北邮通信原理实验报告

合集下载

北邮通信原理实验报告完整

北邮通信原理实验报告完整

北京邮电大学通信原理课程实验实验报告学院:电子工程学院专业:电子信息科学与技术班级:2010211203班学号:姓名:2013年6月3日实验二抑制载波双边带的产生一、实验目的1.了解抑制载波双边带(SC-DSB)调制器的基本原理。

2.测试SC-DSB 调制器的特性。

二、实验步骤1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按下图连接。

图1 实验连接图方式一2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整冲放大器的K1,使其输出到乘法器的电压振幅为1V。

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波号。

4.测量乘法器的输出电压,并绘制其波形。

如下图2所示。

图2 乘法器输出电压波形5.调整音频振荡器的输出,重复步骤4。

如下图3所示。

图3 调整后输出波形6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按下图4连接。

图4 实验连接图方式二7.VCO 得频率选择开关器至于“LO”状态下,调整VCO 的Vin(控制电压DC -3V~3V )使VCO 的输出频率为10kHZ。

8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。

LPF 截止频率最大的时候输出如图5所示。

图5 截止频率最大时输出9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。

10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率(fh=fc+F)。

11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)只通过单一频率的LPF 输出如图6所示。

图6 单一低通滤波器输出12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11,得到的波形如图7和8所示。

北邮通信原理软件实验报告

北邮通信原理软件实验报告
(4)频带利用率η=2/(1+α) B/Hz
3、实验模块连接图
图三模块连接图
各个模块参数设置:
模块
参数
PN序列发生器
幅度1V,频率10HZ,维度2
延时器
0.77Sec
图十滤波器阶数不足时的波形图
图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。
根据以上实验结果,我们可知,由于采样频率接近于2fm,所以当滤波器的带外特性不好,衰减过慢的时候,高频的信号不能保证完全滤除。这时候恢复的信号也是失真的。(原信号的最高频率 =14hz)
图九抽样脉冲的脉宽加大后波形图
图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。
根据以上实验结果,我们可知,抽样序列的脉宽过大时,会导致采样信号的时间离散型不好,但是根据新的这样的采样信号,还是可以恢复出原信号的。(原信号的最高频率 =14hz)
(5)当抽样频率为30hz,低通滤波器的阶数降低(降低到2阶)
根据以上实验结果,我们可知,当 (本处为略大于)时,可以由抽样序列唯一的恢复原信号。(原信号的最高频率 =14hz)
(2)当抽样频率为40hz, 时
图七采样频率为40hz波形图
图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。
根据以上实验结果,我们可知,当 时,可以由抽样序列唯一的恢复原信号。(原信号的最高频率 =14hz)
五、实验讨论
从实验结果可以看出,抽样频率为30hz,原信号的频率为14hz,满足抽样定理。抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同,可以无失真的恢复原信号。

北邮通信原理软软件实验报告

北邮通信原理软软件实验报告

实验八:一、实验目的假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM,DSB-SC、SSB信号,观察已调信号的波形和频谱。

二、实验模型基带信号m(t)可以分成两个信号的叠加,分别记为m1(t),m2(t)。

借助公式s DSB-SC=m(t)cos(2*pi*fc*t),S AM=(1+m(t))cos(2*pi*fc*t),s SSB=m(t)cos(2*pi*fc*t)+H[m(t)]sin(2*pi*fc*t)分别仿真出m1(t)和m2(t)的信号波形,然后叠加便可以得到m(t)的波形和频谱三、仿真设计设计程序时先确定采样点、采样频率,然后分别表示出m1(t)和m2(t)的表达式,然后表示出后面仿真SSB信号所需要的两个信号的希尔伯特变换表达式。

其中表示希尔伯特变换时,采用的方法是先表示出频域的形式MH1和MH2,然后再傅里叶反变换得出对应的mh1和mh2。

对应代码如下:m1=sin(2*pi*fm1*t);M1=t2f(m1,fs);MH1=-j*sign(f).*M1;mh1=real(f2t(MH1,fs));m2(t)信号做相同的处理。

处理完信号后,就利用上述的三个公式,表示出AM、DSB-SC和SSB信号s1、s2和s3和其对应傅里叶变换得到其频谱S1 、S2、S3。

为了方便实验结果的观察与对比,将这三组图处理在一张图内,利用的函数是subplot。

四、实验结果五、分析讨论由实验结果可见,AM与DSB-SC相比,频谱多了一个离散的大载波直流分量,而且DSB-SC信号波形会有相位翻转的现象出现;而DSB-SC和SSB相比,SSB信号的频谱是DSB-SC的一个边带,本实验中采用的上边带滤波。

可见实验结果与理论结果是相一致的。

六、思考题1.如何仿真VSB系统?答:将残留边带滤波器用M文件实现,然后当做函数使用,在程序中调用。

北邮通信原理软件实验报告

北邮通信原理软件实验报告

通信原理软件实验报告学院:信息与通信工程学院班级:一、通信原理Matlab仿真实验实验八一、实验内容假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。

二、实验原理1、具有离散大载波的双边带幅度调制信号AM该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为:应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制:AM信号的频谱特性如下图所示:由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。

2、双边带抑制载波调幅(DSB—SC AM)信号的产生双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波c(t)相乘得到,如图所示:m(t)和正弦载波s(t)的信号波形如图所示:若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。

