浙江省2019年中考数学复习第三单元函数第11课时一次函数的实际应用含近9年中考真题试题162
中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。
y= x
,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标
1
2
直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加
中考数学复习方案 第11课时 一次函数的应用
解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.
基
础
知
识
巩
固
高
频
考
向
探
究
对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.
基
础
知
识
巩
固
∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里
中考数学考点11一次函数的实际应用总复习(解析版)
一次函数的实际应用【命题趋势】在中考中.一次函数的实际应用常以解答题考查.并结合二次函数最值问题考查为主【中考考查重点】一、利用一次函数解决购买、销售、分配问题二、利用一次函数解决工程、生产、行程问题三、利用一次函数解决有关方案问题考点一:购买、销售、分配类问题1.(2021秋•柯桥区月考)在近期“抗疫”期间.某药店销售A.B两种型号的口罩.已知销售80只A型和45只B型的利润为21元.销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只.其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍.则该药店购进A型、B型口罩各多少只.才能使销售总利润y最大?最大值是多少?【答案】(1)A为0.15元.B为0.2元(2)A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元【解答】解:(1)设每只A型口罩销售利润为a元.每只B型口罩销售利润为b元.根据题意得:.解得.答:每只A型口罩销售利润为0.15元.每只B型口罩销售利润为0.2元;(2)根据题意得.y=0.15x+0.2(2000﹣x).即y=﹣0.05x+400;根据题意得..解得500≤x≤1000.∴y=﹣0.05x+400(500≤x≤1000).∵﹣0.05<0.∴y随x的增大而减小.∵x为正整数.∴当x=500时.y取最大值为375元.则2000﹣x=1500即药店购进A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元.2.(2021•南宁一模)自2020年12月以来.我国全面有序地推进全民免费接种新冠疫苗.现某国药集团在甲、乙仓库共存放新冠疫苗450万剂.如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后.剩余的新冠疫苗乙仓库比甲仓库多30万剂.(1)求甲、乙两仓库各存放新冠疫苗多少万剂?(2)若该国药集团需从甲、乙仓库共调出300万剂新冠疫苗运往B市.设从甲仓库调运新冠疫苗m万剂.请求出总运费W关于m的函数解析式并写出m的取值范围;其中.从甲、乙仓库调运新冠疫苗到B市的运费报价如表:甲仓库运费定价调运疫苗不超过130万剂时调运疫苗超过130万剂时135元/万剂不优惠优惠10%m元/万剂乙仓库105元/万剂不优惠(3)在(2)的条件下.国家审批此次调运新冠疫苗总运费不高于33000元.请通过计算说明此次调运疫苗最低总运费是否在国家审批的范围内?【答案】(1)甲仓库240万剂.乙仓库210万剂;(2)(3)是【解答】解:(1)设甲仓库存放新冠疫苗x万剂.乙仓库存放新冠疫苗y万剂.由题意.得:.解得:.答:甲仓库存放新冠疫苗240万剂.乙仓库存放新冠疫苗210万剂;(2)由题意.从甲仓库运m万剂新冠疫苗到B市.则从乙仓库运新冠疫苗(300﹣m)万剂到B市.∵300﹣m≤210.∴m≥90①若90≤m≤130时.此时甲仓库运费不优惠.乙仓库运费不优惠.则总运费W=135m+105(300﹣m)=30m+31500;②若130≤m≤240时.此时甲仓库运费优惠10%m元/万剂.乙仓库运费不优惠.则总运费W=(135﹣10%m)m+105(300﹣m)=﹣0.1m2+30m+31500;综上.总运费W关于m的解析式为:W=;(3)由(2)知.①当90≤m≤130时.∵30>0.∴W随着m的增大而增大的一次函数.当m=90时.可获得最低总运费.此时W=34200元;②当130≤m≤240时.W时关于m的二次函数.对称轴m=﹣=150.∵﹣0.1<0.∴当m=240时.W有最小值.最小值为32940.∵34200>32940.∴W最低为32940元.∵32940<33000.∴此次调运疫苗最低总运费是在国家审批的范围内.3.(2019春•增城区期末)为了让学生体验生活.某学校决定组织师生参加社会实践活动.现准备租用7辆客车.现有甲、乙两种客车.它们的载客量和租金如下表.设租用甲种客车x辆.租车总费用为y元.甲种客车乙种客车载客量(人/辆)6045租金(元/辆)360300(1)求出y与x之间的函数关系式;(2)若该校共有380名师生前往参加活动.确保每人都有座位坐.共有哪几种租车方案?(3)在(2)的条件下.带队老师从学校预支租车费2500元.试问预支的租车费用是否有结余?若有结余.最多可以结余多少元?【答案】(1)y=60x+2100.(0≤x≤7.且x为整数)(2)三种租车方案(3)100元【解答】解:(1)依题意得:y=360x+300(7﹣x)=60x+2100.(0≤x≤7.且x为整数)(2)依题意得:60x+45(7﹣x)≥380.解之.得.由(1)得0≤x≤7.∴x的取值范围为:.∵x为整数.∴x的值为 5.6.7.当x=5 时.7﹣x=7﹣5=2;当x=6 时.7﹣x=7﹣6=1;当x=7 时.7﹣x=7﹣7=0;∴共有三种租车方案:①租用甲种客车5 辆.乙种客车 2 辆;②租用甲种客车6 辆.乙种客车 1 辆;③租用甲种客车7 辆.乙种客车0 辆.(3)由(1)得y=60x+2100.∵k=60≥0.∴y随x的增大而增大.当x=5 时.y的值最小.其最小值y=360×5+300×2=2400.∴最多可结余:2500﹣2400=100(元).答:在(2)的条件下.带队老师从学校预支租车费2500元.预支的租车费有结余.最多可以结余100元.考点二:工程、生产、行程问题4.(2021春•江夏区期末)在2018春季环境整治活动中.某社区计划对面积为1600m2的区域进行绿化.经投标.由甲、乙两个工程队来完成.若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.并且在独立完成面积为400m2区域的绿化时.甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天.乙工程队施工y天.刚好完成绿化任务.求y关于x的函数关系式;(3)若甲队每天绿化费用是0.6万元.乙队每天绿化费用为0.25万元.且甲乙两队施工的总天数不超过25天.则如何安排甲乙两队施工的天数.使施工总费用最低?并求出最低费用.【答案】(1)甲、乙面积分别为80m2、40m2(2)y=﹣2x+40(3)x=15时.W最低=1.5+10=11.5【解答】解:(1)设乙队每天能完成绿化面积为am2.则甲队每天能完成绿化面积为2am2根据题意得:解得a=40经检验.a=40为原方程的解则甲队每天能完成绿化面积为80m2答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2(2)由(1)得80x+40y=1600整理的:y=﹣2x+40(3)由已知y+x≤25∴﹣2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(﹣2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时.W最低=1.5+10=11.55.(2021秋•金牛区期末)某模具厂引进一种新机器.这种机器同一时间只能生产一种零件.每天只能工作8小时.每月工作25天.若一天用3小时生产A型零件、5小时生产B型零件共可生产34个;若一天用5小时生产A型零件、3小时生产B型零件则共可生产30个.(1)每小时可单独加工A型零件、B型零件各多少个?(2)按市场统计.一个A型零件的利润是150元.一个B型零件的利润是100元.设该模具厂每月安排x(小时)生产A型零件.这两种零件所获得的总利润为y(元).试写出y与x的函数关系式(不要求写出自变量的取值范围).【答案】(1)A型零件3个.B型零件5个(2)y=﹣50x+100000【解答】解:(1)设每小时可单独加工A型零件m个.B型零件n个.根据题意得:.解得;.答:每小时可单独加工A型零件3个.B型零件5个;(2)∵这种机器每天只能工作8小时.每月工作25天.设该模具厂每月安排x(小时)生产A型零件.