新的泛函分析基本原理_英文_李容录
泛函分析简介
泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。
它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。
通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。
在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。
泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。
它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。
形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。
对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。
存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。
对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。
向量加法满足交换律和结合律。
标量乘法满足分配律以及结合律。
拓扑空间拓扑空间是讨论连续性和极限的重要工具。
在泛函分析中,通常会结合线性空间与拓扑结构。
例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。
此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。
巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。
也就是说,在这个空间中,每个柯西序列都收敛于某个元素。
范数是一个度量,用来描述向量之间的“距离”。
希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。
内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。
主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。
泛函分析第一讲
线性算子和线性泛函
第二章 泛函分析
绪论
2.1 距离空间
第二章 泛函分析
一、距离空间的定义
lim
n
xn
x
0, N, 当 n 时N,有
dx, y x y
x y 0, x y 0当且仅当 x y
xy yx
xy xz zy
xn x
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
第一节 距离空间
一、距离空间的定义
例2.1.2 设 X ,d 是距离空间,对任意 x, y X ,源自定义x,y
d
1+d
x,xy, y ,则
X
,
也是距离空间.
证明 三角不等式 d(x, y) d(x, z) d(z, y),
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
例2.1.3 空间l p p 1.
x0 X. 如果d (xn , x0 ) 0, n , 则称该点列 xn
收敛于 x0 , 并记为
lim
n
xn
x0
或
xn x0 n
定理1 距离空间 X ,d 中,收敛点列的极限是唯一的.
第二章 泛函分析
第一节 距离空间
二、距离空间中的收敛
例2.1.5 在Rn 中,点列的收敛为按坐标收敛.
♣ 泛函分析在微分方程、概率论、函数论、计算 数学、控制论、最优化理论、连续介质力学、量 子物理等以及一些工程技术学科都有重要作用.
第二章 泛函分析
绪论
二、泛函分析课程内容 1.空间 集合 + 一定的结构
距离空间 赋范线性空间 内积空间 Banach空间 Hilbert空间
泛函分析,泛函分析简介
泛函分析,泛函分析简介泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。
它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。
它可以看作无限维向量空间的解析几何及数学分析。
泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
1概述泛函分析(FunctionalAnalysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。
泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。
使用泛函作为表述源自变分法,代表作用于函数的函数。
巴拿赫(StefanBanach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(VitoVolterra)对泛函分析的广泛应用有重要贡献。
2拓扑线性空间由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(譬如逐点收敛,一致收敛,弱收敛等等),这说明函数空间里有不同的拓扑。
而函数空间一般是无穷维线性空间。
所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。
拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。
巴拿赫空间这是最常见,应用最广的一类拓扑线性空间。
比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。
或者对于每个实数p,如果p≥1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。
