概率论考前复习
概率论与数理统计考研复习资料
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
考研数学概率论复习重要知识点
考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。
而随机事件是指在一次试验中,不能事先确定出现的结果。
概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。
同时,P(Ω) = 1,其中Ω是样本空间。
二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。
三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。
条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。
四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。
大学 概率复习题
第一章 概率论的基本概念 1. 若事件B A ,满足21)|(,31)|(,41)(===B A P A B P A P ,则)(B A P = .2. 若事件B A ,满足7.0)(,4.0)(==B A P A P ,且5.0)|(=B A P ,则)|(A B P = .3. 设有两个相互独立事件A 与B 发生的概率分别为1p 和2p ,则两个事件恰好有一个发生的概率为4.()0.3P A =,()0.5P B =,若A 与B 相互独立,则()P AB = _.5.设B A ,为两个互不相容的事件,且()()0,0>>B P A P ,则 正确. A . ()1=AB P ; B . ()0=B A P ; C . B A =; D . Φ=-B A .6. 设有10件产品,其中有3件次品,从中任取3件,则3件中有次品的概率为( ) A.1201 B.247 C.2417 D.40217、盒中放有红、白两种球各若干个,从中任取3个球,设事件A=“3个中至少有1个白球”,事件B=“3个中恰好有一个白球”,则事件B -A =A .“至少2个白球”B .“恰好2个白球”C .“至少3个白球”D .“无白球”8. A ,B 为两个事件,若B A ⊂,则下列关系式正确的是 . A . )()(B P A P >; B . ()()P A P B ≤; C . 1)()(=+B P A P ; D . ()()P B P A >.9. 设甲袋中装有n只白球,m只红球,乙袋中装有N只白球,M只红球,今从甲袋中任取一个球放入乙袋中,再从乙袋中任意取出一只球.求:(1)从乙袋中取到白球的概率是多少?(2)若从乙袋中取到的是白球,则先前从甲袋中取到白球的概率是多少?10. 发报台分别以概率0.6和0.4发出信号“0”和“1”.由于通讯系统受到干扰,当发出信号“0”时,收报台未必收到信号“0”,而是以概率0.8和0.2收到信号“0”和“1”;同样,当发出信号“1”时,收报台分别以概率0.9和0.1收到信号“1”和“0”.求:(1)收报台收到“0”的概率;(2)当收报台收到信号“0”的时候,发报台确是发出信号“0”的概率.11. 某射击小组有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。
概率论与数理统计复习要点
第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
概率论复习重点(本人归纳,可能有遗漏,酌情参考)
概率论复习要点(个人归纳)第一章:全概率公式P19例五独立事件:P22页例3第二章:几个重要的分布,二项分布,泊松分布,均与分布,正态分布(第四章的重点)。
P34例62.4分布函数,具体可以参考P43 例2和P44例三2.5二维随机变量,要求掌握二维随机变量(X,Y)的分布律的画法以及边缘分布律的画法另外2.5中P48定义二以及P48例三都是需要掌握的内容,应该会考到2.6边缘分布P51的例一例二以及上面的公式都可以看看,2.9随机变量及其分布,需要掌握Y=g(x)的求法,几个例题都可以看看,例三和例四比较经典第三章:3.1数学期望:P76页的公式,离散型和连续型随机变量的数学期望的求法以及P78页的定理,当然,P80的几个法则也要注意,p81例10不错。
几个例题都可以看看3.2与.33中方差和协方差的算法P87的例1很经典,P89的定理二可以看一看。
