北师大版九年级上第二章一元二次方程测试卷含参考答案

合集下载

北师大数学九年级上册《第二章一元二次方程》检测卷(含答案)

北师大数学九年级上册《第二章一元二次方程》检测卷(含答案)

第二章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是( ) A .3x 2+1x=0 B .2x -3y +1=0C .(x -3)(x -2)=x 2D .(3x -1)(3x +1)=32.一元二次方程x 2-8x -1=0配方后可变形为( )A .(x +4)2=17B .(x +4)2=15C .(x -4)2=17D .(x -4)2=153.方程(x -1)(x +3)=12化为ax 2+bx +c =0的形式后,a ,b ,c 的值分别为( ) A .1,2,-15 B .1,-2,-15 C .-1,-2,-15 D .-1,2,-154.要使代数式3x 2-6的值等于21,则x 的值是( ) A .3 B .-3 C .±3 D .± 35.方程x 2-2x +3=0的根的情况是( ) A .有两个相等的实数根 B .只有一个实数根 C .没有实数根 D .有两个不相等的实数根6.方程3x 2-2=1-4x 的两个根的和为( ) A.43 B.13 C .-23 D .-437.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n 人参加聚会,根据题意可列出方程为( )A.n (n +1)2=20 B .n (n -1)=20 C.n (n -1)2=20 D .n (n +1)=208.一个等腰三角形的两边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或99.若关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A .1B .-1C .1或-1D .210.如图,在一次函数y =-x +6的图象上取一点P ,作PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且矩形PBOA 的面积为5,则在x 轴上方满足上述条件的点P 个数共有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方程(x-3)2=4化为一般形式,其中二次项为_______,一次项系数为_______,常数项为________.12.若一元二次方程ax2-bx-2017=0有一根为x=-1,则a+b=_______.13.已知关于x的一元二次方程x2-23x-k=0有两个相等的实数根,则k的值为_____.14.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是_______.15.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是_________.16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数,则这个两位数是___________.17.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,则x2+3x的值为_______.18.已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=_________.三、解答题(共66分)19.(12分)用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x2-2x=2;(4)x(x-7)=8(7-x).20.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.21.(8分)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2-4x+6=(x_____)2+______,所以当x=_____时,代数式x2-4x+6有最_____(填“大”或“小”)值,这个最值为_______;(2)比较代数式x2-1与2x-3的大小.22.(8分)如图,在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.23.(10分)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1,x2是原方程的两根,且|x1-x2|=22,求m的值.24.(10分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.鑫都小商品市场为增加销售量,决定降价销售.根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?25.(12分)如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q 以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P ,Q 两点从开始出发多长时间时,四边形PBCQ 的面积是33 cm 2?(2)P ,Q 两点从开始出发多长时间时,点P 与点Q 之间的距离是10 cm?第二章答案1.D 2.C 3.A 4.C 5.C 6.D 7.B8.A 解析:∵x 2-7x +10=0,∴(x -2)(x -5)=0,∴x 1=2,x 2=5.若等腰三角形的三边为2,5,5,则2+5>5,满足三角形三边关系,此时周长为12;若等腰三角形的三边为2,2,5,则2+2<5,不满足三角形三边关系,舍去.故选A.9.B 解析:依题意得Δ=(3a +1)2-8a (a +1)>0,∴a 2-2a +1>0,∴(a -1)2>0,∴a ≠1.∵关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1-x 1x 2+x 2=1-a ,∴3a +1a -2(a +1)a=1-a ,解得a =±1.∴a =-1.故选B.10.C 解析:根据题意,可设点P 的坐标为(x ,-x +6).∵点P 在x 轴上方,∴y >0,即-x +6>0,x <6.∵矩形PBOA 的面积为5,∴|x |(-x +6)=5,即x (-x +6)=5或-x (-x +6)=5,解得x 1=1,x 2=5,x 3=3+14,x 4=3-14.∵3+14>6,∴符合要求的点P 共有3个.故选C.11.x 2 -6 5 12.2017 13.-3 14.3 -415.k >12且k ≠1 16.25或3617.1 解析:∵(x 2+3x )2+2(x 2+3x )-3=0,∴(x 2+3x +3)(x 2+3x -1)=0,∴x 2+3x +3=0或x 2+3x -1=0,而x 2+3x +3=0时,Δ=-3<0,∴x 2+3x =1.18.8 解析:由已知得m 2+2m -5=0,∴m 2=5-2m ,∴m 2-mn +3m +n =5-2m -mn +3m +n =m +n -mn +5.根据根与系数的关系,得m +n =-2,mn =-5,∴原式=-2-(-5)+5=8.19.解:(1)两边开平方,得6x -1=±5,即6x -1=5或6x -1=-5,∴x 1=1,x 2=-23;(3分) (2)移项,得x 2-4x =-1,配方,得x 2-4x +4=-1+4,即(x -2)2=3,两边开平方,得x -2=±3,即x -2=3或x -2=-3,∴x 1=2+3,x 2=2-3;(6分)(3)将原方程化为一般形式,得x 2-2x -2=0.∴b 2-4ac =(-2)2-4×1×(-2)=10,∴x =2±102×1,∴x 1=2+102,x 2=2-102;(9分)(4)移项,得x (x -7)+8(x -7)=0,变形,得(x -7)(x +8)=0,∴x -7=0或x +8=0,∴x 1=7,x 2=-8.(12分)20.解:设该种药品平均每次降价的百分率是x ,(1分)根据题意得200(1-x )2=98,(3分)解得x 1=1.7(不合题意,舍去),x 2=0.3=30%.(5分)答:该种药品平均每次降价的百分率是30%.(6分) 21.解:(1)-2 2 2 小 2(5分)(2)∵x 2-1-(2x -3)=x 2-2x +2=(x -1)2+1>0,∴x 2-1>2x -3.(8分)22.解:设花边的宽度为x m ,(1分)依题意得(2-2x )(1.4-2x )=1.6,(3分)解得x 1=1.5,x 2=0.2.(5分)∵2-2x >0,1.4-2x >0,∴x <0.7,∴x =0.2.(7分)答:花边的宽度为0.2m.(8分)23.(1)证明:∵Δ=(m +3)2-4(m +1)=m 2+2m +5=(m +1)2+4>0,(2分)∴无论m 取何值,原方程总有两个不相等的实数根;(4分)(2)解:∵x 1,x 2是原方程的两根,∴x 1+x 2=-(m +3),x 1x 2=m +1.(6分)∵|x 1-x 2|=22,∴(x 1-x 2)2=8,(7分)∴(x 1+x 2)2-4x 1x 2=8,(8分)∴(-m -3)2-4(m +1)=8,整理,得m 2+2m -3=0,解得m 1=1,m 2=-3.(10分)24.解:(1)100-x 200+2x 800-200-(200+2x )(3分)(2)根据题意得100×200+(100-x )(200+2x )+50[800-200-(200+2x )]-60×800=9200,(5分)解得x 1=20,x 2=-70(舍去).(8分)当x =20时,100-x =80>60,符合题意.(9分)答:十月份的销售单价应是80元.(10分)25.解:(1)设P ,Q 两点从开始出发x s 时,四边形PBCQ 的面积是33cm 2.(1分)则由题意得12×(16-3x +2x )×6=33,(2分)解得x =5.(3分)∵16÷3=163>5,∴x =5符合题意.(4分)故P ,Q 两点从开始出发5s 时,四边形PBCQ 的面积是33cm 2;(5分) (2)设P ,Q 两点从开始出发y s 时,点P 与Q 之间的距离是10cm.(6分)过点Q 作QH ⊥AB 于H ,∴∠QHA =90°.∵四边形ABCD 是矩形,∴∠A =∠D =90°,∴四边形ADQH 是矩形,∴AH =DQ =(16-2y )cm ,QH =AD =6cm ,∴当P 点在H 点上方时,PH =AH -AP =16-2y -3y =(16-5y )(cm);当P 点在H 点下方时,PH =AP -AH =3y -(16-2y )=(5y -16)(cm),∴PH =|16-5y |cm.(8分)在Rt △PQH 中,根据勾股定理得PH 2+QH 2=PQ 2,即(16-5y )2+62=102,(9分)解得y 1=1.6,y 2=4.8.(10分)∵16÷3=163,∴y 1=1.6和y 2=4.8均符合题意.(11分)故P ,Q 两点从开始出发1.6s 或4.8s 时,点P 与点Q 之间的距离是10cm.(12分)。