(参看Lp空间) 在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。
对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
泛函分析知识总结
泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。
在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。
泛函分析广泛应用于数学、物理学、工程学等领域。
1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。
线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。
泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。
2.范数与内积:范数和内积是泛函分析中常用的两个概念。
范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。
范数可以用来度量向量的大小。
内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。
3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。
完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。
紧性是指一个空间内的每个序列都存在收敛的子序列。
紧性常用于分析序列在空间内的收敛性。
4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。
常用的函数空间有连续函数空间、可积函数空间等。
函数空间还可以定义内积、范数等结构。
对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。
5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。
在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。
类似地,我们还可以定义泛函的收敛性。
6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。
线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。
算子可以是线性差分方程、微分算符等。
7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。
数学中的泛函分析原理
数学中的泛函分析原理泛函分析是数学中一个重要的分支,它研究的是函数空间中的向量和算子,并研究它们之间的关系和性质。
在应用数学和理论数学中都有广泛的应用。
本文将介绍泛函分析的基本原理和一些常见的应用。
一、泛函分析概述泛函分析是在无穷维向量空间中研究函数和算子的一门数学学科。
它主要关注函数的空间与函数之间的线性关系和连续性。
泛函分析广泛应用于物理学、工程学和计算机科学等领域,并为这些领域提供了强大的工具和理论支持。
二、函数空间的定义和性质函数空间是泛函分析中非常重要的概念。
它可以用来描述函数的性质和空间结构。
在泛函分析中,常见的函数空间包括连续函数空间、可积函数空间和L^p空间等。
1. 连续函数空间连续函数空间是指定义在某个区间上的连续函数的集合。
常见的连续函数空间有C[0,1]和C^k[0,1]等。
在连续函数空间中,可以定义范数和内积等结构,从而形成一个向量空间。
2. 可积函数空间可积函数空间是指具有有限或无限积分性质的函数集合。
常见的可积函数空间有L^1[0,1]和L^2[0,1]等。
可积函数空间是泛函分析中非常重要的对象,它与概率论、信号处理和图像处理等领域密切相关。
3. L^p空间L^p空间是泛函分析中非常重要的一类函数空间。
它包括了所有p 次幂可积的函数的集合。
L^p空间具有范数结构,可以用来描述函数的大小和趋势,并且在测度论、偏微分方程和调和分析等领域有重要应用。
三、泛函的定义和性质泛函是定义在函数空间上的映射,它将函数映射到实数或复数。
泛函可以看作是函数的函数,它对函数进行操作并输出一个数值。
泛函的定义和性质在泛函分析中起着关键作用。
1. 线性泛函和非线性泛函线性泛函是指满足线性性质的泛函,即对于任意的函数f和g,以及任意的实数a和b,有F(af+bg) = aF(f) + bF(g)。
非线性泛函是不满足线性性质的泛函。
2. 连续性和有界性在泛函分析中,连续性和有界性是泛函的重要性质。
泛函分析
泛函分析泛函分析作为数学领域中的一个重要分支,研究了无限维度的向量空间和函数空间上的问题。
其广泛应用于物理学、工程学和计算机科学等领域,为解决现实生活中的问题提供了有效的数学工具和方法。
泛函分析的起源可以追溯到19世纪,其发展得益于函数论和拓扑学的进展。
在20世纪初,泛函分析的理论框架和方法逐渐形成,并为很多数学家和科学家所接受和应用。
泛函分析的基本概念包括向量空间、线性算子、泛函以及拓扑结构等,这些概念构成了泛函分析的基础。
在泛函分析中,向量空间是一个非常重要的概念。
它是一种由向量组成的集合,具有加法和数乘运算,并满足一定的性质。
向量空间可以是有限维的,也可以是无限维的。
无限维空间是泛函分析的研究对象之一,其特点是空间中的向量可以是无限维的。
线性算子是泛函分析中另一个重要的概念。
它是将一个向量空间映射到另一个向量空间的函数,保持线性性质。
线性算子可以描述很多实际问题,例如变换、积分和微分等。
泛函是对向量空间中的向量进行映射的函数。
它可以将向量映射到实数域或复数域,并满足一定的性质。
泛函的概念是泛函分析的核心之一,使得我们可以研究函数的性质和行为。
