专题33 探索规律问题-2017年2年中考1年模拟(学生版)
2017年中考复习 规律探索专题训练(含答案)
规律探索专题1.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线 上.(3分)(2)请任意写出三条射线上数字的排列规律.(3分) (3)“2007”在哪条射线上?(3分)2.根据以下10个乘积,回答问:1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯ 1624⨯ 1723⨯ 1822⨯1921⨯ 2020⨯(1)试将以上各乘积分别写成一个“22-”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;(2)若乘积的两个因数分别用字母a b ,表示(a b ,为正数),请观察给出ab 与a b +的关系式.(不要求证明)(3)若用11a b ,22a b ,,n n a b 表示n 个乘积,其中1a ,2a ,3n a a ,,,123n b b b b ,,,,为正数.请根据(1)中乘积的大小顺序猜测出一个一般结论.(不要求证明)3.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=. 图1 图2 图3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是;(2)我2层 1层 …… n 层们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.4.如图,在直角坐标系中,已知点0P 的坐标为(10),,将线段0OP 按逆时针方向旋转45,再将其长度伸长为0OP 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP 的2倍,得到线段2OP ;如此下去,得到线段3OP ,4OP ,,n OP (n 为正整数)(1)求点6P 的坐标; (2)求56POP △的面积;(3)我们规定:把点()n n n P x y ,(0123n =,,,,) 的横坐标n x 、纵坐标n y 都取绝对值后得到的新坐标()nn xy ,称之为点n P 的“绝对坐标”.根据图中点n P 的分布规律,请你猜想点n P 的“绝对坐标”,并写出来.5.阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问:123100?++++=经过研究,这个问的一般性结论是123++12n n +=(1)n +,其中n 是正整数.现在我们来研究一个类似的问:1223(1)?n n ⨯+⨯+++=观察下面三个特殊的等式5P()()()112123012312323412331343452343⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯将这三个等式的两边分别相加,可以得到112233434520.3⨯+⨯+⨯=⨯⨯⨯=读完这段材料,请你思考后回答: (1)1223100101⨯+⨯++⨯=(2)1223(1)n n ⨯+⨯+++=(3)123234(1)(2)n n n ⨯⨯+⨯⨯++++= (只需写出结果,不必写中间的过程)6.在数学活动中,小明为了求2341111122222n +++++的值(结果用n 表示). 设计如图6-1所示的几何图形.(1)请你利用这个几何图形求2341111122222n+++++的值为 . (2)请你利用图6-2,再设计一个能求2341111122222n+++++的值的几何图形.7.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:图6-1图6-2(2)通过猜想,写出与n 个图形相对应的等式.8.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:235222⨯=,347222⨯=,268222⨯=,⇒…222m n m n +⨯=, ⇒…m n m n a a a +=·(m n ,都是正整数). 我们亦知:221331+<+,222332+<+,223333+<+,224334+<+,….(1)请你根据上面的材料归纳出(00)a b c a b c >>>,,,之间的一个数学关系式; (2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m 克糖水里含有n 克糖,再加入k 克糖(仍不饱和),则糖水更甜了”;(3)如图,在Rt ABC △中,90()C CB a CA b AD BE c a b ∠=====>,,,.能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.9.如图,在Rt ABC △中,90C =∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中,请回答下列问: (1)按要求填表① 401413⨯+=⨯-; ②411423⨯+=⨯-; 421433⨯+=⨯-; ③ ④⑤_________________;_________________;ABE(2)n n ;(3)若m n p q ,,,是正整数,且m n p q x x x x =,试判断m n p q ,,,的关系.10.已知Rt ABC △中,90ACB =∠,68AC BC ==,.(I )如图①,若半径为1r 的1O 是Rt ABC △的内切圆,求1r ;(II )如图②,若半径为2r 的两个等圆12O O ,外切,且1O 与AC AB ,相切,2O 与BC AB ,相切,求2r ;(III )如图③,当n 是大于2的正整数时,若半径为n r 的n 个等圆1O ,2O ,…,n O 依次外切,且1O 与AC AB ,相切,n O 与BC AB ,相切,2O ,3O ,…,1n O -均与AB 边相切,求n r .11.如图-1,图-2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O 处.(1)求图13-1中,重叠部分面积与阴影部分面积之比;(2)求图13-2中,重叠部分面积与阴影部分面积之比(直接写出答案); (3)根据前面探索和图13-3,你能否将本推广到一般的正n 边形情况(n 为大于2的偶数)?若能,写出推广问和结论;若不能,请说明理由.B 图③B 图②B 图①F EE B C A12.两条平行直线上各有n 个点,用这n 对点按如下规则连接线段. ①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点; ②符合①要求的线段必须全部画出.图-1展示了当1n =时的情况,此时图中三角形的个数为0; 图-2展示了当2n =时的一种情况,此时图中三角形的个数为2.(1)当3n =时,请在图10-3中画出使三角形个数最少的图形.此时图中三角形的个数为____________.(5分)(2)试猜想当有n 对点时,按上述规则画出的图形中,最少有多少个三角形?(3分) (3)当2006n =时,按上述规则画出的图形中,最少有多少个三角形?(2分)一、猜想、探究 1.(1)“17”在射线OE 上.3分 (2)射线OA 上数字的排列规律:65n - 1分 射线OB 上数字的排列规律:64n - 2分 射线OC 上数字的排列规律:63n - 3分射线OD 上数字的排列规律:62n - 射线OE 上数字的排列规律:61n - 射线OF 上数字的排列规律:6n(图-1) 图-2 (图-3)(3)在六条射线上的数字规律中,只有632007n -=有整数解.解为335n =2分 “2007”在射线OC 上. 3分 2.解:(1)222222112920912282081327207⨯=-⨯=-⨯=-;;;221426206⨯=-; 221525205⨯=-;221624204⨯=-;222217232031822202⨯=-⨯=-;; 221921201⨯=-;222020200⨯=-.2分这10个乘积按照从小到大的顺序依次是: 1129232813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯4分(2)22a b ab +⎛⎫⎪⎝⎭≤7分 (注:①若40a b +=,则220400ab =≤.6分 ②2222a b a b ab +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭6分)(3)若112233n n a b a b a b a b m +=+=+==+=,8分且11223n n n a b a b a b a b ----≥≥≥≥,则112233n n a b a b a b a b ≤≤≤≤,10分(注:若11223340n n a b a b a b a b +=+=+==+=8分且11223n n n a b a b a b a b ----≥≥≥≥,则112233n n a b a b a b a b ≤≤≤≤. 9分)3.解:(1)67.2分(2)图4中所有圆圈中共有12(121)12312782+++++==个数, 其中23个负数,1个0,54个正数,4分 ∴图4中所有圆圈中各数的绝对值之和|23||22||1|01254=-+-++-+++++(12323)(12354)27614851761=+++++++++=+=. 6分4.(1)根据旋转规律,点6P 落在y 轴的负半轴,而点n P 到坐标原点的距离始终等于前一个点到原点距离的2倍,故其坐标为66(02)P ,,即6(064)P ,. 3分(2)由已知可得, 01121n n P OP POP P OP -△∽△∽∽△, 4分设111()P x y ,,则12sin 452y ==01112P OP S ∴=⨯=△6分又6132OP OP = 560123210241P OP P OP S S ⎛⎫∴== ⎪⎝⎭△△,5610242P OP S =⨯=△ 8分 (3)由意知,0OP 旋转8次之后回到x 轴正半轴,在这8次中,点n P 分别落在坐标象限的平分线上或x 轴或y 轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点n P 的坐标可分三类情况:令旋转次数为n9分①当8n k =或84n k =+时(其中k 为自然数),点n P 落在x 轴上,此时,点n P 的绝对坐标为(20)n ,; 10分②当81n k =+或83n k =+或85n k =+或87n k =+时(其中k 为自然数),点n P 落在各象限的平分线上,此时,点nP 的绝对坐标为222n n ⎛⎫ ⎪⎪⎝⎭2,2,即(2n n -- 11分③当82n k =+或86n k =+时(其中k 为自然数),点n P 落在y 轴上,此时,点n P 的绝对坐标为(02)n ,. 12分 5.解:(1)343400(或11001011023⨯⨯⨯)(2)1(1)(2)3n n n ++(3)1(1)(2)(3)4n n n n +++6.解:(1)112n -. (2)如图1-1或如图1-2或如图1-3或如图1-4等,图形正确. 7.解:(1)④431443⨯+=⨯-; ⑤441453⨯+=⨯-. (2)4(1)143n n -+=-. 8.(1)解:a b c ,,的数学关系式是b b caa c+<+. (2)解:因为n n k m m k+<+,说明原来糖水中糖的质量分数nm 小于加入k 克糖后糖水中糖的质量分数n km k++,所以糖水更甜了. (3)证法一:在Rt ABC △和Rt DEC △中,tan tan b b cABC DEC a a c+∠=∠=+,. 过A 点作AF CE ∥,交ED 于F 点,则DAF DCE △∽△.ABE图1G12 212312图1-11221241231241231221212 212312 图1-2 图1-3 图1-412DC DAEC FA∴=. DC DA AC EB BC EC =+<+=,DA AF ∴<.而DA EB =,AF EB ∴>.如图1,过A 点作AG ED ∥,则AG 必与EB 的延长线交于G 点,DEC AGC ABC ∴∠=∠>∠.tan tan DEC ABC ∴∠>∠. b c ba c a+∴>+. 另证一:用图2与上面同理说明,对应给分.另证二:同证法一,知AF AD BE >=,且AF BE ∥, 故AB 与FE 的延长线的交点G 必 在BE 的下方(图3).DEC EBG ABC ∴∠>∠=∠. tan tan DEC ABC ∴∠>∠.b c ba c a+∴>+.AG ABE图29.(1)2483927,,(2)23n⎛⎫⎪⎝⎭.(3)m n p q x x x x =22223333m n p q⎛⎫⎛⎫⎛⎫⎛⎫∴= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2233m np q++⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭.m n pq ∴+=+. 10.解:(I )在Rt ABC △中,9068ACB AC BC ===,,∠, ∴10AB =.如图,设与Rt ABC △的边AB BC CA ,,分别切于点D E F ,,,连接111111O D O E O F AO BO CO ,,,,,.于是,111O D AB O E BC O F AC ⊥⊥⊥,,,111111322AO C S AC O F AC r r ===△, 111111422BO C S BC O E BC r r ===△, 111111522AO B S AB O D AB r r ===△, 1242ABC S AC BC ==△. 又111ABC AO C BO C AO B S S S S =++△△△△,∴11124345r r r =++.∴12r =.B(II )如图,连接121212AO BO CO CO O O ,,,,,则122132AO C S AC r r ==△, 222142BO C S BC r r ==△. 