3.4和3.5略,并没有什么关于这两个小节的看法(PS:这两个小节上课我也没认真听)补充:几种特殊分布的数学期望和方差需要记一下,虽然并不一定会考,但是,万一呢?第四章:正态分布4.1正态分布的标准式要牢记,以及4.1.5的小公式要记住P100的引理P101的例1虽然很简单,但是很常用,很值得参考P103的3o法可以看看,虽然并没有什么卵用4.2 P105定理一记一下,以及P105的定理2和定理2的系也需要记一下4.3可以看一下中心极限定理,P109例1很值得一看第五章:5.3前面的部分都是很简单的描述统计,就不介绍了,但是可以看一看5.3记一下公式就好,知道k阶原点矩和k阶中心矩的概念,以及S^2,,和均值的计算就好。
5.4的P133-P135douyao看一看然后就是几个分布X^2分布,T分布。
5.4的P138页的定理1和定理2需要着重看一看第六章:6.1.1矩估计法的使用,具体可以参考P147的例2,P147的例3也不错,不过不是很常用,P147的例4页很不错,很值得参考6.1.2最大似然估计法:要求掌握L(P)的使用以及会用ln(L(p))求导并求得P的最大似然估计量和估计值,P149-P150de例5,6,7都可以参考,例五较为经典,6.2稍微看看掌握就好6.3-6.4-6.5参数的区间估计:我们只要求掌握单个总体的均值u的置信水平为1-a置信区间以及单个总体的方差s^2的的置信区间P159例1可作为参考,P158和P162的公式必须牢记,因为我并不知道考试到底给不给这些公式6.6的单侧置信上下限可以看看,与单侧置信区间的差别很小,P166的那张表一定要看,单个正太总体所对应的几个求u和s的置信区间和单侧置信上下限都要牢记第七章:假设检验:7.2 P177-P178的两个表一定要记住,可以看看P178的例题加深印象,不过这种东西还是做题更能加深理解7.3 P183下方一直到P185页都很值得一看,当然,重点还是185的那张表然后,貌似就并没有什么其它的考点了。
概率论与数理统计复习资料
概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。
概率论与数理统计复习资料要点总结
《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用) 第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率复习知识点总结
概率复习知识点总结1. 随机事件和概率随机事件是指在一定条件下,可能发生也可能不发生的事件。
概率是描述随机事件出现可能性的一种数学工具,通常用P(A)来表示事件A发生的概率。
概率的取值范围是0≤P(A)≤1,其中P(A)=0表示事件A不可能发生,P(A)=1表示事件A必然发生。
2. 概率的性质(1)互斥事件的概率如果事件A和事件B是互斥事件(即事件A和事件B不可能同时发生),则有P(A∪B)=P(A)+P(B)。
(2)对立事件的概率如果事件A和事件B是对立事件(即事件A和事件B不能同时发生,且二者的并集为全集),则有P(A)+P(B)=1。
3. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,通常用P(A|B)表示。
条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。
4. 事件的独立性如果事件A和事件B的发生不会相互影响,即P(A|B)=P(A),P(B|A)=P(B),则称事件A 和事件B是相互独立的。
独立事件的概率计算公式为P(A∩B)=P(A)×P(B)。
5. 随机变量和概率分布随机变量是对随机事件结果的数值描述,分为离散随机变量和连续随机变量两种。
概率分布是描述随机变量概率规律的函数,可以分为离散概率分布和连续概率分布。
6. 期望和方差随机变量的期望是对随机变量取值的加权平均,通常用E(X)表示。
随机变量的方差是对随机变量取值与其期望的离差的平方和的平均值,通常用Var(X)表示。
7. 大数定律和中心极限定理大数定律指的是随着样本数量的增加,样本均值会趋向于总体均值。
中心极限定理是指当样本容量足够大时,样本均值的分布将近似服从正态分布。
8. 总结概率学是一门重要的数学学科,具有广泛的应用价值。
通过掌握概率论的基本理论和方法,可以帮助我们更好地理解和应用概率学知识,解决实际问题。
希望大家通过本文的介绍,加深对概率学知识点的理解,为今后的学习和工作打下坚实的基础。
34:概率高三复习数学知识点总结(全)
概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。
概率论复习
例 一个大学毕业生给四家单位各发出一份 求职信,假定这些单位彼此独立,通知他去 面试的概率分别是 1/2,1/3,1/4,1/5。问这 个学生至少有一次面试机会的概率是多大?
解. 分析:考虑对立事件,一次面试机会都 没有的概率是
1/2×2/3×3/4×4/5 = 1/5,
所以至少有一次面试的概率是 4/5。
x 2, 3,
1,
x 3.
0, x 1,
1 , 1 x 2,
4 3
,
2 x 3,
4
1, x 3.
