6【解析】【分析】先把方程化为整式方程,解整式方程得到x =15m -,再利用原方程的解为正数得到15m ->0且15m -≠1,然后求出两不等式的公共部分即可.【详解】解:去分母得2(x ﹣1)+3(x+1)=m ,解得x =15m -,∵原方程的解为正数,∴x >0且x≠1,即15m ->0且15m -≠1,∴m >1且m≠6.【点睛】本题考查了分式方程的解:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.23.(1)今年A款手机每部售价1600元;(2)进A款手机20部,B款手机40部时,这批手机获利最大.【解析】【分析】(1)设今年A款手机的每部售价x元,则去年售价每部为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A款手机a部,则B款手机(60-a)部,获利y元,由条件表示出y与a 之间的关系式,由a的取值范围就可以求出y的最大值【详解】解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,由题意,得()50000120% 50000400x x-=+,解得:x=1600.经检验,x=1600是原方程的根.答:今年A款手机每部售价1600元;(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B款手机的进货数量不超过A款手机数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款手机的数量为:60﹣20=40部.∴当新进A款手机20部,B款手机40部时,这批手机获利最大.【点睛】考查一次函数的应用,分式方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.24.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=12x+52;m=﹣2;(3)P 点坐标是(﹣12,54).【解析】【分析】(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m 的值;(3)设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得,可得答案.【详解】解:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x <﹣1,所以当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b ,y=kx+b 的图象过点(﹣4,12),(﹣1,2),则1422k b k b ⎧-+=⎪⎨⎪-+=⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩一次函数的解析式为y=12x+52,反比例函数y=m x图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC 、PD ,如图,设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得1 2×12×(x+4)=12×|﹣1|×(2﹣12x﹣52),x=﹣52,y=12x+52=54,∴P点坐标是(﹣52,54).25.(1)40;(2)当0≤t≤1时,d1=﹣60t+60;当1<t≤3时,d1=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】【分析】(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a 的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(1)乙的速度v2=120÷3=40(米/分),(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=6060(01) {6060(13)t tt t-+≤-≤≤<;(3)d2=40t,当0≤t<1时,d2-d1>10,即-60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2-d1>10,即40t-(60t-60)>10,当1≤t<52时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.。
华师大版八年级下册数学《期中考试试卷》含答案
2020-2021学年第二学期期中测试华东师大版八年级试题一、选择题(每小题3分,共30分)1. 若分式口值为0,则x的值为x + 1A. - 1B. 0C. 2 D・-1 或22. 某桑蚕丝的直径约为0. 000 016米,将0. 000 016用科学记数法表示是()A. 1. 6X10'4B. 1. 6X10 5C. 1. 6X10 6D・ 16X10"13. 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与1155A.——B.——C.D. ——X-11-x x-11-x5.函数y = J3-X + —!—x-4自变量X的取值范用是()A.x<3B.C C3 且XH4 D.x W 3 或x h 46.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()用电量x(千瓦时)1234• • •应交电费y (元)0・55 1. 11・652・2• • •A. x与y都是变量,且x是自变量,y是函数B. 用电量每增加1千瓦时,电费增加0. 55元C. 若用电量为8千瓦时,则应交电费4. 4元D・y是x的反比例函数7.在平而直角坐标系中,将直线/]: v = -2x-2平移后,得到直线V = -2X + 4.则下列平移作法正确的是()A. 将人向右平移3个单位长度B.将耳向右平移6个单位长度C. 将人向上平移2个单位长度D. 将人向上平移4个单位长度kb& 反比例函数戶一的图象如图所示,则一次函数y=kx+b (WO )的图象的图象大致是()9.某校距利州广场30千米.小刚和小明都要从学校去利州广场参加“实现伟大中国梦,建设美丽、繁荣、和谐四川”主题活动.已知小明以12千米/小时的速度骑自行车出发1小时后,小刚骑电动自行车出发. 若小刚的速度为x 千米/小时,且小明、小刚同时到达利州广场.则下列等式成立的是()30 ( 30门 3030 30 30 t 小 30 30x 12x+112x 12 x 14如图,函数y = —x 与函数y = — —的图象相交于A, B 两点,过A, B 两点分别作y 轴的垂线,垂足x分别为点C, D.则四边形ACBD 的而积为()A. 10.二.填空题(每小题3分,共24分)11. 已知函数『=(—x)°+x 当x=3时,y= ______ .12. 若函数y=也一4图象平行于直线y=2x,则该函数的表达式是___________ .13. 在平面直角坐标系中,已知一次函数的图象经过凡(",》)、Pi(疋,J2)两点,若"VX2,则M ___ X2 (填“ >”,“V"或'=“)214. 已知反比例函数y = -,当xv—l时,y的取值范围为—・x15. 已知x+y=6, xy=—2,则丄r + A= _____________ .16・若关于x的分式方程上】=二1・3有增根,则实数m的值是___________ .x-2 2-x17. 已知点A (“,b)在双曲线y =丄上,若心b都是正整数,则图象经过B (⑺0)、C(0, b)两点x的一次函数的解析式(也称关系式)为_______ •18. 如图,已知点A是一次函数y = ^x(x20)图象上一点,过点A作x轴的垂线/, B是/上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y = - G>0)的图象过点B, C,x若AOAB的而枳为6,则zMBC的而积是 _________ ・三.解答题(共66分)19. (1)计算:(2017 —几)°一(一厂'+ -2|;/c、?1 — 1 、. /(厂一4。