北师大版九年级上册第2章《一元二次方程》测试卷 含答案

北师大版九年级上册第2章《一元二次方程》测试卷   含答案

2020年北师大版九年级上册第2章《一元二次方程》测试卷满分120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列方程一定是一元二次方程的是()A.3x2+﹣1=0B.5x2﹣6y﹣3=0C.ax2﹣x+2=0D.3x2﹣2x﹣1=0 2.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A.3,﹣4,﹣5B.3,﹣4,5C.3,4,5D.3,4,﹣53.用配方法解方程x2﹣4x﹣4=0,下列变形正确的是()A.(x﹣2)2=2B.(x﹣2)2=4C.(x﹣2)2=6D.(x﹣2)2=8 4.方程3x2﹣5x+1=0的解,正确的是()A.B.C.D.5.下列方程中,没有实数根的是()A.x2﹣2x﹣3=0B.(x﹣5)(x+2)=0C.x2﹣x+1=0D.x2=16.若a为方程x2﹣x﹣5=0的解,则﹣a2+a+11的值为()A.16B.12C.9D.67.若a2+6a+b2﹣4b+13=0,则a b的值是()A.8B.﹣8C.9D.﹣98.三角形的两边长分别为4和5,第三边的长是方程x2﹣12x+20=0的根.则三角形的周长()A.19B.11成19C.13D.119.关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,则a的值为()A.﹣3B.0C.1D.﹣3 或010.以下是某风景区旅游信息:旅游人数收费标准不超过30人人均收费80元超过30人增加1人,人均收费降低1元,但人均收费不低于50元根据以上信息,某公司组织一批员工到该风景区旅游,支付给旅行社2800元,从中可以推算出该公司参加旅游的人数为()A.38B.40C.42D.44二.填空题(共6小题,满分24分,每小题4分)11.当m=时,方程(m﹣2)x|m|+(m﹣3)x+5=0是一元二次方程.12.方程(x﹣3)(x+2)=0的根是.13.若关于x的一元二次方程(a+4)x2+2x+a2﹣16=0有一个根为0,则a的值为.14.若关于x的一元二次方程x2+2x﹣k=0有不相等实数根,则k的取值范围是.15.已知a,b是方程x2+2x=2的两个实数根,则+=.16.疫情期间,学校利用一段已有的围墙(可利用的围墙长度仅有5米)搭建一个矩形临时隔离点ABCD,如图所示,它的另外三边所围的总长度是10米,矩形隔离点的面积为12平方米,则AB的长度是米.三.解答题(共8小题,满分66分)17.(8分)解方程:(1)5x2﹣3x=x+1;(2)x(x﹣2)=3x﹣6.18.(6分)如图,幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周未铺地毯的条形区域的宽度是多少米?19.(8分)已知关于x的方程(k+1)x2+(3k﹣1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若此方程有两个整数根,求正整数k的值;(3)若抛物线y=(k+1)x2+(3k﹣1)x+2k﹣2与x轴的两个交点之间的距离为3,求k 的值.20.(8分)2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元销售了256袋,三、四月该口罩十份畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?21.(8分)适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.22.(8分)如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s 的速度向点终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点终点C运动,它们到达终点后停止运动.(1)几秒后,点P、D的距离是点P、Q的距离的2倍;(2)几秒后,△DPQ的面积是24cm2.23.(10分)先仔细阅读材料,再尝试解决问题:通过上学期对有理数的乘方的学习,我们知道x2≥0,本学期学习了完全平方公式后,我们知道a2±2ab+b2=(a±b)2,所以(a±b)2≥0,这一性质在数学中有着广泛的应用,比如,探究多项式2x2+4x﹣5的最小值时,我们可以这样处理:解:原式=2(x2+2x)﹣5=2(x2+2x+12﹣12)﹣5=2[(x+1)2﹣12]﹣5=2(x+1)2﹣2﹣5=2(x+1)2﹣7因为(x+1)2≥0,所以2(x+1)2﹣7≥0﹣7,即2(x+1)2﹣7≥﹣7所以2(x+1)2﹣7的最小值是﹣7,即2x2+4x﹣5的最小值是﹣7请根据上面的探究思路,解答下列问题:(1)多项式5(x﹣3)2+1的最小值是;(2)求多项式4x2﹣16x+3的最小值;(3)求多项式x2+6x+y2﹣4y+20的最小值.24.(10分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、是分式方程,故A错误;B、是二元二次方程,故B错误;C、a=0时,是一元一次方程,故C错误;D、是一元二次方程,故D正确;故选:D.2.解:一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是3,﹣4,﹣5.故选:A.3.解:∵x2﹣4x﹣4=0,∴x2﹣4x=4,则x2﹣4x+4=4+4,即(x﹣2)2=8,故选:D.4.解:∵a=3,b=﹣5,c=1,∴△=25﹣4×3×1=13>0,∴x=,故选:B.5.解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意;B.方程(x﹣5)(x+2)=0的两根分别为x1=5,x2=﹣2,不符合题意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;D.方程x2=1的两根分别为x1=1,x2=﹣1,不符合题意;故选:C.6.解:∵a为方程x2﹣x﹣5=0的解,∴a2﹣a﹣5=0,∴a2﹣a=5,﹣a2+a+11=﹣(a2﹣a)+11=﹣5+11=6故选:D.7.解:已知等式变形得:(a2+6a+9)+(b2﹣4b+4)=0,即(a+3)2+(b﹣2)2=0,可得a+3=0,b﹣2=0,解得:a=﹣3,b=2,则原式=(﹣3)2=9.故选:C.8.解:∵x2﹣12x+20=0,∴x=2或x=10,当x=2时,∵2+4>5,∴能组成三角形,∴三角形的周长为2+4+5=11,当x=10时,∵4+5<10,∴不能组成三角形,故选:D.9.解:∵关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,∴x1•x2=a=1.故选:C.10.解:因为30×80=2400<2800,所以人数超过30人;设参加这次旅游的人数为x人,依题意可知:x[80﹣(x﹣30)]=2800,解之得,x=40或x=70,当x=70时,80﹣(x﹣30)=80﹣40=40<50,故应舍去,即:参加这次旅游的人数为40人.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:∵方程(m﹣2)x|m|+(m﹣3)x+5=0是一元二次方程,∴|m|=2且m﹣2≠0,解得m=﹣2.故答案是:﹣2.12.解:∵(x﹣3)(x+2)=0.∴x﹣3=0或x+2=0,解得:x=3或x=﹣2,故答案为:x=3或x=﹣2.13.解:把x=0代入关于x的一元二次方程(a+4)x2+2x+a2﹣16=0,得a2﹣16=0,解得:a=4或﹣4,∵a+4≠0,a≠﹣4,∴a=4.故答案为:4.14.解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴b2﹣4ac=4﹣4×1×(﹣k)=4+4k>0,∴k>﹣1.故答案为:k>﹣1.15.解:原方程可变形为x2+2x﹣2=0.∵a、b是方程x2+2x=2的两个实数根,∴a+b=﹣2,ab=﹣2,∴+===1.故答案为:1.16.解:设AB=x米,则BC=(10﹣2x)米,根据题意可得,x(10﹣2x)=12,解得x1=3,x2=2(舍去),∴AB的长为3米.故答案为:3.三.解答题(共8小题,满分66分)17.解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.18.解:设四周未铺地毯的条形区域的宽度是xm,依题意,得:(8﹣2x)(5﹣2x)=18,整理,得:2x2﹣13x+11=0,解得:x1=1,x2=.又∵5﹣2x>0,∴x<,∴x=1.答:四周未铺地毯的条形区域的宽度是1m.19.解:(1)当k=﹣1时,方程为﹣4x﹣4=0是一元一次方程,有一个实数根;当k≠﹣1时,△=(3k﹣1)2﹣4(k+1)(2k﹣2)=(k﹣3)2≥0,此时方程有两个实数根.综上所述,无论k取何值,此方程总有实数根.(2)∵,∴x1=﹣1,,∵方程的两个根是整数,∴k+1=±1,±2,±4,又∵k为正整数,∴k=1或3.(3)依题意得x1﹣x2=3或x2﹣x1=3,当时,k=﹣3;当时,k=0.故k=﹣3或0.20.解:(1)设三、四这两个月销售量的月平均增长率为x,依题意,得:256(1+x)2=400,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:三、四这两个月销售量的月平均增长率为25%.(2)设口罩每袋降价y元,则五月份的销售量为(400+40y)袋,依题意,得:(14﹣y﹣8)(400+40y)=1920,化简,得:y2+4y﹣12=0,解得:y1=2,y2=﹣6(不合题意,舍去).答:当口罩每袋降价2元时,五月份可获利1920元.21.解:(1)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得:10x2﹣7x+2=0,△=b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.22.解:(1)设t秒后点P、D的距离是点P、Q距离的2倍,∴PD=2PQ,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴PD2=AP2+AD2,PQ2=BP2+BQ2,∵PD2=4 PQ2,∴82+(2t)2=4[(10﹣2t)2+t2],解得:t1=3,t2=7;∵t=7时10﹣2t<0,∴t=3,答:3秒后,点P、D的距离是点P、Q的距离的2倍;(2)设x秒后△DPQ的面积是24cm2,则×8×2x+(10﹣2x)•x+(8﹣x)×10=80﹣24,整理得x2﹣8x+16=0解得x1=x2=4,答:4秒后,△DPQ的面积是24cm2.23.解:(1)∵(x﹣3)2≥0,∴5(x﹣3)2+1≥1,∴多项式5(x﹣3)2+1的最小值是1,故答案为:1;(2)4x2﹣16x+3=4(x2﹣4x)+3=4(x2﹣4x+22﹣22)+3=4[(x﹣2)2﹣4]+3=4(x﹣2)2﹣16+3=4(x﹣2)2﹣13,∵(x﹣2)2≥0,∴4(x﹣2)2﹣13≥﹣13,∴多项式4x2﹣16x+3的最小值为﹣13;(3)x2+6x+y2﹣4y+20=x2+6x+9+y2﹣4y+4+7=(x+3)2+(y﹣2)2+7,∵(x+3)2≥0,(y﹣2)2≥0,∴(x+3)2+(y﹣2)2+7≥7,∴多项式x2+6x+y2﹣4y+20的最小值为7.24.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(3)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.一元二次方程2x2−4x−5=0的一次项系数是()A.2 B.−4C.5 D.42.关于x的方程x2−mx−6=0的一个根为x=−3,则实数m的值为()A.−1B.1 C.−5D.53.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.y=14x2B.(x−3)2=−4C.(x+3)2=4D.(x−3)2=44.方程中x(x−1)=0的根是()A.x1=0,x2=−1B.x1=0C.x1=x2=0D.x1=x2=15.如果关于x的一元二次方程x2−4x−k=0有两个不相等的实数根,则k的取值范围是()A.k<−4B.k>−4C.k<4且k≠0D.k>−4且k≠06.下列一元二次方程的两个实数根之和为−3的是()A.x2+2x−3=0B.x2−3x+3=0C.x2+3x−5=0D.x2+3x+5=07.毕业前夕,班主任王老师让每一位同学为班级的其他同学发送祝福短信,全班一共发送870条,这个班级的学生总人数是()A.40B.30C.29D.398.已知方程x2−7x+12=0的两根是x1,x2,则1x1+1x2的值是()A.−112B.112C.−712D.712二、填空题(每题2分,共10分)9.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.10.已知方程x2−6x+q=0可以配方成(x−p)2=7的形式,那么p−q=.11.关于x的一元二次方程(k−1)x2−2x−1=0有两个实数根,则k的取值范围是.12.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.13.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.三、计算题(共10分)14.解方程:(1)(x+2)2=x+2(2)3x2+2x−3=0四、解答题(共56分)15.已知关于x的一元二次方程x2−(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.16.关于x的一元二次方程x2+(2m−1)x+m2=0有实数根.(1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.17.淄博烧烤风靡全国.某烧烤店今年5月份的盈利额为15万元,7月份的盈利额达到21.6万元,如果每月增长的百分率相同.(1)求该烧烤店这两个月的月均增长率.(2)若该烧烤店盈利的月增长率继续保持不变,预计8月份盈利多少万元?18.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每件降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则每件童服装应降价多少元?(2)该店铺每周可能盈利10000元吗?请说明理由.参考答案1.B2.A3.C4.B5.B6.C7.B8.D9.110.111.k≥0且k≠112.1213.514.(1)解:x2+4x+4−x−2=0.x2+3x+2=0(x+1)(x+2)=0.∴x1=−1x2=−2(2)解:a=3b=2c=−3 b2−4ac=4+36=40>0.∴x=−2±√406=−2±2√106∴x1=−1+√103x2=−1−√10315.(1)证明:Δ=(m+3)2−4(m+2)=m2+6m+9−4m−8=m2+2m+1=(m+1)2≥0∴无论m为何值,方程总有两个实数根.(2)解:x=m+3±(m+1)2,则x1=m+2,x2=1,又方程两根均为正整数,则m+2>0m>−2,所以负整数m=−1.16.(1)解:∵关于x的一元二次方程x2+(2m−1)x+m2=0有实数根∴Δ=(2m−1)2−4×1×m2=−4m+1≥0解得:m≤14.(2)解:∵x1,x2是一元二次方程x2+(2m−1)x+m2=0的两个实数根∴x1+x2=1−2m,x1x2=m2∴x12+x22=(x1+x2)2−2x1x2=7,即(1−2m)2−2m2=7整理得:m2−2m−3=0解得:m1=−1,m2=3.又∵m≤14∴m=−1.17.(1)解:设该烧烤店这两个月盈利额的月均增长率为x根据题意得:15(1+x)2=21.6解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该烧烤店这两个月盈利额的月均增长率为20%;(2)解:根据题意得:21.6×(1+20%)=25.92(万元).答:预计8月份盈利25.92万元.18.(1)解:设每件童服装应降价x元根据题意,得(80﹣50﹣x)(200+20x)=7500整理,得x2﹣20x+75=0解得x1=5,x2=15∵尽可能让利于顾客∴x=15答:每件童服装应降价15元;(2)解:该店铺每周不可能盈利10000元,理由为:设该店铺每周可能盈利10000元,则(80﹣50﹣x)(200+20x)=10000 整理,得x2﹣20x+200=0∵Δ=(﹣20)2﹣4×200=﹣400<0∴所列方程没有实数根故该店铺每周不能盈利10000元.。

北师大版九年级数学上册第二章《一元二次方程》训练试题和答案

北师大版九年级数学上册第二章《一元二次方程》训练试题和答案

九上专题训练《一元二次方程》含答案一.选择题(共8小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0 B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0 D.ax2+bx+c=02.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=23.利用求根公式求的根时,a,b,c的值分别是()A.5,,6 B.5,6,C.5,﹣6,D.5,﹣6,﹣4.已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣2 B.k≥﹣2且k≠﹣1 C.k≥2 D.k≤﹣25.a是方程x2+x﹣1=0的一个根,则代数式a3+2a2+2018的值是()A.2018 B.2019 C.2020 D.20216.若(a2+b2﹣3)2=25,则a2+b2=()A.8或﹣2 B.﹣2 C.8 D.2或﹣8 7.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a (x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5 8.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.3﹣3 C.3﹣2 D.3﹣二.填空题(共5小题)9.用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac=,x1=,x2=.10.关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,当m=时为一元二次方程.11.填上适当的数,使下列各式配方成立:(1)x2﹣x+ =(x﹣)2;(2)x2+ +=(x+ )2;(3)x2﹣2x+ =(x﹣)2;(4)2x2﹣12x+5=2(x﹣)2﹣.12.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是.13.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=.三.解答题(共8小题)14.按要求解下列方程(1)用配方法解方程:2x2﹣3x﹣3=0;(2)用公式法解方程:(x+1)(x﹣3)=2x﹣5.15.当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.16.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.17.阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对俩式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10 ∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB= 1反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范图;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.专题训练:一元二次方程参考答案与试题解析一.选择题(共8小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0 B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0 D.ax2+bx+c=0【解答】解:A,2x2﹣+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x﹣2=0,故不是一元二次方程;C,5x2﹣1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.2.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=2 【解答】解:由原方程移项,得x2﹣6x=7,等式两边同时加上一次项系数一半的平方32,得x2﹣6x+32=7+32,∴(x﹣3)2=16;故选:A.3.利用求根公式求的根时,a,b,c的值分别是()A.5,,6 B.5,6,C.5,﹣6,D.5,﹣6,﹣【解答】解:由原方程,得5x2﹣6x,根据一元二次方程的定义,知二次项系数a=5,一次项系数b=﹣6,常数项c=;故选:C.4.已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣2 B.k≥﹣2且k≠﹣1 C.k≥2 D.k≤﹣2【解答】解:根据题意得k+1≠0且△=22﹣4×(k+1)×(﹣1)≥0,解得k≥﹣2且k≠﹣1.故选:B.5.a是方程x2+x﹣1=0的一个根,则代数式a3+2a2+2018的值是()A.2018 B.2019 C.2020 D.2021【解答】解:由题意可知:a2+a﹣1=0,∴a2+a=1,∴原式=a3+a2+a2+2018=a(a2+a)+a2+2018=a+a2+2018,=1+2018=2019,故选:B.6.若(a2+b2﹣3)2=25,则a2+b2=()A.8或﹣2 B.﹣2 C.8 D.2或﹣8【解答】解:由(a2+b2﹣3)2=25,得a2+b2﹣3=±5,所以a2+b2=3±5,解得a2+b2=8或a2+b2=﹣2(不合题意,舍去).故选:C.7.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a (x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.8.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.3﹣3 C.3﹣2 D.3﹣【解答】解:x2+6x+m=0,x2+6x=﹣m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为﹣3=3﹣3.故选:B.二.填空题(共8小题)9.用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac=41 ,x1=,x2=.【解答】解:2x2﹣7x+1=0,a=2,b=﹣7,c=1,∴b2﹣4ac=(﹣7)2﹣4×2×1=41,∴x==,∴x1=,x2=,故答案为:41,,.10.关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,当m=﹣1 时为一元二次方程.【解答】解:∵关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,为一元二次方程,∴,解得:m=﹣1.11.填上适当的数,使下列各式配方成立:(1)x2﹣x+=(x﹣)2;(2)x2+ p +=(x+)2;(3)x2﹣2x+=(x﹣)2;(4)2x2﹣12x+5=2(x﹣ 3 )2﹣13 .【解答】解:(1)x2﹣x+=(x﹣)2;(2)x2+p+=(x+)2;(3)x2﹣2x+=(x2﹣x+)=(x﹣)2;(4)2x2﹣12x+5=2(x2﹣6x+9﹣9)+5=2(x﹣3)2﹣13.故答案为:(1),;(2)p,;(3),;(4)3,13.12.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是.【解答】解:解方程x2+3x﹣3=0的根是x=,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,因而方程x2+3x﹣3=0的一个根的相反数是方程x2﹣3x+m=0的一个根,则x2﹣3x+m=0的根是﹣即.故本题答案为x2﹣3x+m=0的根是.13.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=2或﹣1 .【解答】解:∵min{(x﹣1)2,x2}=1,当x=0.5时,x2=(x﹣1)2,不可能得出最小值为1,∴当x>0.5时,(x﹣1)2<x2,则(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x﹣1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,综上所述:x的值为:2或﹣1.故答案为:2或﹣1.三.解答题(共8小题)14.按要求解下列方程(1)用配方法解方程:2x2﹣3x﹣3=0;(2)用公式法解方程:(x+1)(x﹣3)=2x﹣5.【解答】解:(1)x1=+,x2=﹣.(2)(x+1)(x﹣3)=2x﹣5,由原方程,得x2﹣4x+2=0,则a=1,b=﹣4,c=2,所以x==2±,故x1=2﹣,x2=2+.15.当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.【解答】解:原方程可化为(m2﹣1)x2+(m﹣1)x﹣4=0,(1)当m2﹣1≠0,即m≠±1时,是一元二次方程;(2)当m2﹣1=0,且m﹣1≠0,即m=﹣1时,是一元一次方程;(3)x=﹣2时,原方程化为:2m2﹣m﹣3=0,解得,m1=,m2=﹣1.16.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 ,=14 ,=194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.17.阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对俩式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10 ∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB= 1反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范图;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.【解答】解:(1)根据材料一;∵(﹣)×(+)=(20﹣x)﹣(4﹣x)=16∵﹣=2,∴+=8,∴=5=3∴解得:x=﹣5∴y=2x+6(﹣2≤x≤1)(2)①解:由材料二知:=\sqrt{{(x}^{2}﹣2x+1)+({y}^{2}﹣16y+64)}==\sqrt{{(x}^{2}+4x+4)+({y}^{2}﹣4y+4)}==.∴可将的值看作点(x,y)到点(1,8)的距离的值看作点(x,y)到点(﹣2,2)的距离∴=+.∴当代数式取最小值即点(x,y)与点(1,8),(﹣2,2)在同一条直线上,并且点(x,y)位点(1,8)(﹣2,2)的中间∴的最小值===3且﹣2≤x≤1设过(x,y),(1,8),(﹣2,2)的直线解析式为:y=kx+b∴解得:∴y=2x+6(﹣2≤x≤1)②:∵y=+中∵y=2x+6∴+=2x+6 ①又∵(+)(﹣)=2x2+5x+12﹣(2x2+3x+6)=2x+6∴﹣=1 ②由①+②式得:=x+解得:x1=>1(舍)x2=∴x 的值为1﹣。