由 F(x) P{X x},
得 P{X 1} F(1) 1 ,
2
24
P{3 X 5} F(5) F(3) 3 1 1 ,
2
2 2 2 44 2
P{2 X 3} F(3) F(2) P{X 2} 1 3 1 3. 42 4
0
0
第三章 多维随机变量及其分布
PX Y 1
y
f x, ydxdy
x y1 1
12 dx e 3x4 ydy
0 1 x
12 dx e 3x4 ydy
1
0
x+y=1
1
O
4e 3 3e 4
1
x
边缘分布函数
定义 设 F ( x, y) 为随机变量( X ,Y ) 的分布函数, 则 F( x, y) P{X x,Y y} . 令 y , 称 P{X x} P{X x,Y } F( x,) 为随机变量( X ,Y ) 关于X的边缘分布函数. 记为 FX ( x) F ( x,). 同理令 x ,
FY ( y) F (, y) P{ X ,Y y} P{Y y}
为随机变量 ( X,Y )关于Y 的边缘分布函数.
大学概率论总复习-
为(,), 函数值在区间[0, 1]上的实值函数
F ( x ) P ( X x ) ( x )
为随机变量X的分布函数.
2021/5/9
24
集合论
样本空间Ω
样本点ωi
随机试验
试验结果
数量化
对应
函数论 实数集 (,) 实数 x(,)
若干样本点构成事件A
随机变量X表示事件A
事件A的概率P(A)
可以确定试验的所有可能结果 (3) 每次试验前不能准确预言试验后会出现哪种结果.
2021/5/9
3
4. 随机事件
在随机试验中,可能出现也可能不出现,而在大 量的重复试验中具有某种规律性的事件叫做随机 事件,简称事件.
5. 样本点
随机试验中的每一个可能出现的试验结果称为
这个试验的一个样本点,记作 i(i1,.2, )
2021/5/9
15
性质6 加法定理的推广形式
P(ABC) P(A)P(B)P(C)
P(AB)P(BC)P(AC)P(ABC)
A
B
C
2021/5/9
16
第三章 条件概率与事件的独立性
第一节 条件概率 第二节 全概率公式 第三节 贝叶斯公式 第四节 事件的独立性 第五节 伯努利试验和二项概率 第六节 主观概率
2021/5/9
17
第三章 基本知识点
1. 条件概率的定义
设A,B为同一随机试验中的两个随机事件 , 且 P(A) > 0, 则称已知A发生条件下B发生 的概率为B的条件概率,记为
P(B| A) P(AB)
2. 乘法定理
P(A)
P (A B ) P (A )P (B |A ) P(B| A) P(AB)
概率论复习题
概率论简明教程 一.选择题1.设事件A 表示“甲种产品畅销,乙种产品滞销”,其对立事件为 D .(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C ) “甲种产品滞销”; (D ) “甲种产品滞销或乙种产品畅销” .2.设A B ⊂,则下面正确的等式是 B .(A ))(1)(A P AB P -=; (B ))()()(A P B P A B P -=-; (C ))()|(B P A B P =; (D ))()|(A P B A P =3.设随机变量X 的分布律为 5,4,3,2,1,15/)(===k k k X P 。
则)5.25.0(<<X P 的值是 B .(A ) 6.0 ; (B ) 2.0 ;C ) 4.0 ; (D ) 8.0 .4.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则 B .)(A 2/1)0(=≤+Y X P ; )(B 2/1)1(=≤+Y X P ; )(C 2/1)0(=≤-Y X P ; )(D 2/1)1(=≤-Y X P .5. 设随机变量X 的密度函数为)(x f ,如果 A ,则恒有1)(0≤≤x f .(A ))1,0(~N X ; (B )),0(~2σN X ;(C )),1(~2σ-N X ; (D )),(~2σμN X .6. 设),(Y X 的联合概率密度为⎩⎨⎧<+=,)(0,)1(/1),(22他其y x y x f π则X 与Y 为 C 的随机变量.(A ) 独立同分布; (B ) 独立不同分布; (C ) 不独立同分布; (D ) 不独立不同分布.7. 设X 为随机变量,若1.1)(2=X E ,1.0)(=X D ,则一定有 B .(A )9.0)11(≥<<-X P ; (B )9.0)20(≥<<X P ; (C )9.0)11(<≥+X P ; (D )1.0)1(≤≥X P .8. 设A B ⊂,则下面正确的等式是 B 。
概率论复习资料大全
P(X k)Cnk pk (1 p)nk , k 0,1,, n
称r.v X服从参数为n和p的二项分布,记作 X ~ b(n,p)
9
4.泊松分布
定义:设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P( X k) e k , k0,1,2,,
称的钟形曲线.