拓扑结构是泛函分析中的一个重要概念,它描述了向量空间中元素之间的接近程度。
通过引入拓扑结构,可以定义连续性和收敛性等概念,为研究函数空间中的极限和连续性提供了数学基础。
泛函分析的应用广泛而且多样化。
在物理学中,泛函分析被用于描述量子力学和经典力学中的问题,例如量子力学算子、哈密顿力学和波动方程等。
在工程学中,泛函分析可以应用于控制论、信号处理和图像处理等领域。
在计算机科学中,泛函分析被用于定义距离度量和相似性度量,提供了计算机视觉和模式识别等方面的基本工具。
泛函分析的发展离不开众多优秀的数学家和科学家的努力。
知名的数学家如Hilbert、Banach和Frechet等对泛函分析的发展做出了重要贡献。
他们提出了许多重要的定理和概念,奠定了泛函分析的基础。
neerven 泛函
neerven 泛函一、泛函简介泛函分析(Functional Analysis)是一门数学分支,起源于19世纪末,主要研究无限维向量空间上的函数或算子。
它以德国数学家David Hilbert提出的泛函概念为核心,通过对函数或算子的性质进行研究,解决了许多当时被认为是困难的数学问题。
二、泛函应用领域泛函分析在数学、物理、工程等多个领域具有广泛的应用。
在数学领域,泛函分析为概率论、微分方程、最优化等问题提供了有力的理论工具;在物理领域,泛函方法在量子力学、相对论、凝聚态物理等方面发挥着重要作用;在工程领域,泛函分析在控制论、信号处理、图像识别等方面取得了显著成果。
三、泛函分析的基本概念泛函分析的核心概念包括无限维向量空间、函数或算子、泛函等。
无限维向量空间是指具有无限多个元素的向量空间,例如函数空间;函数或算子是指从无限维向量空间到另一个无限维向量空间的映射;泛函则是一种对函数或算子进行评价的量,它体现了函数或算子在不同性质上的表现。
四、泛函的优缺点泛函分析的优点在于它提供了一种统一的研究方法,可以解决许多传统数学方法难以解决的问题。
然而,泛函分析的理论较为复杂,对初学者来说具有一定的门槛。
五、我国在泛函研究方面的进展我国在泛函研究方面取得了举世瞩目的成果,如华罗庚、陈省身等著名数学家对泛函分析的发展做出了巨大贡献。
近年来,我国学者在泛函分析及其应用领域继续取得突破,为数学和实际问题的解决提供了有力支持。
六、泛函在实际问题中的应用案例泛函分析在许多实际问题中发挥着重要作用,如在电磁学中研究Maxwell 方程的解,通过泛函方法可以得到更加一般且精确的结果;在经济学中,泛函分析为效用函数的优化问题提供了有力工具。
七、总结与展望泛函分析作为一门重要的数学分支,在理论研究和实际应用中具有广泛的应用。
随着科学技术的不断发展,泛函分析在未来将继续发挥重要作用,为数学、物理、工程等领域的创新发展提供有力支持。
泛函分析ppt课件
∈X都有ρ(Tx, Ty)<aρ(x, y),则称T是压缩映照
定理:完备距离空间 X 上的压缩映照T,必 存 唯一的不动点x*,使得Tx*=x*. (Banach压 缩映 照定理)
距离空间:不动点原理
应用:微分方程,代数方程,积分方程解的唯一存在 性
n
S f (i )xi
i 1
若其极限存在则称Riemann可积
b
n
(R) a f (x)dx lxim0 i1 f (i )xi
从Riemann积分到Lebesgue积分
Riemann积分的思想是,将曲边梯形分成若干个小 曲 边梯形,并用每一个小曲边梯形的面积用小矩形 来代 替,小矩形的面积之和就是积分值的近似。剖 分越精 细,近似程度越好。
距离空间:定义
设 X 是非空集合,对于X中的任意两元素x与y,按某一法则都
对 应唯一的实数ρ(x, y),并满足以下三条公理(距离公理)
:
1. 非负性: ρ(x, y) ≥0, ρ(x, y) =0当且仅当x=y; 2. 对称性: ρ(x, y) =ρ(y, x);
3. 三角不等式;对任意的x, y, z
例子:Fredholm第二类积分方程
b
x(s) f (s) a K (s,t)x(t)dt
对充分小的| λ |,可证
当f ∈ C[a, b], K(s, t)∈ C[a, b; a, b]时有唯一连续解 当f ∈ L2[a, b], K(s, t)∈ L2 [a, b; a, b]时有唯一平方可积解
(x, y) (a b )2 1/ 2 i i i
则 Rn是距离空 间
距离空间: Lp[a,b]
泛函分析中的定理
泛函分析中的定理泛函分析是数学中重要的一个分支,研究的是无限维空间上的泛函和函数序列的性质及其应用。
在泛函分析中,有很多重要的定理和结果,下面我们来介绍一些。
1. 资格定理(Hahn-Banach Theorem):资格定理是泛函分析中的基础定理之一、它表明,在实或复的赋范空间中,对于任意一个线性泛函 f,如果它在一个线性子空间 M 上的限制所满足的条件可以表示为一个线性不等式,那么总是存在一个线性泛函 F,它在整个空间上与 f 一致,并且满足给定的限制条件。
资格定理的应用十分广泛,例如可以用来证明一些存在性定理,如存在性定理。
2. 化大定理(Banach-Alaoglu Theorem):化大定理是泛函分析中的基本定理之一,它描述了拓扑空间上单位球面上的点列(依范数拓扑)的一些性质,并且证明了它在乘积空间中的相对紧致性。
化大定理的一个重要应用是弱收敛性的刻画,即如果一个序列具有其中一种趋向,那么可以通过化大定理证明它在一些拓扑意义上收敛于一些点。
3. 谱定理(Spectral Theorem):谱定理是泛函分析中的一个重要定理,描述了自伴算子(或称为厄密算子)在希尔伯特空间上的一些性质。
谱定理指出,一个自伴算子的谱分解具有简洁的形式,在一定条件下,可以通过一个单位正交基来展开。
谱定理的一个重要应用是量子力学中的哈密顿算子的谱分解。
4. 开映射定理(Open Mapping Theorem):开映射定理是泛函分析中一个重要的定理,表明如果一个线性映射将一个开邻域映射成一个非空邻域,那么这个映射就是一个开映射。
开映射定理是泛函分析中非常有用的工具,它可以用来证明闭图像定理,即一个连续线性映射的图像是闭的。