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。

北师大版九年级数学上册 第二章一元二次方程 综合测试卷(含答案)

北师大版九年级数学上册 第二章一元二次方程  综合测试卷(含答案)

北师版九年级数学上册 第二章一元二次方程综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.用公式法解方程x 2+3x =1时,先求出a ,b ,c 的值,则a ,b ,c 的值依次为( ) A .1,3,1B .1,3,-1C .-1,-3,-1D .-1,3,12.关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根为0,则实数a 的值为( ) A .-1 B .0 C .1 D .-1或1 3.用配方法解下列方程,配方错误的是( ) A .x 2+2x -99=0,化为(x +1)2=100 B .t 2-7t -4=0,化为(t -72)2=654C .2x 2-4x -3=0,化为(x -1)2=12D .3x 2-4x -2=0,化为(x -23)2=1094.方程(x +1)2=0的根是( ) A .x 1=x 2=1 B .x 1=x 2=-1 C .x 1=-1,x 2=1 D .无实根5.已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( ) A .4 B .-4 C .3 D .-36. 在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ) A .x(x -1)=10 B .x x -12=10 C .x(x +1)=10D .x x +12=10 7.设x 1,x 2是方程x 2-4x +m =0的两个根,且x 1+x 2-x 1x 2=1,那么m 的值为( ) A .2 B .-3 C .3D .-28.已知菱形ABCD 的边长是5,两条对角线AC ,BD 相交于点O ,且AO ,BO 的长恰好是关于x 的方程x 2+(2m -1)x +m 2+3=0的两根,则m 的值为( )9.如图,矩形ABCD 是由三个矩形拼接成的,如果AB =8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为( )A .2B .3C .4D .610.若关于x 的方程ax 2+(a +2)x +14a =0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,那么实数a的取值范围是( )A .a <-1B .-1<a <0C .a >-89D .-89<a <0二.填空题(共8小题,3*8=24)11.方程(x -10)(x +1)=-3x 2+2的二次项系数是,一次项系数是,常数项是.12. 已知关于x 的一元二次方程x 2+kx -6=0有一个根为-3,则方程的另一个根为.13.直角三角形两条直角边的长的比是5∶12,斜边的长为130 cm ,则这个直角三角形的面积是cm 2.14.方程x 2-4x +3=0的解是 .15.有一人患了流感,经过两轮传染共有169人患了流感,每轮传染中平均一人传染了 人. 16.如果1与3是方程x 2+px +q =0的两个根,那么p = ,q = .17.若关于x 的一元二次方程(k -1)x2+4x +1=0有两个不相等的实数根,则k 的取值范围是_________________.18.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,上述记号叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x -1 -32 x -1=7,则x = .三.解答题(共7小题, 66分) 19.(8分) 用恰当的方法解方程: (1)(x +1)2=3(x +1); (2)(x -3)(x +2)=6.20.(8分) 现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,求该快递公司投递快递总件数的月平均增长率.21.(8分) 关于x的方程2x2-(a2-4)x-a+1=0.(1)a为何值时,方程的一根为0?(2)a为何值时,两根互为相反数?22.(10分) 如图,一块长和宽分别为40厘米和25厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?23.(10分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长,宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.24.(10分)设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等的实数根x1,x2.(1)若1x1+1x2=1,求13-2m的值;(2)求mx11-x1+mx21-x2-m2的最大值.25.(12分) 如图,AO=BO=50 cm,OC是一条射线,OC⊥AB于点O,一只蚂蚁由点A以2 cm/s 的速度向B爬行,同时另一只蚂蚁由点O以3 cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只蚂蚁与点O组成的三角形的面积为450 cm2?若存在,请说明在什么时刻;若不存在,请说明理由.参考答案1-5 BACBA 6-10BCADD11. 4,-9,-1212. 213. 300014. x=1或x=315. 1216. -4,317. k<5且k≠118. 0或219. 解:(1)原方程可化为x+1x+1-3=0,即x+1x-2=0,∴x+1=0或x-2=0.解得x1=-1,x2=2.(2)原方程可化为x2-x-12=0,即x+3x-4=0,∴x+3=0或x-4=0.解得x1=-3,x2=4.20. 解:设该快递公司投递快递总件数的月平均增长率为x,根据题意,得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意,舍去).∴该快递公司投递快递总件数的月平均增长率为10%21. 解:(1)由方程的一根为0可得-a+1=0,∴a=1(2)设方程的两根分别为x1,x2,∵两根互为相反数,∴x1+x2=0.∴a2-42=0.∴a=±2.∵当a=-2时,方程2x2-(a2-4)x-a+1=0无解,∴a=222. 解:设纸盒的高是x厘米,则长方体底面的长和宽分别是(40-2x)厘米和(25-2x)厘米.由题意,得(40-2x)(25-2x)=450,即2x2-65x+275=0,解得x 1=5,x 2=552(不合题意舍去).答:纸盒的高是5厘米.23. 解:(1)设矩形的长为x 厘米,则宽为(28-x)厘米, 依题意,有x(28-x)=180, 解得x 1=10(舍去),x 2=18. 则28-x =28-18=10,∴矩形的长和宽分别为18厘米,10厘米 (2)设矩形的长为y 厘米,则宽为(28-y)厘米, 依题意,有y(28-y)=200, 化简,得y 2-28y +200=0,∴Δ=282-4×200=784-800=-16<0, ∴原方程无实数根.故不能围成一个面积为200平方厘米的矩形 24. 解:(1)∵方程有两个不相等的实数根,∴Δ=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0, ∴m <1.结合题意知-1≤m <1.由根与系数的关系可知x 1+x 2=-2(m -2),x 1x 2=m 2-3m +3. (1)1x 1+1x 2=x 1+x 2x 1x 2=-2(m -2)m 2-3m +3=1, 解得m 1=1-52,m 2=1+52(不合题意,舍去),∴13-2m=5-2 (2)mx 11-x 1+mx 21-x 2-m 2=m (x 1+x 2)-2mx 1x 21-(x 1+x 2)+x 1x 2-m 2=-2(m -1)-m 2 =-(m +1)2+3≤3, ∴最大值为325. 解:存在.有两种情况:(1)如图①,当蚂蚁在AO 上运动时,设x s 后两只蚂蚁与O 点组成的三角形面积为450 cm 2, 由题意,得12×3x×(50-2x)=450,整理,得x 2-25x +150=0, 解得x 1=15,x 2=10(2)如图②,当蚂蚁在OB 上运动时,设x s 后,两只蚂蚁与O 点组成的三角形面积为450 cm 2, 由题意,得12×3x(2x -50)=450,整理,得x 2-25x -150=0, 解得x 1=30,x 2=-5(舍去).答:在15 s 或10 s 或30 s 时,两蚂蚁与点O 组成的三角形的面积均为450 cm 2。

北师大版数学九年级上册 第二章:一元二次方程 测试和答案

北师大版数学九年级上册 第二章:一元二次方程 测试和答案

北师大版数学九上第二章:一元二次方程测试及答案一.选择题:(每小题3分共36分)1.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3B.ax2+bx+c=0C. D.3x2﹣2xy﹣5y2=0【答案】A解选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;选项B,当a=0时,该方程不是一元二次方程,故本选项错误;选项C,该方程不是整式方程,故本选项错误;选项D,该方程属于二元二次方程,故本选项错误;故选A.2.用配方法解下列方程时,配方有错误的是()A.化为B.化为C.化为D.化为【答案】B解A项,根据配方法,知A项正确;B项,系数化为1得,根据配方法得,故B 项错误;C项,根据配方法,知C项正确;D项,根据配方法,知D项正确.故选B.3.下列实数中,是方程 的根的是( )A.1B.2C.3D.4【答案】B解移项得x 2=4,开方得x=±2, ∴x 1=2,x 2=-2.故选B .4.下列方程没有实数根的是( )A.x²+ 4x = 10B.3x² + 8x - 3 = 0C.x² - 2x + 3 = 0D.(x - 2)(x - 3) = 12【答案】C解:A 、方程变形为:x 2+4x−10=0,△=42−4×1×(−10)=56>0,所以方程有两个不相等的实数根,故A 选项不符合题意;B 、△=82−4×3×(−3)=100>0,所以方程有两个不相等的实数根,故B 选项不符合题意;C 、△=(−2)2−4×1×3=−8<0,所以方程没有实数根,故C 选项符合题意;D 、方程变形为:x 2−5x−6=0,△=52−4×1×(−6)=49>0,所以方程有两个不相等的实数根,故D 选项不符合题意.故选:C .5.用公式法解一元二次方程243x x -=时,下列计算24b ac -的结果中,正确的是( ) A .4B .28C .20D .4-【答案】B解:原方程可变形为2430x x --=,可知1a =,4b =-,3c =-,所以224(4)41(3)161228b ac -=--⨯⨯-=+=.故选B .6.一元二次方程 的根为( )A.0B.3C.0或﹣3D.0或3【答案】C解方程x(x+3)=0,可得x=0或x+3=0,解得:x 1=0,x 2=−3.故选C.7.若等腰三角形的底和腰是方程 的两个根,则这个三角形的周长为() A.9 B.12 C.9或12 D.不能确定【答案】B解方程 得x 1=2,x 2=5,∵三角形为等腰三角形,∴腰为5,底为2,(腰为2,底为5舍去)故周长为12,故选B.8.已知关于 的一元二次方程 没有实数根,则实数 的取值范围是()A. B. C. D.【答案】A解根据题意得△=(-2)2-4m <0,解得m >1.故选A .9.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是( )A .20021x +()=2500B .200(1+x )+20021x +()=2500 C .20021x ()-=2500 D .200+200(1+x )+20021x +()=2500 【答案】B解由题意可得,200(1+x)+200(1+x) ²=2500,故选B.10.如图,由点()141P ,,()0A a ,,()0B a ,,()014a <<确定的PAB △的面积是18,则a 的值是( ).A .3B .5C .12D .3或12【答案】D 解:过点P 作PH x ⊥轴交于点H ,∵点()141P ,,()0A a ,,()0B a ,, ∴OB=OA=a ,AH=14,PH=1,∵PAB ABO PAH OBPH S S S S ∆∆∆=--梯形, ∴2111(1)141(14)18222a a a +⨯⨯--⨯⨯-=, ∴230156a a +=-解得:3a =或12,故选:D .11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )A .5个B .6个C .7个D .8个【答案】B解设这个航空公司共有x 个飞机场,依题意得1x(x 1)152-=, 解得16x =,25x =-(不符合题意,舍去),所以这个航空公司共有6个飞机场.故选B .12.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( )A .a b c ==B .a b =C .b c =D .a c =【答案】D解把x=−1代入方程20(a 0)++=≠ax bx c 得出a−b+c=0,∴b=a+c ,∵方程有两个相等的实数根,∴△=24b ac -=22()()4=0a c ac a c --=+,∴a=c ,故选D .二、填空题:(每小题3分共36分)13.已知关于x 的方程x 2-2ax+1=0有两个相等的实数根,则a=____.【答案】1±解:∵关于x 的方程x 2-2ax+1=0有两个相等的实数根, ∴△=(-2a )2-4×1×1=0,解得:a=±1. 故答案为:±1. 14.(鞍山中考)对于实数a ,b ,我们定义一种运算“※”为:a ※b=a 2-ab ,例如:1※3=12-1×3.若x ※4=0,则_____【答案】x=0或4.【解析】试题解析:∵x ※4=0,240x x ∴-=,∴x (x −4)=0,∴x =0,x −4=0,∴x =0或4,故答案为:∴x =0或4.15.一个两位数,个位上的数字是十位上的数字的2倍,且这个数等于个位上的数字的平方,设十位上的数字为x ,则列方程为____.【答案】2102(2)x x x +=解设十位是x,则个位是2x ,所以这个数是10x+2x ,列出方程2102(2)x x x +=.16.如图,在△ABC 中,AC =50 cm ,BC =40 cm ,∠C =90°,点P 从点A 开始沿AC 边向点C 以2 cm/s 的速度匀速移动,同时另一点Q 从点C 开始以3 cm/s 的速度沿着射线CB 匀速移动,当△PCQ 的面积等于300 cm 2时,运动时间为__________.【答案】5s解设x 秒后,△PCQ 的面积等于300cm 2,有:(50-2x )×3x=300, ∴x 2-25x+50=0,∴x 1=5,x 2=20.当x=20s 时,CQ=3x=3×20=60>BC=40,即x=20s 不合题意,舍去. 答:5秒后,△PCQ 的面积等于300cm 2.三、解答题:(共52分)17.解方程:(1)267-=-x x ;(2)2523x x -=-【答案】(1)x 1,x 2.(2)x 1=13,x 2=-2. 解(1)267-=-x x2670x x -+=a=1,b=-6,c=7,△=(-6)2-4×1×7=8>0,∴∴x 1,x 2.(2)2523+-=-x x23520x x +-=(3x-1)(x+2)=0∴3x-1=0或x+2=0,解得x 1=13,x 2=-2. 18.已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长.【答案】17.解:x (x −7)−10(x −7)=0,(x −7)(x −10)=0,x−7=0,x−10=0,x1=7,x2=10,分为两种情况:①当三边为3、7、7时,符合三角形三边关系定理,这个三角形的周长为3+7+7=17;②当三边为3、7、10时,3+7=10,不符合三角形三边关系定理,此时不能组成三角形;所以这个三角形的周长为17.19.哈市某专卖店销售某品牌服装,设服装进价为80元,当每件服装售价为240元时,月销售为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每件价格每下降10元时,月销售量就会增加20件,设每件服装售价为x(元),该专卖店的月利润为y(元).(1)求出y与x的函数关系式(不要求写出x的取值范围);(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少?【答案】(1)y=−2x2+840x−54400;(2)售价应定为每件210元,最大利润是33800元. 【解析】解(1)每件服装的利润为x−80元,月销售量为 200+2402010x-⨯,所以月利润:y=(x-80)⋅( 200+2402010x-⨯)=(x−80)(680−2x)=−2x2+840x−54400,所以函数关系式为y=−2x2+840x−54400;(2)y=−2x2+840x−54400=−2(x−210)2+33800所以当x=210时,y最大=33800 .即售价应定为每件210元,最大利润是33800元.答:售价应定为每件210元,最大利润是33800元.20.如图,某农科站有一块长方形试验田,面积为,现要将其分为,,,四个区,其中区为正方形,区的长是,宽是,那么区的面积是多少?【答案】区的面积是100平方米.解:设区正方形的边长为,则矩形的长为,宽为,所以,整理,得,解得,(舍去),所以,答:区的面积是100平方米.21.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2015年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车.(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车进货量不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?【答案】(1)该商城4月份卖出125辆自行车;(2)该商城应购进A型车34辆,B型车13辆.解:(1)设前4个月自行车销量的月平均增长率为a,根据题意列方程:264(1)100a +=,解得1225%a =-(不合题意,舍去),225%a =.100(125%)125⨯+=(辆).答:该商城4月份卖出125辆自行车.(2)设进B 型车x 辆,则进A 型车300001000500x -辆, 根据题意得不等式组 3000010002 2.8500x x x -剟, 解得12.515x 剟,自行车辆数为整数,所以1315x 剟. 销售利润300001000(700500)(13001000)500x W x -=-⨯+-. 整理得10012000W x =-+,∵W 随着x 的增大而减小,∴当13x =时,销售利润W 的最大值. 此时,30000100034500x -=. 所以该商城应购进A 型车34辆,B 型车13辆.22.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?【答案】小赵的设计符合要求.按他的设计养鸡场的面积是143米2.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). 23.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30.解(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥,解这个不等式,得56x ≤,答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件,根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =,即a 的值是30.。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.下列方程中,是一元二次方程的是()A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为()A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为()A.1 B.2 C.−1D.−24.方程x(x−2)=0的解是()A.0 B.2 C.−2D.0或25.若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥-1 B.m≤1C.m≥-1且m≠0 D.m≤1且m≠06.下列一元二次方程中,有两个不相等的实数根的是()A.x2−2x+3=0B.x2+6x+9=0C.4x2=3x+2D.3x2−x+2=07.一次同学聚会,每两人之间互赠1件礼物,共有礼物30件.设x人参加聚会,则可列方程为()A.12x(x+1)=30B.12x(x−1)=30C.x(x+1)=30 D.x(x−1)=308.已知m,n是一元二次方程x2+x−2023=0的两个实数根,则代数式m2+2m+n的值等于()A.2020 B.2021 C.2022 D.2023二、填空题(每题4分,共20分)9.已知关于x的方程(m+2)x m2−2+3x−1=0为一元二次方程,则m的值是.10.用配方法解一元二次方程x2+4x−3=0,配方后的方程为(x+2)2=n,则n的值为.11.一个等腰三角形的底边长为10,腰长是一元二次方程x2−11x+30=0的一个根,则这个三角形的周长是.12.若m,n是一元二次方程x2−3x−1=0的两个根,则m+n+3mn的值为13.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元平均每天可多售出20箱,若要使每天销售饮料获利1440元,则每箱应降价元.三、计算题(共10分)14.解方程:(1)x2−8x−9=0;(2)x2−x−1=0.四、解答题(共46分)15.已知关于x的一元二次方程x2−(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m的值及另一个根.16.已知关于x的一元二次方程x2−2x−m=0有实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且x12+x22=6,求m的值.17.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?18.据某市车管部门统计,2020年底全市汽车拥有量为150万辆,而截至到2022年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2024年底汽车拥有量将达多少万辆?参考答案1.B2.A3.D4.D5.D6.C7.D8.C9.210.711.2212.014.(1)解:x2−8x−9=0(x−9)(x+1)=0 x1=9,x2=−1;(2)解:x2−x−1=0x2−x=1x2−x+14=1+14x2−x+14=54(x−12)2=54x−12=±√52x1=√52+12=1+√52,x2=−√52+12=1−√52.15.(1)证明:由题意得=4m2+4m+1−4m2−4m=1>0∴无论m取何值,方程总有两个不相等的实数根:(2)解:∵关于x的一元二次方程x2−(2m+1)x+m(m+1)=0的一个根为1∴1−(2m+1)+m(m+1)=0∴m2−m=0解得m=0或m=1;当m=0时,原方程为x2−x=0,解得x=0或x=1;当m=1时,原方程为x2−3x+2=0,解得x=1或x=2;综上所述,当m=0时,方程的另一个根为x=0;当m=1时,方程的另一个根为x=2.16.(1)解:∵关于x的一元二次方程x2−2x−m=0有实数根∴△=b2﹣4ac=4+4m≥0解得:m≥﹣1;(2)解:∵x1和x2是方程x2−2x−m=0的两个实数根∵x1+x2=2,x1x2=﹣m∴x12+x22=(x1+x2)2﹣2x1•x2=6∴22+2m=617.(1)解:当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元;(2)解:设每件商品降价x元根据题意,得:(50-x)(30+2x)=2000整理,得:x2−35x+250=0解得:x1=10,x2=25∵商城要尽快减少库存∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.18.(1)解:设该市汽车拥有量的年平均增长率为x.根据题意,得150(1+x)2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)解:216(1+20%)2=311.04(万辆).答:如果不加控制,该市2024年底汽车拥有量将达311.04万辆.。