3、单边带条幅SSB信号双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。

从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。

单边带条幅SSB AM信号的其表达式:或其频谱图为:三、仿真设计1、流程图:Array2、实验结果&分析讨论实验仿真结果从上至下依次是AM信号、DSB信号、SSB信号。

从仿真结果看,AM调制信号包络清晰,可利用包络检波恢复原信号,接收设备较为简单。

北邮通信原理实验报告

北邮通信原理实验报告

北京邮电大学通信原理实验报告学院:信息与通信工程学院班级:姓名:姓名:实验一:双边带抑制载波调幅(DSB-SC AM)一、实验目的1、了解DSB-SC AM 信号的产生以及相干解调的原理和实现方法。

2、了解DSB-SC AM 信号波形以及振幅频谱特点,并掌握其测量方法。

3、了解在发送DSB-SC AM 信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。

4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。

二、实验原理DSB 信号的时域表达式为()()cos DSB c s t m t t ω=频域表达式为1()[()()]2DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示DSB-SC AM 信号的产生及相干解调原理框图如下图所示将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。

DSB—SC AM信号的解调只能采用相干解调。

为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。

收端可用锁相环来提取导频信号作为恢复载波。

此锁相环必须是窄带锁相,仅用来跟踪导频信号。

在锁相环锁定时,VCO输出信号sin(2πf c t+φ)与输入的导频信号cos(2πf c t)的频率相同,但二者的相位差为(φ+90°),其中很小。

锁相环中乘法器的两个输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到[A C m(t)cos(2πf c t)+A p cos(2πf c t)]∙sin(2πf c t+φ)=A c2m(t)[sinφ+sin(4πf c t+φ)]+A p2[sinφ+sin(4πf c t+φ)]在锁相环中的LPF带宽窄,能通过A p2sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。

LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。

北京邮电大学 通信原理实验报告 硬件部分

北京邮电大学 通信原理实验报告 硬件部分

北京邮电大学实验报告题目:基于TIMS通信原理实验报告班级:2009211126班专业:信息工程姓名:成绩:实验1振幅调制(AM)与解调一、实验目的(1)掌握具有离散大载波(AM)调制的基本原理;(2)掌握包络检波器的基本构成和原理;(3)掌握调幅波调制系数的意义和求法。

二、实验原理幅度调制是由DSB-SC AM信号加上一离散的大载波分量(设载波的初始相位φc=0),其表示式为s t=A c1+m t cos2πf c t式中要求基带信号波形m t≤1,使AM信号的包络A c1+m t总是正的,式中的A c cos2πf c t是载波分量A c m t cos2πf c t是DSB-SC AM信号。

定义m n t=m(t)max⁡|m(t)|,|m(t)|≤1a=max m t,|m(t)|≤1称标量因子a为调制系数或调幅系数。

有两种调制方式,调制框图如下AM 信号调制原理框图1AM 信号调制原理框图2 解调原理框图如下AM 信号解调原理框图三、实验步骤1、按如下所示的连接图连接好AM信号调制连接图AM信号解调连接图2、调节加法器上两路输入信号的放大倍数,同时用示波器监测,在保证加法器输出波形不削顶的情况下,调节至交流信号峰值与直流成分之比(即调制系数)为小于1、等于1、大于1,观察调制信号和解调信号波形图;3、观察滤波器输入输出波形的变化,分析原因。

四、实验结果音频振荡器的输出频率调整为1kHZ,直流电压幅度调整为1V。

a<1时,基带与调制信号波形如下调制与解调输出调制与解调信号调制与解调信号五、实验讨论可以看出,AM信号在调制系数a<1,a=1,a>1的情况下,分别有不同的包络形状。