华师大版八年级下册数学期中考试试题附答案
华师大版八年级下册数学期中考试试卷一、单选题1.若分式1xx -有意义,则x 的取值范围是()A .x≠1B .x≠﹣1C .x =1D .x =﹣12.在平面直角坐标系中,一次函数y=2x ﹣3的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限3.若把分式xx y2+中的x 和y 同时扩大为原来的3倍,则分式的值()A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变4.一次函数y =kx ﹣k 与反比例函数y =kx在同一直角坐标系内的图象大致是()A .B .C .D .5.反比例函数y =kx(k >0),当x <0时,图象在()A .第一象限B .第二象限C .第三象限D .第四象限6.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s (m )与时间t (min )的大致图象是()A B C D7.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则x 1,x 2,3x 的大小关系是()A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<8.直线y =-32x +3与x 轴、y 轴所围成的三角形的面积为()A .3B .6C .34D .329.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a+b =6,则直线AB 的解析式是()A .y =﹣2x ﹣3B .y =﹣2x ﹣6C .y =﹣2x+3D .y =﹣2x+610.如图,点P 在反比例函数y =kx的图象上,PA ⊥x 轴于点A ,若△PAO 的面积为4,那么k 的值为()A .2B .4C .8D .﹣4二、填空题11.已知反比例函数y=kx(k≠0)的图象在第二、四象限,则k 的值可以是:____(写出一个满足条件的k 的值).12.将y=2x ﹣3的图象向上平移2个单位长度得到的直线表达式为_____.13.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.14.一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.15.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是________.16.如图,直线l 1:y=x+1与直线 l 2:y=mx+n 相交于点P(1,b ),则关于x 、y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解为__________.三、解答题17.计算(1)1211|32|5(2019)2π-⎛⎫-+-+-⨯- ⎪⎝⎭(2)2221211a a aa a a --÷+++(3)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭(4)23243a a bb b a⎛⎫-÷⋅⎪⎝⎭18.解分式方程:25431x x x x x++=--.19.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =.20.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题:(1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.21.已知3(1)(2)12Ax B Cx x x x+=++-+-,求A、B、C的值.22.已知点P在(m,n)直线y=﹣x+2上,也在双曲线y=1x上,求m2+n2的值.23.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?24.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.25.如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数myx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.如图,已知A(−4,n),B(2,−4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b−mx<0的解集(请直接写出答案).参考答案1.A【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x﹣1≠0,解得x≠1,故选A.2.B【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【详解】∵2>0,∴y 随x 的增大而增大;∵-3<0,∴图像与y 轴的负半轴相交,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选B .【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b (k 为常数,k≠0),当k >0,b >0,y=kx+b 的图象在一、二、三象限;当k >0,b <0,y=kx+b 的图象在一、三、四象限;当k <0,b >0,y=kx+b 的图象在一、二、四象限;当k <0,b <0,y=kx+b 的图象在二、三、四象限.3.D 【解析】根据题意把分式xx y2+中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断.【详解】解:∵分式xx y2+中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变.故选:D 4.C 【解析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k >0∴0k -<∴一次函数y kx k =-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误.故选:C 5.C 【解析】首先利用k 的符号确定反比例函数图象的分布,进而利用x 的符号确定所在象限.【详解】解:∵反比例函数()0ky k x=>∴图象分布在第一、三象限∵0x <∴图象在第三象限.