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程3x2−5=4x中,关于a、b、c的说法正确的是()A.a=3,b=4,c=−5B.a=3,b=−5,c=4C.a=−3,b=−4,c=−5D.a=3,b=−4,c=−52.已知关于x的方程x2+bx−a=0有且只有一个根x=a(a≠0),则b的值为()A.2B.−2C.±2D.以上都不是3.用配方法解方程x2+4x+3=0,变形后的结果正确的是()A.(x+2)2=−1B.(x+2)2=1C.(x+2)2=3D.(x+2)2=74.若α,β是一元二次方程3x2+x−1=0的两个实数根,则3α2+4α+3β+1的值是()A.−1B.1C.2D.−25.方程(m−2)x2−√3−mx+14=0有两个实数根,则m的取值范围()A.m≤52B.m≤52且m≠2C.m≥3D.m≤3且m≠26.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1(a,m,b均为常数a≠0),则方程a(x+3+m)2+ b=0的解是()A.−1或−4B.−2或1C.1或3D.−5或−27.已知关于x的一元二次方程x2−kx+2k−1=0的两个实数根分别为x1、x2,且x12+x22=7,那么(x1−x2)2的值为()A.13或−11B.13C.−11D.118.如果△ABC有两边的长是方程x2−7x+12=0的根,第三边的长是方程x2−12x+35=0的根,那么△ABC的周长为()A.14B.12C.12或14D.以上都不对二、填空题9.已知关于x的一元二次方程2x2−4x+3=0的两个实数根分别是α,β;则(α+1)(β+1)=.10.某等腰三角形的一边长为3,另外两边长是关于x的方程x2−12x+k=0的两根,则k=;11.若a是一元二次方程x2−2023x+1=0的一个根,则代数式a2−2022a+2023a2+1的值为。

新北师大版数学九年级上第二章一元二次方程检测题含答案

新北师大版数学九年级上第二章一元二次方程检测题含答案

新北师大版数学九年级上第二章一元二次方程检测题含答案第二章检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共30分)1.在下列方程中,关于X的一元二次方程是(a)11a、 3(x+1)2=2(x+1)b.2+-2=0xx二百二十二c.ax+bx+c=0d.x+2x=x-12.方程(x-2)(x+3)=0的解是(d)a、 x=2b.x=3c.x1=2,x2=3d.x1=2,x2=-33.如果a是方程2x2-x-3=0的解,则6a2-3a的值为(c)a.3b。

-3c。

9d.-94.用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是(b)a.(x-1)2=2b.(x-1)2=4c.(x-1)2=1d.(x-1)2=75.下列一元二次方程中,没有实根的是(c)一a.x2+2x-3=0b.x2+x+=0c.x2+2x+1=0d.-x2+3=0四6.解方程(x+1)(x+3)=5较为合适的方法是(c)a.直接开平方法b.配方法c、公式法或公式法D.因式分解法7。

假设一元二次方程x2-3x-1=0的两个根分别为X1和x2,那么x12x2+x1x22的值为(a)a.-3b。

3c.-6D。

6.8.某县政府2021年投资0.5亿元用于保障性住房建设,计划到2021年投资保障性住房建设的资金为0.98亿元,如果从2021年到2021年投资此项目资金的年增长率相同,那么年增长率是(b)a、 30%b.40%c.50%d.10%9.有一块长32cm,宽24cm的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是(c)a、 2cmb.3cmc.4cmd.5cm10.如图,正方形abcd的边长为4,点e在对角线bd上,且∠bae=22.5°,ef⊥ab,垂足为f,则ef的长为(c)a、 1b。

二c.4-22d.32-4二、填空(每个子问题3分,共18分)11.一元二次方程2x2+6x=9的二次项系数、一次项系数、常数项和为__-1__.12.方程(x+2)2=x+2的解是__x1=-2,x2=-1__.213.如果代数表达式4x2-2x-5和2x2+1的值彼此相反,则X的值为_1或-_314.写一个你喜欢的实数k的值__0(答案不唯一,只要满足k>-2且k≠-1都行)__,使关于x的一元二次方程(k+1)x2+2x-1=0有两个不相等的实数根.15.两年前,一家制药厂生产一吨药品的成本为100万元。

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.方程(x+1)(x-1)=0的根是()A. x1=x²=1B. x1= x²=-1C. x1=1,x²=-1D. x1=1,x²=02.一元二次方程x²-2x-5 =0用配方法解可变形为()A. (x+1)2=6B. (x+2)2=9C. (x-1)2=6D. (x-2)2=93.方程x²-2x+3 =0的根的情况是:()A.有两个相等的实数根7B.无实C.有两个不相等的实数根D.只有一个实根4.关于x的一元二次方程(a-1)x²+x+a2-1 =0有一个根为0,则a的值为()A.1B.-1C.+1D.05.一个等腰三角形的两边是方程x²-6x+8=0的两根,则这个三角形的周长为()A.8B.10 DBC.8或10D. 66.方程x-2x+m=0有两个相等的实数解,则m的值为()A.1B.-1C.2D. -27.以1,3为根的一元二次方程是.()A. x²+4x+3=0B. x²-4x+3=0C. x²+4x-3=0D. -x²+4x+3=08.两个连续偶数的积为120,若设较小的偶数为x,则可列方程()A. x(x+1)=120B. x(x+2)=120C. x(x-1)=120D. x(x-2)=1209.一个长方形的长比宽多1,面积为12,则长方形的宽为()A.3B.4C.523D.610.在某次会议中,每两人都握了一次手,共握手10次,设有x人参加会议,则可列方程为()A. x(x+1)=10B. x(x-1)= 10C. 12(x+1)=10D. 12(x-1)=10二、填空题(每题4分,共28分)11.方程x²=1的解为。