5. 闭图像定理(Closed Graph Theorem):闭图像定理是泛函分析中一个重要的定理,它表明如果一个连续线性映射的图像是闭的,那么它的图像和定义域之间的关系也是闭的。
闭图像定理是泛函分析中很有用的工具,它可以用来证明一些重要的结果,如开映射定理、逆映射定理等。
泛函分析ppt课件
傅里叶变换与小波变换的应用
傅里叶变换的应用
傅里叶变换在信号处理、图像处理、语音处理等领域 有着广泛的应用。例如,在信号处理中,可以通过傅 里叶变换将信号从时域转换到频域,从而方便地进行 信号的分析和合成。在图像处理中,可以通过傅里叶 变换对图像进行频域滤波,从而实现图像的降噪和增 强。在语音处理中,可以通过傅里叶变换对语音信号 进行分析和处理,从而实现语音的识别、压缩和加密 等任务。
REPORTING
在物理学中的应用:量子力学与相对论
量子力学
泛函分析在量子力学中有着广泛的应用,如波函数的形式化 描述、薛定谔方程的推导等。
相对论
泛函分析也被用于相对论中的时空变换和场方程的构造,以 及在广义相对论中研究黑洞的性质等。
在工程学中的应用:控制理论、电气工程等
控制理论
泛函分析在控制理论中有着重要的应用 ,如研究系统的稳定性、时域响应等。
PART 05
泛函分析在信号处理中的 应用
REPORTING
信号处理的基本概念
信号的定义与分类
信号是传递或表达某些信息的数据或数据流。它可以分为 离散信号和连续信号,离散信号是离散时间点的数据,而 连续信号是连续时间点的数据。
信号处理的定义与目的
信号处理是对信号进行变换、分析和解释的过程,目的是 从原始信号中提取有用的信息,或者将原始信号变换为另 一种形式,使其更易于分析和理解。
其他应用
泛函分析还可以应用于滤波器设计、压缩感知等领域。例如,基于小波变换的压缩感知方 法可以在保持信号质量的同时,实现信号的压缩和存储。
实例分析:信号的傅里叶变换与小波变换
傅里叶变换的基本原理
傅里叶变换是一种将时域信号转换到频域的方法。它将一个时域信号表示为一系列不同频率的正弦和 余弦函数的线性组合。通过傅里叶变换,我们可以将信号从时域转换到频域,从而可以更好地分析信 号的频率特性。
泛函知识点总结
泛函知识点总结一、泛函的基本概念1.1 泛函的定义泛函是函数的一个推广概念,它是对函数的一种广义的抽象和概括。
在数学中,泛函一般被定义为一个把函数空间中的函数映射到实数域或复数域的映射,这种映射被称为泛函。
泛函可以看作是一个“函数的函数”,它对函数进行了更高级别的抽象和泛化。
1.2 泛函的表示泛函通常用一般形式的积分或者其他函数操作来表示,这样的表示形式更加抽象和一般,可以适用于更广泛的函数空间和函数类别。
例如,一个泛函可以表示为关于函数f(x)的某种积分形式,如:\[J[f]=\int_{a}^{b} L(x,f(x),f'(x))dx\]其中L(x,f(x),f'(x))是关于函数f(x)及其导数的某种函数,称为被积函数,这种形式的泛函被称为积分型泛函。
1.3 泛函的性质泛函具有一般函数所具有的性质,如可微性、极值性、泛函空间的完备性等。
另外,泛函还具有一些特有的性质,如泛函运算的线性性、变分性等。
这些性质对于泛函的研究和分析具有重要意义。
二、泛函的理论基础2.1 变分法变分法是泛函研究的重要方法和基础理论,它是求解泛函的极值问题的一种基本工具。
变分法通过对函数的微小变动进行分析,得到泛函的极值条件和解的存在唯一性等结论,它在物理学、工程学等领域中具有重要应用。
2.2 泛函空间泛函空间是泛函分析的基本研究对象,它是一种特殊的函数空间,其中的元素是泛函。
泛函空间通常具有一定的结构和性质,如线性空间结构、度量空间结构等,它是研究泛函和泛函运算的重要工具和理论基础。
2.3 函数空间的拓扑结构函数空间是泛函空间的特殊情况,它是泛函研究中的另一个重要对象。
函数空间通常具有一定的拓扑结构,如紧性、连续性、收敛性等,这些拓扑性质对于泛函的收敛性和连续性等问题具有重要意义。
2.4 泛函分析的基本理论泛函分析是对泛函和泛函空间进行研究和分析的一个重要分支,它是泛函研究的基本理论之一。
泛函分析主要研究泛函空间的结构、性质和运算规律等问题,它为泛函的研究和应用提供了重要的理论基础和工具。
关于泛函分析的初步介绍
关于泛函分析的初步介绍泛函分析是数学中的一个分支领域,研究的是函数空间上的向量和函数的性质。
它将线性代数和微积分的概念扩展到了无限维度的函数空间上,广泛应用于物理、工程、经济学以及其他领域的问题求解中。
泛函是一个将函数映射到实数或复数的映射。
简单来说,泛函是一个定义在一个函数空间上的函数。
泛函分析主要研究泛函的性质和在函数空间上的运算。
泛函分析中最基本的概念是向量空间。
向量空间是由一组向量组成的集合,满足一定的运算规则,例如,对于两个向量的加法和数乘运算都满足交换律和结合律。
与传统的线性代数不同,泛函分析中的向量可以是具有无限维度的函数。
泛函分析的另一个重要概念是内积空间。
内积空间是一个向量空间,其中定义了一个内积(标量积)的运算。
内积运算将两个向量映射成一个实数或复数,并满足线性性质、对称性和非负性。
通过内积运算,可以定义向量的长度(范数)和向量之间的夹角。
基于内积空间的概念,我们可以引入一个重要的概念,赋范空间。
赋范空间是一个向量空间,其中定义了一个范数的运算。
范数是一个将向量映射到非负实数的函数,满足非负性、齐次性和三角不等式。
范数可以用来度量向量的大小。
在赋范空间中,我们可以定义向量的收敛性,即当向量的范数趋于零时,向量序列收敛。
对于赋范空间而言,我们可以定义一个度量,即距离函数。
距离函数将两个向量映射到一个非负实数,并满足非负性、对称性和三角不等式。
通过距离函数,我们可以定义向量空间中的连续性和收敛性。
泛函分析的核心概念之一是线性算子。
线性算子是一个将一个向量空间映射到另一个向量空间的映射。
线性算子将向量的线性组合映射到另一个向量的线性组合,并保持运算规则不变。
在线性代数中,线性算子可以用矩阵表示,而在泛函分析中,线性算子可以用无穷维的矩阵(即无穷维的函数)表示。