故选:C 【点睛】本题主要考查了反比例函数的性质,正确记忆反比例函数图象的分布规律是解题关键.6.C 【详解】小明从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选:C .7.B 【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据A 、B 、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.【详解】解:∵反比例函数y =12x中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵y 1<y 2<0<y 3,∴213x x x <<.故选B .8.A 【解析】根据一次函数图象上点的坐标特点,直线y =-32x +3与x 轴、y 轴分别交于(2,0),(0,3),故可求出三角形的面积.【详解】当x=0时,y=3,即与y 轴的交点是(0,3),当y=0时,x=2,即与x 轴的交点是(2,0),所以直线y =-32x +3与x 轴、y 轴所围成的三角形的面积为12332⨯⨯=.故选A.【点睛】本题主要考查一次函数图象与x 轴、y 轴的交点.9.D 【解析】平移时k 的值不变,只有b 发生变化.再把相应的点的坐标代入即可得解.【详解】解:∵直线AB 经过点(),a b ,且26a b +=∴直线AB 经过点(),62a a -∵直线AB 与直线2y x =-平行∴设直线AB 的解析式是:12y x b =-+把(),62a a -代入函数解析式得:1622a a b -=-+则16b =∴直线AB 的解析式是26y x =-+.故选:D 【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变.10.C 【解析】【分析】由△PAO 的面积为4可得12|k|=4,再结合图象经过的是第一、三象限,从而可以确定k 值.【详解】解:∵S △PAO =4,∴12|x•y|=4,即12|k|=4,则|k|=8,∵图象经过第一、三象限,∴k >0,∴k =8,故选:C .【点睛】本题主要考查了反比例函数ky x=中k 的几何意义,解题的关键是要明确过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k|.11.-2(答案不唯一)【解析】【分析】由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-2.故答案为-2(答案不唯一).【点睛】本题考查了反比例函数图象的性质(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.12.y=2x﹣1【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将函数y=2x﹣3的图象向上平移2个单位所得函数的解析式为y=2x﹣3+2,即y=2x﹣1.故答案为y=2x﹣1.【点睛】本题考查了一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.14.-2<m<3【解析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.15.1-【解析】【分析】让未知数的指数为-1,系数小于0列式求值即可.【详解】∵是反比例函数,∴m2-2=-1,解得m=1或-1,∵图象在第二、四象限,∴2m-1<0,解得m<0.5,∴m=-1,故答案为-1.【点睛】考查反比例函数的定义及性质:一般形式为y=kx(k≠0)或y=kx-1(k≠0);图象在二、四象限,比例系数小于0.16.12 xy=⎧⎨=⎩【解析】【分析】首先利用待定系数法求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P(1,b),∴b=1+1,解得b=2,∴P(1,2),∴关于x的方程组10x ymx y n-+=⎧⎨-+=⎩的解为12xy=⎧⎨=⎩,故答案为:12 xy=⎧⎨=⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.17.(1)﹣2(2)1a;(3)833ab c-;(4)89.【解析】【分析】(1)先根据乘方法则、绝对值意义、负整数指数幂法则、零指数幂法则进行化简再根据实数加减乘除混合运算法则进行计算即可得解;(2)先将分式的除法运算转化为分式乘法运算、同时将能够因式分解的分子或分母进行因式分解,最后再进行约分即可得解;(3)先根据分式的乘方运算法则进行计算,再将分式乘除运算统一成分式乘法运算,最后进行约分即可得解;(4)先根据分式的乘方运算法则进行计算,再将分式乘除运算统一成分式乘法运算,最后进行约分即可得解.【详解】解:(1)()-10211+-52019-2π⎛⎫-⨯ ⎪⎝⎭=12251-+-⨯=1225-+-2=-(2)2221211a a a a a a --÷+++()()()()211111a a a a a a +-+=⋅-+1a=;(3)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭634443224a b c b c c a b a=⋅÷-634432244a b c a c a b b c =⋅⋅-833a b c=-;(4)23243a a b b b a ⎛⎫-÷⋅ ⎪⎝⎭224233a b b a ab =⋅⋅89=.【点睛】本题考查了实数的混合运算、分式的混合运算,体现了数学运算的核心素养,熟练掌握各项运算法则是解决问题的关键.18.1x =是增根,原分式方程无解【解析】【分析】先确定分式方程最简公分母,然后方程两边乘最简公分母,从而将分式方程转化为整式方程,再解整式方程,最后检验即可得解.【详解】解:25431x x x x x++=--()54311x x x x x ++=--方程两边同时乘以()1x x -()5143x x x -+=+5543x x x -+=+88x =1x =检验:∵当1x =时,()()11110x x -=⨯-=∴1x =是增根,原分式方程无解.【点睛】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验;(3)去分母时要注意符号的变化.19.11x +,2.【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷-=2(1)(1)(1)(1)x x x x x x +-⋅-+=11x +,当1x =时,原式2.考点:分式的化简求值.20.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为100010010=(米/分钟)∴2001002÷=∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.21.A =0,B =﹣1,C =1.【解析】【分析】先将已知等式右边两项进行通分、并利用同分母分式的加法法则进行计算,再利用分式相等的条件列出关于A 、B 、C 的方程组,解方程组即可得解.【详解】解:∵3(1)(2)12Ax B C x x x x +=++-+-∴()()()213(1)(2)(1)(2)Ax B x C x x x x x +-++=+-+-∴()()()213Ax B x C x +-++=∴()2223Ax B C A x B C ++--+=∴02023A B C A B C =⎧⎪+-=⎨⎪-+=⎩∴011A B C =⎧⎪=-⎨⎪=⎩.