等圆12O O ,外切,∴1222O O r =,且12O O AB ∥.过点C 作CM AB ⊥于点M ,交12O O 于点N ,则245AC BC CM AB ==, 22245CN CM r r =-=-. ∴12122212425CO O S O O CN r r ⎛⎫==- ⎪⎝⎭△, ∴1222221(210)(5)2AO O B S r r r r =+=+梯形. 121212ABC AO C BO C CO O AO O B S S S S S =+++梯形△△△△,∴222222242434(5)5r r r r r r ⎛⎫=++-++ ⎪⎝⎭.解得2107r =. (III )如图,连接111n n n AO BO CO CO O O ,,,,,则1132AO C n n S AC r r ==△, 142n BO C n n S BC r r ==△. 等圆12n O O O ,,,依次外切,且均与AB 边相切,∴12n O O O ,,,均在直线1n O O 上,且1n O O AB ∥, ∴1(2)222(1)n n n n O O n r r n r =-+=-.过点C 作CH AB ⊥于点H ,交1n O O 于点K ,B MBH则242455n CH CK r ==-,. ∴11124(1)25n CO O n n n S O O CK n r r ⎛⎫==-- ⎪⎝⎭△, 11[2(1)10][(1)5]2n n n n n AO O B S n r r n r r =-+=-+梯形.111n n n ABC AO C BO C CO O AO O B S S S S S =+++梯形△△△△,∴242434(1)[(1)5]5n n n n n n r r n r r n r r ⎛⎫=++--+-+ ⎪⎝⎭.解得1023n r n =+. 11.解:(1)方法一:连结OA OB ,,过点O 作OM AB ⊥,垂足为M . 点O 是正方形ABCD 外接圆圆心,OA OB ∴=.正方形ABCD ,12OM AB ∴=,14ABO ABCD S S ∴=正方形△. 90AOB ∠=,45OAF OBE ∴∠=∠=.又90A OC ''∠=,90AOF A OB A OB BOE ''∠+∠=∠+∠=,AOF BOE ∴∠=∠.AOF BOE ∴△≌△. AOF BOE S S ∴=△△.∴重叠部分面积14BOF BOE BOF AOF ABO ABCD S S S S S S =+=+==正方形△△△△△. 34ABCD S S ∴=阴影正方形. ∴重叠部分面积与阴影部分面积之比为1:3.方法二:过正方形ABCD 的外接圆圆心O 分别作OM AB ON BC ⊥⊥,,垂足分别为M N ,. 正方形ABCD ,AB BC ∴=,12OM ON AB ∴==.90ABC ∠=,∴四边形MBNO 为矩形.OM ON =,∴四边形MBNO 为正方形. 14MBNO ABCD S S ∴=正方形正方形. 90FOE ∠=,90FOM MOE MOE EON ∴∠+∠=∠+∠=. FOM EON ∴∠=∠.FOM EON ∴△≌△.FOM EON S S ∴=△△.∴重叠部分面积14FOM EON MBNO ABCD MBEO MBEO S S S S S S =+=+==△△正方形正方形四边形四边形. 34ABCD S S ∴=阴影正方形. ∴重叠部分面积与阴影部分面积之比为1:3.方法二:过正方形ABCD 的外接圆圆心O 分别作OM AB ON BC ⊥⊥,,垂足分别为M N ,. 正方形ABCD ,AB BC ∴=,12OM ON AB ∴==.90ABC ∠=,∴四边形MBNO 为矩形. OM ON =,∴四边形MBNO 为正方形.14MBNO ABCD S S ∴=正方形正方形.90FOE ∠=,90FOM MOE MOE EON ∴∠+∠=∠+∠=.FOM EON ∴∠+∠.FOM EON ∴∠∠△≌△. FOM EON S S ∴=△△.∴重叠部分面积14FOM EON MBNO ABCD MBEO MBEO S S S S S S =+=+==△△正方形正方形四边形四边形. 34ABCD S S ∴=阴影正方形. ∴重叠部分面积与阴影部分面积之比为1:3.(2)1:2;(3)两个相同的正n (n 为大于2的偶数)边形,其中一个正n 边形的顶点在另一个正n 边形的外接圆圆心O 处,求两个正n 边形重叠部分面积与阴影部分面积之比.答案为(2)(2)n n -+:. 12. (1)4(2)当有n 对点时,最少可以画()21n -个三角形. (3)()2200614010⨯-=个.答:当2006n =时,最少可以画4010个三角形.。
中考数学规律探索题(整理全,含答案).doc
A. M=mnD.M=m(n+1)规律探索7选择题1. 观察下列等式:31=3, 32=9, 33=27, 34=81, 3—243, 36=729, 37=2187...解答下列问题:3 + 32 + 33 + 34...+32013的末位数字是( )A. 0B. 1C. 3D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,29, 31),…,现用等式A M = (i, j)表示正奇数M 是第i 组第j 个数(从左往右数),如A7= (2, 3),则A 20I 3=() A. (45, 77) B. (45, 39) C. (32, 46) D. (32, 23)3. 下表中的数字是按一定规律填写的,表中a 的值应是 ________ . 12 3 5 813a・2 358 13 21 34・4. 下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2“?,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) 6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是7. 我们知道,一元二次方程x 2 =-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为(B.M=n(m+1) C.M=mn+1i + Z 2 + Z 3 + 广 + ..严12 + /2013 的值为A. 0B. 1C. -1 D .•• • •• • •• • • •• •• • •图①图②图③(第8题图)A. 51 C.76 D. 81厂= -1(即方程X 2 =-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则 仍然成立,于是有z 1 = z, i 2= -1 , z 3 = i 2-i = (-1).1 = -i, i 4 = (z 2)2 = (-1)2 = 1.从而对任意正整数n,我们可得到 严”+1 = j4” j =(严)” j = i,同理可得严”+2 = _1,严”+3 = =1,那么,&下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③ 个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()填空题1. ________________________________________________________________________________ 观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为 _________________________________ (用含"的代数式表(第11题)2. 如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△OAB 连续作旋转变换,依次得到△】、△?、△?、A 4...,则△2013的直角顶点的坐标为 ___________________ .3. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AjBiCiDi 四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B 6C 6D6周长是 ________ •B. 70& 1 图2 图3 D4. _________________________________________________________________________________________________ 直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ________________ 个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是 __________将C1绕点山旋转180。
江苏省2017年数学中考专题讲练《规律探究问题》
2017年数学中考专题《规律探究问题》【题型概述】【题型特征】规律探究性问题的特点是问题的结论不是直接给出,而是通过对问题的观察、分析、归纳、概括、演算、判断等一系列的探究活动,才能得到问题的结论.这类问题,因其独特的规律性和探究性,对分析问题、解决问题的能力具有很高的要求.在近几年全国各地的中考试题中,不仅频频出现规律探究题,而且“花样百出”.常见的类型有:(1)数式规律型;(2)图形变化规律型;(3)坐标变化规律型;(4)数形结合规律型等.【解题策略】解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位里等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论).然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.(1)数式规律型:数式规律涉及数的变化规律和式的变化规律,式变化规律往往包含数的变化规律.数的变化规律问题是按一定的规律排列的数之间的相互关系或大小变化规律的问题,主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式为主要内容;式的变化规律通常给定一些代数式,等式或者不等式,猜想其中蕴含的规律,一般解法是先写出代数式的基本结构,然后通过横比(比较同一等式中的不同数量关系)或纵比(比较不同等式间相同位里的数量关系),找出各部分的特征,写出符合条件的格式.(2)图形变化规律型:图形变化型问题涉及图形排列规律和变化蕴含的规律.主要是观察图形变化过程中的特点,分析其联系和区别,用相应的算式由特殊到一般描述其中的规律.这需要有敏锐的观察能力和计算能力.(3)坐标变化规律型:此类题型主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本类问题的关键.(4)数形结合规律型:这类问题主要考查学生综合运用代数知识和几何知识的能力,解决这类问题要求学生不仅要有很好的“数感”,还要有很强的“图形”意识.【真题精讲】类型一 数式规律型典例 1 (2016 ·山东枣庄)一列数123,,,a a a …满足条件:1111,(2,21n n a a n a -==≥- 且n 为整数),则2016a = .【解析】:123411111,2,1,12121(1)212a a a a =====-==----… 可以发现:数列以1,2,12-循环出现,2 016÷3=672, 所以20161a =-.【全解】-11.(2016·湖北黄石)观察下列等式:第1个等式:11,a == 第2个等式:2a == 第3个等式: 32a ==-第4个等式:42a ==, 按上述规律,回答以下问题:(1)请写出第n 个等式: n a = ;(2)123n a a a a +++⋯+= .【考情小结】此类问题考查的知识点是单项式的知识.找代数式的变化规律,一般是由特殊到一般,得出一般规律.比如典例观察单项式的规律,把一个单项式分解成数字因数和字母因式的积,分别找出单项式的系数和次数的规律也是解决此类问题的关键. 类型二 图形变化规律型典例2 (2016·湖北咸宁)用m 根火柴恰好可拼成如图(1)所示的a 个等边三角形或如图(2)所示的b 个正六边形,则b a = .【解析】分别根据图(1),求出拼成a 个等边三角形用的火柴数量,即m 与a 之间的关系,再根据图(2)找到b 与m 之间的等量关系,最后利用m 相同得出合的值. 观察图形得:由图(1)可知:一个等边三角形有3条边,两个等边三角形有3+2条边,12m a ∴=+,由图2可知:一个正六边形有6条边,两个正六边形有6+5条边,15m b ∴=+,1215a b ∴+=+,25b a ∴=. 故答案为:25 【全解】252. (2015·贵州安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为 (用含n 的式子表示).3. (2015·山东威海)如图,正六边形111111A B C D E F 的边长为2,正六边形222222A B C D E F 的外接圆与正六边形111111A B C D E F 的各边相切,正六边形333333A B C D E F 的外接圆与正六边形222222A B C D E F 的各边相切,…按这样的规律进行下去,101010101010A B C D E F 的边长为( ).A. 92432 C. 9812 4.( 2016·湖北荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2 017个白色纸片,则n 的值为( ).A. 671B. 672C. 673D. 674【考情小结】(1)图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;(2)图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.