另一个重要的概念是连续性和收敛性。
在泛函分析中,我们可以定义向量空间中的拓扑结构,并用拓扑结构来定义连续性和收敛性。
连续性衡量的是向量映射的光滑程度,而收敛性则衡量的是向量序列的趋于极限的性质。
部分习题解-黎永锦《泛函分析讲义》的Word文档
泛函分析讲义-黎永锦134部分习题解答意义深刻的数学问题从来不是一找出解答就完事了,好象遵循着的格言,每一代的数学家都重新思考并重新改造他们前辈所发现的解答,并把这 解答纳入当代流行的概念和符号体系之中L. Bers (贝尔斯)(1914-1993,美国数学家)习题一1.2 设∑=∞≤∈=n i ii i x R x x l 11}||,|){(,对任意1)(),(l y y x x i i ∈==,∑∞=-=1||),(i iiy x y x d ,||sup ),(i i y x y x -=ρ, 试证明d 和ρ为X 上的两个度量,且存在序列1}{l x n ⊂,1l x o ∈,使得0),(0→x x n ρ,但),(0x x d n 不收敛于0.1.2证明:(1)只须按度量定义验证即可知道为上的两个度量(,)d x y 和(,)x y ρ为 1l 上的两个度量.(2)取111(,,,,0,)n x n n n= 当i n ≤时,()1n i n x = , 当i n >时()0n ix =,则1n x l ∈且()1(,0)sup |0|0n n inx xρ=-=→,但()111(,0)|0|1nn n in i i d x x∞===-==∑∑.因此(,0)0n x ρ→,但),(0x x d n 不收敛于0.黎永锦-部分习题解答1351.4 试找出一个度量空间),(d X ,在X 中有两点y x ,,但不存在X z ∈,使得=),(z x d ),(21),(y x d z y d =. 1.4 证明:在2R 上取离散度量(,)d x y =0, 1,.x y x y ⎧=⎨≠⎩当时当时,则对于x y ≠,有(,)1d x y =,但不存在2z R ∉,使得12(,)(,)(,)d x z d y z d x y ==.1.6 在∞l 中,设F 为的非空子集,G 为开集,试证明G F +为开集.1.6证明:由(,)sup ||i i d x y x y =-可知,对任意,x y l ∞∈,有(,)(,0)d x y d x y =-,若G 是开集,则对于任意,x F y G ∈∈,有开球(,)U y r G ⊂.故(,)x U y r x G +⊂+,因而G x r y x U +⊂+),(,从而对任意,x F x G ∈+是开集,由()x FF G x G ∈+=+ 可知F G +是开集.1.8 在∞l 中,设|){(i x M =只有限个i x 不为0},试证明M 不是紧集. 1.8证明:取()()n n i x x =,当i n >时,()0n ix =当i n ≤时,()1n i i x = ,则n x M ∈,且lim n n x x →= ,这里112(1,,,,)n x = ,但x M ∉,因此M 不是闭集,所以M 不是紧集.1.10 设),(d X 为度量空间,X F ⊂,试证明CC F F )(0=.1.10证明:对于任意0x F ∈,有0(,)U x r F ⊂,故φ=C F r x U ),(,因而C C F x )(∈,从而C C F F )(0⊂.对于任意C C F x )(∈,有()Cx F ∉,因而存在φ=C F r x U ),(,故(,)U x r F ⊂,从而0x F ∈,故0)(F F C C ⊂.所以,0()C CF F ⊂.1.12 设),(d X 为度量空间,X F ⊂,试证明}|),(inf{),(F y y x d F x d ∈=为X 到 ),0[+∞的连续算子.泛函分析讲义-黎永锦1361.12 证明:对于任意,x z X ∈,有.(,)inf{(,)|}inf{(,)(,)|}(,)inf{(,)|}(,)(,)d x F d x y y F d x z d y z y F d x z d y z y F d x z d z F =∈≤+∈=+∈=+故(,)(,)(,)d x F d z F d x z -≤类似地,有(,)(,)(,)d z F d x F d z x -≤因此|(,)(,)|(,)d x F d z F d x z -≤所以,0n x x →时,必有0(,)(,)n d x F d x F →,即(,)d x F 是连续函数. 1.14 设),(d X 为度量空间,F 为闭集,试证明存在可列个开集n G ,使n G F =.1.14 证明:由于F 是闭集,因此{|(,)0}F x d x F ==,又因为(,)d x F 是连续的,所以对任意1,{|(,)}n n x d x F <是开集,从而对于开集1{|(,)}n n G x d x F =<,有1{|(,)0}{|(,)1/}n F x d x F x d x F n ∞====< ,所以1n n F G ∞== .1.16 试证明∞l 是完备的度量空间.1.16证明:设{}n x 为 ∞l 的Cauchy 列,则对于任意0ε>,存在 N,使得n N >时有()()(,)sup ||n p n n p n i i d x x x x ε++=-<.故对每个固定的i,有()()||(,1)n p n i i x x n N p ε+-<>>.因此(){}n i x 是Cauchy 列.因而存在i x ,使得()lim n ii n x x →∞=,令()i x x =,则由可知(1)||N i i x x ε+-≤故黎永锦-部分习题解答137(1)||||N i i x x ε+≤+由于(1)1()N N ix x l ++∞=∈,因此存在常数1N M +使得11sup ||N i N x M ++≤<+∞.又由()()||n p n ii x x ε+-<可知||n i i x x ε-<对任意i 及n N ∈成立.故()(,)sup ||n n i i d x x x x ε=-<所以,n x x →,即l ∞是完备的度量空间. 