2020年浙江省台州市临海市一中中考数学一模试卷(5月份)解析版
浙江省台州市2019-2020学年中考数学一模试卷含解析
浙江省台州市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( )A .0.135×106B .1.35×105C .13.5×104D .135×1032.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( )A .1或5B .5-或3C .3-或1D .3-或53.如图,右侧立体图形的俯视图是( )A .B .C .D .4.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .125.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )A .B .C .D .6.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;147.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=1008.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+19.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.10.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x11.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③12.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.14.分解因式:2a2﹣2=_____.15.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.16.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.17.分解因式:9x3﹣18x2+9x= .18.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.20.(6分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?21.(6分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使 13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.22.(8分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?23.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.25.(10分)计算:2﹣1+|﹣3|+12+2cos30°26.(12分)解方程组4311, 213.x yx y-=⎧⎨+=⎩①②27.(12分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.D【解析】【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h<时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可.【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上, ∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4,∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍).综上所述,h 的值为-3或5,故选:D .【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.3.A【解析】 试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.4.A【解析】作AH ⊥BC 于H ,作直径CF ,连结BF ,先利用等角的补角相等得到∠DAE=∠BAF ,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH ⊥BC ,根据垂径定理得CH=BH ,易得AH 为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH=-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.5.B【解析】【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.6.C【解析】【分析】根据统计图,利用众数与中位数的概念即可得出答案.【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.7.B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 ﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.8.B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.9.A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.10.C【解析】【分析】由双曲线中k的几何意义可知12AOCS kV,据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答. 【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=8x;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;11.D【解析】【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,图象③符合;②当点P逆时针旋转时,BP降到0,再增加到2,图象①符合.故答案为①或③.故选D.【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.12.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二、填空题:(本大题共6个小题,每小题4分,共24分.)133【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∵OP 平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°, ∴112CE CP ==,∴PE ==∴2OP PE ==∵PD ⊥OA ,点M 是OP 的中点,∴12DM OP ==【点睛】此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.14.2(a+1)(a ﹣1).【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2﹣2,=2(a 2﹣1),=2(a+1)(a ﹣1).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.m=8或【解析】【分析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.16.1【解析】【分析】根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得2,BC=1,在求得点G到EF2sin45°,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE .又∵S △BIC =1,∠BIC=90°, ∴12BI•IC=1, ∴BI=IC=2,∴BC=22BI IC +=1,∵EF=BC=1,FG=EH=BI=2,∴点G 到EF 的距离为:22⨯, ∴平行四边形EFGH 的面积=EF•22⨯=12×22=1. 故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.17.9x 2(1)x -【解析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解18.A【解析】试题分析:①当点P 在OA 上运动时,OP=t ,S=OM•PM=tcosα•tsinα,α角度固定,因此S 是以y 轴为对称轴的二次函数,开口向上;②当点P 在AB 上运动时,设P 点坐标为(x ,y ),则S=xy=k ,为定值,故B 、D 选项错误; ③当点P 在BC 上运动时,S 随t 的增大而逐渐减小,故C 选项错误.故选A .考点:1.反比例函数综合题;2.动点问题的函数图象.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩, 解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩, 即P (6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h55.点M到直线AB 5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键20. (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】【分析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9, ∴中位数为7+72=7,众数是7和8, 故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为52+73+83+910⨯⨯⨯=7(次), ∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】 本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.可以求出A 、B 之间的距离为111.6米.【解析】【分析】 根据OD OE OB OA=,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD V V ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】解:∵OD OE OB OA=,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD V V ∽,∴13 DE OEAB OA==,∴37.213 AB=,解得111.6AB=米.所以,可以求出A、B之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.22.(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x+= 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.23.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.24.(1)15人;(2)补图见解析.(3).【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.25.12 【解析】【分析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.【详解】原式=12+2×2=12 【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.26.53x y =⎧⎨=⎩【解析】【分析】将②×3,再联立①②消未知数即可计算. 【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.27.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF ≌△BED ,得出CF=BD 即可证明四边形CDBF 是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.。
2020年浙江省台州市中考数学模拟考试试卷附解析
2020年浙江省台州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A .5B .5C .12D .2 2.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) A .内含B .相交C .相切D .外离 3. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( )A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x 4.已知2x =是 关于x 的方程23202x a -=的一个根,则22a -的值是( )A .3B .4C .5D .65.为了调查某校八年级学生的身高情况,现在对该校八年级(1)班的全班学生进行调查. 下列说法中,正确的是( )A .总体是该校八年级学生B .总体是该校八年级学生的身高C .样本是该校八年级(1)班学生D .个体是该校八年级的每个学生6.下列说法不正确的是( )A .在平移变换中,图形中的每一个点都沿同一方向移动了相同的距离B .在旋转变换中,图形中的每一点都绕旋转中心旋转了相同的角度C .在相似变换中,图形中的每一个角都扩大(或缩小)相同的倍数D .在相似变换中,图形中的每一条线段都扩大(或缩小)相同的倍数7.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道 8. ...依次观察左边三个图形,并判断照此规律从左向右第四个图形是( )A .B .C .D . 9.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备的水管的长为( )A .17.5mB .35mC .335mD .70m 二、填空题 10.如图,在下列各图形中选择合适的图形填入相应的空格内(填号码):(1)主视图: ;左视图: ;俯视图: ;(2)主视图: ;左视图: ;俯视图: ;(3)主视图: ;左视图: ;俯视图: ;解答题11.若点11(,)P x y 、22(,)Q x y 在双曲线k y x=(k>0 且为常数)上,若120x x <<,则 y 1、y 2 的大小关系为y 1 y 2(填“>”或“<”).12.如图,正方形ABCD 的边长为4,MN ∥BC 分别交AB ,CD 于点M ,N ,在MN 上任取两点P ,Q ,那么图中阴影部分的面积是 .13.如图,已知∠1=∠2,BC=EF ,那么需要补充一个直接条件如 等(写出一个即可),才能使△ABC ≌△DEF .14.若方程mx 2+3x-4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .15.若点(a ,b )在第二象限,则点(a b -,ab )在第 象限.16.观察图象,与图①中的鱼相比,图②中的鱼发生了一些变化.若图①中鱼上点P 的坐标为(4,3.2),则这个点在图②中的对应点P 1的坐标为 (图中的方格是边长为1的小正方形).17.当x=_______时,分式x x x 2的值为 0. 18.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n ≥1)表示自然数,用关于 n 的等式表示 这个规律为 .三、解答题19.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.20.如图,在直角坐标系中,P 是第一象限的点,其坐标是(3,y ),且OP 与x 轴的正半轴的夹角α的正切值是43,求(1)y 的值;(2)角α的正弦值.21.如图,有一圆心角为120 o 、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,求圆锥的高.22.已知关于x的一元二次方程x2-m x-2=0.……①(1) 若x=-1是方程①的一个根,求m的值和方程①的另一根;(2) 对于任意实数m,判断方程①的根的情况,并说明理由.23.已知 c 为实数,并且方程230+-=一个根,求方x x c-+=一个根的相反数是方程230x x c程230x x c+-=的根和 c的值.24.已知0a<,试比较3a与2a的大小(用两种不同方法进行比较).25.如图所示,已知 EB∥DC,∠C=∠E.试说明:∠A=∠ADE.26.“5·12”汶川大地震后,灾区急需大量帐篷,某服装厂原有 4条成衣生产线和 5条童装生产线,工厂决定转产,计划用了天时间赶制 1000顶帐篷支援灾区,若启用 1条成衣生产线和 2条童装生产线,一天可以生产帐篷105顶;若启用 2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?27.解下列方程组:(1)⎩⎨⎧=+-=11232y x x y (2) ⎩⎨⎧=--=+894132t s t s28.根据下图提供的信息,求出每只网球拍和每只乒乓球拍的单价.29.根据条件列方程:(1)某数的5倍比这个数大3(2)某数的相反数比这个数大6(3)爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?30.下面计算错在哪里,怎样改正?4211(1)()()(1)5353+-+---+ 4211115353=-+- 4121(1)(1)5533=+-- 22()3=--22 =+= 2233【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.D4.B5.B6.C7.B8.D9.D二、填空题10.(1)④④④;(2)⑥⑥④;(3)⑤⑤①11.>12.813.AC=DF 或∠B=∠E 等14.3≠m 15.三16.(4,2.2)17.118.22(2)4(1)n n n +-=+三、解答题19.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=(1)421. 24 22. 图①解:(1) x =-1是方程①的一个根,所以1+m -2=0, 解得m =1.方程为x 2-x -2=0, 解得, x 1=-1, x 2=2.所以方程的另一根为x =2.(2) ac b 42-=m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程①有两个不相等的实数根.23.10x =,23x =-,0c =24.方法一:∵3>2,∴a<0,∴3a<2a ;方法二:∵3a-2a=a<0,∴3a<2a25.可由AC ∥DE 说明26.(1)凌每条成衣生产线和童装生产线平均每天生产帐篷分别为x 顶、y 顶.210523178x y x y +=⎧⎨+=⎩,解这个方程组4132x y =⎧⎨=⎩,经检验,这个解是原方程组的解,且符合题意. 答:每条成衣生产线和童装生产线平均每天生产帐篷分别为 41顶、32顶.(2)由 3×(4×41+5×32)=972<1000,可知即使工厂满负荷全面转产也不可能如期完成任务. 作为厂长可以安排加班生产、改进技术等,进一步挖掘自已厂的生产潜力,或动员其他厂家支援,想办法尽早完成生产任务,为灾区人民多作贡献.27.(1)⎩⎨⎧==13y x ,(2) ⎪⎩⎪⎨⎧-==3221t s 28.每只网球拍单价为 80 元,每只乒乓球拍的单价为 40 元29.略30.错在第二步,正确结果为 0。
2020-2021学年浙江省中考数学第一次模拟试卷1及答案解析