类型三 坐标变化规律型典例 3 (2016·山东威海)如图,点1A 的坐标为(1,0),2A 在y 轴的正半轴上,且1230A A O ∠=︒,过点2A 作2312A A A A ⊥,垂足为2A ,交x 轴于点3A ;过点3A 作3423A A A A ⊥,垂足为3A ,交y 轴于点4A ;过点4A 作4534A A A A ⊥,垂足为4A ,交x 轴于点5A ;过点5A 作5645A A A A ⊥,垂足为5A ,交y 轴于点6A ;…按此规律进行下去,则点2016A 的纵坐标为 .【解析】123412345(1,0),,,0,0,,,0A A A A A ⎡⎤⎡⎤⎡⎤⎡⎤--⎣⎦⎣⎦⎣⎦⎣⎦Q …, ∴序号除以4整除的话在y 轴的负半轴上,余数是1在x 轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x 轴的负半轴上,20164504÷=Q ,2016A ∴在y 轴的负半轴上,纵坐标为2015(3)-.故答案为2015(3)-.【全解】2015(3)-5. (2015·河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆123,,O O O ,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2 015秒时,点P 的坐标是( ).A. (2 014,0)B. (2 015,-1)C. (2 015,1)D. (2 016,0)6. ( 2015·山东潍坊)如图,已知正方形ABCD ,顶点(1,3),(1,1),(3,1)A B C .规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( ).A.( -2 012,2)B.( -2 012,-2)C.( -2 013,-2 )D.( -2 013,2)【考情小结】此类题型主要考查点的坐标变化规律,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.类型四 数形结合规律型典例 4 (2016·广东茂名)如图,在平面直角坐标系中,将ABO ∆绕点B 顺时针旋转到11A BO ∆的位置,使点A 的对应点1A 落在直线3y x =上,再将11A BO ∆绕点1A 顺时针旋转到112AB O ∆的位置,使点1O 的对应点2O 落在直线3y x =上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是3,则点8A 的横坐标是 .【解析】由题意点2A 的横坐标331)2, 点4A 的横坐标3(31),点6A 的横坐标931)2, 点8A 的横坐标6(31). 故答案为636.【全解】67. (2015·江苏徐州)如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去…,第n 个正方形的边长为 .8. (2015·广西南宁)如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次点A 向左移动3个单位长度到达点1A ,第二次从点1A 向右移动6个单位长度到达点2A ,第三次从点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律移动下去,第n 次移动到达点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .9.(2015·重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图(1)中有2个黑色正方形,图(2)中有5个黑色正方形,图(3)中有8个黑色正方形,图(4)中有11个黑色正方形,…,按此规律,图(10)中黑色正方形的个数是( ).A. 32B. 29C. 28D. 2610. (2015·河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆123,,O O O ,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A. (2 014,0)B.(2 015,-1)C. (2 015,1)D. (2 016,0)11. (2014·四川内江)如图,已知1231,,,,n n A A A A A +⋯是x 轴上的点,且112OAA A == 23A A =…11n n A A +==,分别过点1231,,,,n n A A A A A +⋯作x 轴的垂线交直线2y x =于点1231,,,,n n B B B B B +⋯,连接1212231,,,,,n n n n A B B A B A A B B A ++⋯,依次相交于点123,,,,n P P P P ⋯,111222,,n n n A B P A B P A B P ∆∆∆的面积依次记为123,,,,n S S S S ⋯,则n S 为( ).A.121n n ++B. 31n n -C. 221n n - D. 221n n + 【考情小结】此类题主要考查坐标的变化规律.解决此类问题的关健是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.参考答案=12. 31n +3. D4. B5. B6. A7. 1n -8. 139. B 10. B 11. D【跟踪练习】1. (2016·四川广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()(1,2,3,4n a b n +=…)的展开式的系数规律(按a 的次数由大到小的顺序):请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .2. (2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 .3.(2015·湖北荆州)把所有正奇数从小到大排列,并按如下规律分组: (1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式(,)m A i j =表示正奇数m 是第i 组第j 个数(从左往右数),如7(2,3)A =,则2015A ( ).A.(31,50)B.(32,47)C. (33,46)D.(34,42)4. (2015·山东泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ).A. 135B. 170C. 209D. 2525. (2016·四川达州)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( ).A. 25B. 33C. 34D. 506.( 2016·浙江宁波)下列图案是用长度相同的火柴棒按一规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需 根火柴棒.7. (2016·山东聊城)如图,在平面直角坐标系中,边长为1的正方形111OA B C 的两边在坐标轴上,以它的对角线1OB 为边作正方形122OB B C ,再以正方形122OB B C 的对角线2OB 为边作正方形233OB B C ,以此类推…、则正方形201520162016OB B C 的顶点2016B 的坐标是 .8. (2016·广东梅州)如图,在平面直角坐标系中,将ABO V 绕点A 顺时针旋转到11ABC V 的位置,点B ,O 分别落在点1B ,1C 处,点1B 在x 轴上,再将11ABC V 绕点1B 顺时针旋转到12AB C V 的位置,点2C 在x 轴上,将12AB C V 绕点2C 顺时针旋转到222A B C V 的位置,点2A 在x 轴上,依次进行下去…,若点3(,0)2A ,(0,2)B ,则点2016B 的坐标为 .9.(2016·黑龙江)如图,等边三角形的顶点(1,1)A ,(3,1)B ,规定把等边ABC V 先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2 016次变换后,等边ABC V 的顶点C 的坐标为 .10. (2015·湖南衡阳)如图,112A B A V ,223A B A V ,334A B A V ,…,1n n n A B A +V ,都是等腰直角三角形.其中点1A ,2A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在在直线y x =上.已知11OA =,则2015OA 的长为 .11. (2016·安徽)(1)观察下列图形与等式的关系,并填空:((2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:135(21)n ++++-+…( )(21)531n +-++++=… .12.(2016·重庆)观察下列一组图形,其中图形(1)中共有2颗星,图形(2)中共有6颗星,图形(3)中共有11颗星,图形(4)中共有17颗星,…,按此规律,图形(8)中星星的颗数是( ).A.43B. 45C. 51D. 5313. (2016·重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”,例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到高位数依次排出的一串数字仍是: 1,2,3,2,1,因此12 321是一个“和谐数”,再如22,545,3 883,345 543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x (x ≤≤14,x 为自然数),十位上的数字为y ,求y 与x 的函数解析式.参考答案 1. 4032 2.10213. B4. C5. B6. 507. 1008(2,0)8. (6048,2)9.(1)- 10.2014211.(1) 24 2n (2)21n + 2221n n ++12. C13. (1)四位“和谐数”:1 221,1 331,1 111,6 666等任意一个四位“和谐数”都能被11整数,理由如下:设四位“和谐数”是abcd ,则满足:个位到最高位排列:,,,d c b a最高位到个位排列:,,,a b c d由题意,两组数据相同,则a d =,b c = 则1000100101111abcd a b c d +++= 10001001011a b b a +++= 1001110911011a b a b +==+为正整数. 所以四位“和谐数”abcd 能被11整数.又由于,,,a b c d 的任意性, 故任意四位“和谐数”都可以被11整除.11 (2)设能被11整除的三位“和谐数”为zyx ,则满足: 个位到最高位排列,,x y z最高位到个位排列,,z y x由题意,两组数据相同,则x z = 故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数. 故2y x =(x (x ≤≤14,x 为自然数).。
中考精华题考点33 探索规律型问题
⑴ 1+8=? 1+8+16=? ⑵⑶ 1+8+16+24=? 第2题 ……一、选择题1.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2008次交换位置后,小鼠所在的座号是( ).A .1B .2C .3D .42.【改编】观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A 、2(21)n +B 、2(21)n -C 、2(2)n +D 、2n3.古希腊著名的毕达哥拉斯派1、3、6、10、…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的是( ) A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+314.如图,已知121=A A , 9021=∠A OA ,3021=∠OA A ,以斜边2OA 为直角边作直角三角形,使得3032=∠OA A ,依次以前一个直角三角形的斜边为直角边一直作含o30角的直角三角形,则20112010OA A Rt ∆的最小边长为A .20092 B .20102C .2009)32(D .2010)32(1 2 34…鼠 鼠 鼠猴 兔 兔 猫兔 猫 猫 猴猴 ? ? ? ?1A2A3A 4A 5A6A7A 8A 9A10A11A 12A第4题图O5.已知:直线211n y x n n =-+++(n 为正整数)与两坐标轴围成的三角形面积为n S ,则=++++2011321S S S S ( ▲ )A . 20111005 B.20122011C. 20112010D.402420116.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(▲)A .3B .6C .200623D .10033231003⨯+7. 观察下列图形及所对应的算式,根据你发现的规律计算1+8+16+24+ … + 8n(n 是正整数)的结果为A.()221n + B. 18n + C. 18(1)n +- D.244n n + 8.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:①),(),(b a b a -=△; ②),(),(b a b a --=O ; ③),(),(b a b a -=Ω 按照以上变换有:)2,1())2,1((-=O △那么))4,3((ΩO 等于( ) A .(3,4) B .(3,-4) C .(-3, 4)D .(-3,-4)9.对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于An 、Bn 两点,以n nA B 表示这两点间的距离,则112220112011A B A B A B +++的值是( )第7题图 x 21 输出输入x x +3 x 为偶数 x 为奇数第6题A .20112010B .20102011C .20122011D .20112012二、填空题1.如图,图1是一块边长为1,面积记为S1的正三角形纸板,沿图1的底边剪去一块边长为12的正三角形纸板后得到图2,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图3,4,…,记第n(n≥3) 块纸板的面积为Sn ,则Sn-1-Sn = .2.一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2011个图案: .3.如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,……,四边形PnMnNnNn+1的面积记为Sn ,则Sn=4.对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于An 、Bn 两点, 以n n A B 表示这两点间的距离,则112220092009A B A B A B +++的值是 ▲5.瑞士的一位中学教师巴尔末从光谱数据95,1612,2521,3632,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数 6.(北京四中模拟)一组按规律排列的数: 2,0,4,0,6,0,…,其中第7个数是 , 第n 个数是 (n 为正整数).…1 2 3 4 ……AN 1 N 2 N 3 N 4 N 5 1M 2M 3M 4M P 1 P 2 P 3 P 4……7.如图,将矩形沿图中虚线(其中x y >)剪成①②③④四块图形,用这四块图形恰能拼一个正方形.若 y = 2,则x 的值等于.答案: 选择题 1、A 2、A 3、C 4、C 5、B 6、A 7、A 8、C 9、D 填空题1、【答案】 232、【答案】33121n n ++3、【答案】4、答案: 20092010 5、答案1171216、答案:())1(2111+-++n n1 7。