1.18 证明0c 中的有界闭集不一定是紧集.1.18 证明:令{()|||1}i i M x x =≤,则M 是0c 的有界闭集,但M 是不紧集.1.20 设),,1[+∞=X |/1/1|),(y x y x d -=,试证明),(d X 为度量空间,但不是完备的. 1.20证明:容易验证|/1/1|),(y x y x d -=是),(d X 的度量.取X x n ∈,),1[+∞∈=n x n ,则}{n x 为X 的Cauchy 列,但}{n x 没有极限点,因此}{n x 不是收敛列,所以不是完备的.1.22 试证明度量空间),(d X 上的实值函数f 是连续的当且仅当对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.1.22证明: 若度量空间),(d X 上的函数f 是连续的,则明显地,对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.如果对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集,则于任意R ∈21,εε,容易知道})(|{})(|{\})(|{2121εεεε≥≤=<<x f x x f x X x f x 是开集,对于R 上的开集G ,有G 的构成区间),(n n βα,使得),(n n G βα =,因而)(1G f -是开集,所以f 是连续的.1.24 设R 为实数全体,试在R 上构造算子T ,使得对任意R y x ∈,,y x ≠,都有||||y x Ty Tx -<-,但T 没有不动点.泛函分析讲义-黎永锦1381.24证明:(1) 设R 为实数全体,12:,tan T R R Tx x x π-→=+- 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知22|()()|||||1f x f y x y x y ξξ-=-<-+ 但f(x)没有不动点.实际上,若()x f x = ,则1tan 2x π-=,因而矛盾.(2) 设),,1[+∞=X 11:,x T X X Tx x +→=+ 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知21|()()|[1]||||(1)f x f y x y x y ξ-=--<-+但f(x)没有不动点.实际上,若()x f x =,则110x +=,矛盾,所以f(x)没有不动点.1.25 设函数),(y x f 在)},(],,[|),{(+∞-∞∈∈=y b a x y x H 上连续,处处都有偏导数),('y x f y ,且满足+∞<≤≤<M y x f m y ),('0试证明0),(=y x f 在],[b a 上有唯一的连续解)(x y ϕ=. 提示:定义:],[],[:b a C b a C T →为),(1ϕϕϕx f MT -= 证明T 为压缩算子,然后利用S. Banach 不动点定理.1.26 设),(d X 为度量空间,T 为X 到X 的算子,若对任意X y x ∈,,y x ≠,都有 ),(),(y x d Ty Tx d <,且T 有不动点,试证明T 的不点是唯一的.1.26证明:反证法,假设A 有两个不动点12,x x ,使得1122,A x x A x x ==,则121212(,)(,)(,)d x x d Ax Ax d x x =<但这与12x x ≠矛盾,所以A 只有唯一的不动点.黎永锦-部分习题解答1391.27 设),(d X 为度量空间,且X 为紧集,T 为X 到X 的算子,且y x ≠时,有),(),(y x d Ty Tx d <,试证明T 一定有唯一的不动点.证明思路:构造X 上的连续泛函),(),(y x d Ty Tx d <,利用紧集上的连续泛函都可以达到它的下确界,证明存在X x ∈0,使得}|)({inf )(0X x x f x f ∈=,0x 就是T 的不动点. 1.28 试构造一个算子22:R R T →,使得T 不是压缩算子,但2T 是压缩算子.1.28证明:定义)0,(),(:221x x x T →,则T 不是压缩算子,但2T )0,0(),(:21→x x 是压缩算子.1.30 设||),(),,1[y x y x d X -=+∞=,x x Tx X X T /13/,:+=→,试证明T 是压缩算子. 1.30证明:由 x x Tx /13/+=,可知|/13//13/|||y y x x Ty Tx +--=-),(32|||131|2y x d y x ≤--=ξ,所以T 是压缩算子.习题二2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义⎩⎨⎧≠+-==.y x 1||||;y x ,0),(时当时当,y x y x d试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=. 2.2证明:由度量的定义可知是X 上的度量.假设存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-,则对于,K x X λ∈∈,一定有11||||||||||x x λλ=⋅.泛函分析讲义-黎永锦140如果取001,,||||12x X x λ=∈=,则 001000013||||||||1||||||1122x x x λλλ=+=⋅+=+= , 但是1)11(21)1||(||||||||||00100=+=+=x x λλ,因此11||||||||||x x λλ=⋅不成立,所以一定不存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.4证明:由于M 是线性子空间,因此0M ∈.由M 是开集可知存在(0,){|||||}U x x M εε=<⊂.