则每月安排(25×8﹣x)小时生产B 零件.由题意得:y=150×3x+100×5(200﹣x)=﹣50x+100000.∴y与x的函数关系式为y=﹣50x+100000.6.(2020秋•沭阳县期末)学校与图书馆在同一条笔直道路上.甲从学校去图书馆.乙从图书馆回学校.甲、乙两人都匀速步行且同时出发.乙先到达目的地两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息.当t=分钟时甲乙两人相遇.甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.(3)当t为何值时.甲、乙两人相距2000米?【答案】(1)24.40 (2)y=40t(40≤t≤60)(3)t=4或t=50【解答】解:(1)甲乙两人相遇即是两人之间的距离y=0.从图中可知此时x=24(分钟).图中可知甲用60分钟走完2400米.速度为2400÷60=40(米/分钟).故答案为:24.40;(2)甲、乙速度和为2400÷24=100(米/分钟).而甲速度为40米/分钟.∴乙速度是60米/分钟.∴乙达到目的地所用时间是2400÷60=40(分钟).即A横坐标为40.此时两人相距(40﹣24)×100=1600(米).即A纵坐标为1600.∴A(40.1600).设线段AB所表示的函数表达式为y=kt+b.将A(40.1600)、B(60.2400)代入得:.解得k=40.b=0.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).(3)甲、乙两人相距2000米分两种情况:①二人相遇前.两人路程和为2400﹣2000=400(米).甲、乙两人相距2000米.此时t =400÷100=4(分钟).②二人相遇后.乙达到目的地时二人相距1600米.甲再走400米两人就相距2000米.此时t=40+400÷40=50(分钟).综上所述.二人相距2000时.t=4或t=50.考点三:方案问题方案一:没有底薪.只付销售提成;方案二:底薪加销售提成.如图中的射线l1.射线l2分别表示该鲜花销售公司每月按方案一.方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x ≥0)的函数关系.(1)分别求y1、y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克.但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1)y1=30x(x≥0).y1=30x(x≥0)(2)采用了方案一【解答】解:(1)设y1=k1x.根据题意得40k1=1200.解得k1=30.∴y1=30x(x≥0);设y2=k2x+b.根据题意.得.解得.∴y2=10x+800(x≥0);(2)当x=70时.y1=30×70=2100>2000;y2=10×70+800=1500<2000;∴这个公司采用了方案一给这名销售人员付3月份的工资.1.(2021春•饶平县校级期末)小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售.并分别以每箱35元与60元的价格售出.设购进A水果x箱.B水果y箱.(1)若小王将水果全部售出共赚了215元.则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量.则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润.此时最大利润是多少?【答案】(1)A种水果25箱.B种水果9箱(2)购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得.答:小王共购进A种水果25箱.B种水果9箱.(2)设利润为W元.W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量.∴x≥.解得:x≥15.∵﹣1<0.∴W随x的增大而减小.∴当x=15时.W取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.2.(2020秋•秦都区期末)某工厂新开发生产一种机器.每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70.且x为整数).函数y与自变量x的部分对应值如表:x(单位:台)1020 y(单位:万元/台)6055(1)求y与x之间的函数关系式;(2)市场调查发现.这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.若该厂第一个月生产这种机器40台.且都按同一售价全部售出.请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)【答案】(1)y=﹣0.5x+65 (2)200万元【解答】解:(1)设y与x之间的函数关系式为y=kx+b.根据题意.得.解得:.即y与x之间的函数关系式为y=﹣0.5x+65.(2)当x=40时.y=﹣0.5×40+65=45.设z与a之间的函数关系式为z=ma+n.根据题意.得.解得:.即z与a之间的函数关系式为z=﹣a+90.当z=40时.40=﹣a+90.解得.a=50.(50﹣45)×40=200(万元).答:该厂第一个月销售这种机器的总利润是200万元.3.(2020秋•浦东新区校级期末)有两段长度相等的河渠挖掘任务.分别交给甲、乙两个工程队同时进行挖掘.如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时.用了小时.开挖6小时.甲队比乙队多挖了米;(2)甲队在0≤x≤6的时段内.y与x之间的函数关系式是;(3)在开挖6小时后.如果甲、乙两队施工速度不变.完成总长110米的挖掘任务.乙队比甲队晚小时完成.【答案】(1) 2.10 (2)y=10x(0≤x≤6)(3)7【解答】解:(1)由图可知:乙队开挖到30米时.用了2小时.开挖6小时时.甲队挖了60米.乙队挖了50米.所以甲队比乙队多挖了60﹣50=10米.故答案为:2.10;(2)设2小时后乙的解析式为:y=kx(k≠0).把C(6.60)代入得:6k=60.k=10.∴2小时后乙的解析式为:y=10x.即y与x之间的函数关系式是:y=10x(0≤x≤6).故答案是:y=10x(0≤x≤6);(3)开挖6小时.甲挖了60米.甲的速度为10米/小时.∵要完成总长110米的挖掘任务.∴甲再挖50米.所需时间为50÷10=5小时;开挖6小时.乙挖了50米.乙的速度为=5米/小时.∵要完成总长110米的挖掘任务.∴乙需再挖60米.所用时间为60÷5=12(小时).则12﹣5=7(小时).∴乙队比甲队晚7小时完成.故答案是:7.4.(2021春•华容县期末)某玩具批发市场A、B玩具的批发价分别为每件30元和50元.张阿姨花1200元购进A、B两种玩具若干件.并分别以每件35元与60元价格出售.设购入A玩具为x件.B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元.那么张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量.则怎样分配购进玩具A、B的数量并全部售出才能获得最大利润.此时最大利润为多少?【答案】(1)A型玩具20件.B型玩具12件(2)购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得..答:张阿姨购进A型玩具20件.B型玩具12件;(2)设利润为w元.w=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A玩具的数量不得少于B玩具的数量.∴x≥.解得:x≥15.∵﹣1<0.∴w随x的增大而减小.∴当x=15时.w取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.故购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.5.(2020•老河口市模拟)2020年是全面建成小康社会目标实现之年.是全面打赢脱贫攻坚战收官之年.我市始终把产业扶贫摆在突出位置.建立了A.B两个扶贫种植基地.为了帮扶我市的扶贫产业.扶贫办联系了C.D两家肥料厂对我市共捐赠100吨肥料.将这100吨肥料平均分配到A.B两个种植基地.已知C厂捐赠的肥料比D厂捐赠的肥料的2倍少20吨.从C.D两厂将肥料运往A.B两地的费用如表:C厂D厂运往A地(元/吨)2220运往B地(元/吨)2022(1)求C.D两厂捐赠的肥料的数量各是多少吨;(2)设从C厂运往A地肥料x吨.从C.D两厂运输肥料到A.B两地的总运费为y元.求y与x的函数关系式.并求出最少总运费;(3)由于从D厂到B地开通了一条新的公路.使D厂到B地的运费每吨减少了a(0<a<6)元.这时怎样调运才能使总运费最少?