特点是“两头小,中间大,左右对称”.
正态分布表
15
9.连续型随机变量函数的分布
定理 设 r.v X具有概率密度 f(x), x , 又设g(x)处处可导,且恒有g(x) 0(或 g(x) 0) 则Y=g(X)是连续型r.v,其概率密度为
fY
(
y)
计算方差的一个简化公式 D(X)=E(X2)-[E(X)]2
26
6.方差的性质
1. 设C是常数,则D(C)=0; 2. 若C是常数X是随机变量,则D(CX)=C2 D(X);
3. 设X与Y 是两个随机变量,则有 D(X+Y)= D(X)+D(Y) + 2E{(X-E(X))(Y-E(Y))}. 特别,若X与Y 相互独立,则有 D(X+Y)= D(X)+D(Y)
p
B(n,p)
π()
P( X k) Cnk pk (1 p)nk k 0,1,2,,n
np
P( X k) ke
k!
k 0,1,2,
23
分布
概率密度
期望
区间(a,b)上的 均匀分布
f
(
x)
b
1
a
,
0,
a x b, 其它
非常全面的《概率论与数理统计》复习材料
非常全面的《概率论与数理统计》复习材料一、基本概念1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
例如,掷一枚骰子,出现点数为 6就是一个随机事件。
2、样本空间样本空间是指随机试验的所有可能结果组成的集合。
例如,掷一枚骰子的样本空间就是{1, 2, 3, 4, 5, 6}。
3、概率概率是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能事件,1 表示必然事件。
4、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
二、随机变量1、离散型随机变量离散型随机变量是指其取值可以一一列举的随机变量。
例如,掷一枚骰子出现的点数就是一个离散型随机变量。
2、连续型随机变量连续型随机变量是指其取值充满某个区间的随机变量。
例如,某地区一天的气温就是一个连续型随机变量。
3、随机变量的分布函数分布函数是描述随机变量取值概率分布的函数。
4、常见的离散型分布(1)二项分布:描述 n 次独立重复试验中成功的次数。
(2)泊松分布:常用于描述在一定时间或空间内稀有事件发生的次数。
5、常见的连续型分布(1)正态分布:在自然界和社会现象中广泛存在,具有重要的地位。
(2)均匀分布:在某个区间内取值的概率相等。
三、数字特征1、数学期望数学期望反映了随机变量取值的平均水平。
2、方差方差衡量了随机变量取值的离散程度。
3、协方差和相关系数用于描述两个随机变量之间的线性关系程度。
四、大数定律和中心极限定理1、大数定律表明随着试验次数的增加,样本均值趋近于总体均值。
2、中心极限定理指出大量独立随机变量的和近似服从正态分布。
五、抽样分布1、样本均值和样本方差的分布了解样本均值和样本方差在不同条件下的分布规律。
2、 t 分布、F 分布和χ²分布这三种分布在假设检验和参数估计中经常用到。
六、参数估计1、点估计通过样本数据估计总体参数的值。
概率论复习提纲
二、方差
1. 方差的定义及计算 X的方差:
D( X ) Var( X ) E{[ X E( X )]2 }. 方差的计算:
D( X ) E( X 2 ) [E( X )]2.
二、方差
2. 方差的性质 (1) 设 C 是常数, 则有 D(C ) 0. (2) 设 X 是一个随机变量, C 是常数, 则有
一、随机变量的定义
设随机试验的样本空间S={e}. X=X(e)是定义在样 本空间S上的实值函数,称X=X(e)为随机变量.