当a<1或a<1时可以恢复成原信号,而在a>1的情况下产生幅度翻转的现象,无法恢复成原信号。

若用同步检波的方法,则需在接收端先进行载波提取操作,然后经过乘法器和低通滤波器,最后通过隔直流电路即可。

北邮通信原理软件实验报告

北邮通信原理软件实验报告

北邮通信原理软件实验报告北邮通信原理软件实验报告一、实验目的本次实验旨在加深对通信原理知识的理解,并通过实际操作掌握常用通信原理技术。

二、实验内容及原理本次实验分为三项实验内容:1、FSK解调实验FSK是一种通信调制技术,在数字信号传输领域中比较常用。

FSK解调实验中,我们使用MATLAB软件编写程序,模拟FSK解调过程,了解解调过程中的基本原理。

FSK是通过改变载波频率来传输信息的调制技术。

在数字信号的传输中,我们一般将数字信号分为两种,0和1,然后分别将它们对应到两个频率上,再将这两个频率进行交错发送,接收方通过检测频率的变化来判断发送方的信息。

在FSK解调实验中,我们使用的解调技术是匹配滤波器法。

解调的过程是将接收到的信号经过低通滤波器,合并成一个信号。

2、QAM解调实验QAM是一种把两路模拟信号叠加的数字调制技术,它是组合了ASK和PSK的数字传输技术。

QAM解调实验中,通过MATLAB软件仿真的方法,模拟QAM解调过程,了解解调过程中的基本原理。

QAM技术是将两路数模合成的模拟信号进行数字化处理,将两路模拟信号进行分别调制成两个独立的数字信号,然后将这两个数字信号通过载波同步合成一个数字信号进行传输。

在QAM解调实验中,我们使用的解调技术是相干解调。

解调的过程是将接收到的信号经过相干解调器解调,得到原始的时域信号,然后通过低通滤波器进行滤波。

3、OFDM调试实验OFDM技术是目前广泛应用于高速数据传输的一种技术,它是通过将信号分成多个子载波进行传输,提高频率利用率,并实现抗多径衰落的效果。

OFDM调试实验中,我们通过软件界面和Matlab代码相结合,模拟OFDM调制和解调过程,了解其中的基本原理。

OFDM技术是通过将原始信号分成多个子信道,每个子信道独立传输,最终将其合并成整个信号。

因此,在OFDM模式下,每个子信道的公共频率就成为可利用的带宽,提高了传输率并减少了所需的带宽。

在OFDM调试实验中,我们使用了MATLAB软件进行调制和解调。

北邮scilab_通信原理软件实验报告

北邮scilab_通信原理软件实验报告

信息与通信工程学院通信原理软件实验报告实验二时域仿真精度分析一、实验目的1. 了解时域取样对仿真精度的影响2. 学会提高仿真精度的方法二、实验原理一般来说,任意信号s(t)是定义在时间区间(-无穷,+无穷)上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。

为此将把s(t)按区间[-T/2 ,+T/2 ]截短为按时间间隔dert T均匀取样,得到的取样点数为N=T/dert T.仿真时用这个样值集合来表示信号s(t)。

Dert T反映了仿真系统对信号波形的分辨率,越小则仿真的精确度越高。

据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,其重复周期是1/t;。

如果信号的最高频率为那么必须有才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。

设则称为仿真系统的系统带宽。

如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于这的信号或系统。

换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*Bs,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。

也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。

三、实验步骤1.将正弦波发生器模块、示波器模块、时钟模块按下图连接:四、实验结果对比分析时钟设置0.01,得到的结果如下:时钟设置0.3,以后得到的结果如下:五、思考题(1)观察分析两图的区别,解释其原因。

答:因为信号周期是1,而第一个图的采样周期是0.01,所以一个周期内能采样100个点,仿真出来的波形能较精确地显示成完整波形,而第二个图采样周期是0.3,所以一个周期内只有三个采样点,故信号失真了。

(2)将示波器的控制时钟的period的参数改为0.5,观察仿真结果,分析其原因。

结果如下:可见,此时根本没有信号显示了。

北京邮电大学通信原理软件实验报告

北京邮电大学通信原理软件实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告实验一:验证抽样定理一、实验目的1、掌握抽样定理2. 通过时域频域波形分析系统性能二、实验原理低通滤波器频率与m(t)相同三、实验步骤1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。

2. 连接各模块完成系统,同时在必要输出端设置观察窗。

3. 设置各模块参数。

三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。

抽样信号频率设置为28hz,即2*14hz。

(由抽样定理知,)将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。

3.观察基带信号、抽样后的信号、最终恢复的信号波形四、实验结果最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。