浙江省中考数学一模试卷一、选择题:本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.﹣4的相反数()A.4 B.﹣4 C.D.﹣2.如图所示的立体图形的俯视图是()A. B.C. D.3.下列计算(﹣3a3)2的结果中,正确的是()A.﹣6a5 B.6a5C.﹣9a6 D.9a64.如图,BD⊥AB,BD⊥CD,则∠α的度数是()A.50°B.40°C.60°D.45°5.掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是()A.B.C.D.6.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°8.下列分式运算中正确的是()A.B.C.D.9.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.1610.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是()A.5 B.4 C.3 D.2二、填空题:本题有6小题,每小题5分,共30分.11.因式分解2x3﹣8x结果是.12.分式方程=的解是.13.为了比较两箱樱桃的个头大小,分别在两箱樱桃中随机抽出若干颗樱桃,统计其质量(单位:g)如下表:从樱桃的大小及匀称角度看,更好的一箱是.表1:甲箱樱桃抽检结果质量8 9 10 11 12颗数0 3 5 3 1表2:乙箱樱桃的抽检结果质量7 9 10 11 12颗数 1 1 5 4 114.如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a,b,c;A,B,N,E,F五点在同一直线上,则c= (用含有a,b的代数式表示).15.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.16.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是.三、解答题:本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.计算:﹣()﹣1+()0.18.解方程组:.19.函数y=与y=m﹣x的图象的一个交点是A(2,3),其中k、m为常数.(1)求k、m的值,画出函数的草图.(2)根据图象,确定自变量x的取值范围,使一次函数的函数值大于反比例函数的函数值.20.东西走向笔直的高速公路AB一侧有服务区,服务区内有加油站C,一汽车加油时需要从东面沿着与高速公路成30°角的方向开200m,再在服务区内自西向东行驶100m到加油站加油,然后沿着与高速公路成40°角的方向驶回高速公路.求:该汽车加油过程比不加油直接在高速公路上开多行驶的路程(精确到1m,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,).21.如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.22.为了解某校八、九年级学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如下表统计图表.睡眠情况分组表(单位:时)组别睡眠时间xA 4.5≤x<5.5B 5.5≤x<6.5C 6.5≤x<7.5D 7.5≤x<8.5E 8.5≤x<9.5根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,九年级学生睡眠时间在C组的有多少人?(3)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?(4)请从两个不同的角度评价一下八、九年级学生的总体睡眠情况,并给学校提出合理化的建议.23.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)写出这个四边形的一条性质并证明你的结论.(2)若BD=BC,证明:.(3)①若AB=BC=4,AD+DC=6,求的值.②若BD=CD,AB=6,BC=8,求sin∠BCD的值.24.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某零售店销售该种水果的日最高销量与零售价之间的函数关系如图3所示,假设当日零售价不变,当日进的水果全部销售完,毛利润=销售收入﹣进货成本,请帮助该零售店确定合理的销售价格,使该日获得的毛利润最大,并求出最大毛利润.参考答案与试题解析一、选择题:本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.﹣4的相反数()A.4 B.﹣4 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣4的相反数4.故选:A.2.如图所示的立体图形的俯视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上边看第一列前边一个小正方形,中间没有小正方形,后边一个小正方形,第二列中间一个小正方形,故选:C.3.下列计算(﹣3a3)2的结果中,正确的是()A.﹣6a5 B.6a5C.﹣9a6 D.9a6【考点】幂的乘方与积的乘方.【分析】依据积的乘方法则和幂的乘方法则求解即可.【解答】解:原式=(﹣3)2×(a3)2=9a6.故选:D.4.如图,BD⊥AB,BD⊥CD,则∠α的度数是()A.50°B.40°C.60°D.45°【考点】平行线的判定与性质;垂线.【分析】先根据题意•得出AB∥CD,由平行线的性质即可得出结论.【解答】解:∵BD⊥AB,BD⊥CD,∴AB∥CD,∴∠α=50°.故选A.5.掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出至少有一次正面(币值一面)朝上的结果数,然后根据概率公式计算.【解答】解:画出树状图如图,一共有等可能的结果数为4中,至少有一次正面朝上的结果数有3种,∴P(至少有一次正面朝上)=,故选C.6.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h【考点】一元一次不等式的应用.【分析】设甲的速度为xkm/h,则乙的速度为xkm/h,根据两地相距24km以及二人2小时以内相遇即可得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:设甲的速度为xkm/h,则乙的速度为xkm/h,由已知得:2×(x+x)>24,解得:x>8.故选B.7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°【考点】翻折变换(折叠问题).【分析】先求出∠A'=100,再利用圆内接四边形的性质即可.【解答】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,故选B.8.下列分式运算中正确的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:∵==,∴A是正确的,B、C、D是错误的.故选:A.9.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16【考点】完全平方公式.【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x ﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.10.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是()A.5 B.4 C.3 D.2【考点】动点问题的函数图象.【分析】根据△ADM和△ABM的面积,即可判定点P不可能在AB或AD边上,由此不能得出结论.【解答】解:∵正方形ABCD的边长为4,AM=BM,∴△ADM,△ABM的面积为4,△DMP面积达到5cm2,∴点P不可能在AD或AB边上,P只有可能在BC或CD边上,∴当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是2次,故选D.二、填空题:本题有6小题,每小题5分,共30分.11.因式分解2x3﹣8x结果是2x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取2x,再利用平方差公式分解即可.【解答】解:原式=2x(x2﹣4)=2x(x+2)(x﹣2),故答案为:2x(x+2)(x﹣2)12.分式方程=的解是x=2 .【考点】分式方程的解.【分析】观察可得这个分式方程的最简公分母为x(x﹣1),去分母,转化为整式方程求解,结果要检验.【解答】解:两边都乘以x(x﹣1)得:x=2(x﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.13.为了比较两箱樱桃的个头大小,分别在两箱樱桃中随机抽出若干颗樱桃,统计其质量(单位:g)如下表:从樱桃的大小及匀称角度看,更好的一箱是甲箱.表1:甲箱樱桃抽检结果质量8 9 10 11 12颗数0 3 5 3 1表2:乙箱樱桃的抽检结果质量7 9 10 11 12颗数 1 1 5 4 1【考点】方差.【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差公式进行计算,即可得出答案.【解答】解:∵甲箱的平均数是:(8×0+9×3+10×5+11×3+12×1)÷(3+5+3+1)=,乙箱的平均数是:(7×1+9×1+10×5+11×4+12×1)÷(1+1+5+4+1)=,∴甲的方差是:[3(9﹣)2+5(10﹣)2+3(11﹣)2+(12﹣)2]=116,乙的方差是:[(7﹣)2+(9﹣)2+5(10﹣)2+4(11﹣)2+(12﹣)2]=212,∴更好的一箱是甲箱;故答案为:甲箱.14.如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a,b,c;A,B,N,E,F五点在同一直线上,则c= (用含有a,b的代数式表示).【考点】勾股定理;全等三角形的判定.【分析】由三个正方形如图的摆放,易证△CBN≌△NEH,再根据勾股定理即可解答.【解答】解:由三个正方形如图的摆放,因为四边形ABCD、EFGH、NHMC都是正方形,所以∠CNB+∠ENH=90°,又因为∠CNB+∠NCB=90°,∠ENH+∠EHN=90°,所以∠CNB=∠EHN,∠NCB=∠ENH,又因为CN=NH,∴△CBN≌△NEH,所以HE=BN,故在Rt△CBN中,BC2+BN2=CN2,又已知三个正方形的边长分别为a,b,c,则有a2+b2=c2,∴c=.15.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.【考点】菱形的性质;平移的性质.【分析】首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:=.故答案为:.16.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是和.【考点】解一元二次方程﹣因式分解法.【分析】设这个输入的数为x,根据题意可得6x2﹣4x+1=x,整理成一般式后利用因式分解法求解可得.【解答】解:设这个输入的数为x,根据题意可得6x2﹣4x+1=x,即6x2﹣5x+1=0,∴(2x﹣1)(3x﹣1)=0,则2x﹣1=0或3x﹣1=0,解得:x=或x=,故答案为:和.三、解答题:本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.计算:﹣()﹣1+()0.【考点】二次根式的加减法;零指数幂;负整数指数幂.【分析】分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并.【解答】解:原式=3﹣2+1=+1.18.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:5x=10,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.19.函数y=与y=m﹣x的图象的一个交点是A(2,3),其中k、m为常数.(1)求k、m的值,画出函数的草图.(2)根据图象,确定自变量x的取值范围,使一次函数的函数值大于反比例函数的函数值.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A的坐标代入函数解析式可得k,m,利用特殊点画出草图即可;(2)先列方程组求另一个交点B的坐标,再根据图象交点可得结论.【解答】\解:(1)把x=2,y=3代入解析式得,k=xy=2×3=6,m=x+y=2+3=5,则y=,y=﹣x+5,草图如下:(2)由题意得:,解得:,∴函数y=与y=5﹣x的图象的另一个交点是B(3,2),由图象得:当2<x<3时,一次函数的函数值大于反比例函数的函数值.20.东西走向笔直的高速公路AB一侧有服务区,服务区内有加油站C,一汽车加油时需要从东面沿着与高速公路成30°角的方向开200m,再在服务区内自西向东行驶100m到加油站加油,然后沿着与高速公路成40°角的方向驶回高速公路.求:该汽车加油过程比不加油直接在高速公路上开多行驶的路程(精确到1m,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,).【考点】解直角三角形的应用.【分析】先将梯形分割成直角三角形和矩形,利用锐角三角函数求出AF,BC,AB,即可.【解答】解:过点C作CE⊥AB,过点D作DF⊥AB.∴四边形CDFE是矩形,∴CE=DF,EF=CD=100m,在Rt△ADF中,DF=ADsin30°=100,AF=ADcos30°≈173,在Rt△BCE中,BC=≈156,BE=≈119,∴AB=AF+EF+BE=392m,AD+CD+BC=456m,∴AD+CD+BC﹣AB=64m,答:汽车进加油站加油比不加油多行驶了大约64m.21.如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)根据根据菱形的性质作出判断:EF与BD互相垂直平分;(3)根据Rt△ABF的边角关系,求得BF和AF,再根据矩形的性质,求得DF的长,最后计算矩形的面积.【解答】解:(1)∵四边形ABCD是平行四边形,O是BD中点,∴BC∥AD,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,根据菱形的性质可得:EF与BD互相垂直平分;(3)∵四边形BEDF是矩形∴∠AFB=90°又∵∠A=60°,∴∠ABF=30°,∴AF=AB=×4=2,∴Rt△ABF中,BF=2,又∵AD=BC=6,∴DF=6﹣2=4,∴矩形BEDF的面积=BF×DF=2×4=8.22.为了解某校八、九年级学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如下表统计图表.睡眠情况分组表(单位:时)组别睡眠时间xA 4.5≤x<5.5B 5.5≤x<6.5C 6.5≤x<7.5D 7.5≤x<8.5E 8.5≤x<9.5根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,九年级学生睡眠时间在C组的有多少人?(3)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?(4)请从两个不同的角度评价一下八、九年级学生的总体睡眠情况,并给学校提出合理化的建议.【考点】条形统计图;扇形统计图;可能性的大小.【分析】(1)根据扇形统计图可以求得a的值;(2)根据统计图可以求得九年级学生睡眠时间在C组的人数;(3)根据统计图中的数据可以求得该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性;(4)根据统计图中的数据可以解答本题,可以从众数和中位数两方面进行说明.【解答】解:(1)a=1﹣10%﹣25%﹣35%﹣25%=5%,即统计图中a的值是5%;(2)由题意可得,(6+19+17+10+8)×35%=60×35%=21(人),即抽取的样本中,九年级学生睡眠时间在C组的有21人;(3)八年级抽到的学生为睡眠严重不足的可能性为:,九年级抽到的学生为睡眠严重不足的可能性为:5%+25%=30%=0.3,即八年级抽到的学生为睡眠严重不足的可能性为:,九年级抽到的学生为睡眠严重不足的可能性为0.3;(4)从众数看,八年级落在B组,九年级落在C组,但九年级人数比八年级人数多,说明八年级学生严重睡眠不足的人数多,九年级睡眠较好,八年级学生应增加睡眠时间才能更好的学习;从中位数看,八年级和九年级都落在C组,说明八九年级都有超过半数的学生睡眠时间较多,但最好是增加学生睡眠时间,让更多的学生可以更好的学习.23.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)写出这个四边形的一条性质并证明你的结论.(2)若BD=BC,证明:.(3)①若AB=BC=4,AD+DC=6,求的值.②若BD=CD,AB=6,BC=8,求sin∠BCD的值.【考点】四边形综合题.【分析】(1)结论:AB2+BC2=AD2+DC2,根据勾股定理即可证明.(2)如图1中,过点B作AD的垂线BE交DA的延长线于点E,只要证明△BED∽△ABC,即可解决问题.(3)①如图2中,过点B作BF⊥BD交DC的延长线于F.只要证明△DAB≌△CBF,推出DF=AD+CD=6,求出BD、AC即可.②当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为NM延长BA交MN 于点N,则四边形DCNM是矩形,△ABM∽△BCN,所以===,设AM=6y,BN=8y,BM=6x,CN=8x,通过BD=DC,列出方程求出x、y的关系,求出AB,即可解决问题.【解答】解:(1)结论:AB2+BC2=AD2+DC2.理由:∵∠ABC=∠ADC=90°,∴AB2+BC2=AC2,BC2+DC2=AC2,∴AB2+BC2=AD2+DC2.(2)如图1中,过点B作AD的垂线BE交DA的延长线于点E,∵∠ABC=∠ADC=90°,∴∠ADC+∠ABC=180°,∴四边形ABCD四点共圆,∴∠BDE=∠ACB,∠EAB=∠BCD,∵∠BED=∠ABC=90°,∴△BED∽△ABC,∴==sin∠EAB=sin∠BCD,(3)①如图2中,过点B作BF⊥BD交DC的延长线于F.∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,∴∠BAD=180°﹣∠BCD=∠BCF,∵∠BCF=∠BAD,BC=BA,∴△DAB≌△CBF,∴BD=BF,AD=CF,∵∠DBF=90°,∴△BDF是等腰直角三角形,∴BD=DF,∵AD+CD=6,∴CF+CD=DF=6,∴BD=3,AC==4,∴==.②当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为NM延长BA交MN 于点N,则四边形DCNM是矩形,△ABM∽△BCN,∴===,设AM=6y,BN=8y,BM=6x,CN=8x,在Rt△BDM中,BD==10x,∵BD=DC,∴10x=6x+8y,∴x=2y,在Rt△DABM中,AB==6y,∴sin∠BCD=sin∠MAB===.24.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某零售店销售该种水果的日最高销量与零售价之间的函数关系如图3所示,假设当日零售价不变,当日进的水果全部销售完,毛利润=销售收入﹣进货成本,请帮助该零售店确定合理的销售价格,使该日获得的毛利润最大,并求出最大毛利润.【考点】二次函数的应用.【分析】(1)直接写出两段函数图象的实际意义:①横坐标为批发量0~70kg,纵坐标为6元/kg;②横坐标为批发量大于70kg,纵坐标为4元/kg;(2)资金金额w=批发量×单价,并画出两个正比例函数图象,两函数图象纵标公共的部分即为同样的资金,根据图形数据写出即可;(3)设出变量,分别计算出两个分段函数日最高销量与零售价之间的函数关系式,根据毛利润=销售收入﹣进货成本计算出毛利润的函数关系式,并求出最值,对比后写出使该日获得的毛利润最大的合理的销售价格,并计算出最大利润.【解答】解:(1)①表示批发量少于70kg时,批发价为6元/kg;②表示批发量达到70kg以上时,批发价为4元/kg;(2)w=,图象如图2所示,当m=70时,6m=6×70=420,4m=4×70=280,∴资金金额在280≤w<420时,以同样的资金可以批发到较多数量的该种水果;(3)设销售价格为x元/kg,日最高销量为ykg,毛利润为w元,当6≤x≤10时,设解析式为:y=kx+b,把(6,80)、(10,60)代入得:,解得:,∴y=﹣5x+110,当70≤y≤80时,w=(﹣5x+110)(x﹣4)=﹣5x2+130x﹣440=﹣5(x﹣13)2+405,y随x的增大而增大,所以当x=8时,有最大利润为:w=﹣5(8﹣13)2+405=280,当60≤y<70时,w=(﹣5x+110)(x﹣6)=﹣5x2+140x﹣660=﹣5(x﹣14)2+320,y随x的增大而增大,所以当x=10时,有最大利润为:w=﹣5(10﹣14)2+320=240,当10<x≤14时,同理求出解析式为:y=﹣10x+160,∴w=(﹣10x+160)(x﹣6)=﹣10x2+220x﹣960=﹣10(x﹣11)2+250,当x=11时,w有最大值为:250,综上所述:当x=8时,有最大利润为280元,则该零售店销售价格定为8元时,该日获得的毛利润最大,最大利润为280元.。
2020届初三中考数学一诊联考试卷含参考答案 (浙江)
2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.对于实数a ,b 下列判断正确的是( )A .若a b =,则 a b =B .若22a b >,则 a b >C b =,则a b =D =a b =2.某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( )A .众数是2册B .中位数是2册C .平均数是3册D .方差是1.53.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A →B →C 方向运动,当点M 到达点C 时停止运动,过点M 作MN ⊥AM 交CD 于点N ,设点M 的运动路程为x ,CN =y ,图2表示的是y 与x 的函数关系的大致图象,则矩形ABCD 的面积是( )A .20B .18C .10D .94.下列命题是假命题的是( )A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(3)n ≥的内角和是180360n ︒︒-D .旋转不改变图形的形状和大小5.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.66.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的面点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球7.对于函数y=-2(x-3)2,下列说法不正确的是()A.开口向下B.对称轴是3x=C.最大值为0D.与y轴不相交8.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.2 3π9.设A,B,C表示三种不同的物体,现用天平称了两次,情况如上图所示,那么A,B,C这三种物体按质量从大到小的顺序排应为( )A.A,B,C B.C,B,A C.B,A,C D.B,C,A10.已知四边形ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定四边形ABCD 是平行四边形的是( )A .ADB CBD ∠=∠,//AB CDB .ADB CBD ∠=∠,DAB BCD ∠=∠C .DAB BCD ∠=∠,AB CD =D .ABD CDB ∠=∠,OA OC =二、填空题(共4题,每题4分,共16分)11.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1﹣S 2为_____.12.矩形ABCD 中,AB=8,AD=6,E 为BC 边上一点,将△ABE 沿着AE 翻折,点B 落在点F 处,当△EFC 为直角三角形时BE=_____.13.在五边形ABCDE 中,若440A B C D ∠+∠+∠+∠=︒,则E ∠=______︒.14.直线y =2x +1经过点(0,a ),则a =________.三、解答题(共6题,总分54分)15.“五一”小长假期间,小李一家想到以下四个5A 级风景区旅游:A .石林风景区;B .香格里拉普达措国家公园;C .腾冲火山地质公园;D .玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.16.如图,在平面直角坐标系中,△ABC 的一边AB 在x 轴上,∠ABC=90°,点C(4,8)在第一象限内,AC 与y 轴交于点E,抛物线y=234x +bx+c 经过A .B 两点,与y 轴交于点D(0,−6).(1)请直接写出抛物线的表达式;(2)求ED 的长;(3)点P 是x 轴下方抛物线上一动点,设点P 的横坐标为m ,△PAC 的面积为S ,试求出S 与m 的函数关系式;(4)若点M 是x 轴上一点(不与点A 重合),抛物线上是否存在点N ,使∠CAN=∠MAN.若存在,请直接写出点N 的坐标;若不存在,请说明理由。
2020年浙江省台州市 中考数学一模试卷