【答案】(1)C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨(2)y=4x+1980(10≤x≤50).最少总运费为2020元(3)①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.【解答】解:(1)设D厂捐赠的数量是a吨.则C厂捐赠的数量是(2a﹣20)吨.根据题意可得.a+2a﹣20=100.解得.a=40.则2a﹣20=60.答:C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨.(2)根据题意可得.从C厂运往A地肥料x吨.从C厂运往B地肥料(60﹣x)吨;从D厂运往A地肥料(50﹣x)吨.从D厂运往B地肥料(x﹣10)吨.由题意可得.y=22x+20(60﹣x)+20(50﹣x)+22(x﹣10)=4x+1980.根据实际意义可得..解得.10≤x≤50.∵4>0.∴y随x的减小而减小.∴当x=10时.y取最小值2020.答:y与x的函数关系式为y=4x+1980(10≤x≤50).最少总运费为2020元.(3)在(2)的基础上.可得.y=22x+20(60﹣x)+20(50﹣x)+(22﹣a)(x﹣10)=(4﹣a)x+(1980+10a)(10≤x≤50.0<a<6).①当4﹣a>0.即0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4﹣a<0.即4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.综上.①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.1.(2020•广安)某小区为了绿化环境.计划分两次购进A.B两种树苗.第一次购进A种树苗30棵.B种树苗15棵.共花费1350元;第二次购进A种树苗24棵.B种树苗10棵.共花费1060元.(两次购进的A.B两种树苗各自的单价均不变)(1)A.B两种树苗每棵的价格分别是多少元?(2)若购买A.B两种树苗共42棵.总费用为W元.购买A种树苗t棵.B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案.并求出此方案的总费用.【答案】(1)A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.【解答】解:(1)设A种树苗每棵的价格x元.B种树苗每棵的价格y元.根据题意得:.解得.答:A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)设A种树苗的数量为t棵.则B种树苗的数量为(42﹣t)棵.∵B种树苗的数量不超过A种树苗数量的2倍.∴42﹣t≤2t.解得:t≥14.∵t是正整数.∴t最小值=14.设购买树苗总费用为W=40t+10(42﹣t)=30t+420.∵k>0.∴W随t的减小而减小.当t=14时.W最小值=30×14+420=840(元).答:购进A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.2.(2020•云南)众志成城抗疫情.全国人民在行动.某公司决定安排大、小货车共20辆.运送260吨物资到A地和B地.支援当地抗击疫情.每辆大货车装15吨物资.每辆小货车装10吨物资.这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车中的10辆前往A地.其余前往B地.设前往A地的大货车有x辆.这20辆货车的总运费为y元.(1)这20辆货车中.大货车、小货车各有多少辆?(2)求y与x的函数解析式.并直接写出x的取值范围;(3)若运往A地的物资不少于140吨.求总运费y的最小值.【答案】(1)大货车、小货车各有12与8辆(2)y=100x+15600 (2≤x≤10)x为整数(3)当x=8时.y有最小值.此时y=100×8+15600=16400元.【解答】解:(1)设大货车、小货车各有m与n辆.由题意可知:.解得:答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆.则到A地的小货车有(10﹣x)辆.到B地的大货车有(12﹣x)辆.到B地的小货车有(x﹣2)辆.∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600.其中2≤x≤10.x为整数.(3)运往A地的物资共有[15x+10(10﹣x)]吨.15x+10(10﹣x)≥140.解得:x≥8.∴8≤x≤10.x为整数.当x=8时.y有最小值.此时y=100×8+15600=16400元.答:总运费最小值为16400元.3.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲进价是30元.乙进价是24元(2)应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元【解答】解:(1)设甲品牌洗衣液每瓶的进价是x元.则乙品牌洗衣液每瓶的进价是(x﹣6)元.依题意得:.解得:x=30.经检验.x=30是原方程的解.且符合题意.∴x﹣6=24(元).答:甲品牌洗衣液每瓶的进价是30元.乙品牌洗衣液每瓶的进价是24元;(2)设可以购买甲品牌洗衣液m瓶.则可以购买(120﹣m)瓶乙品牌洗衣液.依题意得:30m+24(120﹣m)≤3120.解得:m≤40.依题意得:y=(36﹣30)m+(28﹣24)(120﹣m)=2m+480.∵k=2>0.∴y随m的增大而增大.∴m=40时.y取最大值.y最大值=2×40+480=560.120﹣40=80(瓶).答:超市应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元.4.(2021•宿迁)一辆快车从甲地驶往乙地.一辆慢车从乙地驶往甲地.两车同时出发.匀速行驶.两车在途中相遇时.快车恰巧出现故障.慢车继续驶往甲地.快车维修好后按原速继续行驶乙地.两车到达各地终点后停止.两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h.C点的坐标为.(2)慢车出发多少小时后.两车相距200km.【答案】(1)100.(8.480)(2)出发h或h时两车相距200km.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h).∵两车3小时相遇.此时慢车走的路程为:60×3=180(km).∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h).通过图象和快车、慢车两车速度可知快车比慢车先到达终点.∴慢车到达终点时所用时间为:480÷60=8(h).∴C点坐标为:(8.480).故答案为:100.(8.480);(2)设慢车出发t小时后两车相距200km.①相遇前两车相距200km.则:60t+100t+200=480.解得:t=.②相遇后两车相距200km.则:60t+100(t﹣1)﹣480=200.解得:t=.∴慢车出发h或h时两车相距200km.答:慢车出发h或h时两车相距200km.5.(2020•广西)倡导垃圾分类.共享绿色生活.为了对回收的垃圾进行更精准的分类.某机器人公司研发出A型和B型两款垃圾分拣机器人.已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨.3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人.这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45).B型机器人b 台.请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下.设购买总费用为w万元.问如何购买使得总费用w最少?请说明理由.【答案】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨(2)b=100﹣2a(10≤a≤45)(3)A型号机器人35台时.总费用w最少.此时需要918万元【解答】解:(1)设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y 吨.由题意可知:.解得:.答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20.∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时.此时40<b≤80.∴w=20×a+0.8×12(100﹣2a)=0.8a+960.当a=10时.此时w有最小值.w=968.当30≤a≤35时.此时30≤b≤40.∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960.当a=35时.此时w有最小值.w=918.