12. 已知m和n是方程3x²-6x-9=0的两根,则m +n= .13.已知代数式x²与2x-1的值相等,则x的值为.14.如果关于x的一元二次方程x²+2x-m=0没有实根,那么m的取值范围是.15.若关于x的方程x²+mx-3=0有一个根为2,则m的值为.16. 一个长方形的周长为8,面积为4,设宽为x,则可列方程为.17.已知关于x的一元二次方程x²+(2m-1)x+m²=0有两个实数根x1和x2,且x1+x2+ x1x2=1,出m的值为.三、解答题(一)(每题6分,共18分)18.解方程:(1)x²-4x+3=0;(2)2x²-3x-1 =0;(3)(x+4)2 =2(x +4).19.已知x=-1是方程x2+mx-5=0的一个根,求m的值及方程的另一根.20.如图,在长为10m,宽为8m的矩形试验田上修建两条宽度相等且互相垂直的道路,要使种植面积(空白部分)为63m2,求道路的宽.四、解答题(二)(每题8分,共24分)21.已知关于x的一元二次方程x2+(m+1)x+m=0.(1)当m=0时,求方程的解;(2)当m=1时,求方程的解.22.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款1000元,第三天收到捐款1440元(1)如果第二天第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.已知关于x的一元二次方程(x-2)(x-3)=p2.求证:无论p取何值,方程总有两个不相等的实数根五、解答题(三)(每题10分,共20分)24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?25.设等腰三角形的三条边分别为3,m,n,已知m,n是关于x的方程x²-4x+k=0的两个根,求k的值.参考答案一、1.C 2.C 3.B 4.B 5.B 6. A 7.B 8.B 9.A 10.D二、11. X1=1,x2=-1 12.2 13. 114.m< -1 15. -1 216.x(4-x) =4 17.0三、18.解:(1)x2 -4x+4= -3+4 (x-2)2=1x-2=土1x1=1 +2=3x2=-1+2=1(2)∵ a=2,b= -3,c= -1△=b2 -4ac=( -3)2-4x2x( -1)=9+8= 17∴x24317 b b ac-±-±x1 =3174x2317=4(3)(x+4)(x+4-2) =0(x +4)(x+2) =0X1=-4x2=-2.19.解:把x= -1代人方程x2 +mx-5 =0则:(-1)2-m-5=0- m=4m= -4把m= -4代人x2 +mx-5=0则:x2 -4x-5=0X2 -4x+4=5 +4(x-2)2 =9x-2=土3x1 =3+2=5x2= -3+2= -1∴m的值为-4,方程的另一根为520.解:设道路寬x m.根据题意,得(10-x)(8-x) =63x2 -18x +80= 63(x-9)2 =64x-9=土8x 1=8 +9=17(不合题意,舍去)x2 = -8+9=1∴道路宽1m四、21.解:(1)当m=0时,x2 +(m+1)x+m=0 x2 +x+0=0x(x+1) =0∴x=0或x+1 =0∴x1 =0,x2=-1(2)当m=1时,x2 +(m+1)x+m=0X2+(1 +1)x+1=0x2 +2x+1 =0(x+1)2 =0∴x1=x2=-122.解:(1)设捐款增长率为x,依题意,得1 000(1 +x)2=1 440(1 +x)2=1.441 +x= +1.2x= ±1.2-1∴x1 =1.2-1 =0.2 = 20%x2= -1.2-1= -2.2(不合题意,舍去)答:捐款增长率为20%(2)1440x(1 +20%) =1 728元答:第四天该单位能收到1728元捐款。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案一、单项选择题1.若x=-1是方程x2+x+m=0的一个根,则此方程的另一个根是( ) A.-1 B.0 C.1 D.22.一元二次方程(x+1)(x-1)=2x+3的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.已知一元二次方程x2-10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为( )A.6 B.10 C.12 D.244.若x=-2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是( )A.0,-2 B.0,0 C.-2,-2 D.-2,05.若m,n是一元二次方程x2+3x-9=0的两个根,则m2+4m+n的值是( ) A.4 B.5 C.6 D.126.若关于x的一元二次方程x2+2(m-1)x+m2-m=0的两个实数根α,β满足α2+β2=12,则m的值为( )A. 0 B.1 C.-1 D.-27.根据下列表格中列出来的数值,可判断方程x2-bx-c=0有一个根大约是( )x 0 0.5 1 1.5 2x2-bx-c -15 -8.75 -2 5.25 13A .0.25B .0.75C .1.25D .1.758.若关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,则a 的取值范围是( )A .a ≠0B .a >-1且a ≠0C .a ≥-1且a ≠0D .a >-1 9.一个大正方形的边长是小正方形边长的3倍多1,若两个正方形的面积和为53,则大正方形的边长为( ) A .7 B .8 C .9 D .1010.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .3(x -1)x =6210B .3(x -1)=6210C .(3x -1)x =6210D .3x =3210二、填空题11.若x =1是方程x 2-2x +a =0的根,则a =______.12.已知m 是一元二次方程x 2+x -6=0的一个根,则代数式m 2+m 的值等于______.13.若一元二次方程x 2-(m 2-7)x +m =0两根之和为2,则m =__________. 14.若α,β是关于x 的一元二次方程(m -1)x 2-x +1=0的两个实根,且满足(α+1)(β+1)=m +1,则m 的值为__________.15.设x 1与x 2为一元二次方程12x 2+3x +2=0的两根,则(x 1-x 2)2的值为 ______.16.关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且x12+x22=316,则m=______.17.一元二次方程x(x+1)=0的两根分别为__________________.18.若关于x的一元二次方程(m+1)x2+4x+m2+m=0有一个根为x=0,则m=____.19.用配方法解方程2x2-px+3=0时,方程可变形为2(x-32)2=q,则p=________,q=________.20.一个三角形的两边长分别为3和5,第三边长是方程x2-6x+8=0的根,则这个三角形的周长为________.21.一个两位数等于它十位上的数与个位上的数的积的3倍,已知十位上的数比个位上的数小2,则这个两位数是________.三、解答题22.用适当的方法解下列方程:(1)x2-4x+1=0;(2)3x(x-2)=6(2-x);(3)x2-6x+9=(5-2x)2;(4)12 x 2+3 x =x 2+5.23.关于x 的一元二次方程x 2-3x +k =0有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.24.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m ,宽(AB)9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112m 2,则小路的宽应为多少?25.夏季高温期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x. (1)求x 的值;(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么? 参考答案一、1-10 BACBC CCBAA 二、11.1 12.6 13.-3 14.-1 15.20 16.-8117.x 1=0,x 2=-1 18.0 19.6 3220.12 21.24三、22.解:(1) x 1=2+ 3 ,x 2=2- 3 (2) x 1=2,x 2=-2(3) x 1=2,x 2=83(4) 无解23.解:(1)根据题意得Δ=(-3)2-4k ≥0,解得k ≤94(2)k 的最大整数为2,方程x 2-3x +k =0可变形为x 2-3x +2=0,解得x 1=1,x 2=2,∵一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,∴当相同的根为x =1时,m -1+1+m -3=0,解得m =32;当相同的根为x =2时,4(m -1)+2+m -3=0,解得m =1,由题意可知m -1≠0, 即m ≠1,∴m 的值为3224.解:设小路的宽应为xm ,根据题意,得(16-2x)(9-x)=112, 解得x 1=1,x 2=16.∵16>9,∴x =16不符合题意,应舍去,∴x =1. 答:小路的宽应为1m25.解:(1)依题意,得50(1+x)2=72,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:x 的值为20%(2)72×(1+20%)=86.4(万人),86.4>85,∴五月份注册用户能达到85万人。

北师大版九年级上第《第二章一元二次方程》检测题(有答案)

北师大版九年级上第《第二章一元二次方程》检测题(有答案)

第二章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是( B)A.形如ax2+bx+c=0的方程叫做一元二次方程B.(x+1)(x-1)=0是一元二次方程C.方程x2-2x=1的常数项为0D.一元二次方程中,二次项系数、一次项系数及常数项都不能为0 2.用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是( B)A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=73.已知x1,x2是一元二次方程x2-2x=0的两根,则x1+x2的值是( B) A.0 B.2 C.-2 D.44.若x1,x2是方程x2-2x-1=0的两个根,则x1+x2+2x1·x2的值为( C)A.-3 B.1 C.0 D.45.下列关于x的一元二次方程有实数根的是( D)A.x2+1=0 B.x2+x+1=0 C.x2-x+1=0 D.x2-x-1=06.下列方程适合用因式分解法解的是( C)A.x2+x+1=0 B.2x2-3x+5=0C.x2+(1+2)x+2=0 D.x2+6x+7=07.若(x+y)(1-x-y)+6=0,则x+y的值为( C)A.2 B.3 C.-2或3 D.2或-38.已知三角形的两边长分别为2和9,第三边长是二次方程x2-14x +48=0的根,则这个三角形的周长为( D)A .11B .17C .17或19D .199.一个两位数等于它个位数的平方,且个位数比十位数大3,则这个两位数是( C )A .25B .36C .25或36D .-25或-3610.某校办工厂生产的某种产品,今年产量为200件,计划通过改进技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件,若设这个百分数为x ,则可列方程( B )A .200+200(1+x )2=1400B .200+200(1+x )+200(1+x )2=1400C .200(1+x )2=1400D .200(1+x )+200(1+x )2=1400 二、填空题(每小题3分,共24分)11.一元二次方程x(x -6)=0的两个实数根中较大的根是__x =6__. 12.若一元二次方程ax 2+bx +c =0(a ≠0)有一根是1,则a +b +c =__0__.13.若分式x 2-7x -8|x|-1的值是0,则x =__8__.14.已知x 1,x 2是一元二次方程x 2+2ax +b =0的两根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是__-32,1__.15.某企业2014年底缴税40万元,2016年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程__40(1+x )2=48.4__.16.设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为.17.某种文化衫,平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售10件,如果每天要盈利1 080元,每件应降价__2或14__元.18.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a<b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=__3或-3__.三、解答题(共66分)19.(12分)用适当的方法解下列方程. (1)(6x -1)2-25=0; (2)(3x -2)2=x 2;解:x 1=1,x 2=-23 解:x 1=1,x 2=12(3)x 2+18=22x; (4)(x +1)(x -1)+2(x +3)=8.解:x 1=x 2=24解:x 1=-3,x 2=120.(6分)关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)请选择一个k 的负数值,并求出方程的根.解:(1)k>-94(2)取k =-2,x 1=1,x 2=2(答案不唯一)21.(7分)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+(1+x)x=64,解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人(2)7×64=448(人).答:又有448人被传染22.(7分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定,如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?解:60棵树苗售价为120×60=7200(元),∵7200<8800,∴该校购买树苗超过60棵.设该校共购买树苗x棵,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x=220不合题意,舍去.当x2=80时,120-0.5(80-60)=110>100,∴x=80.即:该校共购买了80棵树苗23.(7分)已知m ,n 是一元二次方程x 2-3x +1=0的两根,求代数式2m 2+4n 2-6n +1999的值.(提示:用根的定义和根与系数的关系来解)解:依题意有⎩⎪⎨⎪⎧m +n =3,mn =1,m 2-3m +1=0,n 2-3n +1=0,∴2m 2+4n 2-6n +1 999=2(m 2+n 2)+2(n 2-3n )+1999=2[(m +n )2-2]+2×(-1)+1999=14-2+1999=201124.(8分)一块矩形耕地的尺寸如图,在这块耕地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽度相等,而且要保证余下的可耕地面积为9600 m 2,那么水渠应挖多宽?解:设水渠挖x m 宽,则(162-2x )(64-4x )=9600,x 1=96(舍去),x 2=1.答:水渠应挖1 m 宽25.(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)(2)单价是多少元?解:(1)(80-x) (200+10x) (400-10x)(2)解:由题意得:80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000.整理得x2-20x+100=0,则x1=x2=10,当x=10时,80-x=70>50,符合题意.答:第二个月的单价是70元26.(10分)某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑文物的修缮和保存费用问题,还要保证一定的门票收入,因此博物馆采用了提高门票的价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定的参观人数是多少?门票价格应是多少元?解:设每周参观人数与票价之间的一次函数关系为y =kx +b ,由题意得:⎩⎪⎨⎪⎧10k +b =7000,15k +b =4500,解得⎩⎪⎨⎪⎧k =-500,b =12000.∴y =-500x +12000,根据题意,得xy =40000,即x (-500x +12000)=40000,解得x 1=20,x 2=4,当x =20时,y =2000;当x =4时,y =10000,因为控制参观人数,所以取x =20,y =2000,所以每周应限定参观人数是2000人,门票价格是20元。

北师大版九年级数学上册第二章一元二次方程单元测试题(含答案)

北师大版九年级数学上册第二章一元二次方程单元测试题(含答案)

北师大版九年级数学上册第二章一元二次方程单元测试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.1x2+1x=2 C.x2+2x=y2-1D.3(x+1)2=2(x+1)2.一元二次方程x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.一元二次方程x2-8x-1=0配方后为()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=174.把方程x(x+2)=5(x-2)化成一般式,则a,b,c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,25.某城市2019年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2021年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1-x)2=3006.若关于x的方程2x2-ax+2b=0的两根和为4,积为-3,则a,b分别为(D)A.a=-8,b=-6 B.a=4,b=-3 C.a=3,b=8 D.a=8,b=-37.当x取何值时,代数式x2-6x-3的值最小()A.0 B.-3 C.3 D.-98.老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为()A .只有小敏回答正确B .只有小聪回答正确C .小敏、小聪回答都正确D .小敏、小聪回答都不正确 9.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或1010.有两个一元二次方程M :ax 2+bx +c =0;N :cx 2+bx +a =0,其中a ·c ≠0,a ≠c .下列四个结论中,错误的是( )A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =1二、填空题(每小题3分,共24分)11.一元二次方程x 2-6x =0的解是 .12.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为 .13.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则 ;②方程2x (x -2)=x -2的解为 ;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则 x 1+x 2=32,x 1x 2=2 .其中错误的答案序号是 .14.已知x 1=3是关于x 的一元二次方程x 2-4x +c =0的一个根,则方程的另一个根x 2是__1__.15.已知x =-1是关于x 的方程2x 2+ax -a 2=0的一个根,则a = .16.方程3(x -5)2=2(x -5)的根是 x 1=5,x 2= .17.设x 1、x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为 .18.关于x 的一元二次方程(k -1)x 2-1-kx +14=0有两个实数根,则k 的取值范围是 .三、解答题(共66分)19.(12分)用适当的方法解下列方程:(1)4x 2-1=0;(2)3x 2+x -5=0;(3)(x +1)(x -2)=x +1;(4)2x 2-42=4x .20.(7分)已知关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,求k 的值.21.(6分)已知两个连续偶数之积为120,求这两个连续偶数.22.(7分)某工厂一种产品2019年的产量是100万件,计划2021年产量达到121万件.假设2019年到2021年这种产品产量的年增长率相同.求2019年到2021年这种产品产量的年增长率.23.(6分)如图,某广场一角的矩形花草区,其长为40 m ,宽为26 m ,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864 m 2,求路的宽度为多少m?24.(8分)关于x的一元二次方程(x-2)(x-3)=|m|.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求另一根及m的值.25.(8分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售价定为52元时可售出180个,定价每增加1元,销售量减少10个.若商店准备获利2 000元,则应进货多少个?每个销售价是多少元?26.(12分)如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6 cm,AD =2 cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q 以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3 cm?(3)当t=________以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷带答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷带答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷带答案一、单选题1.聚会结束时,统计出一共握手55次,如果参加聚会的每个人都和其他的人握手1次,那么有( )人参加了聚会.A .10B .11C .12D .132.若关于x 的方程mx 2﹣mx+2=0有两个相等的实数根,则m 的值为( ) A .0 B .8 C .4或8 D .0或83.方程2850y y -+=的左边配成完全平方式后所得的方程为( )A .2 (4)11y -=B .2 (4)21y -=C .2 (6)11y -=D .以上都不对4.小李解方程2320x x -+=的步骤如图所示,则下列说法正确的是( ) 解方程:2320x x -+=.解:2220x x x --+=,①222x x x -=-,①()22x x x -=-,①1x =.A .小李解方程的过程正确B .2x =也是该方程的一个解C .小李解方程的方法是配方法D .解方程的过程是从第①步到第①步时出现错误5.如果一元二次方程2320x -=的两个根是1x 和2x ,那么12x x ⋅等于( )A .2B .0C .23D .23- 6.若x ,y 都是负数,且222300x xy y x y ++++-=,则x y +的值是( )A .3-B .4-C .5D .6-7.下列关于x 的方程说法正确的是( )A .2x x =-没有实数根;B .210x +=有实数根;C .24210x x -+=有两个相等的实数根;D .220x mx --=(其中m 是实数)一定有实数根.8.关于x 的一元二次方程()22395m x m x x -+=+化为一般形式后不含一次项,则m 的值为( )A .0B .±3C .3D .-39.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .500(1+x )2=740B .500(1+2x )=740C .500(1+x )=740D .500(1﹣x )2=74010.关于x 的一元二次方程()24410a x x --+=有两个实数根,且关于x 的分式方程4433x a x x++=--有正整数解,则满足条件的所有整数a 的和为( ) A .18 B .1 C .13 D .17二、填空题11.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 .12.方程(x+1)22(x+1)=0,那么方程的根x 1= ;x 2= .13.已知关于x 的方程()2220x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 .14.已知一元二次方程ax 2+x ﹣b=0的一根为1,则a ﹣b 的值是 .15.已知一元二次方程2210x x --=的两个根分别是12x x 、,则2112x x x -+= .16.若3-是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .17.已知一元二次方程()200++=≠ax bx c a ,用配方法解该方程,则配方后的方程是(x+ )2= .18.方程22310x x -+=的根的判别式的值是 .三、解答题19.已知关于x的一元二次方程2230x mx x m--+-=(m为常数).(1)若方程的一个根为1,求m的值及方程的另一个根;(2)求证:不论m为何值时,方程总有两个不相等的实数根.20.今天数学作业是解一元二次方程,下面是张山同学的解答过程配方法解方程28120x x++=解:2812x x+=-28161216x x++=-+2(4)4x+=42x+=±42x+=或42x+=-13x∴=-26x=-你认为张山同学的方法好就用她的方法解下列方程,不好就用自己方法解方程:2670x x--=21.如图,要使用长为27米的篱笆一面利用墙(墙的最大可用长度为12米,靠墙的一面不用篱笆),围成中间隔有一道篱笆的长方形花在圃(中间的篱笆将长方形ABCD分成两个小长方形).如果要围成面积为54平方米的长方形花圃ABCD,那么AD的长为多少米?22.学校课外生物小组的试验田是一块长14米,宽12米的矩形,为了便于管理,先要在中间修建同样宽的两条互相垂直的道路(如图),要使种植面积为143平方米,道路的宽应为多少米?23.解下列方程:(1)23180-++=x x ;(2)20.1 1.20.4-=x x .24.如图,点E ,F 分别在平行四边形ABCD 的边BC ,AD 上,且BE DF =,AD=10,CD=8,动点P 从点A 出发沿着线段AE 向终点E 运动,同时点Q 从点C 出发沿着折线段C F A --向终点A 运动,且它们同时到达终点,设Q 点运动的路程为x ,PE 的长度为y ,且8y kx =+(k 为常数,0k ≠).(1)求证:四边形AECF 是平行四边形.(2)求AE 的长.(3)当45k =-时 ①求AF 的值;①连结PQ ,QE ,当PQE 为直角三角形时,求所有满足条件的x 的值.参考答案:1.B2.B3.A4.B5.D6.D7.D8.D9.A10.D11.20%12. -1 213.138- 14.-115.316.717. 2b a 2244b ac a - 18.419.(1)3m =,另一个根为3(2)略20.17x = 21x =-; 21.AD 的长应为6米 22.1米23.(1)16x = 23x =- (2)16x = 22x =- 24.(1)11;(2)8;(3)①2;①212113533+-,。