中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.下列四个几何体中,主视图是三角形的是()A. B. C. D.2.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,如图,根据刘徽的这种表示法,观察图1,可推算图2中所得的数值为()A. -1B. -2C. -3D. -43.下列计算正确的是()A. a3+a4=a7B. a4•a5=a9C. 4m•5m=9mD. a3+a3=2a64.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A. 中位数B. 平均数C. 方差D. 极差5.不等式4-2x≥0的解集在数轴上表示为()A. B.C. D.6.将抛物线y=x2-2x-3沿x轴折得到的新抛物线的解析式为()A. y=-x2+2x+3B. y=-x2-2x-3C. y=x2+2x-3D. y=x2-2x+37.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B.AD=1,AC=2,△ADC的面积为S,则△BCD的面积为()A. SB. 2SC. 3SD. 4S8.如图,锐角△ABC中,BC>AB>AC,求作一点P,使得∠BPC与∠A互补,甲、乙两人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求乙:作BC的垂直平分线和∠BAC的平分线,两线交于P点,则P即为所求对于甲、乙两人的作法,下列叙述正确的是()A. 两人皆正确B. 甲正确,乙错误C. 甲错误,乙正确D. 两人皆错误二、填空题(本大题共8小题,共38.0分)9.如图,AB是⊙O的弦,半径OA=5,sin A=,则弦AB的长为______.10.一项工程,先由甲独做,后乙加入合作直至完成,工程剩余工作量y与甲工作时间x(天)的函数关系如图所示,若要使工程提前4天完成,那么乙应该在甲工作第______天后加入合作.11.因式分解:a2-4=______.12.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠CAF的大小为______.13.在一个不透明的袋子里有5个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后,发现摸到红球的频率稳定在0.4,由此估计袋中红球的个数为______14.如图,先将边长为6m的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△AB′C′,当两个三角形重叠部分的面积为8cm2时,它移动的距离AA′等于______cm.15.如图是反比例函数y=和y=在第一象限的图象,在y═上取点M,分别作两坐标轴的垂线交y=于点A、B,连按OA、OB,则图中阴影部分面积为______.16.在矩形ABCD中,AB=3,BC=4,点E、F分别在BC与CD上,且∠EAF=45°(1)如图甲,若EA=EF,则EF=______;(2)如图乙,若CE=CF,则EF=______.三、计算题(本大题共1小题,共12.0分)17.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?四、解答题(本大题共7小题,共68.0分)18.(1)计算:(2)化简:-2(a-3)+(a+1)219.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.20.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆;两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计,EF长度远大于车辆宽度),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD=,求图中阴影部分的面积(结果保留x).22.从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6 亿人,比上一年增加约1亿人.(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是______;A.对某学校的全体同学进行问卷调查B.对某小区的住户进行问卷调查C.在全市里的不同区县,选取部分市民进行问卷调查(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.骑共享单车的人数统计表根据以上信息解答下列问题:①统计表中的a=______;b=______;②补全频数分布直方图;③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人?23.如图1,AB是曲线,BC是线段,点P从点A出发以不变的速度沿A-B-C运动,到终点C停止,过点P分别作x轴、y轴的垂线分别交x轴、y轴于点M、点N,设矩形MONP的面积为S运动时间为(秒),S与t的函数关系如图2所示,(FD 为平行x轴的线段)(1)直接写出k、a的值.(2)求曲线AB的长l.(3)求当2≤t≤5时关于的函数解析式.24.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点______的勾股点;在点E、F、G 三点中只有点______是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度数.(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①若△ADE是等腰三角形,求AE的长;②直接写出AE+BE的最小值.答案和解析1.【答案】D【解析】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选:D.主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.2.【答案】C【解析】解:由题意可知:图2中算筹正放两根,斜放5根,则可表示为(+2)+(-5)=-3;故选:C.抓住示例图形,区别正放与斜放的意义即可列出算式.本题考查了有理数的加法运算,正确理解图例算筹正放与斜放的意义是关键.3.【答案】B【解析】解:A、a3+a4,无法计算,故此选项错误;B、a4•a5=a9,正确;C、4m•5m=20m,故此选项错误;D、a3+a3=2a3,故此选项错误.故选:B.直接利用合并同类项法则以及积的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.此题主要考查了合并同类项以及积的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:A.根据中位数的定义解答可得.本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.5.【答案】D【解析】解:移项得,-2x≥-4,系数化为1得,x≤2.在数轴上表示为:故选:D.先根据不等式的基本性质求出其解集,并在数轴上表示出来即可.本题考查的是在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】A【解析】解:将抛物线y=x2-2x-3沿x轴折得到的新抛物线的解析式为:-y=x2-2x-3,即y=-x2+2x+3.故选:A.抛物线线上的点沿x轴折得到的新抛物线的坐标与原坐标的横坐标相同,纵坐标互为相反数.考查了二次函数图象与几何变换,将抛物线y=x2-2x-3沿x轴折得到的新抛物线的开口方向与原抛物线的开口方向相反.7.【答案】C【解析】解:∵∠DAC=∠CAB,∠ACD=∠B.∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S,∴△BCD的面积=4S-S=3S.故选:C.先证明△ACD∽△ABC,再利用相似三角形的性质得到=()2=,即S△ABC=4S,从而得到△BCD的面积为3S.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.8.【答案】A【解析】【分析】本题考查了作图-复杂作图,解题的关键是掌握角平分线的性质、线段垂直平分线的性质及基本作图.甲:根据作图可得AB=BP,利用等边对等角得:∠BAP=∠APB,由平角的定义可知:∠BPC+∠APB=180°,根据等量代换可作判断;乙:利用角平分线的性质,作辅助线,证明Rt△BPG≌Rt△CPH(HL),可得∠BAC+∠BPC=180°,作判断即可.【解答】解:甲:如图1,∵AB=BP,∴∠BAP=∠APB,∵∠BPC+∠APB=180°∴∠BPC+∠BAP=180°,∴甲正确;乙:如图2,过P作PG⊥AB于G,作PH⊥AC于H,∵AP平分∠BAC,∴PG=PH,∵PD是BC的垂直平分线,∴PB=PC,∴Rt△BPG≌Rt△CPH(HL),∴∠BPG=∠CPH,∴∠BPC=∠GPH,∵∠AGP=∠AHP=90°,∴∠BAC+∠GPH=180°,∴∠BAC+∠BPC=180°,∴乙正确;故选A.9.【答案】8【解析】【分析】此题考查了垂径定理,勾股定理,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由OA及sin A的值,利用锐角三角函数定义求出OC的长,再利用勾股定理求出AC的长,即可确定出AB的长.【解答】解:过点O作OC⊥AB,如图所示,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5,sin A=,∴OC=OA sinA=5×=3,根据勾股定理得:AC==4,则AB=2AC=8.故答案为8.10.【答案】3【解析】解:由图形可得,甲的工作效率为:(1-0.75)÷9=,乙的工作效率为:0.75÷(18-9)-=,设乙在甲工作第a天后加入合作,=1,解得,a=3,故答案为:3.根据题意和函数图象中的数据可以求得甲和乙的工作效率,然后根据题意列出相应的方程,即可解答本题.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】(a+2)(a-2)【解析】解:a2-4=(a+2)(a-2).故答案为:(a+2)(a-2).直接利用平方差公式分解因式得出即可.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.【答案】50°【解析】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD-∠B=40°-30°=10°,∴∠CAF=60°-10°=50°,故答案为:50°由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.13.【答案】2【解析】解:设盒子中有红球x个,由题意可得:=0.4,解得:x=2,故答案为:2.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.【答案】4或2【解析】解:设AA′=x,AC与A′B′相交于点H,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′H=AA′=x,A′D=AD-AA′=6-x,∵两个三角形重叠部分的面积为8,∴x(6-x)=8,整理得,x2-6x+8=0,解得x1=4,x2=2,即移动的距离AA′等4或2.故答案为:4或2.设AA′=x,AC与A′B′相交于点E,判断出△AA′H是等腰直角三角形,根据等腰直角三角形的性质可得A′H=x,再表示出A′D,然后根据平行四边形的面积公式列方程求解即可.本题考查了平移的性质,正方形的性质,等腰直角三角形的判定与性质,熟记平移的性质并用平移距离表示出重叠部分的底与高是解题的关键.15.【答案】4【解析】解:∵在y═上取点M,分别作两坐标轴的垂线交y=于点A、B,∴S△AOC=×6=3,S△BOD=×6=3,S矩形MDOC=2∴S阴影=S△AOC+S△BOD-S矩形MDOC=6-2=4,故答案为4.首先利用反比例函数的比例系数的几何意义求得三角形AOC和三角形BOD的面积,用两三角形的面积的和减去四边形MDOC的面积即可得到阴影部分的面积.本题考查了反比例函数的几何意义,解题的关键是了解比例系数的几何意义和明确阴影部分的面积的求法.16.【答案】(1)(2)7-4.【解析】解:(1)如图甲所示:∵EA=EF,∴△AEF是等腰直角形,∠EAF=∠EFA,∵∠EAF=45°,∴∠EFA=45°,又∵在△AEF中,∠EAF+∠EFA+∠AEF=180°,∴∠AEF=180°-45°-45°=90°,又∵∠AEB+∠AEF+∠FEC=180°,∴∠AEB+∠FEC=90°,又∵△ABE中,∠B+∠BAE+∠AEB=180°,∠B=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠CEF,在△ABE和△ECF中,∴△ABE≌△ECF(AAS)∴AB=EC,BE=CF,又∵AB=3,BC=4,∴EC=3,CF=1,在Rt△CEF中,由勾股定理得:==故答案为.(2)如图乙所示:作DM=DF,BN=BE,分别交AD,AB于点M和点N,设MD=x,∵四边形ABCDA是矩形,∴∠B=∠D=90°,∴∠BNE=45°,∠DMF=90°,又∵∠BNE+∠ENA=180°,∠FMD+∠FMA=180°,∴∠ENA=135°,∠FMA=135°,又∵∠EAF=45°,∠BAD=∠BAE+∠EAF+∠FAD=90°,∴∠BAE+∠FAD=45°,∵∠BAE+∠NEA=45°,在△ANE和△FMA中,∴△ANE∽△FMA(AA)∴;又∵MD=x,∴DF=x,∵CE=CF,AB=3,BC=4,∴FC=EC=3-x,BE=AB=x+1,AN=2-x,∴,解得:2-4,或-2-4(舍去),∴FC=3-()=7-2,∴EF=FC=(7-2)=7-4.故答案为7-4.【分析】(1)已知EA=EF,∠EAF=45°,由三角形的内角和得∠AEF=90°,∠AEB+∠FEC=90°,又因∠BAE+∠AEB=90°,等量代换得∠BAE=∠CEF,从而证明△ABE≌△ECF;EF的长可由勾股定理求出.(2)作辅助线FM和EN,已知△CEF,构建两个等腰△DEM,△BEN可求出线段DF,AM,FC,BE和AN的长;证明△ANE∽△FMA,再由两个三角形相似的性质求出相似比,解出x的值,由勾股定理(或三角函数)求出EF的长.本题考查了矩形的性质、全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理的运用等相关知识,正确添加辅助线构造相似三角形是解题的关键,17.【答案】解:(1)设购进甲种水果x千克,则购进乙种水果(140-x)千克,根据题意可得:5x+9(140-x)=1000,解得:x=65,∴140-x=75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元,设总利润为W,由题意可得出:W=3x+4(140-x)=-x+560,故W随x的增大而减小,则x越小W越大,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得:x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(kg).答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元.【解析】(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.主要考查了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题关键.18.【答案】解:(1)原式=3+1-3=1;(2)原式=-2a+6+a2+2a+1=a2+7.【解析】(1)直接利用零指数幂的性质以及绝对值的性质分别化简得出答案;(2)直接利用完全平方公式化简得出答案.此题主要考查了实数运算以及整式运算,正确掌握运算法则是解题关键.19.【答案】证明:过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF-DF=CF-EF,∴BD=CE.【解析】过A作AF⊥BC于F,根据等腰三角形的性质求出BF=CF,DF=EF,相减即可求出答案.本题考查了等腰三角形的性质和判定的应用,等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合.20.【答案】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF-∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92>1.9米.∴该地下车库出口的车辆限高标志牌设置如图4合理.【解析】过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.21.【答案】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切线.(2)过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,则△OBE是等边三角形,∴阴影部分面积为-×2×=-.【解析】(1)欲证明AC是⊙O的切线,只要证明OD⊥AC即可.(2)证明△OBE是等边三角形即可解决问题.本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】(1)C(2)①0.15 30②③700【解析】解:(1)调查方式中比较合理的是C,故答案为:C;(2)①a=15÷100=0.15,b=100×0.3=30,故答案为:0.15,30;②补全图形如下:③1000×(0.15+0.25+0.3)=700(人),答:估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有700人.【分析】(1)根据抽样调查的定义可得;(2)①根据“频率=频数÷总数”可分别求得a、b的值;②由①中所求数据可补全图形;③总人数乘以样本中第3、4、5组的频率之和可得答案.本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=频数÷总数,频率之和为1,属于中考常考题型.23.【答案】解:(1)∵B点与图1中D点对应,∴k=2×3=6,∵图2中E点与图1中C点对应,故P在C点时,S=30.∴a==5.故:k=6,a=5;(2)∵BC==3,∴P点的速度==,∴曲线AB的长l=×2=2.(3)由图(1)可知B(3,2),C坐标(6,5),P点由B到C用时3秒,故可设P 点坐标为(t+1,t),矩形MONP的面积为S=t(t+1)=t2+t,(2≤t≤5).【解析】(1)设P点坐标为(x,y)由图象可知,图2中B点与图1中D点对应,在B点时,S=6,故得k=6,图2中E点与图1中C点对应,在E点时,S=30,故得6a=30,可求a=5.(2)通过勾股定理可计算BC放入长度=,而BC段用时3秒,故可知P点的速度是,由A到B用时可得曲线AB的长l.(3)由图(1)可知B(3,2),C坐标(6,5),由B到C是从第2秒后开始到第5秒用时3秒,故P的坐标可设为(1+t,t),即可得S与t的函数关系.本题涉及了直角坐标系的意义和动点构成的几何意义,该题在分析上较为复杂,要求在图1和图2中时间t与P坐标之间变化关系,结合线段长与速度及时间的关系和面积的几何意义加以分析是解题关键.24.【答案】解:(1)B;F;(2)①证明:∵点C是△ABE关于点A的勾股点,∴CA2=CB2+CE2∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠ADC=90°,∴CA2=AD2+CD2=CB2+CD2∴CB2+CE2=CB2+CD2∴CE=CD,②设∠CED=α,则∠CDE=∠CED=α,∴∠ADE=∠ADC-∠CDE=90°-α,∵∠AEC=120°,∴∠AED=∠AEC-∠CED=120°-α∵DA=DE,∴∠DAE=∠DEA=120°-α∵∠DAE+∠DEA+∠ADE=180°∴2(120°-α)+(90°-α)=180°解得:α=50°∴∠ADE=90°-50°=40°(3)①∵矩形ABCD中,AB=5,BC=6∴AD=BC=6,CD=AB=5∵点C是△ABE关于点A的勾股点∴CE=CD=5i)如图1,若DE=DA,则DE=6过点E作MN⊥AB于点M,交DC于点N∴∠AME=∠MND=90°∴四边形AMND是矩形∴MN=AD=6,AM=DN设AM=DN=x,则CN=CD-DN=5-x∵Rt△DEN中,EN2+DN2=DE2;Rt△CEN中,EN2+CN2=CE2∴DE2-DN2=CE2-CN2∴62-x2=52-(5-x)2解得:x=,∴EN=,AM=DN=,∴ME=MN-EN=6-,∴Rt△AME中,AE=,ii)如图2,若AE=DE,则E在AD的垂直平分线上,过点E作PQ⊥AD于点P,交BC于点Q,∴AP=DP=AD=3,∠APQ=∠PQC=90°∴四边形CDPQ是矩形∴PQ=CD=5,CQ=PD=3∴Rt△CQE中,EQ=∴PE=PQ-EQ=1∴Rt△APE中,AE=iii)如图3,若AE=AD=6,则AE2+CE2=AD2+CD2=AC2∴∠AEC=90°取AC中点O,则点A、B、C、D在以O为圆心、OA为半径的⊙O上∴点E也在⊙O上∴点E不在矩形ABCD内部,不符合题意综上所述,若△ADE是等腰三角形,AE的长为或.②在CB上截取CH=,连接EH∴∵∠ECH=∠BCE∴△ECH∽△BCE∴,∴EH=BE∴AE+BE=AE+EH,∴当点A、E、H在同一直线上时,AE+BE=AH取得最小值,∵BH=BC-CH=6-,∴AH=,∴AE+BE的最小值为.【解析】解:(1)∵DA2=12+22=5,DB2=12+32=10,DC2=DA2=5,∴DB2=DC2+DA2,∴点D是△ABC关于点B的勾股点,∵EA2=42+42=32,EB2=22+52=29,EC2=4,∴点E不是△ABC的勾股点,∵FA2=32+42=25,FB2=22+42=20,FC2=12+22=5,∴FA2=FB2+FC2,∴点F是△ABC关于点A的勾股点,∵GA2=42+22=20,GB2=22+32=13,GC2=22+22=8,∴点G不是△ABC的勾股点,故答案为:B;F.(2)①②见答案;(3)①②见答案.【分析】(1)求AD2=5,DC2=5,DB2=10,得AD2+DC2=DB2,即点D是△ABC关于点B的勾股点;求出FA2,FB2,FC2,得到FA2+FB2=FC2,即点F是△ABC关于点A的勾股点.(2)①由矩形性质得∠ADC=90°,可得AD2+DC2=AC2;根据勾股数得BC2+EC2=AC2,又因为AD=BC,即得CE=CD.②设∠CED=α,根据∠AEC=120°和CE=CD即∠ADC=90°,可用α表示△ADE的三个内角,利用三角形内角和180°为等量关系列方程,即求出α进而求出∠ADE.(3)由条件“点C是△ABE关于点A的勾股点”仍可得CE=CD=5,作为条件使用.①△ADE是等腰三角形需分3种情况讨论,把每种情况画图再根据矩形性质和勾股定理计算,即能求AE的长.②在CB上截取CH=,利用两边对应成比例及夹角相等构造△ECH∽△BCE,把BE转化为EH,所以当点A、E、H在同一直线上时,AE+BE=AH 取得最小值,利用勾股定理求出AH即可.本题考查勾股定理、勾股定理逆定理的应用,矩形的性质,等腰三角形的性质,解一元一次方程和一元二次方程,圆的定义和圆周角定理.解题关键是对新定义概念的性质运用,第(3)①题等腰三角形的分类讨论需数形结合把图形画出后再解题,②可利用特殊位置试算得到最小值,计算过程较繁琐复杂.。