因而对于任意,0x M x ∈≠,有),0(2εεU x∈,从而M x∈2ε,因为M 是线性子空间,所以x M ∈,即M X =.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.6证明:由n x x →可知存在0M >,使得||||x M ≤,故||||||||||||||||||||||||||||||||0n n n n n n n n n n n x x x x x x x x x M x x λλλλλλλλλλλλ-≤-+-≤-⋅+⋅-≤-+⋅-→所以,n n x x λλ→.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.10证明:明显地M 是线性子空间,取112(1,,,,0,0)n n x = ,则n x M ∈ 且0n x x →,但1102(1,,,,0,0)n x M =∉ ,所以M 不是闭的子空间.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.黎永锦-部分习题解答1412.12证明:由)()()(y f x f y x f +=+可知,)()(x nf nx f =对所有正整数N n ∈都成立.并且)()()(m x mf m x m x m x f x f =+⋅⋅⋅++=,故)(1)(x f mm x f =对所有正整数N m ∈都成立.因此所有正有理数Q q ∈都有)()(x qf qx f =成立,由)()())((x f x f x x f -+=-+和)0()0()0(f f f +=可知0)0(=f 并且)()(x f x f -=-,因而)()(x qf qx f =对所有有理数Q q ∈都有成立.由于f 在R 上连续,因此,对于任意R ∈α,有Q q n ∈,使得α→n q ,从而)()(lim )(lim )(x f x f q x q f x f n n n n αα===∞→∞→,所以f 是线性的.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.14证明:令{|}i j M span x i j =≠,则M 是 n-1维的闭子空间,且i i x M ∉,由Hahn Banach -定理可知存在*,||||1i g X x ∈=,使得()(,)i i i i g x d x M =,且()0g x =对任意i x M ∈成立,令(,)ii i g i d x M f = ,则*i f X ∈,且()1,()0i i i j f x f x ==,对任意i j≠成立.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立.2.16证明: 由M 是闭线性子空间,M X x \0∈因此,因此0(,)0d x M >存在*,||||1g X g ∈=,使得00()(,)g x d x M =,且()0g x =对于任意x M ∈成立.令0(,)gd x M f =,则00||||10(,)(,)()1,||||g d x M d x M f x f ===,且()0f x =对任意x M ∈成立.2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.18证明:假设存在00,x y ,使得0000||||||||||||x y x y +=+,但00x y λ≠,对任意0λ>成泛函分析讲义-黎永锦142立,则0000||||||||xy x y ≠,故有0000000000||||||||||||||||||||||||||||||||||||||||1x x y yx y x x y y ++⋅+⋅<因而0000||||||||||||1x yx y ++< 但这与0000||||||||||||x y x y +=+矛盾,所以||||||||||||y x y x +=+时,有x y λ=对某个0λ>成立.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间. 2.20证明:在1l 中,取1111(,0,,0,0,,0),(0,,0,,0,,0)2222x y == ,则||||1,||||1x y ==,且x y ≠,但||||2x y +=,因而1l 不是严格凸的.类似的,在∞l 中,取(1,0,1,0,0,,0),(1,1,0,,0)x y == ,则 ||||1,||||1x y ==,且x y ≠,但 ||||2x y +=,所以l ∞不是严格凸的.2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.22证明:令{()|N 0}i i i X x x R i N x =∈>=存在某个,使得时,有,定义1||||||()||||i i i x x x ∞===∑,则(,||||)X ⋅是赋范空间,取12(0,0,,0,,0,0,,0)n n x = ,则1211||||nni i x∞∞===∑∑,因此1ni x∞=∑绝对收敛,但级数1ni x∞=∑不收敛.2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x xf x x f n n →. 2.24证明:由x x n →可知, ||||||||x x n →,因而,||||||||x xx x n n →,所以, ≤-|)||||()||||(|x x f x x f n n 0||||||||||||||||→-x xx x f n n . 2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.黎永锦-部分习题解答1432.26证明:容易验证M 是]1,0[C 的线性子空间.由于]1,0[C 是完备赋范线性空间,M 是]1,0[C 的闭子空间,因此M 是]1,0[C 的完备线性子空间.