随机变量的2个特征: 1) 它的取值随试验结果而定 2) 它的取值有一定的概率
二、离散型随机变量
1.离散型随机变量的定义
其全部可能取到的值是有限多个或无限可列多个. 2.分布律
2.概率的性质:
(4) 对于任一事件 A, P( A) 1. (5) 设 A 是 A的对立事件, 则 P( A) 1 P( A).
(6) (加法公式) 对于任意两事件 A, B 有
P( A B) P( A) P(B) P( AB).
n 个事件和的情况
n
P( A1 A2 An ) P( Ai )
已知分布函数求概率 P{ x1 X x2 } F ( x2 ) F ( x1 )
P39 例1;P55 第2(1)题,P57 第17(2)题
三、连续型随机变量
1. 连续型随机变量的分布函数
x
F ( x ) P{ X x } f ( t )dt , x .
基本要求:
已知概率密度求分布函数
X ,Y 可能取的值是 xi , y j , i, j 1,2, ,
概率论与数理统计复习
概率论与数理统计复习概率论与数理统计复习一、概率论的基本概念:1、事件的运算律:交换律:,;结合律:,;分配律:,;德·摩根法则:,;减法运算:。
2、概率的性质:性质1 ;性质2(有限可加性)当个事件两两互不相容时,;性质3 对于任意一个事件,;性质4 当事件满足时,;性质5 对于任意两个随机事件,;性质6 对于任意一个事件;性质7(广义加法法则)对于任意两个事件。
3、条件概率:在已知发生的条件下,事件的概率为:()。
注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。
4、全概率公式与贝叶斯公式:设个事件构成样本空间的一个划分,是一个事件,当()时,全概率公式:;贝叶斯公式:当时。
应用全概率公式和贝叶斯公式计算事件的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组,使得能且仅能与之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出和,并套用全概率公式或贝叶斯公式即可。
若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。
5、随机事件的独立性:事件独立性的结论:(1)事件与独立;(2)若事件与独立,则与,与,与中的每一对事件都相互独立;(3)若事件与独立,且,则,;(4)若事件相互独立,则;(5)若事件相互独立,则。
注意:(1)事件相互独立只要求满足,而事件互斥(互不相容)只要求,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件相互独立,则与不相关,反之一般不成立。
(3)对于任意个随机事件,相互独立则两两独立,反之未必;(4)对于任意个相互独立的随机事件,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:与,与,与都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件发生的概率为,则重贝努利试验中,事件恰好发生次的概率为。
概率论复习大纲(重要)
概率论复习大纲第一章1.1,1.2为基础理论,考得不多。
A,B独立:P(AB)= P(A)P(B)A,B对立:P(AB)= 0,P(A+B)= 1A,B不相容,P(AB)= 0,P(A+B)<= 1熟记公式,如对偶率等。
P(A-B)=P(A)- P(AB)= P(A B)1.3 几何概型不考,古典概型考小题1.4 条件概率的4个公式。
A,B独立时,P(B|A)=P(B)1.5 伯努利概型,伯努利定理,首次发生定理,次品问题第二章2.1-2.5都是重点2.1离散型:求分布律的黄金法则:先找可能取值,再算对应概率例题:设一汽车在开往目的地的道路上需经过四个信号灯,每个信号灯禁止汽车通过的概率为p,以X表示汽车首次停下时,它已通过的信号灯个数.(设各组信号灯的工作是相互独立的),求X的分布律要会根据概率函数求分布函数,注意范围是a<=x<b,前面是小于等于,后面是小于。
连续型:用密度函数的规范性(定积分等于1)求参数分布函数:F(+∞)=1,F(-∞)=0分布函数有右连续性,可以用来去参数,密度函数没有连续性!2.2要会计算离散型和连续型的期望和方差。
方差公式DX=EX2-(EX)2期望和方差的性质:E(aX+b)=aEX+bD(aX+b)=a2DX会求Y=g(x)的期望和方差(连续型,离散型)2.3 离散型退化分布不考两点分布,EX,DX。
特殊的0-1分布。
n个点上的均匀分布不考。
二项分布是重点,记住k从0开始取。
当n趋近无穷大,p很小的时候,用泊松分布算。
例题:设随机变量x服从参数为的泊松分布,且P ( x = 1) = P ( x=2 ) 则E (x) = 2,D (x) = 2.若例题改为P ( x <= 1),则= P ( x = 1)+ P ( x = 0),因为k从0开始取。
2.4 连续型均匀分布非常重要。
掌握密度函数,分布函数。
注意x的定义域。
定义域外概率都为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必然事件(Ω或U) 不可能事件( 或V )
•第1.2节 事件的关系和运算
(1) A B,
事件A出现,事件B一定出现.