台州市临海市中考数学一模试卷含答案解析
浙江省台州市临海市中考数学一模试卷一、选择题:本题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.(4分)如图,数轴上有A、B、C、D四个点,其中所对应的数的绝对值最大的点是()A.点A B.点B C.点C D.点D2.(4分)下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.(4分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击的平均2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击成绩均是9.1环,方差分别是S甲训练中成绩稳性描述正确的是()A.甲稳定B.乙稳定C.甲和乙一样稳定 D.甲、乙稳定性无法比较4.(4分)下列运算正确的是()A.2x﹣x=1 B.(x2)3=x5C.﹣= D.20=05.(4分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°6.(4分)如图,点B是反比例函数y=(x>0)的图象上任意一点,过点B分别向x轴、y轴作垂线,垂足分别为点A和点C,则矩形OABC的面积为()A.1 B.2 C.4 D.不能确定7.(4分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.(4分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠C=50°,则∠ABC的度数为()A.20°B.25°C.30°D.40°9.(4分)如图,把一个长方形的纸片按图所示对折两次,然后剪下三角形展开,得到的四边形一定是()A.正方形B.菱形C.矩形D.仅有一组对边平行的四边形10.(4分)若二次函数y=ax2+bx﹣4的图象开口向上,与x轴的交点为(4,0)、(﹣2,0),则当x1=﹣1,x2=2时,对应的函数值y1和y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不确定二、填空题:共6小题,每小题5分,共30分.11.(5分)因式分解:a2﹣3a=.12.(5分)有四张背面完全相同的纸质卡片,其正面分别标有数字:6,,,﹣2,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到正面的数比3小的概率为.13.(5分)如图,各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=(用含n的代数式表示).14.(5分)如图,在Rt△ABC中,∠A=30°,斜边AC的垂直平分线交AB于D,交AC于E,连接CD,若BD=1,则AD的长是.15.(5分)关于x的一次函数y=kx+b(k≠0),我们称函数y[m]=,为它的m分函数(其中m为常数).例如,y=﹣x+1的4分函数为:当x≤4时,y[4]=﹣x+1;当x>4时,y[4]=x﹣1,若y=﹣3x+2的2分函数为y[2]=5时,x=.16.(5分)如图,已知正方形ABCD的边长为3,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将DE绕点D按逆时针旋转90°,得到DF,连接AF,则AF的最小值是.三、解答题:本题共8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.(8分)计算:﹣2﹣1+cos60°.18.(8分)先化简,再求值:(﹣),其中a=4.19.(8分)如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E 距离地面多少米?(参考数据:tan40°=0.84,sin40°=0.64,cos40°=)20.(8分)某校对九年级全体学生进行了一次数学学业水平模拟测试,成绩评定分为A,B,C,D四个等级(A、B、C、D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了名学生的成绩;(2)请将条形统计图补充完整,写出等级C的百分比%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是分,众数是分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.21.(10分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A 作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.22.(12分)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?23.(12分)某一小球以一定的初速度开始向前滚动,并且均匀减速,小球滚动的速度v(单位:米/秒)与时间x(单位:秒)之间关系的部分数据如表一:表一:时间x(秒)012 2.53…速度v(米/秒)86432…(1)根据表一的信息,请在表二中填写滚动的距离s(单位:米)的对应值,(提示:本题中,s=×x,=,其中,v0表示开始时的速度,v x表示x秒时的速度.)表二:时间x(秒)0123…距离s(米)0…(2)根据表二中的数据在给出的平面坐标系中画出相应的点;(3)选择适当的函数表示s与x之间的关系,求出相应的函数解析式;(4)当s=13.75时,求滚动时间x .24.(14分)定义:当点C 在线段AB 上,AC=nAB 时,我们称n 为点C 在线段AB 上的点值,记作d C ﹣AB =n .如点C 是AB 的中点时,即AC=AB ,则d C ﹣AB =;反过来,当d C ﹣AB =时,则有AC=AB .(1)如图1,点C 在线段AB 上,若d C ﹣AB =,则= ;若AC=3BC ,则d C ﹣AB = ;(2)如图2,在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AB=10cm ,BC=6cm ,点P 、Q 分别从点C 和点B 同时出发,点P 沿线段CA 以2cm/s 的速度向点A 运动,点Q 沿线段BC 以1cm/s 的速度向点C 运动,当点P 到达点A 时,点P 、Q 均停止运动,连接PQ 交CD 于点E ,设运动时间为ts ,d P ﹣CA +d Q ﹣CB =m . ①当≤m ≤时,求t 的取值范围; ②当d P ﹣CA =,求d E ﹣CD 的值; ③当d E ﹣CD =时,求t 的值.浙江省台州市临海市中考数学一模试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.(4分)如图,数轴上有A、B、C、D四个点,其中所对应的数的绝对值最大的点是()A.点A B.点B C.点C D.点D【解答】解:∵点D到原点的距离最远,∴点D的绝对值最大.故选:D.2.(4分)下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【解答】解:A、三棱锥的左视图是三角形,故选项错误;B、圆柱的左视图是长方形,故选项错误;C、球的左视图是圆,故选项正确;D、三棱柱的左视图是长方形,故选项错误.故选:C.3.(4分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击的平均2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击成绩均是9.1环,方差分别是S甲训练中成绩稳性描述正确的是()A.甲稳定B.乙稳定C.甲和乙一样稳定 D.甲、乙稳定性无法比较【解答】解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选:A.4.(4分)下列运算正确的是()A.2x﹣x=1 B.(x2)3=x5C.﹣= D.20=0【解答】解:A、洗漱相加字母及指数不变,故A不符合题意;B、幂的乘方底数不变指数相乘,故B不符合题意;C、﹣=2﹣=,故C符合题意;D、非零的零次幂等于1,故D不符合题意;故选:C.5.(4分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°【解答】解:∵直线a∥b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°.故选:C.6.(4分)如图,点B是反比例函数y=(x>0)的图象上任意一点,过点B分别向x轴、y轴作垂线,垂足分别为点A和点C,则矩形OABC的面积为()A.1 B.2 C.4 D.不能确定【解答】解:矩形OABC的面积=|2|=2.故选:B.7.(4分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【解答】解:∵△=a2+4>0,∴,方程有两个不相等的两个实数根.故选:D.8.(4分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠C=50°,则∠ABC的度数为()A.20°B.25°C.30°D.40°【解答】解:连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=50°,∴∠AOC=90°﹣40°=40°,∵OA=OB,∴∠B=∠OAB,∵∠AOC=∠B+∠OAB=40°,∴∠B=20°,故选:A.9.(4分)如图,把一个长方形的纸片按图所示对折两次,然后剪下三角形展开,得到的四边形一定是()A.正方形B.菱形C.矩形D.仅有一组对边平行的四边形【解答】解:根据题意折叠剪图可得,剪下的四边形四条边相等,根据四边相等的四边形是菱形可得,剪下的图形是菱形,故选:B.10.(4分)若二次函数y=ax2+bx﹣4的图象开口向上,与x轴的交点为(4,0)、(﹣2,0),则当x1=﹣1,x2=2时,对应的函数值y1和y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不确定【解答】解:∵二次函数y=ax2+bx+4与x轴的交点为(4,0)、(﹣2、0),∴对称轴为x==1,∴x=﹣1时的函数值y1等于x=3时的函数值.又∵点(3,y1)与点(2,y2)都在对称轴的右侧,∵抛物线开口向上,在对称轴的右侧y随x的增大而增大,∴y1>y2.故选:A.二、填空题:共6小题,每小题5分,共30分.11.(5分)因式分解:a2﹣3a=a(a﹣3).【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.(5分)有四张背面完全相同的纸质卡片,其正面分别标有数字:6,,,﹣2,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到正面的数比3小的概率为.【解答】解:∵4<7<9,9<11<16,∴2<<3,3<<4,∴数字6,,,﹣2中,比3小的数有:,﹣2,∴从中随机抽取一张卡片,抽到正面的数比3小的概率==.故答案为:.13.(5分)如图,各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=3n+1(用含n的代数式表示).【解答】解:观察发现:4=2+1+1;7=4+2+1;10=6+3+1;…∴m=n+2n+1=3n+1,故答案为:3n+1.14.(5分)如图,在Rt△ABC中,∠A=30°,斜边AC的垂直平分线交AB于D,交AC于E,连接CD,若BD=1,则AD的长是2.【解答】解:∵斜边AC的垂直平分线交AB于D,∴AD=CD,∴∠ACD=∠A=30°,∵∠B=90°,∠BDC=∠A+∠ACD=60°,∴CD=2BD=2,∴AD=CD=2,故答案为:2.15.(5分)关于x的一次函数y=kx+b(k≠0),我们称函数y[m]=,为它的m分函数(其中m为常数).例如,y=﹣x+1的4分函数为:当x≤4时,y[4]=﹣x+1;当x>4时,y[4]=x﹣1,若y=﹣3x+2的2分函数为y[2]=5时,x=﹣1或.【解答】解:依题意得:﹣3x+2=5或3x﹣2=5.解得x=﹣1或x=.故答案是:﹣1或.16.(5分)如图,已知正方形ABCD的边长为3,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将DE绕点D按逆时针旋转90°,得到DF,连接AF,则AF的最小值是3﹣1.【解答】解:如图1,连接FC,AF,∵ED⊥DF,∴∠EDF=∠EDA+∠ADF=90°,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADF+∠CDF=90°,∴∠EDA=∠CDF,在△ADE和△CDF中,∵,∴△ADE≌△CDF,∴CF=AE=1,∴AF>AC﹣CF,即AF>AC﹣1,∴当F在AC上时,AF最小,如图2,∵正方形ABCD的边长为3,∴AC=3,∴AF的最小值是3﹣1;故答案为:3﹣1.三、解答题:本题共8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.(8分)计算:﹣2﹣1+cos60°.【解答】解:原式=3﹣+=3.18.(8分)先化简,再求值:(﹣),其中a=4.【解答】解:原式=×(a﹣3)==,当a=4时,原式=﹣.19.(8分)如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E 距离地面多少米?(参考数据:tan40°=0.84,sin40°=0.64,cos40°=)【解答】解:(1)在Rt△BC D中,,∴≈6.7;(3分)(2)在Rt△BCD中,BC=5,∴BD=5tan40°=4.2.(4分)过E作AB的垂线,垂足为F,在Rt△AFE中,AE=1.6,∠EAF=180°﹣120°=60°,AF==0.8(6分)∴FB=AF+AD+BD=0.8+2+4.20=7米.(7分)答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.(8分)20.(8分)某校对九年级全体学生进行了一次数学学业水平模拟测试,成绩评定分为A,B,C,D四个等级(A、B、C、D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了50名学生的成绩;(2)请将条形统计图补充完整,写出等级C的百分比30%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是55分,众数是55分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.【解答】解:(1)本次调查抽取的学生人数为(12+8)÷40%=50(人),故答案为:50;(2)∵A等级人数为50×20%=10(人),则A等级男生有10﹣6=4(人),C等级女生有50﹣(10+12+8+8+3+2)=7(人),补全图形如下:C等级的百分比为×100%=30%,故答案为:30;(3)这5个数据重新排列为48、51、55、55、57,则这5个数据的中位数是55,众数为55,故答案为:55,55;(4)500×20%=100,答:估计在这次测试中成绩达到优秀的人数为100人.21.(10分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A 作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.22.(12分)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【解答】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.23.(12分)某一小球以一定的初速度开始向前滚动,并且均匀减速,小球滚动的速度v(单位:米/秒)与时间x(单位:秒)之间关系的部分数据如表一:表一:时间x(秒)012 2.53…速度v(米/秒)86432…(1)根据表一的信息,请在表二中填写滚动的距离s(单位:米)的对应值,(提示:本题中,s=×x,=,其中,v0表示开始时的速度,v x表示x秒时的速度.)表二:时间x(秒)0123…距离s(米)0…(2)根据表二中的数据在给出的平面坐标系中画出相应的点;(3)选择适当的函数表示s与x之间的关系,求出相应的函数解析式;(4)当s=13.75时,求滚动时间x.【解答】解:(1)当x=1时,==7,则s=7×1=7;当x=2时,==6,则s=2×6=12;当x=3时,==5,则s=3×5=15;时间x(秒)0123…距离s(米)071215 …(2)如图所示:;(3)由图象可得s 是x 的二次函数,设s=ax 2+bx ,把(1,7,(2,12)代入可得:,解得:,故相应的函数解析式为:s=﹣x 2+8x ;(4)当s=13.75时,则﹣x 2+8x=13.75, 解得:x 1=2.5,x 2=5.5, ∵0≤x ≤4, ∴x=2.5.24.(14分)定义:当点C 在线段AB 上,AC=nAB 时,我们称n 为点C 在线段AB 上的点值,记作d C ﹣AB =n .如点C 是AB 的中点时,即AC=AB ,则d C ﹣AB =;反过来,当d C ﹣AB =时,则有AC=AB .(1)如图1,点C 在线段AB 上,若d C ﹣AB =,则= ;若AC=3BC ,则d C﹣AB= ;(2)如图2,在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AB=10cm ,BC=6cm ,点P 、Q 分别从点C 和点B 同时出发,点P 沿线段CA 以2cm/s 的速度向点A 运动,点Q 沿线段BC 以1cm/s 的速度向点C 运动,当点P 到达点A 时,点P 、Q 均停止运动,连接PQ 交CD 于点E ,设运动时间为ts ,d P ﹣CA +d Q ﹣CB =m .①当≤m≤时,求t的取值范围;②当d P﹣CA =,求d E﹣CD的值;③当d E﹣CD=时,求t的值.【解答】解:(1)∵点C在线段AB上,若d C﹣AB=,∴AC=AB,即=;∵AC=3BC,∴AC=AB,即d C﹣AB=,故答案为:,;(2)①在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=8,∵d P﹣CA ==,d Q﹣CB==1﹣,∴m=d P﹣CA+d Q﹣CB=+1﹣,又∵≤m≤,∴≤+1﹣≤,解得3≤t≤4;②∵d P﹣CA =,d P﹣CA+d Q﹣CB=m,∴d P﹣CA =d Q﹣CB,∴=,∴=,解得t=2.4, ∵=,∠ACB=∠PCQ ,∴△ACB ∽△PCQ ,∴∠A=∠CPQ ,∴PQ ∥AB , ∴=,∴d E ﹣CD =d P ﹣CA ==0.6;③分两种情况:当PQ ∥AB 时,则有d E ﹣CD =d P ﹣CA =d Q ﹣CB =,由②可得,t=2.4;当PQ 与AB 不平行时,过点P ,Q 分别作PM ⊥CD 于点M ,QN ⊥CD 于点N ,如图所示,则有PM ∥QN ∥AB ,且点M ,N ,E 不重合, ∴=, =,∵d E ﹣CD =,d P ﹣CA +d Q ﹣CB =m ,∴d P ﹣CA +d Q ﹣CB =2d E ﹣CD , ∴+=2,即+=2,∴CM +CN=2CE ,即点E 是MN 的中点,∴EN=EM ,又∵∠PME=∠QNE ,∠PEM=∠QEN ,∴△PME ≌△QNE ,∴PM=QN ,∵PM=PC×sin∠ACD=2t×sin∠B=,QN=QC×sin∠BCD=(6﹣t)sin∠A=(6﹣t),∴=(6﹣t),解得t=,综上所述,t的值为2.4或.。
2020年浙江省台州市中考数学模拟试卷含答案解析
2020年浙江省台州市中考数学模拟试卷解析版一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.2019的相反数()A. 12019 B. -2019 C. - 12019D. 20192.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是()A. B. C. D.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A. 23760毫升B. 2.376×105毫升C. 23.8×104毫升D. 237.6×103毫升4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A. 35°B. 25°C. 65°D. 50°5.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A. 0个B. 1个C. 2个D. 4个6.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x,则下列方程正确的是()A. 27.49+27.49x2=38B. 27.49(1+2x)=38C. 38(1﹣x)2=27.49D. 27.49(1+x)2=387.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则cos∠ODA= ( )A. √55B. √35C. √32D. 12 8.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B′处,则B′点的坐标为( )A. (2,2 √3 )B. ( 32 , 2−√3 )C. (2, 4−2√3 )D. ( 32 , 4−2√3 ) 9.已知:如图,直线y =kx +b (k , b 为常数)分别与x 轴、y 轴交于点A (﹣4,0),B (0,3),抛物线y =﹣x 2+4x +1与y 轴交于点C , 点E 在抛物线y =﹣x 2+4x +1的对称轴上移动,点F 在直线AB 上移动,CE +EF 的最小值是( )A. 2B. 4C. 2.5D. 310.如图甲,已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;…如图乙,是六次旋转的位置图象,图中虚线是点M 的运动轨迹,则在第四次旋转的过程中,点B ,M 间的距离可能是( )A. 0.6B. 0.8C. 1.1D. 1.4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:3a3﹣12a =________.12.若−x+2y=5,则7−3x+6y=________.13.在某国际乡村音乐周活动中,来自中、韩、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“中—美—韩”顺序演奏的概率是________.14.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。
2020年5月台州市路桥区中考一模模拟卷--九数答案5.11
………2 分
24.解:(1)如图1,作PF⊥BC于点F. ∵四边形ABCD是菱形,∠ABC=60°, ∴∠ABD=∠CBD=30°,AB=BC=CD=AD=4.
∵PM∥AB, ∴∠ABD=∠BPM=∠CBD=30°,
∠PMF =∠ABC=60°, ∴PM=BM=1,
11
3
∴MF= PM= ,PF= ,
∵CD 丄 AB,∴∠BED=90°.