当35<a≤45时.此时10≤b<30.∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时.w有最小值.此时w=930.答:选购A型号机器人35台时.总费用w最少.此时需要918万元.6.(2020•德阳)推进农村土地集约式管理.提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地.计划对其进行平整.经投标.由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩.乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元.当甲工程队所需工程费为12000元.乙工程队所需工程费为9000元时.两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整.已知两个工程队工作天数均为正整数.且所有土地刚好平整完.总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案.并求出最低费用.【答案】(1甲每天需工程费2000元、乙工程队每天需工程费1500元)(2)甲乙两工程队分别工作的天数共有7种可能(3)最低费用为107000元【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元.由题意.=.解得x=2000.经检验.x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天.则乙平整y天.由题意.45x+30y=2400①.且2000x+1500y≤110000②.由①得到y=80﹣1.5x③.把③代入②得到.2000x+1500(80﹣1.5x)≤110000.解得.x≥40.∵y>0.∴80﹣1.5x>0.x<53.3.∴40≤x<53.3.∵x.y是正整数.∴x=40.y=20或x=42.y=17或x=44.y=14或x=46.y=11或x=48.y=8或x=50.y =5或x=52.y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000.∵﹣250<0.∴w随x的增大而减小.∴x=52时.w的最小值=107000(元).答:最低费用为107000元.7.(2021•湘西州)2020年以来.新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机.开始组建团队.制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本.制作5个A 类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站.每个A类微课售价1500元.每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课.且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课.其中制作A类微课a天.制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式.并写出a的取值范围;(3)每月制作A类微课多少个时.该团队月利润w最大.最大利润是多少元?【答案】(1)A类微课的成本为700元.B类微课的成本为500元(3)当a=8时.w有最大值.w最大=50×8+16500=16900(元)【解答】解:(1)设团队制作一个A类微课的成本为x元.制作一个B类微课的成本为y元.根据题意得:.解得.答:团队制作一个A类微课的成本为700元.制作一个B类微课的成本为500元;(2)由题意.得w=(1500﹣700)a+(1000﹣500)×1.5(22﹣a)=50a+16500;1.5(22﹣a)≥2a.解得a≤.又∵每月制作的A、B两类微课的个数均为整数.∴a的值为0.2.4.6.8.(3)由(2)得w=50a+16500.∵50>0.∴w随a的增大而增大.∴当a=8时.w有最大值.w最大=50×8+16500=16900(元).答:每月制作A类微课8个时.该团队月利润w最大.最大利润是16900元.1.(2021•玉泉区二模)甲、乙两个工程队共同承担一项筑路任务.甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天.且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天.再由乙队施工y天.刚好完成筑路任务.求y与x之间的函数关系式.(3)在(2)的条件下.若每天需付给甲队的筑路费用为0.1万元.需付给乙队的筑路费用为0.2万元.且甲、乙两队施工的总天数不超过24天.则如何安排甲、乙两队施工的天数.使施工费用最少.并求出最少费用.【答案】(1)甲、乙各需30天、20天(2)y=﹣x+20(3)甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.【解答】解:(1)设乙队完成此项任务需要x天.则甲队完成此项任务(x+10)天..解得.x=20.经检验.x=20是原分式方程的解.∴x+10=30.答:甲、乙两队单独完成此项任务各需30天、20天;(2)由题意可得.=1.化简.得y=﹣x+20.即y与x之间的函数关系式是y=﹣x+20;(3)设施工的总费用为w元.w=0.1x+0.2y=0.1x+0.2×(﹣x+20)=x+4.∵甲、乙两队施工的总天数不超过24天.∴x+y≤24.即x+(﹣x+20)≤24.解得.x≤12.∴当x=12时.w取得最小值.此时w=3.6.y=12.答:安排甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.2.(2021•富平县二模)甲、乙两家草莓采摘园的草莓品质相同.销售价格也相同.“五一”假期.两家均推出了优惠方案.甲采摘园的优惠方案:游客进园需购买60元的门票.采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票.采摘的草莓超过一定数量后.超过部分打折优惠.优惠期间.设某游客的草莓采摘量为x(千克).。
中考数学复习课件:第1轮第3章第11讲 反比例函数
(2) 反 比 例 函 数 的 图 象 是 双 曲
线,它有两个分支,可用描点
法画出反比例函数的图象.
2.待定系数法:先设反比例函数 2.若反比例函数 y= 的解析式为 y=kx,再根据条件 kx的图象经过点(4, 代入已知点,从而求出未知数,3),则 k=__1_2_____. 写出反比例函数的解析式.
B.难题突破 6.(2020·株洲)如图所示,在平面直角坐标系 xOy 中,四边形 OABC 为矩形,点 A、C 分别在 x 轴、y 轴上,点 B 在函数 y1=kx(x>0,k 为常数且 k>2)的 图象上,边 AB 与函数 y2=2x(x>0)的图象交于点 D, 则阴影部分 ODBC 的面积为___k_-__1__.(结果用含 k 的式子表示)
A(6,1),B(a,-3)两点,连接 OA,OB.
(1)求一次函数和反比例函数的解析式;
解:把A(6,1)代入y2=mx 中,解得m=6, 所以反比例函数的解析式为y2=6x; 把B(a,-3)代入y2=6x,解得a=-2,
则B(-2,-3), 把A(6,1)和B(-2,-3)代入y1=kx+b, 可得6-k+2kb+=b1=,-3,解得bk==-12,2, 所以一次函数解析式为y1=12x-2;
又∵∠OFB=∠BFD=90°,∴△OBF∽△ BDF,
∴OBFF=DBFF,∴84=D4F,∴DF=2, ∴OD=OF+DF=8+2=10,∴D(10,0).
设BD所在直线解析式为y=k′x+b(k≠0), 把B(8,4),D(10,0)分别代入, 可得810k′k+′+b= b=4, 0,解得kb′==2-0,2, 故直线BD的解析式为y=-2x+20.
(2)求△AOB 的面积.
解:将x=0代入y=x+1,解得y=1,则点A的 坐标为(0,1),
中考数学 第一部分 教材知识梳理 第三单元 第11课时 一次函数及其应用
【解析】不等式x+b>kx+4的解集在图象上就表示:一 次函数y1=x+b的图象在一次函数y2=kx+4的图象上方 部分所对应的横坐标的取值范围,结合图象可知即x >1.
一题多解:把P(1,3)分别代入y1=x+b和y2=kx+4中, ∴3=1+b,即b=2,∴y1=x+2;3=k+4,即k=-1,∴y2= x+4,∴x+2>-x+4,解得x>1.
考点2 一次函数表达式的确定 1. 利用坐标确定一次函数表达式常用待定 系数法.(2011版新课标新增内容)
2. 确定一次函数表达式的一般步骤:
(1)设出一次函数表达式y=kx+b; (2)将x,y的对应值代入表达式y=kx+b, 得到含有待定系数的方程或方程组; (3)求待定系数k,b的值; (4)将所求待定系数的值代入所设的函数 表达式中即可得函数表达式.