专题33 探索规律问题-2年中考1年模拟备战中考数学精品系列(解析版)
备战2018中考系列:数学2年中考1年模拟向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程的路线长是:903180π⨯=32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四网值是()字,则这一列数中的第2017个数是()与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到是()90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:AA1,A1A2,A2A3,…,则线段A2016A2107的长3 2OA3=98,…,∴OAn=3()2n OA=2×3()2n,∴OA2016=2×20163()2,A2016A2107的长12×2×20163()2=20163()2,原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P 2017 坐标与P 1点重合,形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):⋅⋅⋅++⋅⋅⋅+++=n 32212121211. ⊥AB 于点C 3,如此无限继续下去,则可将利△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△理可得, =32×23()4, =32×33()4,… 1+…,6是第三个三角形数,…,依此类推,第100个三角形数是 .上,则A n 的坐标是 .得:y=2,∴A 2的坐标为(1,2),同理A 3的坐标为(3,4),…(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 2017的坐标是 .第三次拼成形如图3所示的图案,第四次拼成形如图4所示的图案…按照这样的规律进行下去,第n ×3),第三次拼成形如图3所示的图案共有24块地砖,24=2×(3×4),第四次拼成形如图4所示的图形A4B4C4D4E4F4的面积是.BA4C= ,…按此规律,写出tan∠BAnC= (用含n的代数式表示).心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;…;,∴⊙On 的半径为2n﹣1 CO1,∵⊙O1的半径为1,∴⊙O10的半径长=29,故答案为:29.学科¥网转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.C 3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4.(n≥2,且n为整数)作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线32y x于点B3,…,按照此规律进为(43,43),点B3的坐标为(43,233).边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.•s,s3=612•s,∴sn=212n•s=2211222n⋅⋅=2112n-,故答案为:2112n-.以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依轴,交l 1于点A 2,再过点A 2作A 2A 3⊥l 3交y 轴于点A 3…,则点A 2017坐标为 .20163),0).表示An 、Bn两点间的距离,则S1+S2+……+S2017=_____________.点An 在点Bn的左侧),∴Sn=1n﹣11n+,∴S1+S2+…+S2017111111...22320172018-+-++-=112018-=20172018.故n n n n ++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方b=﹣4时,抛物线的表达式为y=ax 2﹣4x .由题意可知,第n 条抛物线的顶点为A n (﹣n ,2n ),则D n﹣n ﹣k ,2n+2k ),根据2b a -=﹣n ﹣k ,得出a=2()b n k + =2n k -+,即第n+k 条抛物线的表达式为y=2n k -+x 26x ;得b 1=﹣4,b 2=0;数)条抛物线经过点D n ,此时第n+k 条抛物线的顶点坐标是A n+k (﹣n ﹣k ,2n+2k ),∴2b a-=﹣n ﹣k ,∴4×(﹣3n ),解得k=45n ,∵n ,k 为正整数,且n ≤12,∴n 1=5,n 2=10. 知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2016B 2016C 2016D 2016的边长是( )=C1D 1sin30°=12,则B2C2=22cos30B E=33=13()3,同理可得:B3C3=13=23()3,故正方形AnBnCnDn的边长是:菱形的对角线交点D的坐标为()7个白色纸片,则n的值为()l于点B1、B2、…、Bn,将△OA1B1,四边形A1A2B2B1、…、四边形An﹣1AnBnBn﹣1的面积依次记为S1、S2、…、H 6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个中y 与n 之间的关系是( )边三角形的数字规律为:1+2,222+,…,2n n +,∴2n y n =+.故选B .学.科.网 角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为()有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个星,…,按此规律,图形⑧中星星的颗数是()+1(1)(6)2n n-+.令n=8,则a8=2+1(81)(86)2-+=51.故选C.形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最∴E1(3,4),由勾股定理得:A1E1=2234=5,当对角线交点落在x轴正半轴上时,对角线的交点坐标三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规(用含n的代数式表示)10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).﹣7,b…,则b= .,于是她假设:S=2345678133333333++++++++①,然后在①式的两边都乘以3,得:其正确答案是.=20171m-,即S=201711mm--,∴23420161...m m m m m++++++=201711mm--(m≠0且m≠1).2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线B 1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角.…、正方形An BnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2).形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P案中有个涂有阴影的小正方形(用含有n的代数式表示).涂有阴影的小正方形的个数为5×3﹣2=13,…,第n个图案涂有阴影的小正方形的个数为5n﹣(n﹣1)第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故的代数式表示).线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于∠A=90°-7°=83°.返回到点A,此时∠A=__ ___°.代数式表示为.(n+1).故答案为:n(n+1).按此规律,图案⑦需根火柴棒..∴点P 2016(504,﹣504),故答案为:(504,﹣504).案为:23322n n ..,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,=52-,按上述规律,回答以下问题:等式:41 25a=+=52-,∴第n个等式:11nan n=++=1n n+-;案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n ”中有245个“○”,则n= .,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1= .此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…的半径=1483612()225255+-=1225,⊙F的半径=1486416()225255+-=1625,∴S1+S2+S3=22231216()()()52525πππ⨯+⨯+⨯.,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x于A2,B2用含正整数n的代数式表示)含有m,n的代数式表示y,即y= .得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.。
中考数学复习《探索规律问题》经典题型及测试题(含答案)
中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。
中考数学探索规律试题及答案
中考数学专题三 探索型试题(时间:90分 满分:100分) 一、选择题(每题3分,共21分)1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( ).2.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n3.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 …输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是 ( ) A.618 B.638 C.658 D.6784.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )A.25B. 66 C . 91 D. 1205.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2B .4n cm 2C .41-n cm 2D .n )41( cm 26.如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积.然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积.用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是( )A .B .C .D .7.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的(第18A 1A 2 A 3A 4(第1题图) B (1)(2)(3)“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图3-1、图3-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图3-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{1923234=+=+y x y x 类似地,图3-2所示的算筹图我们可以表述为 ( )A .2114327x y x y +=⎧⎨+=⎩,.B .2114322x y x y +=⎧⎨+=⎩,.C .3219423x y x y +=⎧⎨+=⎩,.D .264327x y x y +=⎧⎨+=⎩,.