∵ M 为 BD 中点, ∴EM = 1 BD =DM, 2
…………1 分
∴ ∠DEM=∠D,
∴∠CEN=∠DEM=∠D.
………………2 分
∵ ∠B=∠C,
∴∠CNE=∠BED=90°,即 ME 丄 AB . ………………2 分
23. 解:(1)由题意知,∆>0, 即(- b)2 - 4×1×( 1 b2 +b - 5) > 0 , 4
1 4
,代入得:
(b
-
b)2 2
+b
-5=
1 4
,
b2
+ 4b
-
21 =
0
,
解得:b1=-7(不合题意,舍去),b2=3,
∴此时二次函数的解析式为: y = (x - 3 )2 - 2 . 2
综上所述,符合题意的二次函数的解析式为: y = (x+15)2 - 20 或 2
y = (x - 3)2 -2 . 2
∴CO =AO=3,
…………1 分
∴OE =AE-AO=1,
∵CD 丄 AB,
∴ 在 Rt△COE 中,CE= OC 2 OE 2 32 12 2 2 ,
图1
……2 分
∵CD=DE
∴ CD=2CE= 4 2 .
精品模拟2020年浙江省台州市中考数学模拟试卷5解析版
2020年浙江省台州市中考数学模拟试卷5一.选择题(共10小题,满分40分,每小题4分)1.下列各数中,绝对值最大的数是()A.1B.﹣1C.3.14D.π2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.如图,几何体的左视图是()A.B.C.D.5.下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分7.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.8.已知∠A=18°20′36″,∠B=18.35°,∠C=18°21′,下列比较正确的是()A.∠A<∠B B.∠B<∠A C.∠B<∠C D.∠C<∠B9.若方程组的解满足x﹣y=1,则a的取值是()A.﹣1B.﹣2C.2D.a不能确定10.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等二.填空题(共6小题,满分30分,每小题5分)11.(5分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么6※3=.12.(5分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.(5分)用一段长为30米的篱笆围成一个一边靠墙的矩形菜园ABCD,设AB=x,S四边形ABCD =y,写出y与x的函数关系式.14.(5分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.15.(5分)如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B 的动弦,则弦CD的最小值为.16.(5分)已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:当x=﹣1时,y=.三.解答题(共8小题,满分80分)17.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(8分)计算:﹣19.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B 时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)20.(8分)函数y=x2+3x+2的图象如图1所示,根据图象回答问题:(1)当x时,x2+3x+2>0;(2)在上述问题的基础上,探究解决新问题:①函数y=的自变量x的取值范围是;②如表是函数y=的几组y与x的对应值.如图2,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点的大概位置,请你根据描出的点,画出该函数的图象:③写出该函数的一条性质:.21.(10分)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请从图中找出二对相似三角形,要求其中一对必须不是直角三角形,并说明这一对三角形相似的理由.22.(12分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区的一个环保组织在2014年4月份随机问卷了一些民众,对垃极分类所持态度进行调查,将调查结果绘成扇形图(如图).(1)扇形图中,表示持“一般”态度的民众所占比例的扇形的圆心角度数是 ;(2)调查中,如果把所持态度中的“很赞同”和“赞同”统称为“支持”,2016年4月,该环保组织又进行了一次同样的调查,发现“垃圾分类支持者”占到了调查人数的84.7%,那么这两年里“垃圾分类支持者”的年平均增长率大约是多少?23.(12分)某批发商以70元/千克的成本价购入了某畅销产品1000千克,该产品每天的保存费用为300元,而且平均每天将损耗30千克,据市场预测,该产品的销售价y (元/千克)与时间x (天)之间函数关系的图象如图中的折线段ABC 所示.(1)求y 与x 之间的函数关系式;(2)为获得最大利润,该批发商应该在进货后第几天将这批产品一次性卖出?最大利润是多少?24.(14分)如图,四边形ABCD 内接于⊙O .AC 为直径,AC 、BD 交于E ,=.(1)求证:AD +CD =BD ; (2)过B 作AD 的平行线,交AC 于F ,求证:EA 2+CF 2=EF 2;(3)在(2)条件下过E ,F 分别作AB 、BC 的垂线垂足分别为G 、H ,连GH 、BO 交于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 半径.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】先求出每个数的绝对值,再根据实数的大小比较法则比较即可.【解答】解:∵1、﹣1、3.14、π的绝对值依次为1、1、3.14、π,∴绝对值最大的数是π,故选:D.【点评】本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.2.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.【分析】求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,由①得:x>12,由②得:x>7,∴不等式组的解集是x>12,在数轴上表示为:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.4.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.【分析】根据平行四边形、菱形的判定和性质一一判断即可;【解答】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为72,77,80,81,81,89,所以这组数据的众数为81分,中位数为=80.5(分),故选:A.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.8.【分析】依据∠A=18°20′36″,∠B=18.35°=18°21′,∠C=18°21′,即可得到三个角的大小关系.【解答】解:∵∠A=18°20′36″,∠B=18.35°=18°21′,∠C=18°21′,∴∠A<∠B=∠C.故选:A.【点评】本题主要考查了角的大小的比较,掌握度分秒的换算是解决问题的关键.9.【分析】把a看做已知数求出方程组的解表示出x与y,代入x﹣y=1中,求出a的值即可.【解答】解:,①×4﹣②得:15x=9a﹣6,即x=,②×4﹣①得:15y=9﹣6a,即y=,代入x﹣y=1中,得:﹣=1,去分母得:9a﹣6﹣9+6a=15,即15a=30,解得:a=2.故选:C.【点评】此题考查了二元一次方程组的解,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.【分析】根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D;【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.【点评】本题考查命题与定理,解题的关键是熟练掌握基本概念,属于中考常考题型.二.填空题(共6小题,满分30分,每小题5分)11.【分析】根据※的运算方法列式算式,再根据算术平方根的定义解答.【解答】解:6※3==1.故答案为:1.【点评】本题考查了算术平方根的定义,读懂题目信息,理解※的运算方法是解题的关键.12.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.【分析】直接利用已知表示出矩形中AD的长,进而得出答案.【解答】解:由题意可得:y=x(30﹣x)=﹣x2+15x.故答案为:y=﹣x2+15x.【点评】此题主要考查了函数关系式,正确表示出AD的长是解题关键.14.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣1时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.15.【分析】连接OC,利用垂径定理解答即可.【解答】解:连接OC,当CD⊥OA时,CD有最小值,在Rt△CBO中,CB==,∴CD=2CB=10,故答案为:10【点评】本题考查了垂径定理,掌握垂径定理和勾股定理是解题的关键.16.【分析】先确定出抛物线的对称轴,然后利用对称性求解即可.【解答】解:依据表格可知抛物线的对称轴为x=1,∴当x=﹣1时与x=3时函数值相同,∴当x=﹣1时,y=3.故答案为:3.【点评】本题主要考查的是二次函数的性质,利用二次函数的对称性求解是解题的关键.三.解答题(共8小题,满分80分)17.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】根据分式的减法法则计算可得.【解答】解:原式=﹣==.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则.19.【分析】本题要求的实际是BC和DF的长度,已知了AB、BD都是200米,可在Rt△ABC和Rt△BFD中用α、β的正切函数求出BC、DF的长.【解答】解:Rt△ABC中,斜边AB=200米,∠α=16°,BC=AB•sinα=200×sin16°≈54(m),Rt△BDF中,斜边BD=200米,∠β=42°,DF=BD•sinβ=200×sin42°≈132,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.20.【分析】(1)当抛物线在x轴上方部分进满足条件,可确定出对应的x的取值范围;(2)①由二次根式的意义可得到(x+1)(x+2)≥0,可转化为(1);②利用描点法可画出函数图象;③结合图象可得出答案.【解答】解:(1)x2+3x+2>0的解集即抛物线在x轴上方部分对应的自变量的取值范围,∴x<﹣2或x>﹣1,故答案为:<﹣2或x>﹣1;(2)①由题意可得(x+1)(x+2)≥0,由(1)可得x≤﹣2或x≥﹣1,故答案为:x≤﹣2或x≥﹣1;②如图:③由图象可知关于直线x=﹣1.5对称,故答案为:关于直线x=﹣1.5对称.【点评】本题主要考查二次函数的性质及函数与方程不等式的关系,利用数形结合是解题的关键.21.【分析】全等三角形都相似,此类相似三角形有:△FED∽△FCD、△GED∽△DBG等;不全等的相似三角形有:△HFD∽△DFG;可用正方形的边长分别表示出GF、FD、FH的长,通过证这些线段对应成比例来证得两三角形相似.【解答】解:(1)△HFD∽△DFG(2分)(此对必写)△FED∽△FCD;(或△GED∽△DBG或△HED∽△DAH)(写对任意一对,2分)(2)设每个正方形边长为a,根据勾股定理得DF=a;∵GF=a,HF=2a,∴(3分),又∵∠GFD=∠HFD(1分)∴△HFD∽△DFG.(1分)【点评】此题主要考查了相似三角形的判定方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;需注意的是所有的全等三角形都相似.22.【分析】(1)求出持“一般”态度的民众占的百分比,乘以360即可得到结果;(2)设这两年里“垃圾分类支持者”的年平均增长率是x,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)根据题意得:360°×(1﹣20%﹣39%﹣31%)=36°,故答案为:36°;(2)设这两年里“垃圾分类支持者”的年平均增长率大约是x,根据题意得:70%(1+x)2=84.7%,解得:x1=0.1=10%,x2=﹣2.1(不符合题意,舍去),则这两年里“垃圾分类支持者”的年平均增长率10%.【点评】此题考查了一元二次方程的应用,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.【分析】(1)由函数的图象可知当0≤x≤20时y和x是一次函数的关系;当20<x≤40时y 是x的常数函数,由此可得出y与x之间的函数关系式;(2)设到第x天出售,批发商所获利润为w,根据等量关系“利润=销售总金额﹣收购成本﹣各种费用=该产品的销售价y(元/千克)×(原购入量﹣x×存放天数)﹣收购成本﹣各种费用”列出函数关系式,再求出函数的最值即可.【解答】解:(1)当0≤x≤20,把(0,100)和(20,160)代入y=kx+b得,解得:,∴y=3x+100,当20≤x≤40时,y=160,故y与x之间的函数关系式是y=;(2)设到第x天出售,批发商所获利润为w,由题意得:①当0≤x≤20;w=(y﹣70)(1000﹣30x)﹣300x,由(1)得y=3x+100,∴w=(3x+100﹣70)(1000﹣30x)﹣300x,=﹣90(x﹣10)2+39000,∵a=﹣90<0,∴函数有最大值,当x=10时,利润最大为39000元,②当20<x≤40时,w=(y﹣70)(1000﹣30x)﹣300x,由(1)得y=160,∴w=(3x+100﹣70)(1000﹣30x)﹣30=﹣3000x+90000.∵﹣3000<0,∴函数有最大值,当x=20时,利润最大为30000元,∵39000>30000,∴当第10天一次性卖出时,可以获得最大利润是39000元.【点评】本题考查了二次函数和一次函数的实际应用,本题把实际问题转化为一次函数,二次函数,求二次函数最大值,充分体现了函数在实际中的运用功能,提高学生学习的兴趣.24.【分析】(1)延长DA至W,使AW=CD,连接WB,证△BCD和△BAW全等,得到△WBD 是等腰直角三角形,然后推出结论;(2)过B作BE的垂线BN,使BN=BE,连接NC,分别证△AEB和△CNB全等,△BFE和△BFN全等,将EA,CF,EF三条线段转化为直角三角形的三边,即可推出结论;(3)延长GE,HF交于K,通过大量的面积法的运用,将AE,CF,EF三条线段用含相同的字母表示出来,再根据第二问的结论求出相关字母的值,再求出AB的值,进一步求出⊙O半径.【解答】解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE ,HF 交于K ,由(2)得EA 2+CF 2=EF 2,∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形COMH =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∴AE =3,CF =(k +3),EF =(8k ﹣3),∴(3)2+[(k +3)]2=[(8k ﹣3)]2,整理,得7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1,∴AB =12,∴AO =AB =6,∴⊙O半径为6.【点评】本题考查了图形的旋转,三角形的全等,勾股定理,面积法的运用等,综合性非常强,尤其是第(3)问,解题的关键是数学综合能力要非常强.。
2020年浙江省台州市中考数学摸底测试试卷附解析
2020年浙江省台州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320把Rt △ABC 各边的长度都扩大3倍得Rt △A ˊB ˊC ˊ,那么锐角A 、A ˊ的余弦值的关系为( )A .cosA =cosA ˊB .cosA =3cosA ˊC .3cosA =cosA ˊD .不能确定3.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走.按照这种方式,小华第四次走到场地边缘E 处时,∠AOE =56º,则α的度数是( )A .52ºB .60ºC .72ºD .76º4.如图,是一次函数y =kx+b 与反比例函数y =2x 的图像,则关于x 的方程kx+b =2x的解为( )A . x l =1,x 2=2B .x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-15.如图,在梯形ABCD 中,AD BC ∥,AB a DC b ==,,DC 边的垂直平分线EF 交BC 边于E ,且E 为BC 边的中点,又DE AB ∥,则梯形ABCD 的周长等于( )A .22a b +B .3a b +C .4a b +D .5a b +6.下列命题中是真命题的是 ( )A .对角线互相垂直的四边形是平行四边形B .对角线相等的四边形是平行四边形c .对角线互相垂直且相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形7.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的 ( )A .平均数B .最大值C .众数D .频率分布8. 已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程2242(2)34mx x m x x --=+++的解为( )A .12x =-,232x =-B .12x =,232x =C .67x =-D .12x =-,232x =-或67x =- 9.如图,CD 是等腰直角三角形斜边AB 上的中线,DE ⊥BC 于E ,则图中等腰直角三角形的个数是( )A .3个B .4个C .5个D .6个10.如图,△ABD ≌△DCA ,B 和C 是对应顶点,则∠ADB 和∠DAC 所对的边是( )A .A0和DOB .AB 和DC C .A0和BD D .D0和AC11. -a 表示的数是( )A .负数B .负数或正数C .正数D .以上都不对12.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l13.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行二、填空题14.如图所示,Rt △ABC 中,∠B=15°,若 AC=2,则BC= .A CB A ' B 'C ' 图2 图115.将抛物线23(1)3y x=---向右平移 1个单位,再向上平移 2个单位,得到的抛物线的解析式为.16.:yx-y-xx-y=__________.17.一个三角形最多有个钝角,最多有个直角.18.二次函数y=mx2-3x+2m-m2的图像经过原点,则m=.2三、解答题19.如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧).20.小明的爸爸开着一辆满栽西瓜的大卡车经过一个底部为矩形、上部为半圆形形状(如图所示)的古城门,若已知卡车的高是3m,顶部宽是2.5m,古城门底部矩形的宽3m,高 2m.问该卡车能否通过城门?21.要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?22. 计算:22432()||3553---. 11523.一个几何体的表面展开图如图所示,说出它是一个怎样的几何体.24.如图 ,CD ⊥AB ,EF ⊥AB ,∠1 =∠2,试说明∠AGD =∠ACB.25.如图,已知:A ,F ,C ,D 四点在一条直线上,AF=CD ,∠D=∠A ,且AB=DE .请将下面说明△ABC ≌△DEF 的过程和理由补充完整.解:∵AF=CD( ),∴AF+FC=CD+ ,即AC=DF .在△ABC 和△DEF 中,____(__________(AC D AAB =⎧⎪∠=∠⎨⎪=⎩已证)()已知)(已证), ∴△ABC ≌△DEF( ).26.已知2286250x y x y -+-+=,试求34x y +的值.27.将分式10(2)(1)(2)(1)(1)x x x x x +++-+约分,再讨论x 取哪些整数时,能使分式的值是正整数.28.把下列各数填人相应的集合内:-133|8-251π,0.7⋅,35-,039-(1)有理数集合:(2)无理数集合:(3)负数集合:(4)正数集合:29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.04L/km ,则这次养护共耗油多少升?30.如图所示,以Rt △ABC 的两直角边AB ,BC 为边向外作正△ABE 和正△BCF ,连结EF ,EC,请说明EF=EC.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.A4.C5.C6.D7.D8.D9.C10.B11.D12.B13.B二、填空题14.7.4615.2=---16.y x3(1)1-117.1,118.三、解答题19.略.20.设AB为半圆的直径,O为圆心,高3m处城门的宽为CD,作OE⊥CD于E,连结 OC,则OE= 1 m,OC= 1.5m ,由勾股定理,得22=⋅=≈(m),CE-151 1.25 1.1所以 CD=2.2 m<2. 5m,所以卡车不能过城门.21.11 cm,6cm22.123.15长方体24.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3.∵∠l=∠2,∴∠1=∠3,∴DG ∥BC ,∴∠AGD=∠ACB . 25.已知,FC ,DF ,已知,DE ,SAS26.由已知得:22816690x x y y -++-+=,即22(4)(3)0x y -+-= ∴x= 4 ,y= 3,∴3424x y +=27.101x -,当 x=2或3 或6或 1128.略29.(1)在出发点的向东方向,距出发点15千米;(2)3.88升 30.略。
2020届初三中考数学一诊联考试卷含答案解析 (浙江)
2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.方程组125x y x y -=⎧⎨+=⎩的解是( ) A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩ C .12x y =⎧⎨=⎩ D .21x y =⎧⎨=⎩2.将抛物线2y x =向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式为( )A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--3.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为( )A.2880B.1440C.2160D.12004.如图,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,使得C′C∥AB,则∠CAB等于()A.50°B.60°C.65°D.70°5.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2)B.(﹣9,6)C.(﹣1,6)D.(﹣9,2)6.如图,点A在双曲线y=3x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.5B.7C.9D.117.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识。
因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”。
浙江省台州市临海市一中2020年九年级中考数学一模试卷(5月份)解析版
表示的数是
.