( 2) A B ( A B ), 事件A,B至少有一个出现. (3) A B ( AB), 事件A和B同时出现. ( 4) A B , 事件A和B不能同时出现,A与B互不相容.
所以,若X~N(μ,σ2),则对任意的a<b有
a b ) P ( a x b ) ( ) (
返回
•第2.5节 随机变量函数的分布
离散型随机变量函数的概率分布: X x1 x2 ... xn ...
g(X) g(x1) g(x2) …
P p1 p2 ...
g(xn) …
r 1 P C n 1 p r 1 (1 p ) n r p
( r 1,2, , n)
几何概率公式 在n重贝努里试验中,如果第1次“成功” 出现在第n 次试验中,则
P (1 p) n1 p
返回
第2章
一维随机变量
•第2.1节 随机变量的概念 •第2.2节 离散型随机变量及其概率分布 •第2.3节 随机变量的分布函数 •第2.4节 连续型随机变量及其概率密 度 •第2.5节 随机变量函数的分布
1 X ~ f ( x) b a 0 x [ a, b] 其它
f(x)
1 ba
0
a
b
x
0 xa xa X ~ F ( x) a xb ba xb 1
分布函数
返回
(2)
指数分布 X~E(λ) (λ>0).
e x X ~ f ( x) 0 1 e x X ~ F( x ) 0 x0 x0
(3) F(x)是(-∞,+∞)上的连续函数;
(4) P(X=x)=F(x)-F(x-0)=0;
(5) 对任意a<b有 P(a≤X≤b)= P(a ≤ X<b)= P(a<X≤b) = P(a < X<b) =F(b)-F(a);
返回
常见的连续型随机变量的概率密度
(1) 均匀分布 X~U(a,b).
( xi , y j )D
p
ij
返回
联合分布函数 F(x,y )=P{X≤x,Y≤y} 联合分布函数性质
(x,y)∈R2
(1) 0 F ( x, y ) 1;
( 2) F ( ,) 1, F ( ,) F ( , y ) F ( x ,) 0;
pn ...
(1)由y=g(x)计算出随机变量Y的所有取值y1,y2,...,yn,...;
(2)P(Y=yn)为yn 对应的随机变量X的取值的概率和.
返回
连续型随机变量函数的概率密度函数 定理1 设X~fX(x),y=g(x)是x的单调可导函数,其导数不为0, 值域为(a,b),-∞<a<b<+∞,记x=h(y)为y=g(x)的反函数,则 Y=g(X)的概率密度函数为:
(5) A B , 且A B . 事件A和B为对立事件,记为
A B或B A.
(6) A B, 事件A出现,而事件B不出现.且 A B AB .
返回
有结合律、分配律、交换律、对偶律
( A B ) C A ( B C ),( A B ) C A ( B C ); ( A B ) C ( A C ) ( B C ),( A B ) C ( A C ) ( B C ); A B B A, A B B A;
i 1 i 1
则称P(A)为概率的公理化定义.
返回
•第1.5节 概率的性质
(1)P(φ)=0,P(Ω)=1,逆不一定成立. (2)若AB=φ,则P(A+B)=P(A)+P(B), 推广 A1,A2,…,An两两互 斥,则 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An) (3) P(A-B)=P(A)-P(AB), (4) P(Ω-A)=1-P(A). (5)若B是A的子事件,则P(B)≤P(A); (6)P(A+B)=P(A)+P(B)-P(AB), P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 几何概型的概率公式
当P(A1 ) P ( A2 ) P ( An ) p时,P(A1 A2 An ) p n, P(A1 A2 An ) 1 (1 p ) n .