二、填空题(每题4分,共28分)8.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,….根据你发现的规律,第n(n ≥1的整数 个式子是____.9.观察下列各式:11111112,23,34, (334455)+=+=+= 请你将发现的规律用含自然数n(n ≥1)的等式表示出来 .10.如图4,∠AOB=45°,过OA 上到点O 的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4….观察图中的规律,求出第10个黑色梯形的面积S 10= . 11.下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”.12.如图,把一个面积为1的正方形等分成两个面积为21矩形,接着把面积为21的矩形等分成两个面积为41的矩形,再把面积为41的矩形分成两个面积为81的矩形,如此进行下去,是利用图形揭示的规律计算:=+++++++25611281641321161814121 .xy AB MO 1 O 2O 3 132116181412图3-2图3-1F图12-313.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)L 根据这个规律探索可得,第100个点的坐标为____________.14.如图,在直角坐标系中,一直线l经过点M 与x 轴,y 轴分别交于A 、B 两点,且MA =MB ,则△ABO 的内切圆⊙O1的半径1r = ;若⊙O2与⊙O1、l 、y 轴分别相切,⊙O3与⊙O2、l 、y 轴分别相切,…,按此规律,则⊙O2009的半径r 2009= . 二、解答题(共51分)15.(8分).已知△ABC 内接于⊙O ,过点A 作直线EF.(1)如图①,AB 是直径,要使EF 是⊙O 的切线,还要添加的条件是(只需要写出三种情况)① ,或② ,或③ .(2)如图②,AB 为非直径的弦,∠EAB=∠B,试证明E F 是⊙O 的切线.16.(10分)在如图12-1至图12-3中,△ABC 的面积为a .(1)如图12-1, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图12-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图12-2的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图12-3).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).B图12-1图12-2发现像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12-3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.应用 去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图12-4).求这两次扩展的区域(即阴影部分)面积共为多少m 2?17.(10分)已知等边△OAB 的边长为a ,以AB 边上的高OA 1 为边,按逆时针方向作等边△OA 1B 1,A 1B 1与OB 相交于点A 2. (1)求线段OA 2的长;(2)若再以OA 2为边按逆时针方向作等边△OA 2B 2, A 2B 2与OB 1相交于点A 3,按此作法进行下去,得到 △OA 3B 3,△OA 4B 4,┉,△OA n B n ,(如图), 求△OA 6B 6,的周长.18.(10分)、如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点. ⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________;图12-DE AB CF HM图③图②图①BMP P E ED DB C B C A A N M P E D C A ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由.19.(13分)、操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:(1)线段BM 、MN 、NC 之间的关系,并加以证明.(2)若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.中考数学专题三 探索型试题答案 1.B 2.A 3.C 4.C 5.C 6.A 7.A 8.n n na 1)1(+- 9.21)1(21++=++n n n n 10.76 解析:阴影部分的面积=上+下 ,上=4n+1 ,下=4n+3 (n ≥0的整数)当n=9时,上=37,下=39 ∴S 10=37+39=76 11.80.图(2)比图(1)多:2=21 ; 图(3)比图(2)多:22+1=22+2;图(4)比图(3)多:23+21; 图(5)比图(4)多:24+22;图(6)比图(5)多:25+23; 图(7)比图(6)多:26+2412.256255解析:=+++++++256112816413211618141211-2562552561=. 13.(14,8)解析:从两方面考虑:①从每一列坐标个数分析: 第一列:1个;第二列2个;第三列3个;第四列5个;……,第十三列有13个.1至13列共有:91122131=⨯+. ②横坐标是偶数时上升,横坐标是奇数时下降.第100个数横坐标是14,应上升,纵坐标应是第9个数,坐标应为(14,8). 14.131-=r 20082009313-=r 解析:如图13-1 tan ∠MOA=331=, ∴∠MOA=300 ∴∠BAO=300∴OM=AM=2 ∴AB=4,OB=2 ,OA=32 ∴322)3224(1⨯=++r ∴131-=r如图13-2在Rt △O 1O 2M 中, ∠O 1O 2M=300∴O 1O 2=2O 1M ∴)(22121r r r r -=+ ∴1231r r = 同理:2331r r = ∴123)31(r r = … ∴)13()31()31(2008120082009-==r r 15.解析:(1)①∠CAE=∠B,②A B ⊥EF,③∠BAC+∠CAE=900④∠C=∠FAB ⑤∠EAB=∠FAB(2)连结AO,并延长交⊙O 于H ,连结HC,∵AH 是⊙O 的直径,∴∠H+∠HAC=900. ∵∠H=∠B,∠EAC=∠B ,∴∠H=∠CAE∴∠EAC+∠HAC=900,∴HA ⊥EF ∴EF 是⊙O 的切线. 16. 探索(1)a (2)2a理由:∵CD =BC ,AE =CA ,BF =AB∴由(2)得 S △ECD =2a ,S △F AE =2a ,S △DBF =2a ,∴S 3=6a .(3)6a ; 7.(72-7)×10=420(平方米);或⨯⨯+⨯6610610=420(平方米). 18.解:(1)∵△ABC 是等边三角形 ∴AB =BC ,∠ABE =∠BCD =60°∵BE =CD ∴△ABE ≌△BCD ∴∠BAE =∠CBD ∴∠APD =∠ABP +∠BAE =∠ABP +∠CBD =∠ABE =60° (2)90°,108° (3)能.如图,点E 、D 分别是正n 边形ABCM …中以C 点为顶点的相邻两边上的点,且BE =CD ,BD 与AE 交于点P ,则∠APD 的度数为nn ︒-180)2(19、解:BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连结DM 1∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°, ∵∠BDC=1200 BD=DC ∴∠DBC =∠DCB =30°∴∠ABD =∠ACD =90°∴∠DCM=900∵BD =CD △∴Rt △BDM ≌Rt △CDM 1∴∠MDB =∠M 1DC DM =DM 1∴∠MDM 1=(120°-∠MDB )+∠M 1DC =120° 又∵∠MDN =60°∴∠M 1DN =∠MDN =60° ∴△MDN ≌△M 1DN ∴MN =NM 1=NC +CM 1=NC +MB (2) CN -BM =MN证明:如图,在CN 上截取 CM 1=BM ,连结DM 1 ∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°,∵∠BDC=1200BD=DC ∴∠DBC =∠DCB =30° ∴∠DBM =∠DCM 1=90° ∵BD =CD∴Rt △BDM ≌Rt △CDM 1∴∠MDB =∠M 1DC DM =DM 1 ∵∠BDM +∠BDN =60°∴∠CDM 1+∠BDN =60°第26题M 1N MD C B A17∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°∴∠M1DN=∠MDN∵ND=ND∴△MDN≌△M1DN∴MN=NM1=NC-CM1=NC-MB.M1NMD CBA。
2017年中考数学备考专题复习探索规律问题含解析
探索规律问题一、单选题(共7题;共14分)1、(2016•重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A、64B、77C、80D、852、(2016•重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A、43B、45C、51D、533、(2016•邵阳)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A、y=2n+1B、y=2n+nC、y=2n+1+nD、y=2n+n+1 4、(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A、2n+1B、n2﹣1C、n2+2nD、5n﹣25、(2016•荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A、671B、672C、673D、6746、(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A、①②B、①③C、②③D、①②③7、(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A、()6B、()7C、()6D、()7二、填空题(共14题;共15分)8、(2016•宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需________根火柴棒.9、(2016•济宁)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为________.10、(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1, P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为________.11、(2016•内江)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有________个小圆•(用含n的代数式表示)12、(2016•新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为________.13、(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=________14、(2016•丹东)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是________.15、(2016•泉州)找出下列各图形中数的规律,依此,a的值为________.16、(2016•铜仁市)如图是小强用铜币摆放的4个图案,根据摆放图案的规律,试猜想第n个图案需要________个铜币.17、(2016•益阳)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是________枚.18、(2016•徐州)如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.19、(2016•青海)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=________,一般地,用含有m,n的代数式表示y,即y=________.20、(2016•曲靖)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是________.21、(2016•葫芦岛)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y= x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y 轴,分别交直线y=x和y= x于A2, B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为________(用含正整数n 的代数式表示)三、综合题(共4题;共46分)22、(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?23、(2016•台州)【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1, y1),再在直线y=x上确定纵坐标为y1的点(x2, y1),然后再x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x 轴上表示出x 1(如图2所示),请在x 轴上表示x 2 , x 3 , x 4 , 并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示)24、(2016•云南)有一列按一定顺序和规律排列的数: 第一个数是; 第二个数是; 第三个数是;…对任何正整数n ,第n 个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a ,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M 表示,,,…,,这2016个数的和,即,求证:.25、(2016•北京)已知y 是x 的函数,自变量x 的取值范围x >0,下表是y 与x 的几组对应值:y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (2)根据画出的函数图象,写出: ①x=4对应的函数值y 约为________ ②该函数的一条性质:________答案解析部分一、单选题2、【答案】D【考点】探索图形规律【解析】【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.