14.如图,边长为 2 的正方形 ABCD 中心与半径为 2 的⊙O 的圆心重合,E、F 分别是 AD、BA
的延长与⊙O 的交点,则图中阴影部分的面积是
.(结果保留π)
15.如图,在矩形 ABCD 中,AB=12,BC=16,点 E 是 BC 中点,点 F 是边 CD 上的任意一点,
当△AEF 的周长最小时,则 DF 的长为
(1)请判断四边形 EBGD 的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求 GC 的长.
22.(12 分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水 处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模 5 / 27
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
解:A、x10÷x2=x8,不符合题意;
B、x6﹣x 不能进一步计算,不符合题意;
C、x2•x3=x5,符合题意;
D、(x3)2=x6,不符 合题意;
故选:C.
4.北京故宫的占地面积约为 720000m2,将 720000 用科学记数法表示为( )
(1)本次调查中,一共调查了
名同学;
(2)条形统计图中,m=
,n=
;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是
度;
(4)学校计划购买课外读物 5000 册,请根据样本数据,估计学校购买其他类读物多少 册比较合理?
21.(10 分)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交 AB、BC 于点 E、F、G, 连接 ED、DG.
C.+2
浙江省台州市2019-2020学年第五次中考模拟考试数学试卷含解析
浙江省台州市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y =113x x +--自变量x 的取值范围是( ) A .x≥1 B .x≥1且x≠3 C .x≠3 D .1≤x≤32.一元二次方程(x+2017)2=1的解为( )A .﹣2016,﹣2018B .﹣2016C .﹣2018D .﹣2017 3.7的相反数是( )A .7B .-7C .17D .-174.如图,PA 切⊙O 于点A ,PO 交⊙O 于点B ,点C 是⊙O 优弧弧AB 上一点,连接AC 、B C ,如果∠P=∠C ,⊙O 的半径为1,则劣弧弧AB 的长为( )A .13πB .14πC .16πD .112π 5.12233499100++++++++L 的整数部分是( ) A .3 B .5 C .9 D .66.下列图案中,是轴对称图形的是( )A .B .C .D . 7.下列图形中既是中心对称图形又是轴对称图形的是A .B .C .D .8.如图,已知AB ∥CD ,AD =CD ,∠1=40°,则∠2的度数为( )A .60°B .65°C .70°D .75°9.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形10.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .45°B .60°C .70°D .90°11.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ’C ’D ’,图中阴影部分的面积为( ).A .12B .33C .31D .314- 12.下列说法中,正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定是全等的C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数k y x=的图象经过点B,则k的值是_____.14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.15.若a m=5,a n=6,则a m+n=________.16.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.17.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.18.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数y=﹣13x+2的图象交x轴于点P,二次函数y=﹣1 2x2+32x+m的图象与x轴的交点为(x1,0)、(x2,0),且21x+22x=17(1)求二次函数的解析式和该二次函数图象的顶点的坐标.(2)若二次函数y=﹣12x2+32x+m的图象与一次函数y=﹣13x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.20.(6分)已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
浙江省台州市2019-2020学年中考数学五模考试卷含解析
浙江省台州市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上答案都不对2.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF 为折痕,则sin∠BED的值是()A.5B.35C.22D.233.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩…无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.34.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°5.如果菱形的一边长是8,那么它的周长是()A.16 B.32 C.16D.326.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克7.一元二次方程220x x-=的根是()A.120,2x x==-B.121,2x x==C.121,2x x==-D.120,2x x==8.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④9.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab310.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是()A.x>2 B.x<﹣2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>211.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是1n.其中正确的个数()A.1 B.2 C.3 D.412.若代数式22xx有意义,则实数x的取值范围是()A.x=0 B.x=2 C.x≠0D.x≠2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若从-3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b ,恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b)落在双曲线3y x =-上的概率是_________. 14.如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为_________.15.二次根式x 3-中,x 的取值范围是 .16.如图,在Rt ABC V 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.17.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.18.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正方形.作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点,顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 20.(6分)如图,在△ABC 中,AB >AC ,点D 在边AC 上.(1)作∠ADE ,使∠ADE =∠ACB ,DE 交AB 于点E ;(尺规作图,保留作图痕迹,不写作法) (2)若BC =5,点D 是AC 的中点,求DE 的长.21.(6分)如图,在ABC V 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O e 交BC 于点G ,交AB 于点F ,FB 恰为O e 的直径.求证:AE 与O e 相切;当14cos 3BC C ==,时,求O e 的半径. 22.(8分)如图,已知AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.23.(8分)解不等式组43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩并写出它的整数解. 24.(10分)如图,已知三角形ABC 的边AB 是0的切线,切点为B .AC 经过圆心0并与圆相交于点D ,C ,过C 作直线CE 丄AB ,交AB 的延长线于点E,(1)求证:CB 平分∠ACE ;(2)若BE=3,CE=4,求O 的半径.25.(10分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|26.(12分)列方程解应用题: 某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.27.(12分)如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,且8cm AB =,6cm BC =.动点P ,Q 分别从点C ,A 同时出发,运动速度均为lcm/s .点P 沿C D A →→运动,到点A 停止.点Q 沿A O C →→运动,点Q 到点O 停留4s 后继续运动,到点C 停止.连接BP ,BQ ,PQ ,设BPQ V 的面积为()2cm y (这里规定:线段是面积为0的三角形),点P 的运动时间为()x s . (1)求线段PD 的长(用含x 的代数式表示);(2)求514x 剟时,求y 与x 之间的函数解析式,并写出x 的取值范围; (3)当12BDP y S =△时,直接写出x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.【详解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0两个不相等的实数根;故选B.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.2.B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.3.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,可整理得242y ay+⎧⎨<-⎩…∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.4.B【解析】【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.5.B【解析】【分析】根据菱形的四边相等,可得周长【详解】菱形的四边相等∴菱形的周长=4×8=32故选B .【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质6.C【解析】【分析】设每个小箱子装洗衣粉x 千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x 千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.7.D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.8.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.9.B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.10.D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.11.A【解析】【分析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.【详解】①平分弦(不是直径)的直径垂直于弦,故此结论错误;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,试验次数足够大时可近似地看做事件A的概率,故此结论错误;③各角相等的圆外切多边形是正多边形,此结论正确;④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是1n.故此结论错误;故选:A.【点睛】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.12.D【解析】【分析】根据分式的分母不等于0即可解题.【详解】解:∵代数式22xx有意义,∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 20【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组21x y bax y-=⎧⎨+=⎩和双曲线3yx=-,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组21x y bax y-=⎧⎨+=⎩有整数解,且点(a,b)落在双曲线3yx=-上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组21x y bax y-=⎧⎨+=⎩有整数解,且点(a,b)落在双曲线3yx=-上的概率是:320.故答案为320.点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.14.1【解析】【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.15.x3≥.【解析】x30x3-≥⇒≥.16.1【解析】【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.1【解析】【分析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.18.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.26m分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭ ()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.20.(1)作图见解析;(2)52【解析】【分析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE ∥BC ,又因为D 是AC 的中点,可证DE 为△ABC 的中位线,从而运用三角形中位线的性质求解.【详解】解:(1)如图,∠ADE 为所作;(2)∵∠ADE=∠ACB ,∴DE ∥BC ,∵点D 是AC 的中点,∴DE 为△ABC 的中位线,∴DE=12BC=52.21.(1)证明见解析;(2)32.【解析】【分析】(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.【详解】(1)连接OM,则OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵点M在圆O上,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C,∵BC=4,cosC=1 3∴BE=2,cos∠ABC=13,在△ABE中,∠AEB=90°,∴AB=cos BE ABC=6,设⊙O的半径为r,则AO=6-r,∵OM ∥BC ,∴△AOM ∽△ABE , ∴∴OM AO BE AB=, ∴626r r -=, 解得32r =, ∴O e 的半径为32. 【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.22.证明见解析.【解析】【分析】根据等式的基本性质可得BAC DAE ∠=∠,然后利用SAS 即可证出ABC ADE ∆≅∆,从而证出结论.【详解】证明:BAD CAE ∠=∠Q ,BAD DAC CAE DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC ∆和ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,BC DE ∴=.【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.23.不等式组的解集是5<x≤1,整数解是6,1【解析】【分析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩①② ∵解①得:x >5,解不等式②得:x≤1,∴不等式组的解集是5<x≤1,∴不等式组的整数解是6,1.【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法24.(1)证明见解析;(2)258. 【解析】试题分析:(1)证明:如图1,连接OB ,由AB 是⊙0的切线,得到OB ⊥AB ,由于CE 丄AB ,的OB ∥CE ,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD 通过△DBC ∽△CBE ,得到比例式,列方程可得结果. (1)证明:如图1,连接OB ,∵AB 是⊙0的切线,∴OB ⊥AB ,∵CE 丄AB ,∴OB ∥CE ,∴∠1=∠3,∵OB=OC ,∴∠1=∠2,∴∠2=∠3,∴CB 平分∠ACE ;(2)如图2,连接BD ,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.25.1【解析】【分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣1×+1+=1﹣+1+=1.【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.26.2.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.27.(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.(2)y=2312(58)2216(89)24888(914)55x xx xx x x⎧-+≤≤⎪⎪-<≤⎨⎪⎪-+-<≤⎩;(3)5≤x≤9【解析】【分析】(1)分点P在线段CD或在线段AD上两种情形分别求解即可.(2)分三种情形:①当5≤x≤1时,如图1中,根据y=12S△DPB,求解即可.②当1<x≤9时,如图2中,根据y=12S△DPB,求解即可.③9<x≤14时,如图3中,根据y=S△APQ+S△ABQ-S△PAB计算即可.(3)根据(2)中结论即可判断.【详解】解:(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.(2)①当5≤x≤1时,如图1中,∵四边形ABCD是矩形,∴OD=OB,∴y=12S△DPB=12×12•(1-x)•6=32(1-x)=12-32x.②当1<x≤9时,如图2中,y=12S△DPB=12×12(x-1)×1=2x-2.③9<x≤14时,如图3中,y=S△APQ+S△ABQ-S△PAB=12•(14-x)•45(x-4)+12×1×35(tx-4)-12×1×(14-x)=-25x2+485x-11.综上所述,y=2312(58)2216(89)24888(914)55x xx xx x x⎧-+≤≤⎪⎪-<≤⎨⎪⎪-+-<≤⎩.(3)由(2)可知:当5≤x≤9时,y=12S△BDP.【点睛】本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.。
2020年浙江省台州市重点中学中考数学一模试卷(网络测试)解析版