第2章《一元二次方程 》北师大版九年级数学上册单元测试卷(含答案)

第2章《一元二次方程 》北师大版九年级数学上册单元测试卷(含答案)

第二章《一元二次方程》单元测试卷一、单选题(每题3分)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2++5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0,是一元二次方程个数是()A.1B.2C.3D.42.已知一元二次方程,若方程有解,则必须()A.n=0B.n=0或mn同号C.n是m的整数倍D.mn异号3.方程的解是()A.B.C.D.4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.解方程:①;②;③;④.较简便的解法是()A.依次用直接开平方法、配方法、公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C.依次用因式分解法、公式法、配方法和因式分解法D.①用直接开平方法,②③用公式法,④用因式分解法6.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染的人数为()A.人B.人C.人D.人7.现要在一个长为,宽为的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为,那么小道的宽度应是()A.1B.2C.2.5D.38.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )A.x2﹣3x+6=0B.x2﹣3x﹣6=0C.x2+3x﹣6=0D.x2+3x+6=09.若关于x的一元二次方程的一个根大于1,另一个根小于1,则a的值可能为()A.B.C.2D.410.将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则的值为()A.3B.4C.5D.6二、填空题(每题3分)11.方程(m﹣1)x|m|+1﹣4x+3=0是一元二次方程,则m满足的条件是:_____,此方程的二次项系数为:_____,一次项系数为:_____,常数项为:_____.12.若一元二次方程的一个根为0,则___________.13.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是____________.14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.15.已知方程的两个实数根分别为、,则__.16.已知实数,满足,则的值为________.17.已知关于x的方程a(x+m)2+b=0(a,b,m均为常数,且a≠0)的两个解是x1=3,x2=7,则方程的解是________.18.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.三、解答题19.解方程(8分)(1);(2);(3)(配方法);(4).20.用适当的方法解一元二次方程(8分)(1);(2);(3);(4).21.已知关于的方程.(6分)(1)当为何值时,方程只有一个实数根?(2)当为何值时,方程有两个相等的实数根?(3)当为何值时,方程有两个不相等的实数根?22.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(6分)(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.23.如图,在足够大的空地上有一段长为的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中.已知矩形菜园的一边靠墙,修筑另三边一共用了木栏.若所围成的矩形菜园的面积为,求的长.(6分)24.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?(6分)25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:(6分)(1)当时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?26.已知关于x的一元二次方程.(6分)(1)求证:这个方程的一根大于2,一根小于2;(2)若对于时,相应得到的一元二次方程的两根分别为和和和,…,和和,试求的值.27.阅读理解:(7分)材料1:对于一个关于x的二次三项式(),除了可以利用配方法求该多项式的取值范围外,还可以用其他的方法:比如先令(),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求的取值范围:解:令,,即;材料2:在学习完一元二次方程的解法后,爱思考的小明同学又想到类比一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程()有两个不相等的实数根、(),则关于x的一元二次不等式()的解集为:或,则关于x的一元二次不等式()的解集为:;请根据上述材料,解答下列问题:(1)若关于x的二次三项式(a为常数)的最小值为-6,则_____.(2)求出代数式的取值范围.类比应用:(3)猜想:若中,,斜边(a为常数,),则_____时,最大,请证明你的猜想.28.(7分)阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:,这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:1.知识运用:试用“分组分解法”分解因式:;2.解决问题:(1)已知a,b,c为△ABC的三边,且,试判断△ABC的形状.(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且,同时成立.①当k=1时,求a+c的值②当k≠0时,用含有a的代数式分别表示b,c,d(直接写出答案即可)答案一、单选题A.B.B.C.D.B.B.B.B.D.二、填空题11.m=﹣1;﹣2,﹣4,3.12.113.且.14.300(1+x)2=363.15.-5.16.2.17.或.18.x=2或x=﹣1+或x=﹣1﹣.三、解答题19.(1)解:或,;(2)解:或,;(3)解:,;(4)解:①当时,,解得:;②当时,,若,即,;若,即,方程无解.20.(1)原方程可化为,∴,用直接开平方法,得方程的根为,.(2)原方程可化为x2+2ax+a2=4x2+2ax+,∴x2=.用直接开平方法,得原方程的根为,.(3)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0,∴,.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0,,.21.(1)∵方程只有一个实数根,,解得(2)∵方程有两个相等的实数根,,,解得(3)∵方程有两个不相等的实数根,且,且,解得且.22.(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴x12+x22=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=323.解:设的长为,则的长为.依题意,得,解得,.当时,(不符合题意,舍去).当时,.∴的长为.24.设销售单价降低x元,则销售单价为元,每天的销售量是件,由题意得:,整理得:,解得或,因为要求销售单价不得低于成本,所以,解得,因此和均符合题意,则或70,答:销售单价为90元或70元时,每天的销售利润可达4000元.25.(1)由题意可知当时,每台学习机的售价为.(2)设题图中直线的解析式为.把和代入得解得故直线解析式为.当时,进价为(元),售价为(元),则每台学习机可以获利(元).(3)当时,每台学习机的利润是,则.解得(舍去).当时,每台学习机的利润是,则,解得(舍去).答:该商店可能购进并销售学习机80台或30台.26.解:(1)证明:设方程的两根是,,则,,,,,即这个方程的一根大于2,一根小于2;(2),对于,2,3,,2019,2020时,相应得到的一元二次方程的两根分别为和,和,和,,和,和,.27.解:(1)设,∴,∴,即,根据题意可知,∴,解得:或;(2)设,可化为,即,∴,即,令,解得,,∴或;(3)猜想:当时,最大.理由:设,,则,在中,斜边(a为常数,),∴,∴,∴,即,∴,即,∵,,∴,当时,有,∴,即当时,最大.28.解:(1)将写成,等式左边因式分解,得,证明,是等腰三角形;(2)①由得到和,推出,就可以算出a和c的值,再算;②同①可得,根据,利用因式分解得到,同理由,得,从而可以用a表示出b、c、d.解:知识运用原式;解决问题(1),∵,∴,即,∴是等腰三角形;(2)①当时,,即,,即,若则,把它代入,得,解得,当时,,则,当时,,则,综上:的值为6或;②当,∵,∴,∵,∴,同理由,得,由,,若,则,,,则此时k就等于0了,矛盾,不合题意,若,则,,,综上:,,.。

北京师范大学版九年级上数学 第二章一元二次方程 测试卷含答案

北京师范大学版九年级上数学 第二章一元二次方程 测试卷含答案

北京师范大学版九年级上 数学第二章一元二次方程测试卷姓名: 得分:一、选择题(共10小题,3*10=30)1.若关于x 的方程ax 2-3x +1=2x 2是一元二次方程,则a 的取值范围为( ) A .a >0 B .a≠0 C .a≠2 D .a >22.用配方法解方程x 2+2x -1=0,配方结果正确的是( ) A .(x +1)2=2 B .(x -1)2=2 C .(x +2)2=3 D .(x +1)2=3 3.方程x 2=0与3x 2=3x 的解为( )A .都是x =0B .有一个相同,且这个相同的解为x =0C .都不相同D .以上答案都不对4.根据下面表格中列出来的数据,猜想方程x 2+2x -100=0有一个根大约是( )x9.03 9.04 9.05 9.06 9.07 x 2+2x -100-0.3991-0.19840.00250.20360.4049A.9.025 B .9.035 C .9.045 D .9.0555.若一元二次方程kx 2-2x -1=0有实数根,则k 的取值范围是( ) A .k≥-1且k≠0 B .k≥-1 C .k≤-1且k≠0 D .k≤-16. 下列一元二次方程,两个实数根之和为1的是( ) A .x 2+x +2=0 B .x 2+x -2=0 C .x 2-x +2=0 D .x 2-x -2=07.若(x 2-4x +4)与2x -y -3互为相反数,则x +y 的值为( ) A .3 B .4 C .6 D .98.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -1)=10B .x x -12=10 C .x(x +1)=10 D .xx +12=10 9.已知2是关于x 有方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则△ABC 的周长为( ) A .10 B .14 C .10或14 D .8或1010.某工厂生产的水杯按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是( ) A .6 B .8 C .10 D .12 二.填空题(共8小题,3*8=24) 11.一元二次方程x 2-x =0的根是.12. 若100(1+x)2=121,则方程的解为 .13.若关于x 的一元二次方程x 2+4x +a =0有两个相等的实数根,则a 的值是 ___ . 14.已知关于x 的一元二次方程x 2-4x -k =0的一个根为3,则另一个根为 ___ . 15.若(x 2+y 2)2-4(x 2+y 2)-5=0,则x 2+y 2的值为 .16. 分式x 2-2x -3x +1值为0,则x =.17.一跳水运动员从10 m 高台上跳水,他跳下后离水面的高度h(单位:m)与所用时间t(单位:s)的关系是h =-5(t -2)(t +1),那么该运动员从起跳到入水所用的时间为 秒. 18. 已知:m 2-2m -1=0,n 2+2n -1=0且mn≠1,则mn +n +1n 的值为.三.解答题(共7小题, 66分) 19.(8分) 用恰当的方法解方程: (1)(x +1)2=3(x +1); (2)3x 2-9x +4=0;20.(8分) 先化简,再求值:m -33m 2-6m ÷(m+2-5m -2),其中m 是方程x 2+3x -1=0的根.21.(8分) 若△ABC的三边a,b,c满足a2-6a+b2-10b+c2-8c+50=0,求△ABC的周长.22.(10分) 已知关于x的方程x2+ax+a-1=0.(1)当该方程的一个根为-3时,求a的值及该方程的另一个根.(2)求证:不论a取何实数,该方程都有两个实数根.23.(10分) 阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y,那么原方程可化为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2-1=1,∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5,故原方程的解为x1=2,x2=-2,x3=5,x4=- 5.解答问题:(1)试说明上述解题过程,在由原方程得到方程①的过程中,利用__ __法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解决:若(m2+n2-2)(m2+n2)=8,求m2+n2的值.24.(10分) 阅读材料:对于实数a ,b ,c ,d ,我们规定符号⎪⎪⎪⎪⎪⎪ab c d )的意义是⎪⎪⎪⎪⎪⎪ab cd )=ad -bc.例如:⎪⎪⎪⎪⎪⎪1 234)=1×4-2×3=-2,⎪⎪⎪⎪⎪⎪-2435)=(-2)×5-4×3=-22.(1)按照这个规定,请你计算⎪⎪⎪⎪⎪⎪5 67 8); (2)按照这个规定,请你计算当x 2-4x +4=0时,⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3)的值.25.(12分) 随着电商行业规模的不断壮大,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率.(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问:至少需要增加几名业务员?参考答案1-5CABCA 6-10DABBA 11. x 1=0,x 2=1 12. x =0.1或x =-2.1 13. 4 14. 1 15. 5 16.3 17. 2 18.319. 解:原方程可化为x +1x +1-3=0,即x +1x -2=0,∴x +1=0或x -2=0.解得x 1=-1,x 2=2.解:由题意知,a =3,b =-9,c =4,∴Δ=(-9)2-4×3×4=33.∴x =9±332×3=9±336.解得x 1=9+336,x 2=9-336.20. 解:原式=m -33m (m -2)÷m 2-9m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3)=13(m 2+3m ), ∵m 是方程x 2+3x -1=0的根.∴m 2+3m -1=0,即m 2+3m =1, ∴原式=1321. 解:∵a 2-6a +b 2-10b +c 2-8c +50=0, ∴a 2-6a +9+b 2-10b +25+c 2-8c +16=0, 即(a -3)2+(b -5)2+(c -4)2=0,∴a =3,b =5,c =4, ∴△ABC 的周长=3+4+5=1222. (1)解:将x =-3代入原方程,得9-3a +a -1=0, 解得a =4. ∵-3+x 2=-a ,∴方程的另一个根为-a -(-3)=-4+3=-1. 故a 的值为4,方程的另一个根为-1.(2)证明:∵Δ=a 2-4(a -1)=a 2-4a +4=(a -2)2≥0, ∴不论a 取何实数,该方程都有两个实数根.23. 解:(1)∵将x 2-1看作一个整体,然后设x 2-1=y ,实际上是将x 2-1转化为了y , ∴这一步是运用了数学里的转化思想,这种方法是换元法.故答案为:换元 (2)设m 2+n 2=y ,则原方程变形为:(y -2)y =8, 整理,得(y -4)(y +2)=0, 解得y =4或y =-2(舍去), 即m 2+n 2=424. 解:(1)⎪⎪⎪⎪⎪⎪5678)=5×8-7×6=-2(2)⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3)=(x +1)(2x -3)-2x(x -1)=x -3,又∵x 2-4x -4=0,解得x 1=x 2=2,∴⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3)=2-3=-1 25. 解:(1)设该快递公司投递快递总件数的月平均增长率为x. 由题意,得10×(1+x)2=12.1, 解得x 1=10%,x 2=-210%(舍去).答:该快递公司投递快递总件数的月平均增长率为10%. (2)4月份的快递投递任务为12.1×1.1=13.31(万件), 21×0.6=12.6(万件)<13.31(万件),∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务. ∵22<13.310.6<23,∴至少还需要增加2名业务员.。