五、实验讨论从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。

抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。

由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。

讨论:若抽样速率少于每秒2次,会出现什么情况?答:会产生失真,这种失真被称为混叠失真。

六、实验建议、意见增加改变抽样率的步骤,观察是否产生失真。

实验二:奈奎斯特第一准则一、实验目的(1)理解无码间干扰数字基带信号的传输;(2)掌握升余弦滚降滤波器的特性;(3)通过时域、频域波形分析系统性能。

二、实验原理在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。

因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。

奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。

通信原理实验报告

通信原理实验报告

通信原理实验教程(北京邮电大学出版社出版图书):《通信原理实验教程》是2009年北京邮电大学出版社出版的图书,作者是杨鸿文、桑林、徐春秀、庞沁华。

内容简介:《通信原理实验教程》是通信原理实验课程的教材,内容涵盖三大方面:通信系统的Matlab仿真;模拟通信和数字通信实验;高斯最小移频键控调制器实验。

通过实验,使学生受到科学实验的基本训练,并掌握通信系统仿真和数字处理的硬件实现新方法。

《通信原理实验教程》适用于高等院校本科通信工程、信息工程、电子工程等专业。

也可供工程科技人员参考。

图书目录:第1章通信系统的Matlab仿真实验1.1引言1.2信号与系统在仿真中的表示1.2.1仿真建模1.2.2时域采样及频域采样1.2.3傅里叶变换1.2.4功率谱密度1.2.5线性系统1.2.6冲激脉冲的仿真1.2.7实验1.2.8思考题1.3高斯噪声与随机数据的产生1.3.1白高斯噪声1.3.2随机二进制序列1.3.3多进制随机数1.3.4实验1.3.5思考题1.4调制1.4.1 SSB调制1.4.2 FM调制1.4.3等效基带仿真1.4.4数字调制1.4.5实验1.4.6思考题1.5数字基带信号1.5.1 PAM信号1.5.2升余弦滚降PAM信号1.5.3眼图1.5.4 NRZ及RZ信号1.5.5 AMI码1.5.6实验1.5.7思考题1.6误码率仿真1.6.1误码率1.6.2二进制系统的误码率1.6.3高阶调制的误码率1.6.4 ISI信道的误码率1.6.5实验1.6.6思考题1.7信道编码1.7.1线性分组码1.7.2循环码1.7.3实验1.7.4思考题第2章通信系统实验2.1引言2.2实验一:双边带抑制载波调幅(DSB-SC AM)2.2.1实验目的2.2.2 DSB-SC AM信号的产生及相干解调原理2.2.3 DSB-SC AM信号的产生2.2.4 DSB-SC AM信号的相干解调及载波提取2.3实验二:具有离散大载波的双边带调幅(AM)2.3.1实验目的2.3.2 AM信号的产生及解调原理2.3.3 AM信号的产生2.3.4 AM信号的非相干解调2.4实验三:调频(FM)2.4.1实验目的2.4.2 FM信号的产生及锁相环解调原理2.4.3 FM信号的产生2.4.4 FM信号的锁相环解调2.5实验四:线路码的编码与解码2.5.1实验目的2.5.2各线路码的信号波形2.5.3实验2.6实验五:时钟恢复2.6.1实验目的2.6.2时钟提取的原理2.6.3从RZ-AMI码恢复时钟2.6.4从BIP-RZ码或者UNI-RZ码恢复时钟2.7实验六:眼图2.7.1实验目的2.7.2观察眼图的作用2.7.3眼图实验2.8实验七:采样、判决2.8.1实验目的2.8.2采样、判决的原理2.8.3实验2.9实验八:二进制通断键控(OOK)2.9.1实验目的2.9.2 OOK信号的产生及其解调原理2.9.3 OOK信号的产生2.9.4 00K信号的非相干解调2.10实验九:二进制移频键控(2FSK)2.10.1实验目的2.10.2 2FSK信号的产生及解调原理2.10.3连续相位2FSK信号的产生2.10.4连续相位2FSK信号的锁相环解调2.11实验十:二进制移相键控(2PSK)及差分移相键控(DPSK)2.11.1实验目的2.11.2 2PSK及DPSK2.11.3 DPSK信号的产生2.11.4 DPSK信号的相干解调2.12实验十一:信号星座2.12.1实验目的2.12.2 MPSK及MQAM信号的矢量表示及其信号星座图2.12.3信号星座图实验2.13实验十二:低通信号的采样与重建2.13.1实验目的2.13.2低通信号的采样与重建的原理2.13.3采样与重建2.14实验十三:脉冲幅度调制与时分复用2.14.1实验目的2.14.2 PAM与TDM的原理2.14.3 PAM/TDM信号的产生2.14.4 PAM/TDM信号的分路2.15通信系统实验报告要求第3章高斯最小移频键控调制器实验3.1实验目的3.2实验内容3.3实验原理3.3.1 GMSK调制器工作原理及相位路径的计算3.3.2数字信号处理方法实现GMSK调制器3.4实验步骤3.4.1设计相位路径的余弦表与正弦表3.4.2仿真眼图的编程及其检验3.4.3设计地址逻辑3.5实验结果观察3.5.1实验仪器3.5.2观察实验结果3.6实验报告3.7 GMSK调制器实验箱介绍3.7.1 GMSK调制器实验连接框图3.7.2实验箱组成3.7.3实验箱电路图及工作原理附录TIMS实验系统部分模块说明一、频率计数器(FREQUENCY/EVENTC()UNTER)二、主信号发生器(MASTERSIGNALS)三、耳机放大器和低通滤波器(HEADPHONEAMPUFIERANDLPF)四、缓冲放大器(BUFFERAMPLIFIER)五、可变直流电源(VARIABLEDC)六、示波器显示选择器(SCOPESELECTOR)七、干线汇聚板(TRUNKSPANEL)八、加法器(ADDER)九、音频振荡器(AUDIOOSCILLATOR)十、双模拟开关(DUALANALOGSWITCH)十一、乘法器(MULTIPLIER)十二、移相器(PHASESHIFTER)十三、正交分相器(QUADRATUREPHASESPLITTER)十四、公用模块(UTILITIESMODULE)十五、序列码发生器(SEQUENCEGENERATOR)十六、双脉冲发生器(TWINPULSEGENERATOR)十七、多电平编码器(M-LEVELENCODER)十八、多电平译码器(M-LEVELDECODER)十九、压控振荡器(VCO)二十、可调低通滤波器(TUNEABLELPF)二十一、判决模块(DECISIONMAKER)二十二、基带信道滤波器(BASEBANDCHANNLEFLITTER)二十三、误码计数(ERRORCOUNTINGUTILITIES)二十四、线路码与部分响应编码器(LINECODE&PARTIALRESPONSEENCODE)二十五、线路码与部分响应解码器(LINECODE&PARTIALRESPONSEDECODE)二十六、噪声发生器(NOISEGENERATOR)二十七、100kHz带通信道滤波器(100kHzPASSBANDCANNELFILTER)二十八、频谱分析器(SPECTRUMANALYSERUTILITIES)二十九、积分和清零(INTEGRATE&DUMP)三十、比特时钟重建器(BITCLOCKREGENERATl0N)三十一、正交功能模块(QUADRATUREUTILITIES)。

北京邮电大学通信原理软件实验报告

北京邮电大学通信原理软件实验报告

《通信原理软件》实验报告专业通信工程班级 2011211118姓名朱博文学号 2011210511报告日期 2013.12.20基础实验:第一次实验实验二时域仿真精度分析一、实验目的1. 了解时域取样对仿真精度的影响2. 学会提高仿真精度的方法二、实验原理一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。