(1)不等式kx+b>0的解集为一次函数y=kx+b图 象位于x轴上方部分对应x的取值范围;
(2)不等式kx+b<0的解集为一次函数y=kx+b图 象位于x轴下方部分对应x的取值范围;
(3)设点C的坐标为(m,n),那么不等式
kx+b≤k1x+b1的解集是 15__x__m __.
考点4 一次函数的实际应用 1. 利用一次函数的性质解决实际问题的步骤:
拓展 已知正比例函数y=kx(k≠0)的函数值y随x的增 大而减小,则一次函数y=x+k的图象大致是 ( B)
【解析】∵正比例函数y=kx(k≠0)的函数值y随x增 大而减小,∴k<0,∴一次函数y=x+k的图象经过 第一、三、四象限.故选B.
2019年中考数学总复习第三单元函数及其图像课时训练11一次函数的图像与性质练习
课时训练(十一)一次函数的图像与性质(限时:30分钟)|夯实基础|1.一次函数y=-2x+1的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.[2018·深圳]把函数y=x的图像向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)3.[2018·遵义]如图K11-1,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()图K11-1A.x>2B.x<2C.x≥2D.x≤24.[2018·陕西]如图K11-2,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的值为()图K11-2A.-B.C.-2D.25.[2018·宜宾]已知点A是直线y=x+1上一点,其横坐标为-,若点B与点A关于y轴对称,则点B的坐标为.6.[2018·连云港]如图K11-3,一次函数y=kx+b的图像与x轴,y轴分别相交于A,B两点,☉O经过A,B两点,已知AB=2,则的值为.图K11-37.[2017·十堰]如图K11-4,直线y=kx和y=ax+4交于A(1,k),则不等式组kx-6<ax+4<kx的解集为.图K11-48.[2018·扬州]如图K11-5,在等腰直角三角形ABO中,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.9.如图K11-6,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.图K11-610.如图K11-7,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.11.[2017·泰州]平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图像上,并说明理由;(2)如图K11-8,一次函数y=-x+3的图像与x轴、y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.图K11-8|拓展提升|12.[2018·陕西]若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)13.[2018·滨州]如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图像为()图K11-914.[2018·河北]如图K11-10,直角坐标系xOy中,一次函数y=-x+5的图像l1分别与x,y轴交于A,B两点,正比例函数的图像l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,直接写出k的值.图K11-1015.[2018·张家界]阅读理解题.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0(A 2+B 2≠0)的距离公式为:d=.例如,求点P (1,3)到直线4x+3y-3=0的距离. 解:由直线4x+3y-3=0知:A=4,B=3,C=-3.所以P (1,3)到直线4x+3y-3=0的距离为:d==2.根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x-4y-5=0的距离; (2)若点P 2(1,0)到直线x+y+C=0的距离为,求实数C 的值.参考答案1.C2.D3.B4.A5.,[解析]把x=-代入y=x+1得:y=,∴点A 的坐标为-,,∵点B 和点A 关于y 轴对称,∴B ,,故答案为,.6.-[解析] ∵OA=OB ,∴∠OBA=45°,在Rt △OAB 中,OA=AB ·sin45°=2×=,即点A (,0),同理可得点B(0,),∵一次函数y=kx+b的图像经过点A,B,∴解得:=-.7.1<x<[解析]将A(1,k)代入y=ax+4得a+4=k,将a+4=k代入不等式组kx-6<ax+4<kx中得(a+4)x-6<ax+4<(a+4)x,解不等式(a+4)x-6<ax+4,得x<,解不等式ax+4<(a+4)x,得x>1,所以不等式组的解集是1<x<.8.[解析]如图:∵y=mx+m=m(x+1),∴函数y=mx+m的图像一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,解得∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴=×,解得:m=或m=(舍去),故答案为.9.解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴解得∴直线l所表示的一次函数的表达式为y=2x-3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵当x=6时,y=2×6-3=9,∴点P3在直线l上.10.解:(1)∵点B在直线l2上,∴4=2m,∴m=2.设l1的表达式为y=kx+b,由A,B两点均在直线l1上得到解得∴直线l1的表达式为y=x+3.(2)由图可知,C,D(n,2n),因为点C在点D的上方,所以+3>2n,解得n<2.11.解:(1)把x=m+1代入y=x-2,得y=m-1,故点P在一次函数y=x-2的图像上.(2)解方程组得易知直线y=x-2与x轴的交点为(2,0),因为点P在△AOB的内部,所以2<m+1<,解得1<m<.12.B[解析]设直线l1的解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4,联立可解得:∴交点坐标为(2,0),故选择B.13.A14.解:(1)将点C的坐标代入l1的解析式,得-m+5=4,解得m=2.∴C的坐标为(2,4).设l2的解析式为y=ax.将点C的坐标代入得4=2a,解得a=2, ∴l2的解析式为y=2x.(2)对于y=-x+5,当x=0时,y=5,∴B(0,5).当y=0时,x=10,∴A(10,0).∴S△AOC=×10×4=20,S△BOC=×5×2=5,∴S△AOC-S△BOC=20-5=15.(3)∵l1,l2,l3不能围成三角形,∴l1∥l3或l2∥l3或l3过点C.当l3过点C时,4=2k+1,∴k=,∴k的值为-或2或.15.解:(1)根据题意,得d==1.(2)根据题意,得=,即|C+1|=2.∴C+1=±2.解得C1=1,C2=-3.。
中考数学总复习(浙江地区)课件: 第11讲 一次函数的图象和性质
1.(2016·南宁)已知正比例函数 y=3x 的图象经过点(1,m),
则 m 的值为( B )
A.13
B.3
C.-13
D.-3
2.(2016·邵阳)一次函数 y=-x+2 的图象不经过的象限是( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.(2016·丽水)在直角坐标系中,点 M,N 在同一个正比例函数图象上 的是( A )
(0,b),(-bk,0)
两点的一条直线.
4.正比例函数y=kx、一次函数y=kx+b的性质
5.一次函数与方程(组)的关系
(1)一次函数 (2)一次函数
y=kx+b y=kx+b
的的表图达象式与可x 转轴化交为点二的元横一坐次标方_-_程_bk_是kx方-程y+kbx=+0b;=0
的解;
(3)一次函数 y=kx+b 与 y=k1x+b1 的图象交点的
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4, 即 BC=4,∵BO=3,∴CO=4-3=1,∴C(0,-1),
设 l2 的解析式为 y=kx+b,则0-=12=k+b,b,解得bk==2-1,1,
∴l2 的解析式为 y=12x-1
[对应训练] 2.(1)(2015·宜宾)如图,过 A 点的一次函数的图象与正比例函数 y=2x 的图象相交于点 B,则这个一次函数的解析式是( D ) A.y=2x+3 B.y=x-3 C.y=2x-3 D.y=-x+3
(浙江专版)2020年中考数学复习第三单元函数及其图象第11课时一次函数的应用课件
快递物品重量(千克) 0.5 1 3 4 …
甲公司收费(元) 乙公司收费(元)
22
…
11
51 67 …
(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关 系式. (3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
解:(1)11 52 67 19 [解析]当x=0.5时,y甲=22×0.5=11; 当x=3时,y甲=22+15×2=52; 当x=4时,y甲=22+15×3=67; 当x=1时,y乙=16×1+3=19. 故答案为:11;52;67;19.