2020年浙江省台州市重点中学中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|等于()A.﹣2B.﹣C.2D.2.如图是一个L形状的物体,则它的俯视图是()A.B.C.D.3.地球的半径约为6370000m,用科学记数法表示正确的是()A. 637×104mB. 63.7×105mC. 6.37×106mD. 6.37×107m4.小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x26.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.7.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定8.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=45°,则∠BDF度数是()A.80°B.90°C.40°D.不确定9.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.210.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<C.1≤a<或a≤﹣2 D.﹣2≤a<二.填空题(共6小题,满分30分,每小题5分)11.因式分解:a2b2﹣a2﹣b2+1=.12.将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.13.一列数按某规律排列如下:,,,,,,,,,,…,若第n 个数为,则n=14.如图,在矩形ABCD中,AB=12,BC=16,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为15.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是16.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣118.先化简,再选一个合适的数代入求值:(﹣)÷(﹣1).19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.20.《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费元.若李先生也在该停车场停车,支付停车费11元,则停车场按小时(填整数)计时收费.(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.21.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.22.如图1,在正方形ABCD中,对角线AC,BD交于点O,点E在AB上,点F在BC的延长线上,且AE=CF,连接EF交AC于点P,分别连接DE,DF,DP.(1)求证:△ADE≌△CDF;(2)求证:△ADP∽△BDF;(3)如图2,若PE=BE,则的值是(直按写出结果即可).23.在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF=BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.24.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD 的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2020年浙江省台州市重点中学中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|等于()A.﹣2B.﹣C.2D.解:由于|﹣2|=2,故选C.2.如图是一个L形状的物体,则它的俯视图是()A.B.C.D.解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.3.地球的半径约为6370000m,用科学记数法表示正确的是()A. 637×104mB. 63.7×105mC. 6.37×106mD. 6.37×107m解:6370000m,用科学记数法表示正确的是6.37×106m,故选:C.4.小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数解:能用来比较两人成绩稳定程度的是方差,故选:C.5.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x2解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=的图象关于原点对称,因此选项A、B错误;∵n>0,∴m﹣n<m;由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.6.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.解:如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:=.故选:D.7.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定解:设M的坐标是(m,n),则mn=2.∵MN=m,△MNP的MN边上的高等于n.∴△MNP的面积=mn=1.故选:A.8.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=45°,则∠BDF度数是()A.80°B.90°C.40°D.不确定解:∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=45°,∴∠BDF=180°﹣∠B﹣∠BFD=180°﹣45°﹣45°=90°.故选:B.9.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.10.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<C.1≤a<或a≤﹣2 D.﹣2≤a<解:∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<①当a<0时,解得:a≤﹣2∴a≤﹣2②当a>0时,解得:a≥1∴1≤a<综上所述:1≤a<或a≤﹣2故选:C.二.填空题(共6小题,满分30分,每小题5分)11.因式分解:a2b2﹣a2﹣b2+1=.解:原式=(a2b2﹣b2)+(1﹣a2)=b2(a2﹣1)﹣(a2﹣1)=(a+1)(a﹣1)(b+1)(b﹣1).故答案是:(a+1)(a﹣1)(b+1)(b﹣1).12.将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.13.一列数按某规律排列如下:,,,,,,,,,,…,若第n 个数为,则n=解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,14.如图,在矩形ABCD中,AB=12,BC=16,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=12,BC=16,点E是BC中点,∴BE=CE=CE′=8,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=4,∴DF=CD﹣CF=12﹣4=8.15.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是解:如图,作B′H⊥y轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=A′B′=1,B′H=,∴OH=3,∴B′(﹣,3),16.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为.解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2,故答案为:2.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣1解:原式=×﹣3+1+2=1﹣3+1+2=1.18.先化简,再选一个合适的数代入求值:(﹣)÷(﹣1).解:(﹣)÷(﹣1)=[]÷[]====,当x=2时,原式==.19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.20.《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费元.若李先生也在该停车场停车,支付停车费11元,则停车场按小时(填整数)计时收费.(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.解:(1)若市民张先生某次在该停车场停车2小时10分钟,应交停车费为:3+2×2=7(元);若李先生也在该停车场停车,支付停车费11元,则超出时间为(11﹣3)÷2=4(小时),所以停车场按5小时计时收费.故答案为:7;5;(2)当x取整数且x≥1时,该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式为:y=3+(2(x﹣1),即y=2x+1.21.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.解:(1)20,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则,解得:x=25答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为,女生收看“两会”新闻次数的方差为:因为2>,所以男生比女生的波动幅度大.22.如图1,在正方形ABCD中,对角线AC,BD交于点O,点E在AB上,点F在BC的延长线上,且AE=CF,连接EF交AC于点P,分别连接DE,DF,DP.(1)求证:△ADE≌△CDF;(2)求证:△ADP∽△BDF;(3)如图2,若PE=BE,则的值是(直按写出结果即可).(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠BCD=∠DCF=90°,∵AE=CF,∴△ADE≌△CDF(SAS).(2)解:作FH∥AB交AC的延长线于H.∵四边形ABCD是正方形,∴∠ACB=∠FCH=45°,∵AB∥FH,∴∠HFC=∠ABC=90°,∴∠FCH=∠H=45°,∴CF=FH=AE,∵∠PAE=∠H,∠APE=∠FPH,∴△APE≌△HPF(AAS),∴PE=PF,∵△ADE≌△CDF,∴DE=DF,∠ADE=∠CDF,∠ADE=∠CDF,∴∠EFD=∠ADC=90°,∴△DEF是等腰直角三角形,∵EP=PF,∴∠EDP=∠FDP=45°,∵ADP=∠ADE+∠PDE=∠ADE+45°,∠BDP=∠CDF+∠BDC=∠CDF+45°,∴∠ADP=∠BDF,∵∠DAP=∠DBF=45°,∴△ADP∽△BDF.(3)解:如图2中,作PH⊥BC于H.由(2)可知:PE=PF,∵BE=PE,∴EF=2BE,∵∠EBF=90°,∴sin∠EFB=,∴∠EFB=30°,∵PH⊥FH,∠PCH=45°,∴∠PHC=90°,∠HPC=∠HCP=45°,∴HP=HC,设HP=HC=m,则PC=m,HF=m,∴CF=m﹣m,∴==.故答案为.23.在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF=BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴=,∵PF∥AC,∴△BFP∽△BNC,∴=,∴+=+=1,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴=,∴AM•MB=OM•MC,∴AM×(PE﹣PF)=OM•BN,∴AM•PF+OM•BN=AM•PE.24.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD 的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)令﹣x2+2x+3=0,∴x1=﹣1,x2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴, 解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3), ∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a , ∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a ) =PD •3 =(﹣a 2+3a ) =﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,); (3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM , ∴4NQ 2=CM 2,∵NQ 2=(1﹣)2+(n ﹣)2, ∴4[=(1﹣)2+(n ﹣)2]=m 2+9,整理得,m =n 2﹣3n +1,即m =(n ﹣)2﹣, ∵0≤n ≤4,当n =上,M 最小值=﹣,n =4时,M 最小值=5,综上,m的取值范围为:﹣≤m≤5.。
浙江省台州市临海市中考数学一模试卷(答案)(word版本可编辑)
浙江省台州市临海市中考数学一模试卷参考答案与试题解析一、选择题(本题共有10 小题,每小题4 分,共40 分.请选出一个符合题意的正确选项,不选,多选,错选均不得分)1.(4 分)四个数﹣2,﹣1,0,0.2 中,最小的数是()A.﹣2 B.﹣1 C.0 D.0.2【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<0.2,∴四个数﹣2,﹣1,0,0.2 中,最小的数是﹣2.故选:A.2.(4 分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从几何体的正面看可得图形.故选:A.3.(4 分)若代数式在实数范围内有意义,则实数a 的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.4.(4 分)据旅游部门统计,2018 年春节期间杭州市各大景点共接待游客约为4 585 900 人次,数据4585 900 用科学记数法表示为()A.0.45859×107 B.4.5859×106C.45.859×105 D.4.5859×105【解答】解:4585900=4.5859×106,故选:B.5.(4 分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.6.(4 分)下列运算正确的是()A.a+2a=3a2 B.a2•a3=a6 C.(a4)2=a8 D.a3÷a=a3【解答】解:A、a+2a=3a,此选项错误;B、a+2a=3a,此选项错误;C、(a4)2=a8,此选项正确;D、a3÷a=a2,此选项错误;故选:C.7.(4 分)在一些“打分类”比赛当中,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于4 人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选:B.8.(4 分)如图,四边形ABCD 内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC 的度数为()A.50°B.55°C.65°D.70°【解答】解:∵四边形ABCD 内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.9.(4 分)如图,将6 张长为a,宽为b 的矩形纸板无重叠地放置在一个矩形纸盒内,盒底未被覆盖的两个矩形面积分别记为S1、S2,当S2=2S1 时,则a 与b 的关系为()A.a=0.5b B.a=b C.a=1.5b D.a=2b【解答】解:法①:设矩形纸盒的宽为x,则S1=a(x﹣2b),S2=4b(x﹣a),根据题意得:4b(x﹣a)=2a(x﹣2b),整理得:a=2b;法②:由S2=2S1,得S2+4ab=2(S1+2ab),整理得:2a=4b,即a=2b,故选:D.10.(4 分)如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),则不等式(kx+b)(mx+n)>0 的解集为()A.x>2 B.0<x<4 C.﹣1<x<4 D.x<﹣1 或x>4 【解答】解:∵直线y1=kx+b 与直线y2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0 的解集为﹣1<x<4,故选:C.二、填空题(本题共有6 小题,每小题5 分,共30 分)11.(5 分)因式分解:a2﹣1=(a+1)(a﹣1).【解答】解:a2﹣1=a2﹣12=(a+1)(a﹣1).12.(5 分)在一个不透明的口袋中装有5 个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为.【解答】解:∵在一个不透明的口袋中装有5 个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为.故答案为:.13.(5 分)如图,直线y=kx(k≠0)与双曲线y=(m≠0)交于点A,B,已知点A 的坐标为(﹣3,1),则点B 的坐标为(3,﹣1).【解答】解:∵直线y=kx(k≠0)与双曲线y=(m≠0)交于点A,B,∴点A 与点B 关于原点对称,又∵点A 的坐标为(﹣3,1),∴点B 的坐标为(3,﹣1),故答案为:(3,﹣1).14.(5 分)如图,四边形ABCD 中,BC>AB,∠BCD=60°,AD=CD=6,对角线BD 恰好平分∠ABC,则BC﹣AB= 6 .【解答】解:在BC 上截取BE=BA,连接DE.∵BA=BE,∠ABD=∠EBD,BD=BD,∴△DBA≌△DBE(SAS),∴AD=DE=6,∵AD=CD=6,∴DE=DC,∵∠C=60°,∴△DEC 是等边三角形,∴EC=DE=6,∴BC﹣AB=BC﹣BE=EC=6,故答案为6.15.(5 分)已知一元二次方程(x﹣1)(x﹣3)=5 的两个实数根分别为x1,x2.则抛物线y =(x﹣x1)(x﹣x2)+5 与x 轴的交点坐标为(1,0)、(3,0).【解答】解:∵一元二次方程(x﹣1)(x﹣3)=5 的两个实数根分别为x1、x2,∴抛物线y=(x﹣1)(x﹣3)﹣5 与x 轴交于点(x1,0)、(x2,0),∴y=(x﹣1)(x﹣3)﹣5=(x﹣x1)(x﹣x2),∴y=(x﹣x1)(x﹣x2)+5=(x﹣1)(x﹣3),∴抛物线y=(x﹣x1)(x﹣x2)+5 与x 轴的交点坐标为(1,0)、(3,0).故答案为:(1,0)、(3,0).16.(5 分)如图,以边CD 为直径在正方形ABCD 内作半圆,点E 在边BC 上,将正方形沿直线AE 翻折,使点B 的对应点P 恰好落在半圆上,连接BP 并延长交CD 于点Q.(1)∠DPQ 的度数为45°;(2)PD:PB 的值为.【解答】解:(1)∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD,由翻折可知:AB=AP,∴AB=AP=AD,∴∠ABP=∠APB,∠APD=∠ADP,∵∠ABP+∠BPD+∠ADP=360°﹣90°=270°,∴∠APB+∠APD=135°,∴∠BPD=135°,∴∠DPQ=45°,故答案为45°(2)连接BD,PC.∵CD 是半圆的直径,∴∠DPC=90°,∵∠DPQ=45°,∴∠DPQ=∠CPQ=∠DBC=45°,∴∠BPD=∠BPC,∵∠PBC+∠PCB=45°,∠PBC+∠PBD=45°,∴∠PBD=∠PCB,∴△BPD∽△CPB,∴,故答案为.三、解答题(本题共有8 小题,第17-20 题每题8 分,第21 题10 分,第22,23 题每题12分,第24 题14 分,共80 分)17.(8 分)计算:|﹣3|+(π﹣2018)0﹣2sin30°.【解答】解:|﹣3|+(π﹣2018)0﹣2sin30°.=,(6 分)=3.(2 分)18.(8 分)解方程:=.【解答】解:去分母,得:2x+7=3(x+3),解得:x=﹣2,经检验,x=﹣2 是原方程的解.19.(8 分)如图,点E,F 分别在▱ABCD 的边BC,AD 上.(1)若BE=DF,求证:四边形AECF 是平行四边形;(2)请在图2 中用圆规和直尺画出四边形AECF,使得四边形AECF 是菱形.(不写作法,保留作图痕迹)【解答】(1)解:四边形AECF 为平行四边形.∵四边形ABCD 是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF 为平行四边形;(2)如图,四边形AECF 就是所求作的菱形.20.(8 分)春暖花开,正是出去踏青郊游的大好季节!小明准备自己制作一个风筝(如图),风筝主体由一张纸片(四边形ABCD),两根骨架(线段AC 与BD)组成.其中骨架AC 垂直平分BD,AB=70cm,∠BAD=90°,∠BCD=60°,请你分别求出两根骨架AC,BD 的长度(结果保留根号).【解答】解:∵AC 垂直平分BD,∴AB=AD,BC=DC,在△ABD 中,∠BAD=90°,AB=AD=70cm,根据勾股定理得:BD=70 cm,∵AB=AD,AC⊥BD,∴BO=DO=35 cm,在Rt△ABO 中,根据勾股定理得:AO==35 cm,∵∠BCD=60°,BC=DC,∴△BCD 为等边三角形,在Rt△BOC 中,BC=BD=70cm,∠CBD=60°,∴OC=BC sin∠CBD=×70 =35 cm,则AC=(35+35)cm.21.(10 分)某校在校园文化艺术节中,采用四种表演形式:A 唱歌,B 舞蹈,C 朗诵,D 器乐.为响应“全民参与”的号召,全校每名同学都选择了一种表演形式,校团委对同学们选择的表演形式进行了抽样调查,根据调查统计的结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:(1)①本次调查的学生共300 人,a=10% ;②将条形统计图补充完整;(2)校团委特许多才多艺的甲同学,可以选择两种表演形式.采用抽签形式,在A,B,C,D 四种表演形式中随机抽取两种,请通过“画树状图”或“列表”的方法求出甲同学恰好同时抽中“唱歌”与“舞蹈”的概率;(3)九年级(6)班共有学生60 人,班主任徐老师根据“这个调查结果”,就向当地文化部门租借了15 套朗诵用的西服.请你根据已学的统计知识,判断徐老师的做法是否合理?【解答】解:(1)①本次调查的总人数为105÷35%=300(人),则a=1﹣(35%+25%+30%)=10%,②B 选项的人数为300﹣(105+75+90)=30,补全条形图如下:故答案为:300,10%;(2)列表如下:由表格可知,在A、B、C、D 四种表演形式中,随机抽取两种共有12 种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2 种,∴甲同学抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为=.(3)根据调查结果可知,全校大约有25%的学生选择“朗诵”,这并不能说明九年级(6)班必定有25%的学生选择“朗诵”,故徐老师的做法不合理.22.(12 分)(1)如图1,△ABC 中,∠ACB=90°,以△ABC 三边为斜边分别作等腰直角三角形①,②,③,它们的面积分别为S1,S2,S3,则S3=S1+S2 (用S1,S2 表示);(2)如图2,△ABC 中,∠ACB=90°,AC=BC=,点D,E 在AB 上运动,且保持AD<AE,∠DCE=45°,将△ACD 绕点C 顺时针旋转90°得到△BCF.①求证:ED=EF;②当AD=4 时,EF 的长度是 5 ;③如图3,过点D,E 分别作AC,BC 的垂线交于点O,垂足为Q,P.随着AD 长度的改变,矩形CPOQ 的面积是否定值?若是定值,请求出该值;若不是定值,请说明理由.【解答】解:(1)由△ABC 中,∠ACB=90°,可得AC2+BC2=AB2,∴AC2+BC2=AB2∵等腰直角三角形①,②,③的面积分别为AC2,BC2,AB2,∴S1+S2=S3;故答案为:S1+S2;(2)①证明:∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,由旋转可得∠ACD=∠BCF,CD=CF,∴∠BCF+∠BCE=45°,即∠ECF=45°=∠ECD,又∵CE=CE,∴△CDE≌△CFE,∴ED=EF;②由勾股定理可得,AB=12,由旋转可得AD=BF=4,∠A=∠CBF=45°,∠EBF=45°+45°=90°,设DE=EF=x,则BE=8﹣x,∴BE2+BF2=EF2,即(8﹣x)2+42=x2,解得x=5,∴EF=5,故答案为:5;③矩形CPOQ 的面积是否定值.由①,②得AD2+BE2=DE2,即S△A DQ+S△BEP=S△D E O,则矩形CPOQ 的面积与△ABC 的面积保持相等,由题可得,△ABC 的面积==36,因此矩形CPOQ 的面积是定值36.23.(12 分)阅读:在平面直角坐标系内,对于点P(x,y),我们把Q(﹣y+1,x+3)叫做它的伴随点.如点(2,1)的伴随点为(﹣1+1,2+3),即(0,5).(1)若点M 的伴随点坐标为(﹣5,3),则点M 的坐标为(0,6);(2)若点A1(a,b)的伴随点为A2,A2 的伴随点为A3,A3 的伴随点为A4,…,以此类推,将所有点记为A n.①若点A104 的坐标为(3,﹣1),则点A1 的坐标为(2,6);②点A n 有没有可能始终在y 轴的右侧?若可能,请分别求出a,b 的取值范围;若不可能,请说明理由;③设直角坐标系的原点为O,若点A n 始终在一个半径为3 的圆上,请直接写出OA n 的最小值.【解答】解:(1)设点M(m,n),则它的伴随点为(﹣n+1,m+3),∵点M 的伴随点坐标为(﹣5,3),∴﹣n+1=﹣5,m+3=3,解得,m=0,n=6,∴M(0,6).故答案为(0,6);(2)A n 的变化规律:A1(a,b)→A2(﹣b+1,a+3)→A3(﹣a﹣2,﹣b+4)→A4(b﹣3,﹣a+1)→A5(a,b)…①法一:A4 与A104 坐标同为(3,﹣1),即b﹣3=3,﹣a+1=﹣1,则a=2,b=6;②代数法:列不等式组,,两个不等式组均无解,因此点A n 不可能始终在y 轴的右侧,几何法:A1 与A3 的中点为(﹣1,2),A2 与A4 的中点也为(﹣1,2),说明点A n 形成一个以(﹣1,2)为中心的对称图形,而点(﹣1,2)在第二象限,则必有部分点落在 y 轴的左侧. ③由②得,Q (﹣1,2)就是该圆圆心,如图连接 QO ,延长与圆 Q 交于点 A ,此时 OA 最小,QO =,OA =QA ﹣QO =3﹣ ,因此 OA n 最小值为.24.(14 分)定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边 上的中分线,其中落在三角形内部的部分叫做中分线段.如图 1,△ABC 中,D 为 BC 中 点,且 DE 平分△ABC 的周长,则称直线 DE 是△ABC 在 BC 边上的中分线,线段 DE 是 △ABC 在 BC 边上的中分线段.(1)如图 2,△ABC 中,AB =AC =10,BC =12,∠ABC =α.①△ABC 在 BC 边上的中分线段长为 8 ;②△ABC 在 AC 边上的中分线段长为 4,它与底边 BC 所夹的锐角的度数为α(用α表示);(2)如图 3,△ABC 中,AC >AB ,DE 是△ABC 在 BC 边上的中分线段,F 为 AC 中点,过点 B 作 DE 的垂线交 AC 于点 G ,垂足为 H ,设 AC =b ,AB =c . ①AE =(b ﹣c ) (用 b ,c 表示);②求证:DF =EF ;③若 b =6,c =4,求 CG 的长度;(3)若题(2)中,S △BDH =S △EGH ,请直接写出 b :c 的值.【解答】解:(1)①如图1,取BC 的中点D,作直线AD,则BD=6,此时AD 平分△ABC 的周长,则直线AD 是△ABC 在BC 边上的中分线,线段AD 是△ABC 在BC 边上的中分线段,∵AB=AC=10,∴AD⊥BC,由勾股定理得:AD=8,故答案为:8;(2 分)②如图2,DE 平分△ABC 的周长,则直线ED 是△ABC 在AC 边上的中分线,线段ED 是△ABC 在AC 边上的中分线段,则AB+BE=EC,作中线AF,过D 作DG⊥AF 于F,交AF 于P,则EF=11﹣6=5,∴DG∥CF,∵AD=DC,∴AG=GF=4,∵DG∥EF,∴△DGP∽△EFP,∴,∴,∴PG=,∴PF=4﹣=,由勾股定理得:PD==,PE==,∴ED=+ =4 ;如图3,过B 作BN∥ED,交AF 于N,过N 作MN⊥AB 于M,∴,∴,PN=,∴FN =+=3,AN=8﹣3=5,同理得:BN=3,设AM=x,则BM=10﹣x,由勾股定理得:AN2﹣AM2=BN2﹣BM2,52﹣x2=,x=4,∴AM=4,∴MN=3,∴MN=FN,∴BN 平分∠ABC,∵PE∥BN,∴∠CEP=∠CBN=α,即DE 与底边BC 所夹的锐角的度数为:;故答案为:,(4 分)(2)①如图4,DE 是△ABC 在BC 边上的中分线段,∴AE+AB=EC,∵AC=b,AB=c,∴AE+c=(b+c),∴AE=(b﹣c),故答案为:;(2 分)②如图4,∵F 是AC 的中点,D 是BC 的中点,∴DF=AB=c,AF=AC=b,∴EF=AF﹣AE=b﹣=c,∴DF=EF;(3 分)③如图5,过A 作AP⊥BG 于G,∵DF∥AB,∴∠DFC=∠BAC,∵∠DFC=∠3+∠EDF,∵EF=DF,∴∠3=∠EDF,∴∠1+∠2=2∠3,∵DE∥AP,∴∠2=∠3,∴∠1=∠3=∠2,∵AP⊥BG,∴AB=AG=4,∴CG=AC﹣CG=6﹣4=2;((2 分),未证得AB=AG 的扣1 分)(3)如图6,连接BE、DG,∵S=S△EGH,△BDH=S△EDG,∴S△BDG∴BE∥DG,∵DF∥AB,∴△ABE∽△FDG,∴=,∴FG=(b﹣c),∵AB=AG=c,∴CG=b﹣c,∴CF=b=FG+CG=(b﹣c)+(b﹣c),∴3b=5c,∴b:c=5:3.(1 分)。