为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。

△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。

据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。

设为仿真系统的系统带宽。

如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。

换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。

也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。

三、实验内容1、方案思路:通过改变取点频率观察示波器显示信号的变化2、程序及其注释说明:3、仿真波形及频谱图:Period=0.01Period=0.34、实验结果分析:以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。

四、思考题1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更多2.改为0.5后显示为一条直线,因为取点处函数值均为0实验三频域仿真精度分析一、实验目的理解DFT 的数学定义及物理含义;学会应用FFT 模块进行频谱分析;进一步加深对计算机频域仿真基本原理以及方法的学习掌握。

北邮-通信工程-微机原理与接口技术-硬件实验-实验报告

北邮-通信工程-微机原理与接口技术-硬件实验-实验报告

北邮-通信工程-微机原理与接口技术-硬件实验-实验报告实验一I/O地址译码一、实验目的掌握I/O地址译码电路的工作原理。

二、实验原理和内容1、实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台上数字电路实验区的D触发器,74LS138为地址译码器。

译码输出端Y0~Y7在实验台上“I/O 地址“输出端引出,每个输出端包含8个地址,Y0:280H~287H,Y1:288H~28FH,…… ,当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。

例如:执行下面两条指令MOV DX,2A0HOUT DX,AL(或IN AL,DX)Y4输出一个负脉冲;执行下面两条指令MOV DX,2A8HOUT DX,AL(或IN AL,DX)Y5输出一个负脉冲。

利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔通过软件延时实现。

2、接线:Y4/IO地址接CLK/D触发器Y5/IO地址接CD/D触发器D/D触发器接SD/D角发器接+5VQ/D触发器接L7(LED灯)或逻辑笔三、硬件接线图与软件程序流程图1、硬件接线图2、软件程序流程图开始Y4输出一个负脉冲调用延时子程序Y5输出一个负脉冲调用延时子程序否CX-1=0?是结束,返回DOS四、源程序DATA SEGMENTDATA ENDSSTACK SEGMENT STACK 'STACK'DB 100H DUP(?)STACK ENDSCODE SEGMENTASSUME CS:CODE,DS:DATA,SS:STACKDELAY1 P ROC NEAR ;延时子程序MOV BX,500HPUSH CXLOOP2: MOV CX,0FFFHWAIT1: LOOP WAIT1DEC BXJNZ LOOP2POP CXRETDELAY1 E NDP;L7闪烁START: MOV CX,0FFFFH ;最大可循环次数LOOP1: MOV DX,2A0H ;灯亮OUT DX,ALCALL DELAY1MOV DX,2A8H ;灯灭OUT DX,ALCALL DELAY1LOOP LOOP1 ;循环闪烁CODE ENDSEND START五、实验结果灯L7闪烁,一段时间后停止。

北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告

北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告班级:2013211124专业:信息工程姓名:曹爽成绩:目录实验一:抽样定理 (3)一、实验目的 (3)二、实验要求 (3)三、实验原理 (3)四、实验步骤和结果 (3)五、实验总结和讨论 (9)实验二:验证奈奎斯特第一准则 (10)一、实验目的 (10)二、实验要求 (10)三、实验原理 (10)四、实验步骤和结果 (10)五、实验总结和讨论 (19)实验三:16QAM的调制与解调 (20)一、实验目的 (20)二、实验要求 (20)三、实验原理 (20)四、实验步骤和结果 (21)五、实验总结和讨论 (33)心得体会和实验建议 (34)实验一:抽样定理一、 实验目的1. 掌握抽样定理。

2. 通过时域频域波形分析系统性能。

二、 实验要求改变抽样速率观察信号波形的变化。

三、 实验原理一个频率限制在0f 的时间连续信号()m t ,如果以012S T f的间隔进行等间隔均匀抽样,则()m t 将被所得到的抽样值完全还原确定。

四、 实验步骤和结果1. 按照图1.4.1所示连接电路,其中三个信号源设置频率值分别为10Hz 、15Hz 、20Hz ,如图1.4.2所示。

图1.4.1 连接框图图1.4.2 信号源设置,其余两个频率值设置分别为15和202.由于三个信号源最高频率为20Hz,根据奈奎斯特抽样定理,最低抽样频率应为40Hz,才能恢复出原信号,所以设置抽样脉冲为40Hz,如图1.4.3。

图1.4.3 抽样脉冲设置3.之后设置低通滤波器,设置数字低通滤波器为巴特沃斯滤波器(其他类型的低通滤波器也可以,影响不大),截止频率设置为信号源最高频率值20Hz,如图1.4.4。

图1.4.4 滤波器设置4.为了仿真效果明显,设置系统时间如图1.4.5所示。

图1.4.5 系统时间设置5.之后开始仿真,此时选择抽样速率恰好等于奈奎斯特抽样频率,仿真结果如图1.4.6所示,图中最上面的Sink4是相加后的输入信号波形,中间的Sink8是输入信号乘以抽样脉冲之后的波形,最下面的Sink9是低通滤波恢复后的波形。