分析:此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.2、【答案】C【考点】探索图形规律【解析】【解答】解:设图形n中星星的颗数是a n(n为自然是),观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,∴a n =2+ .令n=8,则a8=2+ =51.故选C.【分析】设图形n中星星的颗数是a n(n为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“a n =2+ ”,结合该规律即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变化规律“a n =2+ ”.本题属于中档题,难度不大,解决该题型题目时,根据给定条件列出部分数据,根据数据的变化找出变化规律是关键.2、【答案】B【考点】探索数与式的规律【解析】【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.此题考查了数字规律性问题.注意根据题意找到规律y=2n+n是关键.2、【答案】C【考点】探索图形规律【解析】【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.2、【答案】B【考点】探索图形规律【解析】【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.2、【答案】B【考点】实数的运算,定义新运算【解析】【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1= ,所以此选项正确;故选B.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.2、【答案】A【考点】勾股定理【解析】【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2, DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2= S1=2,S3= S2=1,S4= S3= ,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.二、填空题2、【答案】50【考点】坐标与图形变化-平移【解析】【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.2、【答案】【考点】探索数与式的规律【解析】【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.此题主要考查数列的规律探索,把整数统一为分数,观察找出存在的规律是解题的关键.2、【答案】(504,﹣504)【考点】探索图形规律【解析】【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.2、【答案】4+n(n+1)【考点】探索图形规律【解析】【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),【分析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.2、【答案】370【考点】探索数与式的规律【解析】【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.此题考查了数字规律性问题.注意首先求得n与m的值是关键.2、【答案】a2017﹣b2017【考点】多项式乘多项式,平方差公式【解析】【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.2、【答案】-【考点】探索数与式的规律【解析】【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.【分析】此题主要考查了数字变化类,正确得出分子与分母的变化规律是解题关键.根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.2、【答案】226【考点】探索数与式的规律【解析】【解答】解:根据题意得出规律:14+a=15×16,解得:a=226;故答案为:226.【分析】由0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,得出规律,即可得出a的值.本题考查了数字的变化美;根据题意得出规律是解决问题的关键.2、【答案】n(n+1)【考点】数据分析【解析】【解答】解:n=1时,铜币个数=1+1=2;当n=2时,铜币个数=1+2+2=4;当n=3时,铜币个数=1+2+2+3=7;当n=4时,铜币个数=1+2+2+3+4=11;…第n 个图案,铜币个数=1+2+3+4+…+n= n(n+1).故答案为:n(n+1).【分析】找出相邻两个图形铜币的数目的差,从而可发现其中的规律,于是可求得问题的答案.本题主要考查的是图形的变化规律,找出其中的规律是解题的关键.2、【答案】13【考点】探索数与式的规律【解析】【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.【分析】设第n个图形有a n个旗子,罗列出部分a n的值,根据数值的变化找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”,依次规律即可解决问题.本题考查了规律型中得图形的变化类,解题的关键是找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,找出部分图形的棋子数目,根据数的变化找出变化规律是关键.2、【答案】n(n+1)【考点】探索图形规律【解析】【解答】解:设第n个图案中正方形的总个数为a n,观察,发现规律:a1=2,a2=2+4=6,a3=2+4+6=12,…,∴a n =2+4+…+2n= =n(n+1).故答案为:n(n+1).【分析】设第n个图案中正方形的总个数为a n,根据给定图案写出部分a n的值,根据数据的变化找出变换规律“a n=n(n+1)”,由此即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变换规律“a n=n(n+1)”.本题属于基础题,难度不大,根据给定图案写出部分图案中正方形的个数,根据数据的变化找出变化规律是关键.2、【答案】63;m(n+1)【考点】探索数与式的规律【解析】【解答】解:观察,发现规律:3=1×(2+1),15=3×(4+1),35=5×(6+1),∴x=7×(8+1)=63,y=m(n+1).故答案为:63;m(n+1).【分析】观察给定图形,发现右下的数字=右上数字×(左下数字+1),依此规律即可得出结论.本题考查了规律型中的图形的变化类以及数字的变化类,解题的关键是找出变换规律“右下的数字=右上数字×(左下数字+1)”.本题属于基础题,难度不大,解决该题型题目时,根据图形中数字的变化找出变化规律是关键.2、【答案】77【考点】等腰三角形的性质,坐标与图形变化-旋转【解析】【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,故答案为:77.【分析】根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B 为参照点,第15次的坐标减去3即可的此时点C的横坐标.本题考查坐标与图形变化﹣旋转,等腰三角形的性质,解题的关键是发现其中的规律,每旋转三次为一个循环.2、【答案】【考点】等腰直角三角形【解析】【解答】解:∵点A1(2,2),A1B1∥y轴交直线y= x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积= ×12= ;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y= x于点B2,∴B2(3,),∴A2B2=3﹣= ,即△A2B2C2面积= ×()2= ;以此类推,A3B3= ,即△A3B3C3面积= ×()2= ;A4B4= ,即△A4B4C4面积= ×()2= ;…∴A n B n=()n﹣1,即△A n B n C n的面积= ×[()n﹣1]2= .故答案为:【分析】先根据点A1的坐标以及A1B1∥y轴,求得B1的坐标,进而得到A1B1的长以及△A1B1C1面积,再根据A2的坐标以及A2B2∥y轴,求得B2的坐标,进而得到A2B2的长以及△A2B2C2面积,最后根据根据变换规律,求得A n B n的长,进而得出△A n B n C n的面积即可.本题主要考查了一次函数图象上点的坐标特征以及等腰直角三角形的性质,解决问题的关键是通过计算找出变换规律,根据A n B n的长,求得△A n B n C n的面积.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、综合题2、【答案】(1)解:分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y= ,把(3,4)代入得:m=3×4=12,∴y= ;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=(2)解:能;理由如下:令y= =1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L【考点】一次函数的应用【解析】【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y= ,把(3,4)代入求出m的值即可;(2)令y= =1,得出x=12<15,即可得出结论.本题考查了方程式的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.2、【答案】(1)解:若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大(2)解:当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1= 时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1= 时,随着运算次数n的增加,x n保持不变(3)解:①在数轴上表示的x1, x2, x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m= .【考点】一次函数的性质【解析】【分析】(1)分x1<4,x1=4,x1>4三种情形解答即可.(2)分x1>,x1<,x1= 三种情形解答即可.(3)①如图2中,画出图形,根据图象即可解决问题,x n的值越来越接近两直线交点的横坐标.②根据前面的探究即可解决问题.本题考查一次函数综合题以及性质,解题的关键是学会从一般到特殊探究规律,学会利用规律解决问题,属于中考常考题型.2、【答案】(1)解:由题意知第5个数a= = ﹣(2)解:∵第n个数为,第(n+1)个数为,∴ + = (+ )= ×= ×= ,即第n个数与第(n+1)个数的和等于(3)解:∵1﹣= <=1,= <<=1﹣,﹣= <<= ﹣,…﹣= <<= ﹣,﹣= <<= ﹣,∴1﹣<+ + +…+ + <2﹣,即<+ + +…+ + <,∴【考点】分式的混合运算,探索数与式的规律【解析】【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣= <<= ﹣,展开后再全部相加可得结论.本题主要考查分式的混合运算及数字的变化规律,根据已知规律= ﹣得到﹣= <<= ﹣是解题的关键.2、【答案】(1)解:如图,(2)2;该函数有最大值【考点】函数的概念【解析】【解答】解:①x=4对应的函数值y约为2;②该函数有最大值.故答案为2,该函数有最大值.【分析】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.。
【免费下载】2年中考1年模拟共37页全国各地中考数学试题分类汇编 规律探索型问题
2. (2013 广东东莞,10,4 分)如图(1) ,将一个正六边形各边延长,构成一个正六角星
形 AFBDCE,它的面积为 1,取△ABC 和△DEF 各边中点,连接成正六角星形 A1F1B1D1C1E1,
如图(2)中阴影部分;取△A1B1C1 和△1D1E1F1 各边中点,连接成正六角星形 A2F2B2D2C2E 2F
A130 (填“ ”或“ ”或“=”)
1. (2013 山东济宁,18,6 分)观察下面的变形规律:
3.
Sn =1
1
1 2
=1- ;
解答下面的问题:
1 1 11 1 11
.