【点睛】本题考查了分式的加减法以及解三元一次方程组,熟练掌握相关知识点是解决本题的关键.22.2【解析】【分析】先利用一次函数图象上点的坐标特征、以及反比例函数图象上点的坐标特征得出n m +、mn 的值,再利用完全平方公式将原式变形即可得到答案.【详解】解:∵点(),P m n 在直线2y x =-+上∴2n m +=∵点(),P m n 在双曲线1y x=上∴1mn =∴()2222422m n m n mn +=+-=-=.【点睛】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、完全平方公式以及整体代入法求代数式的值,灵活运用相关知识点是解决问题的关键.23.(1)一次函数;(2)y =2x ﹣10;(3)应该买42码的鞋.【解析】【分析】(1)由表格可知,给出了四对对应值,鞋长每增加3cm ,鞋码增加6,即鞋码与鞋长之间的关系是一次函数关系;(2)设y kx b =+,把表中任意两对值代入即可求出y 与x 的关系;(3)当26x cm =时,代入函数关系式即可计算出鞋码的值.解:(1)根据表中信息得“鞋码”与鞋长之间的关系是一次函数;(2)设y kx b=+则由题意得22162819k b k b=+⎧⎨=+⎩解得:210k b =⎧⎨=-⎩∴210y x =-;(3)当26x cm =时,2261042y =⨯==答:应该买42码的鞋.【点睛】本题考查了识表能力、利用待定系数法求一次函数解析式、利用函数解决实际问题的能力,难度不大属于简单题型.24.(1)y =x ﹣1;(2)x <1.【解析】【分析】(1)先根据反比例函数图象上点的意义求出()3,2A 、()2,3B --,用待定系数法即可求得一次函数解析式;(2)根据0y <可得10x -<,即1x <.【详解】解:(1)设一次函数的解析式为y kx b=+∵当3x =时,2y =,即()3,2A ;当3y =-时,2x =-,即()2,3B --∴把点()3,2A 、()2,3B --分别代入y kx b =+得,3223k b k b +=⎧⎨-+=-⎩∴解得11k b =⎧⎨=-⎩∴1y x =-.(2)∵0y <∴1x <∴当1x <时,一次函数的函数值小于零.【点睛】本题考查了用待定系数法求一次函数解析式、一次函数与不等式的关系等知识点,熟练掌握相关知识点是解决本题的关键.25.(1)A (-1,0),B (0,1),D (1,0)(2)一次函数的解析式为y x 1=+反比例函数的解析式为2y x=【解析】【分析】(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A 、B 两点坐标分别代入y kx b =+,可用待定系数法确定一次函数的解析式,由C 点在一次函数的图象上可确定C 点坐标,将C 点坐标代入m y x =可确定反比例函数的解析式.【详解】解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0).(2)∵点A 、B 在一次函数y kx b =+(k≠0)的图象上,∴k b 0{b 1-+==,解得k 1{b 1==.∴一次函数的解析式为y x 1=+.∵点C 在一次函数y=x+1的图象上,且CD ⊥x 轴,∴点C 的坐标为(1,2).又∵点C 在反比例函数m y x=(m≠0)的图象上,∴m=1×2=2.∴反比例函数的解析式为2y x =.26.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【解析】【分析】(1)先把B 点坐标代入代入m y x=求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx+b−m x <0可得kx+b<m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.。
【华东师大版】初二数学下期中试卷(带答案)
一、选择题1.一个多边形的内角和等于它的外角和的3倍,则它是( )边形.A .六B .七C .八D .九2.一个多边形的每个外角都等于相邻内角的13,这个多边形为( ) A .六边形 B .八边形 C .十边形 D .十二边形 3.如图,已知ABC ∆周长为1,连接ABC ∆三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是( )A .201912 B .202012 C .12019 D .120204.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 5.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( ) A .4- B .0 C .3 D .66.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ 7.下列分解因式正确的是( )A .32(1)a a a a -=-B .32244x x y xy ++=2(2)x x y +C .22244(2)x xy y x y -+-=-+D .2216164(42)x x x ++=+8.下列从左到右的变形属于因式分解的是( )A .(x y)ax ay a +=+B .221(2)1x x x x ++=++C .21(1)(1)x x x -=+-D .2(2)(2)4x x x +-=- 9.下列从左到右的变形,属于因式分解的是( )A .(a +1)(a -1)=a 2-1B .2a -2b =2(a -b )C .x (x +1)=x 2+xD .x 2+2x +3=(x +1)2+2 10.在平面直角坐标系中,把点()5,4P -向右平移8个单位得到点1P ,再将点1P 绕原点顺时针旋转90︒得到点2P ,则点2P 的坐标是( )A .()4,3-B .()4,3C .()4,3--D .()4,3- 11.在平面直角坐标系中,将点A (m -1,n +2)先向右平移3个单位,再向上平移2个单位,得到点A ′.若点A ′位于第二象限,则m 、n 的取值范围分别是( )A .m <0,n >0B .m <0,n <-2C .m <-2,n >-4D .m <1,n >-2 12.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm二、填空题13.如图,在平行四边形ABCD 中,∠B=60°,∠BCD 的平分线交AD 点E ,若CD=3,四边形ABCE 的周长为13,则BC 长为__.14.如图,己知ABCD 中,点M 是BC 的中点,线段AM 、BD 互相垂直,AM=3,BD=6,则该平行四 边形的面积为____.15.一艘轮船在静水中的速度为a千米/时,若A、B两个港口之间的距离为50千米,水流的速度为b千米/时,轮船往返两个港口之间一次需____________小时.16.已知x ay b=⎧⎨=⎩,是方程352x y-=的解,则代数式352ab+的值为______.17.因式分解:(1)4a2b2-ab2=____(2)2(x-y)2-x(y-x)=_____18.如图,在ABC∆中,8AB=,6AC=,30BAC∠=,将ABC∆绕点A逆时针旋转60得到11AB C∆,连接1BC,则1BC的长为__________.19.