北邮通信原理实验GMSK

北邮通信原理实验GMSK
end;
coslowbin=zeros(1,1024*8);
sinlowbin=zeros(1,1024*8);
cossinbin=zeros(1,1024*8);
fori=1:1024 coslowbin(i*8-7)=coslow(i);
北京邮电大学
通信原理实验课实验报告
专业:通信工程
*******
班级:信通院21班
学号:**********
*******
一.实验目的
1、通过利用数字基带处理方法来实现高斯最小移频键控(GMSK)调制器算法的基带硬件实验,对通信系统硬件实现有新的认识及新的思路。
2、掌握MAX+plusII 及可编程器件的应用。
end
s=s*pi+L*pi/2;
sm(k)=s;
plot(tm,sm)
end
试运行一下,令L=5,bn=1 -1 1 -1 1,可得图像如下:
产生 及 表的程序:
functioncco=sincos()
aaa=zeros(32,5);
foru1=0:31,
b=dec2base(u1,2,5);
foru2=1:5,aaa(u1+1,u2)=bin2dec(b(u2))*2-1;
end
end
si=floor((si+1)*512);
co=floor((co+1)*512);
ssi=zeros(1024,10);
cco=zeros(1024,10);
cs=zeros(1,10);
cc=zeros(1,10);
fort1=1:128,
fort2=1:8,
cs=dec2base(si(t1,t2),2,10);

北邮通信原理实验-推荐下载

北邮通信原理实验-推荐下载
图1 实验连接图方式一 2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整冲 放大器的K1,使其输出到乘法器的电压振幅为1V。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

北邮通信基础学习知识原理软件实验报告

北邮通信基础学习知识原理软件实验报告

北邮通信原理软件实验报告题目:基于SYSTEMVIEW通信原理实验报告目录实验一:抽样定理 (2)一、实验目的 (2)二、实验原理 (2)三、实验步骤 (4)四、实验结果 (6)五、实验讨论 (9)实验二:验证奈奎斯特第一准则 (10)一、实验目的 (10)二、实验原理 (10)三、实验步骤 (13)四、实验结果 (14)五、实验讨论 (18)实验三:16QAM调制与解调 (21)一、实验目的 (21)二、实验原理 (22)三、实验步骤 (25)四、实验结果 (27)五、实验讨论 (33)实验意见与建议 (34)实验一:抽样定理一、实验目的1、验证抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

2、降低或提高抽样频率,观察对系统的影响二、实验原理抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

抽样定理示意图:图一抽样定理示意图从图中可以看出,当f c≥2f m时,不会发生频域混叠现象,使用一个匹配的低通滤波器即可无失真的恢复出原信号,当f c<2f m时,会发生频域混叠现象,这时,已经无法将原信号恢复出来。

实验所需模块连接图如下所示:图二模块连接图仿真时长设置为1Sec,仿真速率为1000Hz。

首先利用三个正弦波信号源产生三个正弦波,其频率分别为10hz,12hz,14hz,再利用脉冲发生器产生抽样脉冲,将脉宽设置为1e-3sec,脉冲频率分别设置为20hz,30hz,40hz。

对三个信号做加法,所得信号的最高频率为14hz,然后令该信号与抽样脉冲相乘,得到的结果即为时间离散的抽样序列。

最后将抽样序列通过五阶巴特沃斯低通滤波器,截止频率14hz,将恢复信号与原信号作比较,比较不同抽样频率带来的影响。

北邮通信原理软件实验报告材料

北邮通信原理软件实验报告材料

北邮通信原理软件实验报告题目:基于SYSTEMVIEW通信原理实验报告目录实验一:抽样定理 (2)一、实验目的 (2)二、实验原理 (3)三、实验步骤 (4)四、实验结果 (6)五、实验讨论 (9)实验二:验证奈奎斯特第一准则 (10)一、实验目的 (10)二、实验原理 (10)三、实验步骤 (13)四、实验结果 (14)五、实验讨论 (18)实验三:16QAM调制与解调 (21)一、实验目的 (21)二、实验原理 (22)三、实验步骤 (25)四、实验结果 (27)五、实验讨论 (33)实验意见与建议 (34)实验一:抽样定理一、实验目的1、验证抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

2、降低或提高抽样频率,观察对系统的影响二、实验原理抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

抽样定理示意图:图一抽样定理示意图从图中可以看出,当f f≥2f f时,不会发生频域混叠现象,使用一个匹配的低通滤波器即可无失真的恢复出原信号,当f f<2f f时,会发生频域混叠现象,这时,已经无法将原信号恢复出来。

实验所需模块连接图如下所示:图二模块连接图仿真时长设置为1Sec,仿真速率为1000Hz。

首先利用三个正弦波信号源产生三个正弦波,其频率分别为10hz,12hz,14hz,再利用脉冲发生器产生抽样脉冲,将脉宽设置为1e-3sec,脉冲频率分别设置为20hz,30hz,40hz。

对三个信号做加法,所得信号的最高频率为14hz,然后令该信号与抽样脉冲相乘,得到的结果即为时间离散的抽样序列。

最后将抽样序列通过五阶巴特沃斯低通滤波器,截止频率14hz,将恢复信号与原信号作比较,比较不同抽样频率带来的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北邮通信原理实验报告北京邮电大学通信原理实验报告学院:信息与通信工程学院班级:姓名:姓名:实验一:双边带抑制载波调幅(DSB-SC AM)一、实验目的1、了解DSB-SC AM信号的产生以及相干解调的原理和实现方法。