= - ; = - ;……
2 23 2 3 34 3 4
(1)若 n 为正整数,请你猜想
(2)证明你猜想的结论;
仔细观察,第 n 个图形 有
5. (2013 湖南益阳,16,8 分)观察下列算式:
① 1 × 3 - 22 = 3 - 4 = -1
② 2 × 4 - 32 = 8 - 9 = -1
第 1③个图3 形× 5 - 第42 =2 1个5 图- 形16 = -第1 3 个图形
④
第 1 …个图…形
(1)请你按以上规律写出第 4 个算式;
一 选择题
中考数学试卷分类汇编 规律探索型问题
1. (2013 浙江省,10,3 分)如图,下面是按照一定规律画出的“数形图”,经观察可以
发现:图 A2 比图 A1 多出 2 个“树枝”, 图 A3 比图 A2 多出 4 个“树枝”, 图 A4 比图 A3 多 出 8 个“树枝”,……,照此规律,图 A6 比图 A2 多出“树枝”( )
(3)实践应用:
=(
=
(完整版)2017中考复习题型一规律探索题(针对演练)
目录题型一规律探索题 (2)类型一探索图形累加规律 (2)类型二探索图形循环规律 (11)拓展类型数式规律 (14)题型一规律探索题类型一探索图形累加规律针对演练1。
(2016荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为 ( )第1题图A。
34 B. 37 C. 42 D。
462。
(2016重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为 ( )第2题图A. 33 B。
32 C。
31 D. 303。
(2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是()第3题图A.32B. 29C. 28 D。
264。
(2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()第4题图A. 22 B。
24 C. 26 D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为()第5题图A。
18 B. 19 C。
20 D. 216. (2016天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○"的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n=()第6题图A. 10 B。
例析中考数学中的规律探索性试题.docx
例析中考数学中的规律探索性试题浙江袁亚平《新课程标准》指出,数学学习不仅包括数学的一些现成结果,还要包括这些结果的形成过程.规律探究型问题,正是新课程理念下培养学生观察、实验、操作、归纳、猜想,发展学生的直觉思维能力和合情推理能力的好材料,它不仅可以考查学生发现问题、自主探究、解决问题等综合能力,暴露学生在解题过程中的思维品质;还能反馈学生对数学思想方法的掌握情况,较直观的反映出学生的数学素养,体现了素质教育的要求.因此,规律探索性问题成了近几年中考数学试题的热点,本文例举2005年中考数学中的规律探究型试题加以归类简析,供参考. 一、数式的规律探索例1.瑞士中学教师巴尔末成功地从光谱数据—......中得到巴尔末公式,从 5 12 21 32而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.简析:本题以光谱数据为背景,向学生渗透了光谱理论的知识,体现了数学试题的教育功能.解题的关键是从特殊数据中探求这一系列分数的变化规律,经观察分子都是完全平方数, 第n项的分子是(〃 +2)二然后比较分母与分子的关系,可以发现分母比分子小4,所以光谱数据可表示为:......由此可以推断:32 -4 42 -4 52 -4 62 -4第7个数是92 _ 8192-4-77 .例2.有若干个数,依次记为若心-?,从第2个数起,每个数都等于1与它前面的那个数的差的倒数,则缶0()5 =.1 2简析:根据题目对。
〃的定义,可求得角=—=一,向十; 3-J__31 ----3a4 =-^—=--, ……,通过观察、归纳、猜想、合情推理可知a1,a2,a3,---,a n中3个循1— 3 2环一次,因此可得a2005 =-|.本题考查了倒数的概念、实数的运算等基础知识和对数学语言的阅读理解能力、推理能力等.r2I2 1例3.如果记y=^-^ = f (x),并且/■⑴表示当x = l时y的值,即=简析:本题把y =三成记作f(%)-向学生渗透了高中数学中的函数表达方式.解题时在 1 + X 理解/'(X )的基础上,通过对特殊情况下f(x)的计算、观察、归纳、猜想可得f(k) + f= l(k 表示正整 + + + - + =考查了学生对整体思想的运用. 练习:1 3 7 13 211. 一组按规律排列的数:j ,j ,£,衰,亲,•… 请你推断第9个数是.2, 已知:1+2+1=4=22, 1+2+3+2+1=9=32, 1+2+3+4+3+2+1 = 16=42,那么 1+2+3+...+(〃 — 1) + 〃 + (〃 +1) +...+3+2+1 =.(用含 n 的代数式表示) 二、数列的规律探索 例 4.下面是一个有规律排列的数表:第1列第2列第3列第4列第5列 第〃列第1行X1 1. 1 1. ],2 *3 *4 , 5, 1…, —» 第2行 22 2 2 21 *2 '3 ,4 *5 * …,2, n第3行 3. -1 A A ]' 2'T*T**5 ,3 n上面数表中第9行,第7列的数是.简析:根据数表中反映的规律:每个数的分子与行数相同,分母与列数相同,故第9行,第 97列的数是7例4.如图1是与杨辉三角有类似性质的三角形数垒,a 、b 、c 、d 是相邻两行的前四个数 (如图1所示).那么当a = 8时,c -. d = .表示当x=—时y 的值,2If ⑴+f ⑵+f + /(3)+ /(结5+ ••• + /(») + /2 23 4 347 7 4511 14 11 5a b(ffil )简析:本题是以我国古代的杨辉三角为背景的规律探索型试题,考查了学生对类比方法的运用.解题时,根据数列的排列规律,类比杨辉三角中数的变化规律,经观察、归纳、推理知每行的第一个数及最后一个数与行数相同,而其他数分别是上面两个数的和(如图2),因此,当a = 8时,则b =29,所以,c=9, d =37.练习:已知一列数:1,—2, 3,—4, 5, —6,7,...将这列数排成下列形式第1行1第2行-23第3行-45-6第4行7-89-10第5行11-1213-1415按照上述规律排下去,那么第10行从左边数第5个数等于4.观察下列数表:1234.. 第一行2345.. 第二行3456...第三行4567....第四行第第第第一二三四列列列列根据表中所反映的规律,猜想第6行与第6列的交叉点上的数应为,第n行(n 为正整数)与第n列的交叉点上的数应为.二、图案的规律探索例5.用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示)OOO) OOOOOOOOOOOOOOOO(第轮)OOOOOOOOOOOOOOOOOOOOOOOOO(第n个)1简析:本题用黑白棋子摆设如正方形图案,情境自然亲切,一定程度上激发了学生的解题欲望.解题的关键是通过对特殊情形的观察、归纳、推理得:第n个图案中,总的棋子为(〃+2)2枚,黑棋子为疽枚,故第n个图案需要用白色棋子为(〃 + 2)2一疽=4〃 + 4枚.例6.观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形, 第3个图中共有14个正方形,按照这种规律下去的第5个图形共有个正方形.笫1个图第2个匡耘不园简析:本题是以数正方形个数为载体的计数问题,解题的关键是找到正方形个数的变化规律, 计数时做到不重复又不能遗漏,考查了学生分类讨论的数学思想.第1个图中1个正方形;第2个图中有1个大正方形和4个小正方形,即5 = 1+4;第3个图中有1个大正方形和4个由4个小正方形组成的正方形和9个小正方形,即14=1+4+9,由此得出第n个图中正方形的个数为f+22+32 + ... +疽,故第5个图形共有55个.练习:5.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,......,则在第〃.个图形中,互不重叠的三角形共有个(用含〃.的代数式表示).四、几何图形性质的规律探索例7. 如图,△ABC 中,ZACB = 90°, ZB = 30°, AC=1,过点 C 作CD l± AB于过点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2017中考系列:数学2年中考1年模拟第七篇专题复习篇☞解读考点知识点名师点晴规律类型1.数字猜想型在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,注意对应思想和数形结合.4.数形结合猜想型首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系.5.动态规律型要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.☞考点归纳归纳1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.【例1】(2016北京市)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.归纳2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.【例2】(2016云南省)有一列按一定顺序和规律排列的数:第一个数是112⨯;第二个数是123⨯;第三个数是134⨯;…对任何正整数n,第n个数与第(n+1)个数的和等于2 (2)n n+.(1)经过探究,我们发现:111122=-⨯,1112323=-⨯,1113434=-⨯;设这列数的第5个数为a,那么1156a>-,1156a=-,1156a<-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n 个数与第(n +1)个数的和等于2(2)n n +”; (3)设M 表示211,212,213,…,212016,这2016个数的和,即22221111...1232016M =++++,求证:2016403120172016M <<.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.【例3】(2016四川省达州市)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.【例4】(2016广东省梅州市)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A(32,0),B (0,2),则点B 2016的坐标为 .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.【例5】(2016广西梧州市)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.☞2年中考【2016年题组】一、选择题1.(2016四川省内江市)一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2016B2016C2016D2016的边长是()A .20151()2B .20161()2 C .20163()3 D .20153()32.(2016四川省凉山州)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角3.(2016山东省临沂市)用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .2n +1B .21n -C .22n n + D .5n ﹣24.(2016山东省日照市)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=223⨯,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28; 36=2223⨯,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420B.434C.450D.4655.(2016河南省)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为())A.(1,﹣1)B.(﹣1,﹣1)C.(2,0)D.(0,26.(2016湖北省荆州市)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671B.672C.673D.6747.(2016福建省南平市)如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n﹣1A n B n B n的面积依次记为S1、S2、…、S n,则S n=()﹣1A.n2B.2n+1C.2n D.2n﹣18.(2016贵州省六盘水市)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A .702nB .1702n +C .1702n -D .2702n + 9.(2016湖南省娄底市)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( )A .C n H 2n +2B .C n H 2n C .C n H 2n ﹣2D .C n H n +310.(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2n y n =+C .12n y n +=+D .21n y n =++11.(2016青海省)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .61()2 B .71()2 C .62(2 D .72()212.(2016重庆市)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8513.(2016重庆市)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43B.45C.51D.5314.(2016黑龙江省牡丹江市)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71B.78C.85D.8915.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为()A .(4,0)B .(5,0)C .(4,0)或(﹣4,0)D .(5,0)或(﹣5,0)二、填空题16.(2016云南省曲靖市)等腰三角形ABC 在平面直角坐标系中的位置如图所示,已知点A (﹣6,0),点B 在原点,CA =CB =5,把等腰三角形ABC 沿x 轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C 的横坐标是 .17.(2016四川省内江市)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有 个小圆.(用含n 的代数式表示)18.(2016四川省资阳市)设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2﹣n ,若这列数为﹣1,3,﹣2,a ,﹣7,b …,则b = .19.(2016山东省东营市)在求2345678133333333++++++++的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =2345678133333333++++++++①,然后在①式的两边都乘以3,得:3S =23456789333333333++++++++②,②﹣①得,3S ﹣S =931-,即2S =931-,所以S =9312-.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出23420161...m m m m m++++++的值?如能求出,其正确答案是.20.(2016山东省德州市)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.21.(2016山东省枣庄市)一列数a1,a2,a3,…满足条件:a1=12,a n=111na--(n≥2,且n为整数),则a2016= .22.