现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快
递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品
不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费
������
+
5������
=
1380, 解得
������ = 80, ������ = 176,
∴小明家到学校的路程为:11×80+(23-11)×54×80=880+1200=2080(米).
知识梳理
一次函数图象与性质的应用是指用一次函数的图象表示题中的数量关系,解这 类题的关键在于弄清横、纵坐标各表示什么量,图象上每一点表示什么实际意 义,以及函数图象的变化趋势、倾斜度大小各表示什么含义等.
解:(1)设 A,B 两种奖品的单价分别为 x 元、y 元,依题意,得:
3������ 5������
+ 2������ + 4������
= =
122100,, 解得:
������ ������
浙江省中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用课件
解:(1)由题图得,甲乙两地相距600千米; (2)由题图得,慢车总用时10小时,则慢车速度为 600 =
10
60(千米/小时),
设快车速度为x千米/小时.
由题图得,60×4+4x=600,x=90(千米/小时),
∴快车速度90千米/小时,慢车速度60千米/小时;(5分)
(3)求出两车相遇后y与x之间的函数关系式; 【思维教练】两车相遇后,y与x之间的函数图象发生转折, 故需分段求解函数关系式.结合题意分析可知由4小时到转 折点的这段时间内,快车由相遇到逐渐停止运动,慢车继续 行驶;转折点之后只有慢车在行驶,在不同的阶段,根据行 程的基本公式,结合待定系数法求函数解析式即可.
解:(4)当两车没有相遇时,由题图可得y=-150x+
600(0≤x<4),
令y=300时,x=2;
当两车相遇后,由(3)知
y=
150 x
600(4
x
20 ) 3
60
x(
20 3
x
10)
,
150x-600=300时,x=6, 60x=300时,x=5,不在 20 ≤x≤10的范围内,
3
∴x=2或6, 答:当行驶2小时或6小时,两车相距300千米.
解(2)当x>500时,y1=500+0.5x(x-500)=0.5x+250,令 0.5x+250=0.7x+60,解得x=950, ∴当0≤x≤200或x=950时,选择甲、乙两家更一样. 200<x<950时,选择甲更优惠, x>950时,选择乙费用优惠.
类型三 分配类最优方案问题
例 3 “西湖龙井”是中国十大名茶之一,距今有一千二百
解:(1)由题意得:2.2x+2.1y+2(20-x-y)=42, 化简得:y=20-2x,
2019年浙江省中考数学第三单元一次函数的应用
课时训练(十一) 一次函数的应用|夯实基础|1.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中能正确表示小明的父亲离家的距离y(米)与时间x(分)的函数关系的图象是 ()图K11-12.明君社区有一块空地需要绿化,某绿化组承担了此项任务.绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图K11-2所示,则该绿化组提高工作效率前每小时完成的绿化面积是()图K11-2A.300 m2B.150 m2C.330 m2D.450 m23.[2018·义乌] 实验室里有一个水平放置的长方体容器,从内部量得它的高是15 cm,底面的长是30 cm,宽是20 cm,容器内的水深为x cm.现往容器内放入如图K11-3的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别为10 cm,10 cm,y cm(y≤15),当铁块的顶部高出水面2 cm时,x,y满足的关系式是.图K11-34.如图K11-4所示,购买一种苹果,所付金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果节省元.图K11-45.[2018·重庆A卷] A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(时)之间的函数关系如图K11-5所示,则乙车修好时,甲车距B地还有千米.图K11-56.[2017·衢州] 五一期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.图Z11-6根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.7.[2018·湖州] “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥.甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如下表所示:设甲仓库运往A果园x吨有机化肥,已知汽车每吨每千米的运费为2元.(1)根据题意,填写下表.(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?|拓展提升|8.[2018·绍兴] 如图K11-7,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式.(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/时,求x满足的条件.图K11-7参考答案1.B[解析] 根据题意,小明的父亲从20分到30分在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.2.B[解析] 设提高工作效率后S与t之间的关系为S=kt+b,则解得-所以提高工作效率后S与t之间的关系为S=450t-600(t≥2).当t=2时,S=450×2-600=300(m2/h).300÷2=150(m2/h).所以该绿化组提高工作效率前每小时完成的绿化面积是150 m2.3.y=-(6≤x<8)或y=(0<x≤)[解析] ①当长方体实心铁块的边长为10 cm和y cm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8 cm,此时,水位上升了(8-x)cm(x<8),铁块浸在水中的体积为10×8×y=80y(cm3),∴80y=30×20×(8-x),∴y=-,∵y≤15,∴x≥6,即y=-(6≤x<8).②当长方体实心铁块的边长为10 cm和10 cm的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤).故答案为:y=-(6≤x<8)或y=(0<x≤).4.2[解析] 从题中图象上可以看出购买2千克苹果需要20元,且2千克以内所付金额是购买量的正比例函数,所以购买1千克需要10元,分三次每次购买1千克需要30元;2千克以后所付金额是购买量的一次函数,且函数解析式为y=8x+4,所以一次性购买3千克需要28元,节省了2元.故答案为2.5.90[解析] 由题图可知甲车先出发40分钟行驶30千米,速度为30÷=45(千米/时),2小时时两车相距10千米,从而乙车的速度为(45×2-10)÷-=80÷=60(千米/时),而乙车发生故障维修后的速度为50千米/时.设乙车维修后行驶了x小时,则其维修前行驶了(-1-x)小时,根据题意,得60(-x)+50x=240,解得x=2,从而45×2=90(千米),即乙车修好时,甲车距B地还有90千米,故答案为90.6.解:(1)由题意可知y1=k1x+80,且图象过点(1,95),则有95=k1+80,∴k1=15,∴y1=15x+80(x≥0),由题意知y2=30x(x≥0).(2)当y1=y2时,解得x=;当y1>y2时,解得x<;当y1<y2时,解得x>.∴若租车时间为小时,则选择甲、乙公司一样合算;若租车时间小于小时,则选择乙公司合算;若租车时间大于小时,则选择甲公司合算.7.解:(1)(2)y=2×15x+2×25(110-x)+2×20(80-x)+2×20(x-10),即y=-20x+8300.由题知---解得10≤x≤80.在一次函数y=-20x+8300中,∵-20<0,10≤x≤80,∴当x=80时,y最小=6700.即当甲仓库运往A果园80吨有机化肥时,总运费最省,是6700元.8.[解析] (1)用第一班上行车从起点到B站的路程5千米除以这班车的速度30千米/时即可;用第一班下行车从起点到C站的路程5千米除以这班车的速度30千米/时即可;(2)当第一班上行车与第一班下行车相遇时用时小时,所以分0≤t≤、<t≤两种情况分别求;(3)可以分x=2.5、x<2.5、x>2.5三种情况讨论.解:(1)第一班上行车到B站用时=(小时),第一班下行车到C站用时=(小时).(2)当0≤t≤时,s=15-60t.当<t≤时,s=60t-15.(3)由(2)知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为m分钟.当x=2.5时,往B站用时30分钟,还需再等下行车5分钟,t=30+5+10=45,不合题意.当x<2.5时,只能往B站坐下行车,他离B站x千米,则离他右边最近的下行车离C站也是x千米,这辆下行车离B站(5-x)千米.如果能乘上右侧第一辆下行车,≤-,x≤,∴0<x≤,此时18≤m<20,∴0<x≤符合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x>,≤-,x≤,∴<x≤,此时27≤m<28,∴<x≤符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x>,≤-,x≤,∴<x≤,此时35≤m<37,不合题意.综上,得0<x≤.当x>2.5时,乘客需往C站乘坐下行车,离他左边最近的下行车离B站是(5-x)千米,离他右边最近的下行车离C站也是(5-x)千米,如果能乘上右侧第一辆下行车,-≤-,∴x≥5,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x<5,-≤-,x≥4,∴4≤x<5符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x<4, -≤-,3≤x<4,此时42<m≤44,∴3≤x<4不合题意.综上,得4≤x<5.综上所述,0<x≤或4≤x<5.。
(浙江专用)2019年中考数学总复习第三章变量与函数3.2一次函数(讲解部分)素材(pdf)
������������������������������������������������������������������
考点二㊀ 一次函数的图象与性质
一条直线.