2、了解DSB-SC AM信号波形以及振幅频谱特点,并掌握其测量方法。

3、了解在发送DSB-SC AM信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。

4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。

二、实验原理DSB 信号的时域表达式为()()cos DSB c s t m t t ω=频域表达式为1()[()()]2DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示DSB-SC AM 信号的产生及相干解调原理框图如下图所示将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。

DSB—SC AM信号的解调只能采用相干解调。

为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。

收端可用锁相环来提取导频信号作为恢复载波。

此锁相环必须是窄带锁相,仅用来跟踪导频信号。

在锁相环锁定时,VCO输出信号sin(2πf c t+φ)与输入的导频信号cos(2πf c t)的频率相同,但二者的相位差为(φ+90°),其中很小。

锁相环中乘法器的两个输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到[A C m(t)cos(2πf c t)+A p cos(2πf c t)]∙sin(2πf c t+φ)=A c2m(t)[sinφ+sin(4πf c t+φ)]+A p2[sinφ+sin(4πf c t+φ)]在锁相环中的LPF带宽窄,能通过A p2sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。

LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。

锁定后的VCO输出信号sin(2πf c t+φ)经90度移相后,以cos(2πf c t+φ)作为相干解调的恢复载波,它与输入的导频信号cos(2πf c t)同频,几乎同相。

相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号[A C m(t)cos(2πf c t)+A p cos(2πf c t)]∙cos(2πf c t+φ)=A c2m(t)[cosφ+cos(4πf c t+φ)]+A p2[cosφ+cos(4πf c t+φ)]经过低通滤波可以滤除四倍载频分量,而A p2cosφ是直流分量,可以通过隔直流电路滤除,于是输出为A c2m(t)cosφ。

三、实验框图1、根据原理图得到产生DSB-SC AM信号的实验连接框图如图所示2、DSB-SC AM信号的相干解调及载波提取实验连接图3、测量VCO的压控灵敏度四、实验步骤1、DSB—AC信号的产生(1)将音频振荡器输出的模拟音频信号及住振荡器输出的100KHZ模拟载频信号分别用连线联结至乘法器的两个输入端。

(2)用示波器观看音频振荡器输出信号的信号波形的幅度和振荡频率,调整为10KHZ,作为均值为0的调制信号m(t)。

(3)用示波器观看主振荡器输出波形的幅度及振荡频率。

(4)用示波器观看乘法器的输出波形,并注意已调信号波形的相位翻转与调制信号波形的关系。

(5)测量已调信号的振幅频谱,注意其振幅频谱的特点。

(6)将已调信号和导频分量加到加法器的两个输入端,调整加法器上的参数G 和g,使其与实际相符。

观看输出波形及其频谱。

具体调整方法如下:a.首先调整增益G:将加法器的B输入接地端接地,A输入端接已调信号,用示波器观看加法器A输入端的信号幅度与加法器输出信号幅度。

调节旋钮G,使得加法器输出幅度与输入一致,说明此时G=1b.再调整增益g:加法器A输入端仍接已调信号,B输入端接导频信号。

用频谱仪观看加法器输出信号的振幅频谱,调节增益g旋钮,使导频信号振幅频谱的幅度为已调信号的边带频谱幅度的0.8倍。

此导频信号功率约为已调信号功率的0.32倍。

2、DSB—AC信号的相干解调及其载波提取(1)锁相环的调试:VCO模块及其框图如上述实验框图所示。

将VCO模块前面板上的频率选择开关拨到HI载波频段的位置,VCO的VIN输入端暂不接信号。

用示波器观看VCO的输出波形及工作频率,然后旋转VCO模块前面板上的f0按钮,改变VCO中心频率,其频率范围约为70~130KHz。

然后将可变直流电压模块的DC输出端与VCO模块的VIN相连接,双踪示波器分别接于VCO输出端及DC输入端。

a.当直流电压为0时,调整VCO模块的f0按钮,使VCO的中心频率f0为100KHz。

b.从-2V至+2V改变直流电压,观察VCO的频率及其线性工作范围。

c.调节VCO的GAIN旋钮,使得在可变直流电压为±1V时的VCO频率频偏为±10KHz。

值得注意的是,不同GAIN值对应不同的VCO压控灵敏度。

(2)单独测量锁相环中的相乘、低通滤波器的工作是否正常按下图所示的电路图进行试验,即锁相环处于开环状态。

锁相环中的LPF输出端不要接至VCO的输入端。

此时,下图中的乘法器相当于混频器。

在实验中,将另一VCO作为信号源输入乘法器。

改变信源VCO的中心频率,用示波器观看锁相环中的相乘、低通滤波的输出信号,它应该是输入信号与VCO输出信号的差拍信号。

(3)测量锁相环的同步带及捕捉带将载频提取的锁相环闭环连接,仍使用另一VCO作为输入于锁相环的信号源,如下图所示。

首先将信号源VCO的中心频率调到比100KHz小很多的频率,是锁相环处于失锁状态(示波器输出为交变波形)。

调节信号源VCO,使其频率由低往高缓慢变化。

当示波器呈现的信号波形由交变信号变为直流信号时,说明锁相环由失锁状态进入了锁定状态,记录输入信号的频率f2。

继续将信源的频率往高调节,环路电压跟着变化,直到从示波器见到的信号波形由直流突变为交流信号,说明锁相环失锁,记录此时的输入信号频率f4.再从f4开始,将输入信号频率从高往低调,记录再次捕捉到同步时的频率f3.继续向低调节频率,直到再次失锁,记录频率f1。