若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x间宿舍,则可列不等式组为____20.如图,等腰三角形ABC的面积为80,底边10BC=,腰AC的垂直平分线EF交,AC AB于点E,F,若D为BC边中点,M为线段EF上一动点,则CDM的周长最小值为________.三、解答题21.一个多边形的每个外角都等于40°,求这个多边形的内角和.22.解下列分式方程(1)42122x xx x++=--;(2)()()21112xx x x=+++-.23.(做一做)计算:①(2)(3)++=x x_____________;②(4)(5)+-=x x_______.(探索归纳)如图甲、乙是两个长和宽都相等的长方形,其中长为()x a+,宽为()x b+.③根据甲图、乙图的特征用不同的方法计算长方形的面积,得到:关于字母x 的系数是1的两个一次式相乘的计算规律用数学式表达是_________________________.(尝试运用)利用因式分解与整式乘法的关系,我们可以逆用上述表达式得到一些二次三项式的因式分解.④因式分解2243()()()++=+++=++x x x a b x ab x a x b ,其中a 、b 可以是__________;⑤若27(9)(2)-+=-+x x m x x ,则m =__________.(拓展延伸)根据你的经验,解答下列问题⑥若29x kx ++可以分解成关于x 的两个一次式乘积的形式,请写出整数k 的一个值______;⑦若24+-x px 可以分解成关于x 的两个一次式乘积的形式,则整数p 的值一定是( )A .3B .3-C .0D .0或3±⑧若24-+x x q 可以分解成关于x 的两个一次式乘积的形式,则整数q 的值一定是( )A .4B .0C .有限个D .有无数个24.如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,AC 、BD 交于M(1)如图1,当α=90°时,∠AMD 的度数为 °;(2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当△OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,不用证明;若不确定,说明理由.25.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.26.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据多边形的内角和等于它的外角和的3倍可列方程求得边数.【详解】解:设多边形的边数为n ,根据题意得:(n−2)×180°=360°×3.解得n =8.故选:C .【点睛】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键. 2.B解析:B【分析】设一个外角是x ,则一个内角是3x ,列得3x+x=180°,求得x ,再用外角和360°除以x 即可得到答案.【详解】设一个外角是x ,则一个内角是3x ,3x+x=180°,解得:x=45°,由于多边形的外角和为360°,则边数为360°÷45°=8,故选:B .【点睛】此题考查多边形内角与外角互补计算,多边形外角和,求多边形边数,熟记多边形外角与内角的关系是解题的关键.3.A解析:A【分析】根据三角形的中位线定理建立周长之间的关系,按规律求解.【详解】根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半, 那么第二个三角形的周长=△ABC 的周长1111222⨯=⨯=, 第三个三角形的周长=△ABC 的周长2211112222⎛⎫⨯⨯== ⎪⎝⎭, ,第n 个三角形的周长112n -=, ∴第2020个三角形的周长201912=.故选:A .【点睛】 本题考查了三角形的中位线定理,解决本题的关键是利用三角形的中位线定理得到第n 个三角形的周长与第一个三角形的周长的规律.4.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得:原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.5.C解析:C【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解.【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠, ∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6, ∴它们的和为51363--++=;故选C .【点睛】本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.6.D解析:D【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程.【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D .【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.解析:B【分析】根据分解因式的方法进行分解,同时分解到不能再分解为止;【详解】A 、()()()32111a a a a a a a -=-=+- ,故该选项错误; B 、()()23222244442x x y xy x x xy y x x y ++=++=+ ,故该选项正确; C 、()()2222244442x xy y x xy y x y -+-=--+=--,故该选项错误;D 、()()222161644441421x x x x x ++=++=+,故该选项错误; 故选:B .【点睛】本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;8.C解析:C【分析】根据因式分解的概念:把一个多项式转化成几个整式积的形式,依次判断可得答案.【详解】解:A 、没把一个多项式转化成几个整式积的形式,故A 错误;B 、没一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选C .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式. 9.B解析:B【分析】直接利用因式分解的定义以及整式的乘法运算法则计算得出答案.【详解】解:A 、(a+1)(a-1)=a 2-1,属于整式乘法,故此选项错误;B 、2a-2b=2(a-b ),属于因式分解,故此选项正确;C 、x (x+1)=x 2+x ,属于整式乘法,故此选项错误;D 、x 2+2x+3=(x+1)2+2,不符合因式分解的定义,故此选项错误.故选:B .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.解析:D【分析】把点()5,4P -向右平移8个单位得到点()13,4P ,再将点1P 绕原点顺时针旋转90︒得到点2P 即可求解.【详解】解:把点()5,4P -向右平移8个单位得到点()13,4P ,再将点1P 绕原点顺时针旋转90︒得到点2P ()4,3-,故选:D .