北师大版九年级数学上册 第二章 一元二次方程 测试卷(含答案和解析)

北师大版九年级数学上册  第二章 一元二次方程 测试卷(含答案和解析)

初中数学北师大版九年级上学期第二章测试卷一、单选题1.下列方程中,是关于x的一元二次方程的是()A. B. C. D.2.用配方法解一元二次方程,此方程可化为的正确形式是( )A. B. C. D.3.一元二次方程的两根分别为和,则为()A. B. C. 2 D.4.已知关于x的一元二次方程2x2+mx﹣3=0的一个根是﹣1,则另一个根是()A. 1B. ﹣1C.D.二、填空题5.方程的解为________.6.若x(x+1)+y(xy+y)=(x+1)·M,则M=________.7.方程ax2+x+1=0有两个不等的实数根,则a的取值范围是________.三、计算题8.解方程(1)(2)x2﹣6x﹣4=0(用配方法)9.解方程:(1)x2=14(2)x(x﹣1)=(x﹣2)210.若x1,x2是一元二次方程x2﹣8x+7=0的两个根,求+ 和+ 的值.四、综合题11.根据要求,解答下列问题.仔细观察小聪同学所求的三个方程的解.①方程x2-2x+1=0的解为x1=1,x2=1;②方程x2-3x+2=0的解为x1=1,x2=2;③方程x2-4x+3=0的解为x1=1,x2=3;…………(1)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________;②关于x的方程________的解为x1=1,x2=n.(2)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.12.向阳中学数学兴趣小组对关于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.13.已知关于x的方程x(x-k)=2-k的一个根为2.(1)求k的值;(2)求方程2y(2k-y)=1的解.14.如图,在平面直角坐标系中,矩形的边在轴上,、的长分别是一元二次方程的两个根,,边交轴于点,动点以每秒个单位长度的速度,从点出发沿折线段向点运动,运动的时间为秒,设与矩形重叠部分的面积为.(1)求点的坐标;(2)求关于的函数关系式,并写出自变量的取值范围;(3)在点的运动过程中,是否存在,使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.15.一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.答案解析部分一、单选题1.答案:B解析:A、x2+3y=1,含有两个未知数,故不是一元二次方程;B、x2+3x=1,是一元二次方程,故符合题意;C、ax2+bx+c=0,当a≠0时,是一元二次方程,故C不符合题意;D、,是分式方程,故D不符合题意.故答案为:B.只含有一个未知数,未知数的最高次数是2次,且二次项的系数不为0的整式方程,就是一元二次方程,根据定义即可一一判断得出答案。

(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试卷(含答案解析)

(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试卷(含答案解析)