上述过程可反复进行几次。

同步带∆f1=f4−f1捕捉带 ∆f2=f3−f2(4)恢复载波a) 将图中的锁相环按上述过程调好,在按照指导书图示实验连接,将加法器输出信号接至锁相环的输出端。

将移相器模块印刷电路板上的频率选择开关拨到HI位置。

b) 用示波器观察锁相环的LPF输出信号是否是直流信号,以此判断载波提取PLL是否处于锁定状态。

若锁相环锁定,用双踪示波器可以观察发端导频信号与锁相环VCO输出的信号时候同步的,二者的相应相位差为,且很小。

若锁相环失锁,则锁相环LPF输出波形是交流信号,可缓慢调节锁相环VCO模块的旋钮,直至锁相环LPF输出为直流,即锁相环由失锁进入锁定,继续调接旋钮,使LPF输出的直流电压约为0电平。

c) 在确定锁相环提取载波成功后,利用双踪示波器分别观察发端的导频信号及收端载波提取锁相环中VCO的输出经移相后的信号波形,调节移相器模块中的移相旋钮,达到移相,使输入于相干解调的恢复载波与发来的导频信号不仅同频,也基本同相。

d) 用频谱仪观测恢复载波的振幅频谱,并加以分析。

(5)相干解调a) 在前述实验的基础上,将信号和恢复载波分别连接至相干解调的乘法器的输入端。

b) 用示波器观察相干解调相乘、低通滤波后的输出波形。

c) 改变发端音频信号的频率,观察输出波形的变化。

五.实验结果与分析(1)dsb-sc am信号的产生1、音频振荡器输出调制信号波形,频率为10KHz2、主振荡器输出信号波形,频率为100KHz3、乘法器输出DSB-SC信号波形乘法器输出信号包络为调制信号,音频信号零点位置存在相位翻转。

4、乘法器输出频谱由图可看出,dsb-sc am 信号在100kHz 处并无频谱分量,仅在左右各偏移10kHz 处存在信号,与理论分析一致。

5、加法器输出波形与频谱6、加法器输出频谱kHz20406080100120140dB -60-50-40-30-20-10012M ay 2015 20:39kHz20406080100120140dB -60-50-40-30-20-10012M ay 2015 20:36从图可以看出,在100KHz位置为导频信号,两边为已调信号。

导频信号振幅频谱的幅度为已调信号频谱的边带频谱幅度的0.8倍,导频信号功率约为已调信号的0.8*0.8/2=0.32倍。

(2) DSB-SC AM信号的相干解调及载波提取1、调整VCO中心频率为100kHz2、测试同步带和捕捉带直流电压为+-2v频率可变直流电压为+-1v时,VOC频率偏移为+-10khz测量得出f1=94.37K f2=96.15K f3=104.2K f4=106.4K 同步带∆f1=f4−f1=12.03K捕捉带 ∆f2=f3−f2=8.05K3、锁相环相乘.4、解调输出波形解调输出的波形与输入波形基本同频同相,仅在幅度上有偏差。

5.恢复载波用锁相环提取载波提取载波的频谱图六、思考题1、说明DSB-SC AM 信号波形的特点 答: DSB-SC 为双边带调幅,是只传输两个边带的调制方式。

双边带调制是实现频谱搬移,其波形振幅随着调制信号变化,但与普通调幅波不同,它的包络不再反映调制信号的波形,而是在零值上下变化,并且在调制信号等于0的瞬间,书岸边带调幅波的高频振荡相位可能出现180度的相位突变。

经幅度调制后,基带信号的频谱被搬移到了载频fc 处。

若模拟基带信号带宽为W ,则调幅信号带宽为2W ,因为在频域中输出此调幅信号s(t)的信道带宽B=2W 。

2、画出已调信号加导频的振幅频谱,算出导频信号功率与已调信号功率之比。

答:由图可知,导频信号功率与已调信号功率的百分比为31.2%,接近理论值32%。

3、实验中载波提取的锁相环中的LPF 能不能用TIMS 系统中的“TUNEABLE LPF ”? 答:不能,TUNEABLE LPF 中WIDE 一项中带宽的滤波范围是2kHz-12kHz ,输出信号频率可能大于范围被滤掉导致结果错误,所以不能使用。

4、若本实验中的音频信号为1kHz ,请问实验系统所提供的PLL 能否用来提取载波?为什么?答:不能,因为锁相环的截止频率为2.8kHz ,如果音频信号为1kHz 则锁相环会跟踪音频信号,造成信号失真。

5、若发端不加导频,收端提取载波还有其他方法吗?请画出框图 答:使用平方环法或科斯塔斯环法提取。

平方环法框图:kHz20406080100120140dB -60-50-40-30-20-10012M ay 2015 20:36科斯塔斯环法框图:实验二:具有离散大载波的双边带调幅(AM )一、实验目的1、了解AM 信号的产生原理和实现方法。

相关文档
最新文档