【点睛】本题考查点的坐标变换,掌握点的坐标变换规律是解题的关键.11.C解析:C【分析】根据点的平移规律可得向右平移3个单位,再向上平移2个单位得到(m-1+3,n+2+2),再根据第二象限内点的坐标符号可得.【详解】点A (m-1,n+2)先向右平移3个单位,再向上平移2个单位得到点A′(m+2,n+4), ∵点A′位于第二象限,∴2040m n +<⎧⎨+>⎩解得:m <-2,n >-4,故选C .【点睛】此题主要考查了坐标与图形变化-平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.12.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,=,AD平分BACAB AC∠,∴AN BC⊥,BN CN=,∴90∠=∠=,ANB ANC∠=∠=,EBC E60∴EBM△是等边三角形,=,6BE cm∴6===,EB EM BM cmDF BC,//∴60∠=∠=,EFD EBM∴EFD△是等边三角形,DE cm=,2∴2===,EF FD ED cm∴4=,DM cm△是等边三角形,EBM∴60∠=,EMB∴30∠=,NDM∴2=,NM cm∴4=-=,BN BM NM cm∴28BC BN cm==.故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.二、填空题13.5【分析】利用平行四边形的对边相等且互相平行进而得出DE=CD=3再求出AE+BC=7BC-AE=3即可求出BC的长【详解】∵CE平分∠BCD交AD边于点E∴∠ECD=∠ECB∵在平行四边形ABCD解析:5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC-AE=3,即可求出BC 的长.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD=3,AD=BC ,∠D=∠B=60°,∴∠DEC=∠ECB ,∴∠DEC=∠DCE ,∴DE=CD=3,∴△CDE 是等边三角形,∴CE=CD=3,∵四边形ABCE 的周长为13,∴AE+BC=13-3-3=7①,∵AD-AE ═DE=3,即BC-AE=3②,由①②得:BC=5;故答案为:5.【点睛】此题主要考查了平行四边形的性质,等腰三角形的判定;熟练掌握平行四边形的性质,证出∠DEC=∠DCE 是解题关键.14.12【分析】由题意连接MD 根据三角形同底同高可得再利用平行四边形的性质得出进而运用面积的比例进行分析计算即可求得平行四边形的面积【详解】解:由题意连接MD ∵点M 是BC 的中点∴∵四边形是平行四边形∴∵ 解析:12【分析】由题意连接MD,根据三角形同底同高可得DBM DCM S S =,再利用平行四边形的性质得出 ABD DBC S S =,进而运用面积的比例进行分析计算即可求得平行四边形的面积.【详解】解:由题意连接MD,∵点M 是BC 的中点,∴DBM DCM S S =,22DBC DCM DBM S S S ==,∵四边形ABCD 是平行四边形,∴ABD DBC S S =,∵线段AM 、BD 互相垂直,AM=3,BD=6,∴S 四边形ABMD =1136922AM BD =⨯⨯=, ∵S 四边形ABMD =223DCM ABD DBC DCM DCM DCM DCM DCM ABCD S S S S S S S S S -=+-=+-=, ∴933DCM S=÷=, ∴44312D ABC M D C S S ==⨯=.故答案为:12.【点睛】本题考查平行四边形的性质,熟练掌握三角形同底同高其面积相等以及平行四边形的对角线平分平行四边形的面积是解题的关键.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米 解析:22100a a b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解.【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为:5050a b a b++- ()()()()5050a b a b a b a b -++=+- ()()50505050a b a b a b a b -++=+- 22100a a b =- 故答案为:22100aa b -. 【点睛】本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.1【分析】将代入方程有代入即可计算【详解】解:将代入方程有3a-5b=2有将代入有:故答案为:1【点睛】本题考查了二元一次方程的解及分式的化简其中根据二元一次方程得到从而使用整体代入思想解题是关键解析:1【分析】将x a y b=⎧⎨=⎩,代入方程352x y -=,有253b a +=,代入352a b +即可计算. 【详解】解:将x a y b =⎧⎨=⎩,代入方程352x y -=,有3a -5b =2,有352a b =+, 将352a b =+代入352a b +有:52152b b +=+ 故答案为:1.【点睛】本题考查了二元一次方程的解及分式的化简,其中根据二元一次方程得到352a b =+从而使用整体代入思想解题是关键.17.ab2(4a-1)(y-x )(2y-3x )【分析】(1)直接提取公因式ab2即可;(2)先凑出公因式y-x 然后提取公因式即可【详解】解:(1)4a2b2-ab2=ab2(4a-1);(2)2(x -y解析:ab 2(4a-1) (y-x )(2y-3x )【分析】(1)直接提取公因式ab 2即可;(2)先凑出公因式y-x ,然后提取公因式即可.【详解】解:(1)4a 2b 2-ab 2=ab 2(4a-1);(2)2(x -y )2-x (y -x )=2(y -x )2-x (y -x )=(y-x )[2(y-x)-x]=(y-x )(2y-3x ).【点睛】本题考查了运用提取公因式法因式分解,掌握确定公因式的方法是解答本题的关键. 18.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 19.【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出 解析:()142626x x ≤+--<【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.20.21【分析】连接ADAM 由于△ABC 是等腰三角形点D 是BC 边的中点故AD ⊥BC 再根据三角形的面积公式求出AD 的长再根据EF 是线段AC 的垂直平分线可知点A 关于直线EF 的对称点为点CMA =MC 推出MC +解析:21【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC +DM =MA +DM≥AD ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD =12×10×AD =80,解得:AD =16, ∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =16+12×10=21. 故答案是:21.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键. 