返回
•第1.8节 独立试验序列
二项概率公式 在n重贝努里试验中,如果“成功”在每 次试验中出现的概率为p,令Bk=“在n 次试验中“成功” 出现k 次”,则 P ( Bk ) Cnk p k (1 p ) n k (k 0,1,2, , n) 巴斯卡概率公式 在n重贝努里试验中,如果第r次“成 功” 出现在第n 次试验中,则
可以证明 np=λ
k Cn p k (1 p ) n k
k
k!
e
(k 0,1,2,..., n)
返回
巴斯卡分布 在n重贝努里试验中,如果第r次“成功” 出现在第n 次试验中,则
PC
r 1 n 1
p
r 1
(1 p )
n r
p
( r 1,2, , n)
几何分布 在n重贝努里试验中,如果第1次“成功” 出 现在第n 次试验中,则
(1) 两点分布(0-1分布) X 0
X ~ B( 1, p ).
1
P 1-p p (2) 二项分布 X ~ B ( n, p ).
P ( X k ) Cnk p k (1 p ) n k
(3) 泊松分布 X~P(λ).
(k 0,1,2,..., n)
k P( X k ) e (k 0,1,2,, n,), k!
xR
(2)
f ( x )dx 1
b a
计算:对任意的a b有 P a X b f ( x)dx
返回
对于连续型随机变量X的分布函数有 (1) F ( x ) P{ X x } (2) f(x)= F ( x )
f ( t )dt ,
x
xR
P (1 p) n1 p
超几何分布
C C P ( k ) C
k M
n k N M n N
返回
•第Байду номын сангаас.3节 随机变量的分布函数
F(x)=P(X≤x), -∞<x<+∞
性质 (1) 0≤F(x)≤1, -∞<x<+∞, (2) F(x)是x的单调不减函数;
(3) F ( ) lim F ( x ) 0 , F ( ) lim F ( x ) 1;
X ~ ( x )
1 2
e
x2
2
, xR
0
返回
x
标准正态分布的分布函数
( x )
1 2
x
e
t2 2
dt , x R
1 ( 0) , 2
( x ) ( x ) 1
正态分布的分布函数
若X~N(μ,σ2),则 F ( x ) ( x )
返回
•第2.2节 离散型随机变量及其概率分布
X P x1 p1 x2 p2 ... ... xn pn ... ...
性质 (1)pn≥0,n=1,2,... ; (2)p1+p2+...+pn+…=1; 计算 对a<b 有 P(a<X≤b)=
a xi b
p
i
返回
常见的离散型随机变量的概率分布
全概率公式 P( B ) P( Ai )P( B | Ai )
i 1
n
Bayes公式
P( A j | B)
P( A j ) P( B | A j )
P( A ) P( B | A )
i 1 i i
n
( j 1,2,..., n)
返回
•第1.7节 事件的独立性
P(AB)=P(A)P(B) P(B|A)=P(B)
f X [ h( y )] | h( y ) | fY ( y ) 0 a yb
其它
返回
第3章
多维随机变量
•3.1 多维随机变量及其分布 •3.2 二维随机向量的边缘分布 •3.3 条件分布 •3.4 随机变量的独立性
•3.5 多维随机变量函数的分布
返回
•3.1 多维随机变量及其分布
x0 x0 分布函数
当t 0, s 0时P{x s t x s} P{x t}与s无关。
返回
(3) 正态分布 X ~N(μ,σ2)
f(x)
f ( x)
1 2
e
( x )2 2 2
, xR
0 μ x
标准正态分布. X~N(0,1)
(x )
事件A中包含的几何度量 S A P(A) 样本空间中几何度量 S
返回
•第1.6节 条件概率及有关公式
条件概率公式 P(B|A)=P(AB)/P(A) 乘法公式 P(AB)=P(A)P(B|A), P(AB)=P(B)P(A|B),
P(ABC)=P(A)P(B|A)P(C|AB) P ( A1A2…An) =P(A1)P(A2|A1)P(A3|A1A2)…P(An|A1A2…An-1)
第1章 随机事件及其概率