㊀ ㊀ 1. 正比例函数 y = kx( kʂ0) 的图象是过(0ꎬ0) ㊁( 1ꎬ k ) 两点的 2. 一次函数 y = kx + b ( k ʂ0) 的图象是过 ( 0ꎬ b ) ㊁ -
解析㊀ (1) 直线 y = - x + b 交 y 轴于点 P(0ꎬb) ꎬ 由题意ꎬ得 tȡ0ꎬb = 1+ tꎬ当 t = 3 时ꎬb = 4.
关于 l 的对称点落在 x 轴上.
当直线 y = - x + b 过点 N(4ꎬ4) 时ꎬ4 = -4+ bꎬ解得 b = 8ꎬ 此时 8 = 1+ tꎬʑ t = 7. ʑ 4< t <7. (3) t = 1 时ꎬ点 M 关于 l 的对称点落在 y 轴上ꎻ t = 2 时ꎬ 点 M
②C(3ꎬ1) 或 C(15ꎬ5) . ㊀ ㊀ 变式训练㊀ 如图ꎬA(0ꎬ1) ꎬM ( 3ꎬ2) ꎬ N ( 4ꎬ4) . 动点 P 从点 A 出发ꎬ沿 y 轴以每秒 1 个单位长的速度向上移动ꎬ 且过点 P 的直 线 l:y = - x + b 也随之移动ꎬ设移动时间为 t 秒. (1) 当 t = 3 时ꎬ求 l 的解析式ꎻ (2) 若点 MꎬN 位于 l 的异侧ꎬ确定 t 的取值范围ꎻ (3) 直接写出 t 为何值时ꎬ 点 M 关于 l 的对称点落在坐标
㊀ ㊀ 待定系数法就是把具有某种确定形式的数学问题ꎬ 通过引 入一些待定的系数去解决ꎬ问题中含几个待确定的系数ꎬ 一般就
ȵ CDʊy 轴ꎬʑ 点 D 的横坐标为 3a. ȵ 点 D 在直线 l 2 上ꎬ ʑ y D = -3a +24ꎬ ʑ D(3aꎬ-3a +24) .
浙江省中考数学复习 第一部分 考点研究 第三单元 函数 第11课时 一次函数的实际应用(含近9年中考
第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用某某近9年中考真题精选(2009-2017)类型一阶梯费用问题(某某2考)1.(2017某某18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013某某18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(某某2016.19)3.(2016某某19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013某某23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(某某2015.23,某某2考)5.(2015某某18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016某某21题8分)2016年3月27日“某某半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014某某18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015某某23题10分)高铁的开通,给某某市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到某某市的某游乐园游玩,乐乐乘私家车从某某出发1小时后,颖颖乘坐高铁从某某出发,先到某某火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开某某的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达某某火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015某某23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值X围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(某某2次)10.(2016某某22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015某某22题10分)某农业观光园计划将一块面积为900 m2的园圃分成A、B、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B区域面积是A的2倍,设A区域面积为x(m2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017某某21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分) 设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分) (2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300, ∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟, ∴a (千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当st =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当st +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从某某到某某火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离某某的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离某某的距离与乘车的时间之间的函数关系式为y =kt ,k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:某某到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达某某火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60, ∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分) 设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80, ∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分) (2)由直线CD 的解析式为y =-20t +80,可得乙的速度为20 km/h.∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内,当20<y <30时,20<40t -60<30 ①20<-20t +80<30 ②(6分)解①得:2<t <2.25,解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分)(3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开, 又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分)∴s 甲=60(t -1)=60t -60(1≤t ≤73), s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地,∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km ,当丙出发43小时, s 乙=20×43=803km , ∴s 丙=80-803=1603km , ∴v 丙=1603÷43=40 km/h. ∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t =60t -60,解方程得t =1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x ,由题意可列出方程2(1+x )2=2.88,(2分) 解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A 区域的面积为200 m 2,B 区域的面积为400 m 2,C 区域的面积为300 m 2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a 元、b 元、c 元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3, ∵a 、b 、c 为正整数,∴a 、b 、c 可能取的值如下表,c 1 4 7 10 13 16b 30 25 20 15 10 5a 14 16 18 20 22 24又∵a 、b 、c 的差不超过10,∴a =20,b =15,c =10,(8分)∵B 区域的面积为400 m 2,最大, ∴种植面积最大的花卉总价为400×6×15=36000(元).word21 / 21 答:种植面积最大的花卉总价为36000元.(10分)12.解:(1)由题意可知y 1=k 1x +80,(1分)且图象过点(1,95),则有95=k 1+80,∴k 1=15,∴y 1=15x +80(x ≥0),(2分)由题意易得y 2=30x (x ≥0).(4分)(2)当y 1=y 2时,解得x =163;(5分) 当y 1>y 2时,解得x <163;(6分) 当y 1<y 2时,解得x >163.(7分) ∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分) (也可求出x =163之后,观察函数图象得到结论.)。
省中考数学总复习 第三单元 函数 第11课时 一次函数的实际应用数学课件
发地的时间 x(min)之间的函数图像如图 11-4 所示.
(1)家与图书馆之间的路程为 4000
m,小玲步行的速度为
100
m/min;
(2)求小东离家的路程 y 关于 x 的函数解析式,并写出自变量的取值范围;
的长度 h(cm)和燃烧时间 t(h)之间的函数关系用图像可以表示
为图中的 (
)
[答案] B
[解析] 由题意,得 h=30-5t,
∵h≥0,t≥0,∴30-5t≥0,∴t≤6,
∴0≤t≤6,∴h=30-5t 是减函数且图像是一条
线段.