三、解答题21.1260︒【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】 解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.①256x x ++;②220x x --;③(x+a)(x+b)= x 2+(a+b)x+ab ;④3,1或1,3;⑤-18;⑥6(答案不唯一);⑦D ;⑧D【分析】①根据多项式乘多项式的法则,即可求解;②根据多项式乘多项式的法则,即可求解;③用两种方法表示矩形的面积,即可得到答案;④由题意得a+b=4且ab=3,进而即可求解;⑤把(9)(2)x x -+展开,即可求解;⑥根据完全平方公式,写出一个符合要求的答案即可;⑦由-4=1×(-4)=(-1)×4=2×(-2),进而即可求解;⑧根据“和为-4的两个整数有无数组”,进而即可求解.【详解】①(2)(3)++=x x 2223656x x x x x +++=++,故答案是:256x x ++;②(4)(5)+-=x x 22542020x x x x x -+-=--,故答案是:220x x --;③∵S 甲=(x+a)(x+b),S 乙=x 2+ax+bx+ab= x 2+(a+b)x+ab ,∴(x+a)(x+b)= x 2+(a+b)x+ab ,故答案是:(x+a)(x+b)= x 2+(a+b)x+ab ;④由题意得:a+b=4且ab=3,∴31a b =⎧⎨=⎩或13a b =⎧⎨=⎩, 故答案是:3,1或1,3;⑤∵27(9)(2)-+=-+x x m x x =x 2-7x-18,∴m=-18,故答案是:-18;⑥∵29x kx ++可以分解成关于x 的两个一次式乘积的形式,∴k 可能为6,故答案是:6(答案不唯一);⑦∵24+-x px 可以分解成关于x 的两个一次式乘积的形式,∴-4=1×(-4)=(-1)×4=2×(-2),∴p=0或±3,故选D ;⑧∵和为-4的两个整数有无数组,∴整数q 的值有无数个,故选D .【点睛】本题主要考查多项式乘多项式的运算法则,通过题目得到结论:2()()()x a b x ab x a x b +++=++,是解题的关键.24.(1)90;(2)120°;(3)存在,∠AMD =180°﹣α【分析】(1)如图1中,设OA 交BD 于K .只要证明△BOD ≌△AOC ,推出∠OBD=∠OAC ,由∠AKM=∠BKO ,得∠AMK=∠BOK=90°可得结论.(2)如图2中,设OA 交BD 于K .只要证明△BOD ≌△AOC ,推出∠OBD=∠OAC ,由∠AKM=∠BKO ,推出∠AMK=∠BOK=60°可得结论.(3)如图3中,设OB 交AC 于K .只要证明△BOD ≌△AOC ,可得∠OBD=∠OAC ,由∠AKO=∠BKM ,推出∠AOK=∠BMK=α.可得∠AMD=180°-α;【详解】解:(1)如图1中,设OA 交BD 于K .∵OA=OB ,OC=OD ,∠AOB=∠COD=α,∴∠BOD=∠AOC ,∴△BOD ≌△AOC ,∴∠OBD=∠OAC ,∵∠AKM=∠BKO ,∴∠AMK=∠BOK=90°,∴∠AMD=180°-90°=90°.故答案为90.(2)如图2中,设OA 交BD 于K .∵OA=OB ,OC=OD ,∠AOB=∠COD=α,∴∠BOD=∠AOC ,∴△BOD ≌△AOC ,∴∠OBD=∠OAC ,∵∠AKM=∠BKO ,∴∠AMK=∠BOK=60°,∴∠AMD=180°-60°=120°,(3)如图3中,设OB 交AC 于K .∵OA=OB ,OC=OD ,∠AOB=∠COD=α,∴∠BOD=∠AOC ,∴△BOD ≌△AOC ,∴∠OBD=∠OAC ,∵∠AKO=∠BKM ,∴∠AOK=∠BMK=α.∴∠AMD=180°-α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.25.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .26.见解析【分析】(1)先作线段AB 的垂直平分线DE ,再延长BC 即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE ,得到答案; (3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC ,证得BE=EF ,又因为AE= BE ,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE是AB的垂直平分线∴DE⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004----2005学年度下期期中考试试卷
初 二 数 学
班级 姓名 成绩 2005. 4
考场秘诀:谁沉着、冷静、认真、细心,谁就一定能够在考场上赢得最大的胜利!!祝你成功!!
第一部分 掌握基础才能继续发展
一、人生的道路上有许多抉择,现在来看一下,自己是否具有慧眼识真的能力(注意只有一个是对的,将正确答案相对应的序号填在括号里)!(每题2分、共20分) 1、4的平方根是( )
A .4
B .2
C .2-
D .2±
2
、在实数3-、0
3.1415、π
、2.123122312233……中,无理数的个数为( )
A 、2个
B 、3个
C 、4个
D 、5个 3、下列各式正确的是( )
A 、36=±6
B 、 -3-8 =-2
C 、(-6)2
=-6 D 、3-7=-37
4、在比例尺为1∶20000的地图上,量得甲、乙两地的距离为25cm ,则两地的实际距离为( ) A 、250000cm B 、25km C 、500km D 、5km
5、点P (3,4-)关于x 轴对称的点的坐标是( )
A 、(3,4-)
B 、(3-,4-)
C 、(3,4)
D 、(3-,4)
6、在下列条件中:① 在△ABC 中,∠B 是直角,∠A =30°;在△C B A '''中,∠B '是直角, ∠C '=60°。
② 在△ABC 中 AB=6,BC=7.5, AC=12; 在△C B A '''中 B A ''=10, C B ''=12.5, C A ''=20。
③ 在△ABC 中 ∠A=47 º,AB=1.5,AC=2; 在△C B A '''中
A '∠ =47 º,
B A ''=3,
C B ''=4。
能识别相似和'''C B A ABC ∆∆的有( )
A 、0个
B 、1个
C 、2个
D 、3个 7、正比例函数y kx =与反比例函数k y x
=
在同一坐标系内的图象大致为( )
8、已知
(0)b c a c a b k a b c a
b
c
+++===++≠ 则函数y=kx+k 图像一定不经过
( )
A
B C D
B
C
A 第一象限
B 第二象限
C 第三象限
D 第四象限
9、小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( ) A B C D
10、在直角三角形ABC 的直角边AC 上有一点定P (点P 与点A ,C 不重合),过点P 作直线截ΔABC ,使截得的三角形与ΔABC 相似,满足条件的直线共有( )条
A 1
B 2
C 3
D 4 二、选择题,相信自己一定能把最准确的答案填在空白处!(每题2分、共20分) 1、点(2
,-3)在第 象限。
25x =
-,则x 的取值范围是 。
3
a= ,b= 。
4、函数中,自变量x 的取值范围是 __ .