(2016山东省泰安市)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为.23.(2016山东省济宁市)按一定规律排列的一列数:12,1,1,□,311,1113,1317,…请你仔细观察,按照此规律方框内的数字应为.24.(2016山东省滨州市)观察下列式子:1×3+1=22;7×9+1=28;26;25×27+1=280;79×81+1=2…可猜想第2016个式子为.25.(2016山东省潍坊市)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.26.(2016山东省聊城市)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.27.(2016山东省菏泽市)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .28.(2016山西省)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).29.(2016新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为 .30.(2016广西南宁市)观察下列等式:在上述数字宝塔中,从上往下数,2016在第 层. 31.(2016广西百色市)观察下列各式的规律:22()()a b a b a b -+=- 2233()()a b a ab b a b -++=- 322344()()a b a a b ab b a b -+++=-…可得到2016201520152016()(...)a b aa b ab b -++++= .32.(2016广西贵港市)已知a 1=1tt+,a 2=111a -,a 3=211a -,…,a n +1=11n a -(n 为正整数,且t ≠0,1),则a2016= (用含有t的代数式表示).33.(2016广西钦州市)如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是.34.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.[来源:学35.(2016江苏省徐州市)如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为.36.(2016浙江省宁波市)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.37.(2016湖北省咸宁市)用m根火柴恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则ba=_______________.39.(2016贵州省安顺市)观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)40.(2016贵州省铜仁市)如图是小强用铜币摆放的4个图案,根据摆放图案的规律,试猜想第n个图案需要个铜币.41.(2016湖北省鄂州市)如图,直线l:43y x=-,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为.42.(2016湖北省黄石市)观察下列等式:第1个等式:11 12a=+=21-,第2个等式:2a=123+=32-,第3个等式:31 32a=+=23-,第4个等式:4125a=+=52-,按上述规律,回答以下问题:(1)请写出第n个等式:na= ;(2)123...na a a a++++= .43.(2016湖南省益阳市)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.44.(2016湖南省衡阳市)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.45.(2016甘肃省天水市)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n= .46.(2016甘肃省白银市)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n +1=.47.(2016福建省泉州市)找出下列各图形中数的规律,依此,a 的值为 .48.(2016福建省龙岩市)如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S 1,S 2,S 3,…,S 10,则S 1+S 2+S 3+…+S 10= .49.(2016贵州省黔西南州)阅读材料并解决问题: 求2320141222 (2)+++++的值,令S =2320141222 (2)+++++等式两边同时乘以2,则2S =2320142015222...22+++++两式相减:得2S ﹣S =201521-所以,S =22015﹣1依据以上计算方法,计算2320151333 (3)+++++= .50.(2016辽宁省丹东市)观察下列数据:﹣2,52,103-,174,265-,…,它们是按一定规律排列的,依照此规律,第11个数据是 .51.(2016辽宁省抚顺市)如图,△A 1A 2A 3,△A 4A 5A 5,△A 7A 8A 9,…,△A 3n ﹣2A 3n ﹣1A 3n (n 为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n ,顶点A 3,A 6,A 9,…,A 3n 均在y 轴上,点O 是所有等边三角形的中心,则点A 2016的坐标为 .52.(2016辽宁省葫芦岛市)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线12y x=于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x=于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)53.(2016青海省)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x= ,一般地,用含有m,n的代数式表示y,即y= .54.(2016黑龙江省大庆市)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.55.(2016黑龙江省绥化市)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= .56.(2016黑龙江省龙东地区)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x 轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.三、解答题57.(2016安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .58.(2016江苏省无锡市)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A B上,A2、A3…、A n与B2、B3、…B n A1C1D1B1、A2C2D2B2、…、A n B nC nD n,OEFG围成,其中A1、G、B1在22分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF 于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E 间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n.(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【2015年题组】1.(2015绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A.14 B.15 C.16 D.172.(2015十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222B.280C.286D.2923.(2015荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)4.(2015包头)观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.62635.(2015重庆市)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.306.(2015泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135B.170C.209D.2527.(2015重庆市)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A .32B .29C .28D .268.(2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )A .160B .161C .162D .1639.(2015贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是( )A .0B .3C .4D .810.(2015宜宾)如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为( )A .231πB .210πC .190πD .171π11.(2015鄂州)在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( ) A .201421)( B .201521)( C .201533)( D .201433)(12.(2015庆阳)在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n +1B 2n +1(n 是正整数)的顶点A 2n +1的坐标是( )A .(4n ﹣1,3)B .(2n ﹣1,3)C .(4n +1,3)D .(2n +1,3)13.(2015宁德)如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y x =上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3…都是等腰直角三角形,且OA 1=1,则点B 2015的坐标是( )A .(20142,20142)B .(20152,20152)C .(20142,20152)D .(20152,20142)14.(2015河南省)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,﹣1)C .(2015,1)D .(2016,0)15.(2015张家界)任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是( )A .46B .45C .44D .4316.(2015邵阳)如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .2015πB .3019.5πC .3018πD .3024π17.(2015威海)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .92432B 813C .9812 D 813 18.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .6619.(2015宁波)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为( ) A .201521B .201421C .2015211- D .2014212-20.(2015常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 (请用文字语言表达).21.(2015淮安)将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a +b = .22.(2015雅安)若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.(2015桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.(2015梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.(2015百色)观察下列砌钢管的横截面图:则第n 个图的钢管数是 (用含n 的式子表示)26.(2015北海)如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则当n =2015时,S 1+S 2+S 3+…+S n ﹣1= .27.(2015南宁)如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n 次移动到点A n ,如果点A n 与原点的距离不小于20,那么n 的最小值是 .28.(2015常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 . 29.(2015株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.31.(2015南平)定义:底与腰的比是512-的等腰三角形叫做黄金等腰三角形. 如图,已知△ABC 中,AB =BC ,∠C =36°,BA 1平分∠ABC 交AC 于A 1.(1)2AB =AA 1•A C ;(2)探究:△ABC 是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC =1)(3)应用:已知AC =a ,作A 1B 1∥AB 交BC 于B 1,B 1A 2平分∠A 1B 1C 交AC 于A 2,作A 2B 2∥AB 交B 2,B 2A 3平分∠A 2B 2C 交AC 于A 3,作A 3B 3∥AB 交BC 于B 3,…,依此规律操作下去,用含a ,n 的代数式表示A n ﹣1A n .(n 为大于1的整数,直接回答,不必说明理由)32.(2015六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:请在答题卡上写出第六层各个图形的几何点数,并归纳出第n 层各个图形的几何点数.33.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.☞1年模拟一、选择题1.(2016届安徽省“合肥十校”联考)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a 1,第二个三角数记为a 2…,第n 个三角数记为a n ,则a n +a n +1=( )A .2n n +B .21n n ++C .22n n +D .221n n ++2.(2016广东省深圳市盐田区中考二模)如图,经过点A 1(1,0)作x 轴的垂线与直线l :3y x =相交于点B 1,以O 为圆心,OB 1为半径画弧与x 轴相交于点A 2;经过点A 2作x 轴的垂线与直线l 相交于点B 2,以O 为圆心、OB 2为半径画弧与x 轴相交于点A 3;…依此类推,点A 5的坐标是( )A .(8,0)B .(12,0)C .(16,0)D .(32,0)二、填空题3.(2016北京市延庆县中考一模)下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,第二项的系数是 ,()na b +的展开式共有 项,各项的系数和是 .4.(2016广东省梅州市中考冲刺)如图,观察图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果是.5.(2016广东省汕头市濠江区中考一模)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作第1个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第2个正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2016个正方形的面积是 .。