图 11-3
第七页,共二十三页。
课前双基巩固
5.超市有 A,B 两种型号的瓶子,其容量和价格如下表,小张买瓶子用来分装 15 升油(瓶子都装满,且无剩油).当日促
行,到达图书馆恰好用 30 min.小东骑自行车以 300 m/min 的速度直接回家.两人离家的路程 y(m)与各自离开出
发地的时间 x(min)之间的函数图像如图 11-4 所示.
(3)求两人相遇的时间.
(3)设 OA 的解析式为 y=mx(m≠0),∵图像过点 A(10,2000),
∴10m=2000,解得 m=200,∴OA 的解析式为 y=200x(0≤x≤10),
(3)求两人相遇的时间.
图11-4
第十三页,共二十三页。
高频考向探究
例 2 [2018·吉林] 小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步
行,到达图书馆恰好用 30 min.小东骑自行车以 300 m/min 的速度直接回家.两人离家的路程 y(m)与各自离开出
2020年浙江数学中考复习第三单元函数之第11课时 一次函数的实际应用
(2)当20<y<30时,求t的取值范围; (3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直 角坐标系中分别画出它们的图象; (4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地.若丙经过 h 与乙相遇,问丙出发后多少时间与甲相遇?
第4题图
第11课时 一次函数的实际应用
返回目录
(2)CD段表示甲、乙之间的距离由最大变为0,说明此时甲停止运动,只有乙在运动, 由直线CD的解析式为y=-20t+80, 可得乙的速度为20 km/h, ∴A点为(1,20), 由题图①可知,若两人的距离y满足20<y<30,则必是在第一次相遇之后到第二次 相遇这段时间之内,当20<y<30时, 20<40t-60<30 ①, 20<-20t+80<30 ②, 解不等式①得2<t<2.25, 解不等式②得2.5<t<3. ∴当2<t<2.25或2.5<t<3 时,有20<y<30;
第4题解图
返回目录
第11课时 一次函数的实际应用
(4)由题意可知:乙出发4h可以从M地到达N地,
∵v乙=20 km/h,
∴M地到N地的总路程为20×4=80 km,
4
当丙出发 3 h后与乙相遇,
s乙=20×
4 3
= 80
3
km,∴s丙=80-
80 3
= 160 km,
3
∴v丙=160÷ 4 =40 km/h,
第7题图
第11课时 一次函数的实际应用
返回目录
解:(1)由题图可得,当某月用水量为18立方米时,应交水费为45元; (2)设当x>18时,y关于x的函数表达式为y=kx+b, ∵将点(18,45),(28,75)代入得, y=3x-9(x>18), 若小敏家某月交水费81元,81>45,则这个月用水量超过18立方米,当y=81时,3x -9=81, 解得x=30. 答:这个月用水量为30立方米.
(通用版)2019年中考数学总复习 第三章 函数 第11讲 一次函数的实际应用(讲本)课件
解:(1)设 y1=k1x+80,把点(1,95)代入,可得 95=k1+ 80,解得 k1=15,∴y1=15x+80(x≥0);设 y2=k2x,把(1,30) 代入,可得 30=k2,即 k2=30,∴y2=30x(x≥0);
(2)当 y1=y2 时,15x+80=30x,解得 x=136; 当 y1>y2 时,15x+80>30x,解得 x<136; 当 y1<y2 时,15x+80<30x,解得 x>136; ∴当租车时间为136小时,选择甲乙公司一样合算; 当租车时间小于136小时,选择乙公司合算; 当租车时间大于136小时,选择甲公司合算.
(2)设甲种办公桌购买 a 张,则购买乙种办公桌(40-a)张,购 买的总费用为 y, 则 y=400a+600(40-a)+2×40×100=-200a+32000, ∵a≤3(40-a),∴a≤30,∵-200<0, ∴y 随 a 的增大而减小, ∴当 a=30 时,y 取得最小值,最小值为 26000 元.
【思路方法】一次函数图象的实际应用,此类问题多以 分段函数的形式出现,在观察函数图象时,①坐标:首先要读 懂函数图象中的横、纵坐标代表的量;②拐点:图象上的拐 点,既是前一段函数变化的终点,又是后一段函数的起点,反 映函数图象在这一时刻开始发生变化;③水平线:函数值随 自变量的变化而保持不变;④交点:表示在此时两个函数表 示的量分别相等,这个交点是图象表示的量大小关系的“分 界点”.抓住以上四点,再运用一次函数的有关知识解题.
1.(2018·邵阳)小明参加 100 m 短跑训练,2018 年 1~4 月 的训练成绩如下表所示:
体育老师夸奖小明是“田径天才”,请你预测小明 5 年
(60 个月)后 100 m 短跑的成绩为( D )
浙江专版中考数学第三章函数第11讲一次函数的应用精讲本课件
第1例 1.(2020·衢州)2020 年 5 月 16 日,“钱塘江诗路”航道 全线开通.一艘游轮从杭州出发前往衢州,线路如图① 所示.当游轮到达建德境内的“七里扬帆”景点时,一 艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮 的速度为 20 km/h,游轮行驶的时间记为 t(h),两艘轮船 距离杭州的路程 s(km)关于 t(h)的图象如图②所示(游轮 在停靠前后的行驶速度不变).
1 100 二次的利润率=10×404+6020×30 ×100% =46% ,∵46% >42.7% ,∴对于小李来说第二次的进货方案更合算.
中考失分点 14:忽视实际问题中自变量的取值范围 1.一根蜡烛长 20 cm,点燃后每小时燃烧 5 cm,燃烧时 剩下的长度为 y(cm)与燃烧时间 x(小时)的函数关系用图 象表示为下图中的( B )
(2)①280÷20=14 h,∴点 A(14,280),点 B(16,280), ∵36÷60=0.6(h),23-0.6=22.4,∴点 E(22.4,420),设 BC 的解析式为 s=20t+b,把 B(16,280)代入 s=20t+b, 可得 b=-40,∴s=20t-40(16≤t≤23),同理由 D(14, 0) , E(22.4 , 420) 可 得 DE 的 解 析 式 为 s = 50t - 700(14≤t≤22.4),由题意:20t-40=50t-700,解得 t =22,∵22-14=8(h),∴货轮出发后 8 小时追上游轮.
(2)②相遇之前相距 12 km 时,20t-40-(50t-700)=12, 解得 t=21.6.相遇之后相距 12 km 时,50t-700-(20t- 40)=12,解得 t=22.4,∴21.6 h 或 22.4 h 时游轮与货轮 相距 12 km.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分考点研究
第二单元方程(组)与不等式(组)
第11课时一次函数的实际应用
浙江近9年中考真题精选(2009-2018)
类型一阶梯费用问题(绍兴2考)
1.(2018绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.
(1)若某月用水量为18立方米,则应交水费多少元?
(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?
第1题图
2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
第2题图
类型二水流量、人流量问题(绍兴2018.19)
3.(2018绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:
(1)暂停排水需要多少时间?排水孔的排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.
第3题图
4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.
(1)求a的值;
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?
第4题图
类型三行程问题(杭州2018.23,绍兴2考)
5.(2018绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,。