最新浙江省台州市临海市中考数学一模试卷
20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质分别化简得出答案.【解答】解:原式=2﹣2+1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,解不等式①,得x<7,解不等式②,得x>3,所以原不等式组的解集为3<x<7.【点评】本题考查了解一元一次不等式组,关键是能根据不等式的解集找出不等式组的解集.19.【分析】(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入y=,即可求出k 的值;(2)分别求出A、B两点的坐标,即可得到线段AB的长.【解答】解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.【点评】本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.20.【分析】(1)根据四边形的不稳定性即可解决问题.(2)解直角三角形,由题意可得AA0≤1.2×sin20°×8,由此即可解决问题.【解答】解:(1)考查了四边形的不稳定性.故答案为:不稳定.(2)由题意AA0≤1.2×sin20°×8=3.264≈3.3(米),∴平台高度(AA0)的最大值为3.3米.【点评】本题考查解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】(1)中位数是数据按照从小到大的顺序排列,位于数据中间位置的数;(2)根据求平均数公式即可得到结论;(3)根据组中值的定义解答即可.【解答】解:(1)从直方图可得出这组数据的中位数位于D组;故答案为:D;(2)(1.45×2+1.55×3+1.65×7+1.75×9+1.85×4)÷25=1.69(米);答:该校同学的平均身高为1.69米;(3)不正确,理由:组中值是这一小组的最小值和最大值的平均数,如果将D,E两组的组中值分别用1.70m和1.90m进行替换,平均数就会增加了,故不正确.【点评】本题考查了频数分布直方图的知识,解题的关键是牢记公式:频率=频数÷总人数.22.【分析】(1)根据圆周角定理求出∠AOB=2∠ACB,根据平行线的性质和等腰三角形的性质得出∠ABO=∠BAO,∠ABO=∠BOC,∠BAO+∠AOC=180°,即可得出答案;(2)求出△BOC≌△DOC,根据全等三角形的性质得出BC=CD,根据勾股定理求出CD即可.【解答】(1)证明:∵对的圆周角是∠ACB,对的圆心角是∠AOB,∴∠AOB=2∠ACB,∵OB=OA,∴∠ABO=∠BAO,∵AB∥OC,∴∠ABO=∠BOC,∠BAO+∠AOC=180°,∴∠BAO+∠AOB+∠BOC=180°,即2∠ACB+2∠BOC=180°,∴∠ACB+∠BOC=90°;(2)延长AO交⊙O于D,连接CD,则∠ACD=90°,由勾股定理得:CD===6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.【点评】本题考查了全等三角形的性质和判定,平行线的性质,勾股定理,等腰三角形的性质,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键.23.【分析】(1)描点可得图象,猜测为抛物线,可设顶点式解析式,代入(0,1.8)可求解;(2)分别计算当t≤3时,的值和当t>3时,的值,从而可以判断;(3)这种烟花每隔l.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,得第三发花弹的函数解析式,令第一发和第三发花弹的解析式相等,从而求出二者高度相等的时间,再代入函数解析式即可解得时间,从而得高度,进一步就可得结论.【解答】解:(1)描点如下图所示,其图象近似为抛物线,故可设其解析式为:h=a(t﹣3)2+19.8,把点(0,1.8)代入得:1.8=a(0﹣3)2+19.8,∴a=﹣2,∴h=﹣2(t﹣3)2+19.8,故相应的函数解析式为:h=﹣2(t﹣3)2+19.8,(2)当t=t1时,第一发花弹飞行到最高点,此时高度为h1,由(1)可知t1=3,h1=19.8,∴当t=1.5,h=15.3时,=3;当t=2,h=17.8时,=2;当t=2.5,h=19.3时,=1,从而可以看出当t≤3时,的值由大变小;当t=3.5,h=19.3时,=1;当t=4,h=17.8时,=2;从而可以看出当t>3时,的值由小变大;故答案为:由大到小,再由小到大.(3)∵这种烟花每隔l.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,皮皮小朋友发射出的第一发花弹的函数解析式为:h=﹣2(t﹣3)2+19.8,∴第三发花弹的函数解析式为:h′=﹣2(t﹣5.8)2+19.8,皮皮发现在第一发花弹爆炸的同时,第三发花弹与它处于同一高度,则令h=h′得﹣2(t﹣3)2+19.8=﹣2(t﹣5.8)2+19.8∴t=4.4秒,此时h=h′=15.98米>15米,答:花弹的爆炸高度是否符合安全要求.【点评】本题是二次函数的应用题,需要先根据表格中数据描点,得出函数图象,再求出其解析式,分析变化趋势,可以代值验算,第三问需要从实际问题分析转变成数学模型,从而得解.24.【分析】(1)①当AM为最大线段时,由勾股定理求出BN;②当BN为最大线段时,由勾股定理求出BN即可.(2)如图2,设BM=x,证明△AMD∽△EMB,得DM=2x,设DN=a,则MN=2x﹣a,点M,N为线段BD的勾股分割点时,存在三种情况:根据勾股分割点的定义列方程可得结论;(3)①如图,连接PA、PB,将△MPA绕点P逆时针旋转90°得△PNF,将△PAC绕点P逆时针旋转90°得△PFE.只要证明四边形EFBC是平行四边形以及AB=BF就可以了;②作辅助线,根据三角形面积公式可得结论.【解答】解:(1)①当AM为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===5,综上所述:BN=或5;故答案为:或5;(2)如图2,设BM=x,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E为BC的中点,∴BE=CE=AD,∵AD∥BE,∴△AMD∽△EMB,∴,∴DM=2x,设DN=a,则MN=2x﹣a,∵点M,N为线段BD的勾股分割点时,存在三种情况:①当BM为斜边时,得:BM2=MN2+DN2,x2=(2x﹣a)2+a2,3x2﹣4ax+2a2=0,△=16a2﹣24a2=﹣8a2<0,此方程无实数解;②当MN为斜边时,得:MN2=BM2+DN2,(2x﹣a)2=x2+a2,x=0(舍)或a,∴BN=x+2x﹣a=3x﹣a=3×a﹣a=3a,∵AB∥DF,∴,③当DN为斜边时,得:DN2=BM2+MN2,x2=(2x﹣a)2+a2,x=0(舍)或a,∴BN=3x﹣a=﹣a=a,∵AB∥DF,∴,∴,DF=15,综上,DF的长为7或15;(3)①PC的长度是定值2,理由是:如图中,连接PA、PN,将△MPA绕点P逆时针旋转90°得△PNF,将△PAC绕点P逆时针旋转90°得△PFE.则∠1=∠3,∠2=∠4,∵△ABC是等腰直角三角形,AC=2,∴AB=2,∠CAB=∠CBA=45°,∵AC∥PM,BC∥PN,∴∠1=∠2=∠3=∠4,∴EF∥BN,∴EF∥BN∥BC,∵AC=BC=EF,∴四边形EFBC是平行四边形,∴EC=BF,∵∠ANM=∠PNF=45°,∴∠BNF=90°,∴BF2=BN2+FN2,∵点A,B恰好是线段MN的勾股分割点(AB>AM≥BN),∴AB2=AM2+BN2,∴BF=AB=CE=2,由旋转得:PC=PE,∠CPE=90°,∴△CPE是等腰直角三角形,②如图3,过C作CV⊥AB于V,过P作PU⊥AB于U,∴CV=AB=,由题意得:PU≤PC+VC=2+,MN=2PU,=•MN•PU=•2PU•PU=PU2=(2+)2=6+4;∴S△PMN则△PMN面积的最大值是6+4.【点评】本题是四边形的综合题,考查等腰直角三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质、旋转等知识,利用旋转法添加辅助线是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年浙江省台州市临海市一中中考数学一模试卷(5月份)一、选择题:本题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.﹣2+5的结果是()A.﹣3 B.-2 C.+2 D.32.如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.3.下列计算结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x3)24.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×1065.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.B.C.D.6.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y27.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB =6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.9.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°10.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4二、填空题:共6小题,每小题5分,共30分.11.因式分解:2x2﹣4x═.12.如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为.13.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.14.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)15.如图,在矩形ABCD中,AB=12,BC=16,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为.16.图1是甲、乙两个圆柱形水槽,一个圆柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不计).将甲槽的水匀速注入乙槽的空玻璃杯中,甲水槽内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2线段DE所示,乙水槽(包括空玻璃杯)内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2折线O﹣A﹣B﹣C所示.记甲槽底面积为S1,乙槽底面积为S2,乙槽中玻璃杯底面积为S3,则S1:S2:S3的值为.三、解答题:本题共8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.(8分)计算:4sin60°﹣|﹣1|+(﹣1)0+18.(8分)先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.19.(8分)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)20.(8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.22.(12分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.23.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.24.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(l,0),与y轴交于点C.(1)求抛物线的表达式;(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l 随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.2020年浙江省台州市临海市一中中考数学一模试卷(5月份)一、选择题:本题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.﹣2+5的结果是()A.﹣3 B.-2 C.+2 D.3解:﹣2+5=3,故选:D.2.如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.解:从左面看可得到左边第一竖列为3个正方形,第二竖列为2个正方形,故选A.3.下列计算结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x3)2解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×106解:将720000用科学记数法表示为7.2×105.故选:B.5.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.B.C.D.解:当转盘停止转动时,指针指向阴影部分的概率是,故选:D.6.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB =6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选:B.9.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.故选:C.10.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.三、填空题:共6小题,每小题5分,共30分.11.因式分解:2x2﹣4x═.解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).12.如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为.解:∵AB∥CD,∴∠BCD=∠B=50°,又∵∠BCD是△CDE的外角,∴∠E=∠BCD﹣∠D=50°﹣20°=30°.13.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣114.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.15.如图,在矩形ABCD中,AB=12,BC=16,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为.解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=12,BC=16,点E是BC中点,∴BE=CE=CE′=8,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=4,∴DF=CD﹣CF=12﹣4=8.16.图1是甲、乙两个圆柱形水槽,一个圆柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不计).将甲槽的水匀速注入乙槽的空玻璃杯中,甲水槽内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2线段DE所示,乙水槽(包括空玻璃杯)内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2折线O﹣A﹣B﹣C所示.记甲槽底面积为S1,乙槽底面积为S2,乙槽中玻璃杯底面积为S3,则S1:S2:S3的值为.解:由题意可得,,解得,S1:S2:S3=4:5:2,三、解答题:本题共8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.(8分)计算:4sin60°﹣|﹣1|+(﹣1)0+解:原式=4×﹣1+1+4=2+4=6.18.(8分)先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.解:原式=•﹣=﹣==﹣,当x=2时,原式=﹣.19.(8分)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x,则EQ=2x,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2,EQ=MF=4,∵MN=3,∴FQ=EM=1,在Rt△PFM中,PF=FM•tan60°=4,∴PQ=PF+FQ=4+1.20.(8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作DH⊥BC于H,∵四边形EBGD为菱形ED=DG=2,∴∠ABC=30°,∠DGH=30°,∴DH=1,GH=,∵∠C=45°,∴DH=CH=1,∴CG=GH+CH=1+.22.(12分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.解:(1)∵35×8+30=310(元),310<350,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤20.23.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.24.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(l,0),与y轴交于点C.(1)求抛物线的表达式;(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l 随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.解:(1)抛物线与x轴交于点A(﹣2,0)和B(l,0)∴交点式为y=﹣(x+2)(x﹣1)=﹣(x2+x﹣2)∴抛物线的表示式为y=﹣x2﹣x+2(2)在射线AD上存在一点H,使△CHB的周长最小.如图1,延长CA到C',使AC'=AC,连接BC',BC'与AD交点即为满足条件的点H ∵x=0时,y=﹣x2﹣x+2=2∴C(0,2)∴OA=OC=2∴∠CAO=45°,直线AC解析式为y=x+2∵射线AC绕点A顺时针旋转90°得射线AD∴∠CAD=90°∴∠OAD=∠CAD﹣∠CAO=45°∴直线AD解析式为y=﹣x﹣2∵AC'=AC,AD⊥CC'∴C'(﹣4,﹣2),AD垂直平分CC'∴CH=C'H∴当C'、H、B在同一直线上时,C△CHB=CH+BH+BC=C'H+BH+BC=BC'+BC最小设直线BC'解析式为y=kx+a∴解得:∴直线BC':y=x﹣∵解得:∴点H坐标为(﹣,﹣)(3)∵y=﹣x2﹣x+2=﹣(x+)2+∴抛物线顶点Q(﹣,)①当﹣2<t≤﹣时,如图2,直线l与线段AQ相交于点F设直线AQ解析式为y=mx+n∴解得:∴直线AQ:y=x+3∵点P横坐标为t,PF⊥x轴于点E∴F(t,t+3)∴AE=t﹣(﹣2)=t+2,FE=t+3∴S=S△AEF=AE•EF=(t+2)(t+3)=t2+3t+3②当﹣<t≤0时,如图3,直线l与线段QC相交于点G,过点Q作QM⊥x轴于M ∴AM=﹣﹣(﹣2)=,QM=∴S△AQM=AM•QM=设直线CQ解析式为y=qx+2把点Q代入:﹣q+2=,解得:q=﹣∴直线CQ:y=﹣x+2∴G(t,﹣t+2)∴EM=t﹣(﹣)=t+,GE=﹣t+2∴S梯形MEGQ=(QM+GE)•ME=(﹣t+2)(t+)=﹣t2+2t+∴S=S△AQM+S梯形MEGQ=+(﹣t2+2t+)=﹣t2+2t+③当0<t<1时,如图4,直线l与线段BC相交于点N设直线BC解析式为y=rx+2把点B代入:r+2=0,解得:r=﹣2∴直线BC:y=﹣2x+2∴N(t,﹣2t+2)∴BE=1﹣t,NE=﹣2t+2∴S△BEN=BE•NE=(1﹣t)(﹣2t+2)=t2﹣2t+1∵S梯形MOCQ=(QM+CO)•OM=×(+2)×=,S△BOC=BO•CO=×1×2=1 ∴S=S△AQM+S梯形MOCQ+S△BOC﹣S△BEN=++1﹣(t2﹣2t+1)=t2﹣2t+综上所述,S=。