一、选择题1.已知a ,b ,c 是1,3,4中的任意一个数(a ,b ,c 互不相等),当方程20ax bx c -+=的解均为整数时,以1,3和此方程的所有解为边长能构成的多边形一定是( )A .轴对称图形B .中心对称图形C .轴对称图形或中心对称图形D .非轴对称图形或中心对称图形 2.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=40 3.一元二次方程x 2+4x=3配方后化为( )A .(x+2)2=3B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-1 4.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 5.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .66.将一个正方形剪成①、②、③、④四块(如图1),恰能拼成如图2的矩形,若1a =,则这个正方形的面积为( )A B C .9 D 7.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2230x x -+=C .22x x -=D .23420x x -+=8.如果方程220x x --=的两个根为α,β,那么22αβαβ+-的值为( ) A .7B .6C .2-D .0 9.已知点(3,44)P m m -为平面直角坐标系中一点,若O 为原点,则线段PO 的最小值为( )A .2B .2.4C .2.5D .310.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥C .1mD .1m 11.若关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根,则m 的值是( )A .-1或2B .1C .2D .1或212.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=60二、填空题13.某电脑公司计划两年内将产品成本由原来2500元下降到1600元,则每年平均下降的百分率是________.14.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.15.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.16.某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到150吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为_________________. 17.已知方程2560x kx ++=的一个根是2,则它的另一个根是________.18.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______.19.已知方程240x x k -+=的一个根是11x =-,则方程的另一根2x =____. 20.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.三、解答题21.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,解答以下问题. (1)当销售单价定为每千克35元时,销售量是 千克、月销售利润是 元;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?22.解方程:(1)22150x x --=;(2)()()421321x x x +=+23.网络购物已成为新的消费方式,催生了快递行业的高速发展.某快递公司2020年9月份与11月份投递的快递件数分别为10万件和14.4万件,假定每月投递的快递件数的增长率相同,求该快递公司投递的快递件数的月平均增长率.24.如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根、且其中一个根比另一个根大 1,那么称这样的方程为“邻根方程”.例如、一元二次方程20x x +=的两个根是120,1x x ==-,则方程20x x +=是“邻根方程”.通过计算,判断下列方程是否是“邻根方程”:(1)260x x --=;(2)2210x -+=.25.某玩具经销商2017年全年的销售总额为20万元,总成本为12万元;由于改善经营模式,与2017年相比2019年总成本下降了20%,销售总额增加了10.5%.(1)求该经销商年利润的平均增长率;(2)如果不受客观因素的影响,并按此增长速度,那么2020年该经销商获得的利润是多少万元(结果精确到0.01万元).26.某旅游景区今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,求该旅游景区9,10两个月游客人数的平均增长率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据一元二次方程有整数解,可得△≥0,然后对b ,a ,c 分别取值试算,从而得出b=4,a=1,c=3或b=4,a=3,c=1时方程有解;再分类计算出方程的根,两者均为整数时符合要求,则此时围成的多边形及其性质也可作出判断,从而问题得解.【详解】解:∵方程ax 2-bx+c=0的解均为整数∴△=b 2-4ac≥0∵已知a ,b ,c 是1,3,4中的任意一个数(a ,b ,c 互不相等),当b=1时,△=1-4×4×3<0,不符合题意;当b=3时,△=9-4×1×3<0,不符合题意;当b=4时,△=16-4×1×3=4>0,符合题意.∴b=4,a=1,c=3或b=4,a=3,c=1;当b=4,a=1,c=3时,方程ax 2-bx+c=0的解x = ∴x 1=3,x 2=1,两个根均为整数,符合题意;当b=4,a=3,c=1时,方程ax 2-bx+c=0的解423x ±=⨯ ∴x 1=1,x 2=13,不符合题意,故舍去; ∴当b=4,a=1,c=3时,方程ax 2-bx+c=0的解为x 1=3,x 2=1,∵以1,3和此方程的所有解为边长能构成的多边形有两种情况:①1,1作对边,3.3作对边,此时多边形为平行四边形,为中心对称图形;②1,1作邻边,3.3作邻边,1与3也相邻此时多边形为筝形,为轴对称图形.∴以1,3和此方程的所有解为边长能构成的多边形一定是中心对称图形或轴对称图形. 故选:C .【点睛】本题考查了一元二次方程的解与直线型的综合,明确一元二次方程的根与判别式的关系及平行四边形和筝形的性质是解题的关键.2.B解析:B【分析】设小路的宽度为x 米,则小正方形的边长为2x 米,根据小路的横向总长度(20+2x )米和纵向总长度(12+2x )米,根据矩形的面积公式可得到方程.【详解】解:设道路宽为x 米,则中间正方形的边长为2x 米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B .【点睛】考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.3.B解析:B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x 2+4x=3,x 2+4x+4=7,(x+2)2=7,故选:B .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.D解析:D【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可;【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意;B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意;C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意.故选:D .【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.5.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.【详解】解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大∴12AB·12BC=6,即AB•BC=24.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为10,∴AB+BC=10.则BC=10-AB,代入AB•BC=24,得AB2-10AB+24=0,解得AB=4或6,因为AB>BC,所以AB=6.故选:D.【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.D解析:D【分析】从图中可以看出,正方形的边长=a+b,所以面积=(a+b)2,矩形的长和宽分别是a+2b,b,面积=b(a+2b),两图形面积相等,列出方程得=(a+b)2=b(a+2b),其中a=1,求b的值,即可求得正方形的面积.【详解】解:根据图形和题意可得:(a+b)2=b(a+2b),其中a=1,则方程是(1+b)2=b(1+2b),解得:b=2,∴正方形的面积为(1+2)2.故选:D.【点睛】此题主要考查了图形的剪拼,本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b的值,从而求出边长,求面积.7.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x-+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22x x-=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题D.23420x x -+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题意.故选C .【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.A解析:A【分析】将α代入方程220x x --=,即可得22αα=+,即可推出22()22αβαβαβαβ+-=+-+,再由韦达定理即可求出结果.【详解】将α代入方程220x x --=得:220αα--=,即22αα=+∴2222()22αβαβαβαβαβαβ+-=++-=+-+.∵α、β是方程的两个根, ∴111αβ-+=-=,221αβ-==-. ∴()2212(2)27αβαβ+--=-⨯-+=. 故选:A .【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.熟知韦达定理公式是解答本题的关键.9.B解析:B【分析】利用勾股定理求出两点的距离=,当16=25m 时,OP 最小=2.4即可. 【详解】(3,44)P m m -,=,= ∴16=25m ,OP 最小12=2.45=, 故选择:B .【点睛】 本题考查勾股定理求两点距离问题,掌握勾股定理两点距离公式,会用配方法求最值是解题关键.10.D解析:D【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可.【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根,∴△=(-2)2-4m<0,解得m>1.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11.C解析:C【分析】关于x 的一元二次方程有两个相等的实数根,说明判别式=0,且要注意二次项系数不为0,解出m 的值即可.【详解】关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根, 则()()22141010m m m ⎧⎡⎤∆=----=⎪⎣⎦⎨-≠⎪⎩, 解得:11m =(舍去),22m =∴m=2,故选:C .【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法及根的判别式是解决本题的关键.12.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.二、填空题13.20【分析】新成本=原成本×(1-平均每月降低的百分率)2把相关数值代入即可求解【详解】∵原开支为2500元设平均每月降低的百分率为x ∴第一个月的开支为2500×(1-x)元第二个月的开支为2500解析:20%【分析】新成本=原成本×(1-平均每月降低的百分率)2,把相关数值代入即可求解.【详解】∵原开支为2500元,设平均每月降低的百分率为x ,∴第一个月的开支为2500× (1-x)元,第二个月的开支为2500×(1-x)×(1-x) =2500×(1-x)2元, 可列方程为:2500(1-x)2= 1600,解得:x=0.2=20%或x =-1.8(舍去)故答案为:20%.【点睛】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1土x) 2=b.14.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去; 当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.15.m >0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n 的任意性构造不等式求解即可【详解】∵关于x 的一元二次方程m ﹣nx ﹣m ﹣3=0对于任意实数n 都有实数根∴△≥0且m ≠0∴≥0∴≥0解析:m >0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n 的任意性,构造不等式求解即可.【详解】∵关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根, ∴△≥0,且m≠0,∴2()4(3)n m m -++≥0,∴22412n m m ++≥0,∵对于任意实数n 都有实数根,∴2412m m +≥0,∴030m m ≥⎧⎨+≥⎩或030m m ≤⎧⎨+≤⎩, ∴m≥0或m≤-3,且m≠0,∴m >0或m≤-3,故答案为:m >0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.16.【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2设平均每次增长的百分率为x 根据从100吨增加到150吨即可得出方程【详解】解:设蔬菜产量的年平均增长率为x 则可列方程为100(1+x )2=解析:()21001150x +=【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2,设平均每次增长的百分率为x ,根据“从100吨增加到150吨”,即可得出方程.【详解】解:设蔬菜产量的年平均增长率为x ,则可列方程为100(1+x )2=150,故答案为:()21001150x +=.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于熟知两次增长后的产量=增长前的产量×(1+增长率)2,根据条件列出方程. 17.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的 解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =, ∴另一个根为35. 故答案为:35. 【点睛】 本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a c x x x x a-+=,=. 18.-3【分析】由于可知m 是方程的解可得将其带入求值即可;【详解】∵∴∵m 是的一个根∴∴故答案为:-3【点睛】本题考查了方程的解的定义此类型的题的特点是:利用方程解的定义找到相等的关系再把所求的代数式化 解析:-3【分析】由于2210x x +-=可知221x x +=,m 是方程的解,可得221m m += ,将其带入求值即可;【详解】∵2210x x +-=,∴ 221x x +=,∵ m 是2210x x +-=的一个根,∴ 221m m +=,∴ 224143m m +-=-=- ,故答案为:-3.【点睛】本题考查了方程的解的定义,此类型的题的特点是:利用方程解的定义找到相等的关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值;19.5【分析】利用根与系数的关系解答【详解】∵方程的根是x1x2∴∵∴5故答案为:5【点睛】此题考查一元二次方程根与系数的关系熟记根与系数的两个关系式并应用是解题的关键解析:5【分析】利用根与系数的关系解答.【详解】∵方程240x x k -+=的根是x 1、x 2,∴124x x +=,∵11x =-,∴2x =5,故答案为:5.【点睛】此题考查一元二次方程根与系数的关系,熟记根与系数的两个关系式并应用是解题的关键.20.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.三、解答题21.(1)450,6750;(2)销售单价应为60元/千克.【分析】(1)根据题意直接计算得出即可;(2)销售成本不超过6000元,即进货不超过6000÷20=300kg .根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【详解】解:(1)销售量:500-5×10=450(kg );销售利润:450×(35-20)=450×15=6750(元);故答案为:450,6750.(2)由于水产品不超过6000÷20=300(kg ),定价为x 元,则(x-20)[500-10(x-30)]=8000解得:x 1=40,x 2=60当x 1=40时,进货500-10(40-30)=400kg >300kg ,舍去,当x 2=60时,进货500-10(60-30)=200kg <300kg ,符合题意.答:销售单价应为60元.【点睛】本题考查了一元二次方程的应用,此题的创意在第2问,同时考虑进出两个方面的问题,比较后得结论.22.(1)13x =-,25x =;(2)112x =-,234x = 【分析】(1)运用因式分解法分解成两个一元一次方程,求出方程的解即可;(2)移项后运用因式分解法分解成两个一元一次方程,求出方程的解即可.【详解】解:(1)22150x x --=, ()()530-+=x x ,30x +=,50x -=,∴13x =-,25x =.(2)()()421321x x x +=+()()4213210x x x +-+=,()()21430x x +-=,210x +=或430x -=, 所以112x =-,234x =. 【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键. 23.该快递公司投递的快递件数的月平均增长率为20%.【分析】设该快递公司投递的快递件数的月平均增长率为x ,根据该快递公司今年9月份及11月份投递的快递件数,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;【详解】解:设该快递公司投递的快递件数的月平均增长率为x ,依题意,得:10(1+x )2=14.4,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该快递公司投递的快递件数的月平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 24.(1)不是;(2)是.【分析】(1)求出方程解,然后根据“邻根方程”的定义进行判定;(2)求出方程解,然后根据“邻根方程”的定义进行判定.【详解】解:(1)260x x --=,解得13x =,22x =-,∵125x x -=,不符合邻根方程的定义∴260x x --=不是邻根方程.(2)2210x -+=,解得112x =,212x = ∴121x x -=∴符合邻根方程的定义 ∴2210x -+=是邻根方程.【点睛】本题主要考查了一元二次方程解法.理解题意,掌握“邻根方程”的定义是关键. 25.(1)该经销商年利润的平均增长率为25%;(2)2020年该经销商获得的利润是15.63万元【分析】(1)设该经销商利润的平均增长率为x ,根据增长率问题的数量关系建立方程求出其解; (2)根据增长率问题的数量关系得到2020年该经销商获得的利润即可.【详解】解:()1该经销商年利润的平均增长率为x .依题意,得:()()()()22012120110.5%12120%x -+=+--,即:()28112.5x +=, 1 1.25x ∴+=±,则120.25, 2.25x x -==(不符合,舍去),答:该经销商年利润的平均增长率为25%.()22019年获得的利润12.5万元.()12.5125%15.62515.63∴⨯+=≈(万元).答:2020年该经销商获得的利润是15.63万元.【点睛】本题考查了增长率问题的数量关系在实际问题中的运用,一元二次方程的解法的运用,解答时根据据增长率问题的数量关系建立方程是关键.26.该旅游景区9,10两个月游客人数的平均增长率是56%【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设9月、10月游客人数的平均增长率是x ,根据今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,据此即可列方程解出即可.【详解】解:设该旅游景区9,10两个月游客人数的平均增长率是x ,根据题意,得()()()21144%169%x +=+⨯+,解得10.5656%x ==,2 2.56x =-(不合实际,舍去).答:该旅游景区9,10两个月游客人数的平均增长率是56%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a ()21a ±.增长用“+”,下降用“−”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上第二章 一元二次方程单元测试题一、选择题(每小题3分,共21分) 1.方程x 2-2x=0的根是( ).A .x 1=0,x 2=2B .x 1=0,x 2=-2C .x=0D .x=2 2.若x 1,x 2是一元二次方程3x 2+x -1=0的两个根,则1211x x +的值是( ). A .-1 B .0 C .1 D .23.已知一直角三角形的三边长为a 、b 、c ,∠B=90°,那么关于x 的方程a (x 2-1)•-2x+b (x 2+1)=0的根的情况为( ).A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定4.一元二次方程x 2-3x -1=0与x 2-x+3=0的所有实数根的和等于( ). A .2 B .-4 C .4 D .35.某农场粮食产量是:2003年为1 200万千克,2005年为1 452万千克,•如果平均每年增长率为x ,则x 满足的方程是( ).A .1200(1+x )2=1 452B .2000(1+2x )=1 452C .1200(1+x%)2=1 452D .12 00(1+x%)=1 4526.方程231x x -+=2的根是( ). A .-2 B .12 C .-2,12D .-2,17.方程2111x x x =--的增根是( ). A .x=0 B .x=-1 C .x=1 D .x=±1 二、填空题(每小题3分,共24分) 8.x 2+8x+_______=(x+_____)2;x 3-32x+______=(x -______)2. 9.如果x 2-5x+k=0的两根之差的平方是16,则k=________.10.方程2x 2+x+m=0有两个不相等的实数根,则m 的取值范围是_______. 11.若2x 2-5x+28251x x -+-5=0,则2x 2-5x -1的值为_________. 12.若x 1,x 2是方程x 2-2x+m 的两个实数根,且1211x x +=4,则m=________.13.已知一元二次方程x 2-6x+5-k=0•的根的判别式△=4,则这个方程的根为_______. 14.设方程2x 2+3x+1=0•的两个根为x 1,x 2,•不解方程,•作以x 12,•x 22•为两根的方程为______. 15.若一个两位正整数,它的个位数字与十位数的和是5,数字的平方和是17,求这个两位数.解:设这个两位数的十位数字是x ,•则它的个位数字为__________,•所以这两位数是_______,根据题意,得__________________________________. 三、解答题(共75分) 16.(24分)解下列方程 (1)用配方法解方程3x 2-6x+1=0; (2)用换元法解(1x x +)2+5(1x x +)-6=0;(3)用因式分解法解3x (x -2)=2-x ;(4)用公式法解方程2x (x -3)=x -3. 17.(10分)某采购员到察尔汗钾盐厂购钾盐36t 运往内地,•如果租用甲种货车若干辆刚好装满,租用乙种货车,可少租1辆并且最后1辆还差4t 才能装满,•已知甲种货车的载重量比乙种货车少2t ,求甲、乙两种货车的载重量各是多少吨?18.(14分)阅读材料:x4-6x2+5=0是一个一元四次方程,根据该方程的特点,它的通常解法是:设x2=y,那么x4=y2,于是原方程变为x2-6y+5=0①,解这个方程,得y1=1,y2=5;•当y1=1时,x2=1,x=±1;当y=5时,x2=5,x=±5,所以原方程有四个根x1=1,x2=-1,x3=5,x2=-5.(1)在由原方程得到方程①的过程中,利用________法达到降次的目的,•体现了_______的数学思想.(2)解方程(x2-x)-4(x2-x)-12=0.19.(14分)已知:关于x的方程x2+(8-4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136;若存在,•请求出满足条件的m值;若不存在,请说明理由.20.(13分)如图,客轮沿折线A─B─C从A出发经B再到C匀速航行,•货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A─B─C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点()A.在线段AB上B.在线段BC上C.可以在线段AB上,也可以在线段BC上(2)求货轮从出发到两船相遇共航行了多少海里?DC BA答案与提示一、1.A 分析:直接提公因式x .点拨:分解因式得到两个因式的积等于0,即是每个因式分别等于0. 2.C 分析:由根与系数关系得出x 1+x 2和x 1x 2的值,再将代数式1211x x +进行化简. 3.D 分析:根据b 2-4ac 的大小来判断根的情况.点拨:应用b 2=a 2+c 2.4.D 分析:方程x 2-3x -1=0有两实根x 1,x 2,∴x 1+x 2=3,方程x 2-x+3=0无实数根,∴所有实数根的和为3. 点拨:求方程两根之和必须先考虑方程是否有实数根.5.A 分析:原基数为1 200万千克,设平均每年增长率为x ,则有1 200(1+x )2•=•1452. 点拨:增长率=)增加数量原来数量(基数×100%.6.C 分析:本题是可化为一元二次方程的分式方程,先化为整式方程,再求整式方程的解. 点拨:分式方程的根一定要检验.7.C 分析:方程的增根就是使最简公分母为0的数,即x -1=0⇒x=1. 点拨:增根不是原方程的根. 二、8.16 4916 34分析:利用配方法配成完全平方式. 点拨:配方法就是加上一次项系数一半的平方. 9.94 分析:(x 1-x 2)2=16⇒(x 1+x 2)2-4x 1x 2=16,25-4k=16,k=94. 点拨:(x 1-x 2)2转化成(x 1+x 2)2,然后根据根与系数的关系代入求值. 10.m<18 分析:因为方程有两个不相等的实数根,所以1-8m>0,∴m<18. 点拨:根据b 2-4ac 的大小来判断根的情况.11.0或2 分析:设a=2x 2-5x ,则原方程为a+81a +-5=0,整理,得a 2-4a+3=0,解得a 1=1,•a 2=3;当a=1时,2x 2-5x -1=0;当a=3时,2x 2-5x -1=3-1=2. 点拨:用a 替换2x 2-5x 是解本题的关键. 12.12 分析:由x 1+x 2=2,x 1x 2=m ,∵1211x x +=4,∴121224,x x x x m +==4,m=12. 点拨:在方程有两个实根的情况下,应用x 1+x 2=-b a ,x 1x 2=c a. 13.x 1=4,x 2=2 分析:∵△=4,∴b 2-4ac=4,即x=246222b b ac a -±-±=, ∴x 1=4,x 2=2.点拨:直接应用求根公式求出根来. 14.4x 2-5x+1=0分析:求方程的关键是找出所求方程的两根与已知方程的两根之间的关系. ∵x 1+x 2=-32,x 1x 2=12. ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=94-1=54. x 12x 22=(x 1x 2)2=14. ∴所求方程为x 2-54x+14=0.即4x 2-5x+1=0.点拨:对于一元二次方程x 2+px+q=0,所求方程两根之和等于-p ,两根之积等于q . 15.(5-x ) 10x+(5-x ) x 2+(5-x )2=17分析:设十位数字为x ,则个位数字为5-x ,故这个两位数为10x+(5-x ). 由题意,得x 2+(5-x )2=17.点拨:一个两位数的表示方法是:设个位数字为b ,十位数字为a ,则有10a+b . 三、16.解:(1)3x 2-6x+1=0, x 2-2x+=0, (x -1)2=23, x -1=±63, x=1±63. x 1=1+63,x 2=1-63.(2)设1xx +=a ,则原方程a 2+5a -6=0,解得a 1=1(舍去),a 2=-6. 当a=-6时,1x x +=-6,-7x=6,x=-67.(3)3x (x -2)=2-x . 3x (x -2)=-(x -2). 3x (x -2)+(x -2)=0. (x -2)(3x+1)=0. x 1=2,x 2=-13. (4)2x (x -3)=(x -3). 2x 2-6x -x+3=0. 2x 2-7x+3=0.∵a=2,b=-7,c=3,b 2-4ac=49-24=25>0. ∴x=72575,44x ±±=. ∴x 1=3,x 2=12. 点拨:(1)用配方法解方程,将二次项系数化为1,•再在方程两边都加上一次项系数一半的平方;(2)用换元法降低方程的次数,使分式方程转化为整式方程;(3)将2-x 移到方程的左边,再提公因式;(4)应用求根公式求解,首先要考虑b 2-4ac 的值,大于或等于0才能应用公式x=242b b aca-±-求根.17.分析:如果我们设甲种货车的载重量为xt ,•则由条件“已知甲种货车的载重量比乙种货车少2t ”,可得乙种货车的重量为(x+2)t ,再分析条件“租用乙种货车,可少租一辆”,于是得到等量关系:甲种货车辆数-乙种货车辆数=1.解:设甲种货车的载重量为xt ,则乙种货车的载重量为(x+2)t ,根据题意,得363642x x +-+=1,解得x 1=6,x 2=-12, 经检验,x 1=6,x 2=-12都是所列方程的根,但x=-12不合题意,舍去,•∴x+2=8.答:甲、乙两种货车的载重量分别是6t ,8t .点拨:解答此类问题的关键是梳理条件,理清思路,寻求一个等量关系,列出方程求解. 18.解:(1)换元 转化(2)设x 2-x=y ,则原方程为y 2-4y -12=0,解得y 1=6,y 2=-2.当y=6时,x 2-x -6=0,解得x 1=3,x 2=-2;当y=-2时,x 2-x+2=0, ∵△<0,∴此方程无实数根,∴原方程的根是x 1=3,x 2=-2.点拨:本题应用了换元法,把关于x 的方程转化为关于y 的方程,也可以把x 2-x 看成一个整体,则原方程是以x 2-x 为未知数的一元二次方程. 19.解:(1)若方程有两个相等的实数根,则有(8-4m )2-16m 2=0,解得m=1.当m=1时,•原方程为x 2+4x+4=0,x 1=x 2=-2. (2)不存在.假设存在,则有x 12+x 22=136. ∵x 1+x 2=4m -8,x 1x 2=4m 2, (x 1+x 2)2-2x 1x 2=136. (4m -8)2-2×4m 2=136. m 2-8m -9=0. (m -9)(m+1)=0. m 1=9,m 2=-1.∵△=(8-4m )2-16m 2=64-64m ≥0, ∴m ≤1,m 1=9,m 2=-1都不符合题意,∴不存在正数m ,使方程的两个实数根的平方和等于136. 点拨:根据b 2-4ac=0,再求m 值. 20.解:(1)B(2)设货轮从出发到两船相遇共航行了x 海里,过D 点作DF ⊥CB 于F ,连接DE ,则DE=x ,AB+BE=2x ,∵D 点是AC 的中点,∴DF=12AB=100,EF=400-100-2x , 在Rt △DFE 中,DE 2=DF 2+EF 2,得x 2=1002+(300-2x )2,x=200±10063. ∵200+10063>100,∴DE=200-10063. 答:货轮从出发到两船相遇共航行了(200-10063)海里. 点拨:当三角形中有中点时,常作三角形的中位线.。

相关文档
最新文档