5、若关于x 的函数1(1)m y n x -=+是一次函数,则m= ,n 。
6、将直线22y x =-+向下平移5个单位,得到直线的解析式是 。
7、已知函数y kx b =+的图像经过点(1,-2),且y 随自变量x 的增大而减小,写出一个满足上述条件的函数解析式 。
8、双曲线()00>>=x ,k x
k y
的图象上两点A 、B 作AC ⊥x 轴于C ,
BD ⊥x 轴于D ,那么A O C S ∆和BOD S ∆的关系为 9、如图中的直线ABC 为甲地向乙地打长途电话所需付的电话 费y (元)与通话时间x (分钟)之间的函数关系的图象。
当x ≥3 时,该图象的解析式为___________;从图象中可知,通话2分
钟需付电话费___________元,通话7分钟需付电话费___________。
10、 如图,AD :DB=1:2,DE ∥BC ,
则:ADE ABC s s ∆∆=
三.计算:(每题4分、共8分) 1、31128)1(3
32
--+--
- 2、
x
x
x
x
x x 14
693
22
-+
第二部分 不断前进 挑战自我
四.解答题: 1、(本题8分)已知一次函数y kx b =+的图像经过点A (0,1)和点B (a ,-3a )(a >0),且点B 在反比例函数3y x
=-的图像上,求a 的值和一次函数的解析式。
2、(本题8分)一天上午8时,小华去县城购物,到下午2时返回家,结合图像回答:
(1) 小华何时第一次休息?
(2) 小华离家最远的距离时多少? (3) 返回时平均速度时多少?
(4) 请你描述一下小华购物的情况。
3、(本题7分)某公司到果园购买某种优质水果,果园对购买3000千克以上(含3000千克)的有两种销售方式,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己运回,已知该公司租车从基地到公司的运输费用是5000元
(1) 分别写出该公司两种购买方案的付款y 与所购买的水果量x 之间的函数关系式; (2)当购买量在什么范围时,选择哪种购买方式付款最少?
4、如图21,2
∠=∠∙=且AB AD AE
求证:EBD BCE ∆∆∽ (本题6分)
5、(本题9分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm )之间存在着某种联系,经过收集数据,得到下表:
(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?
(2)猜想y 与x 之间满足怎样的函数关系式,并求出y 与x 之间的函数关系式,验证这些点的坐标
是否满足函数关系式。
(3)当鞋码是41码时,鞋长是多长?
6、(本题8分)如图,已知直线
y =
2x +4与
x 轴、y 轴的交点分别为A 、B
,直线y =2x -2与x 轴、y 轴的交点分别为C 、D 。
(1)
试说明△ABO 与△CDO 相似。
(2) 求△ABO 与△CDO 的相似比。
五.作图题(本题6分)如图,请设计三种不同方法,将直角三角形分割成四个小三角形,使得每个小三角形与原三角形都相似。
老师寄语:亲爱的同学们,你们认真检查了吗?请你们一定要认真检查不要粗心大意呦!希望大家沉着答卷,力争取得好成绩
期中考试 答案
一、1、D 2、C 3、D 4、D 5C 6、C 7、B 8、D 9、D 10、D
二、1、4 2、X ≤5 3、2,5 4、x>-2 5、2,≠-1 6、y= -2x-3 7、y= -x-1等 8、相等 9、y=x-0.6 , 1.4元, 6.4元 10、1:4 三、1、34-
2、x x
4
四、1、1=a 14+-=x y
2、(1)上午9点 (2)30千米 (3)15千米/小时 (4)略
3、(1)y 四=9x y 乙=8x+5000 (2) 当x=5000时两个方案一样 当x>5000时乙方案付款少 当x<5000时甲方案付款少
4、EBD
BCE BEC BDE A BEC AED A BDE ADE
ADE ABE AE
AD AD
AE AB
AD AE ∆∆∴∠=∠∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴∆∆∴=
∴∙=∽∽21112
又解 5、(1)在直线上
(2) 一次函数,210y x =- (3) 当y=40时,x=25 6、相似、相似比为1:2 五、图略。