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.2.28证明:由于1||})1,(inf{||}|||inf{||),(100≥=∈-=x M y y x M x d ,并对于M y ∈=)0,0(0,有1||)1,0(||||||00==-y x ,所以1),(0=M x d ,且),(||||000M x d y x =-.习题三3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i i i∈==任意,试证明T 是线性有界算子,并求||||T .3.2证明: 由T 的定义可知T 是线性算子,且||||31||31||)3(||||||1x x x Tx i i i =≤=∑∞=, 因此13||||T ≤,从而T 是线性有界算子.取0(1,0,,0)x = ,则01x l ∈,且0||||1x =,故01||||||||3T Tx ≥=,所以1||||3T =. 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.4证明:由于||||||||sup ||||supsup 111T x Txx Tx Tx x x x =≤≤≠<<,因此Tx T x 1||||sup ||||<≥.对于任意10n >,由||||sup ||||||||sup ||||||||sup||||1||||0||||0||||Tx x xT x Tx T x x x =≠≠===可知,有||||1n x =,使得1||||||||n n Tx T ≥-,故111||(1)||(1)(||||)n n n n T x T -≥--,因而111||||1sup ||||||(1)||(1)(||||)n n n n x Tx T x T <≥-≥--对任意n 成立泛函分析讲义-黎永锦144从而||||1||||sup ||||x T Tx <≤,所以||||sup ||||1||||Tx T x <=3.6 设X 是赋范空间,X x ∈α,若对任意*f X ∈,有+∞<|)(|sup ααx f ,试证明+∞<||||sup ααx .3.6 证明:定义*:,()()T X K T f f x ααα→=,则T α是*X 到K 的线性有界算子,且对于任意*f X ∈,有sup |()|sup |()|T f f x ααα=<+∞因为任意赋范空间X 的共轭空间 *X 都是完备的,因此由一致有界原理,有sup ||||T α<+∞.由αT 的定义可知||)(||sup |)(||sup ||||1||||1||||αααx f f T T f f ====故||||||||T x αα=,所以,sup ||||x α<+∞.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.证明思路:明显地,只需证明),(Y X L 是Banach 空间时,Y 是Banach 空间.由于}0{≠X ,因此有1||||,00=∈x X x ,故由Hahn-Banach 定理存在1||||=f ,使得1||||)(00==x x f .若Y y n ∈}{是Cauchy 列,定义算子列),(Y X L T n ∈为n n y x f x T )(=,则),(Y X L T n ∈,并且||||||||n m n m y y T T -=-,因而}{n T 为),(Y X L 的Cauchy 列,所以存在),(Y X L T ∈,使得T T n →.不难证明0Tx y n →,从而Y 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f .3.8证明: 由于lim ()()n n f x f x →∞=,因此sup{|()|}n f x <∞对任意x 成立,由X 是Banach黎永锦-部分习题解答145空间可知sup{||||}n f M <<∞因而|()|||||||||||||n n f x f x M x ≤⋅<,所以|()|||||f x M x ≤,即f 是X 的线性连续泛函. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT1||||1≤-. 3.10 证明:由||||||||Tx M x ≥可知T 是单射,因而1T -存在,且对于任意y Y ∈,由T 满射可知存在x X ∈,使得y Tx =,容易验证T 是线性算子,故1111||||||||||||||||||||T y T Tx x Tx y --==≤=,所以,1T -连续,且11||||MT-≤.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射. 3.12证明:由0f ≠可知存在00x ≠,使得0()1f x =,故对于X 的开集G 及任意()f G α∈,必有x G ∈,使得()f x α=,由于是G 开集,故有0ε>,使(,)U x G ε⊂,因此对00,||||||x x x λλε+<,有0x x G λ+∈,因而0()f x x G λ+∈,但00()()()f x x f x f x λλαλ+=+=+,故(,)()f G αεαε-+⊂ ,即α为G 的内点,所以()f G 为开集,即f 一定开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.证明思路:先证S 为闭算子,从而S 是线性连续算子,然后利用Hahn-Banach 定理的推论可泛函分析讲义-黎永锦146知, 当0≠Sx 时,存在1||||,*=∈f X f ,使得||||)(Sx Sx f =,不难进一步证明T 为是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.14证明:若()n y T F ∈,且0n y y →,则存在n x F ∈使得()n n y f x =,由于F 是紧集,因此存在k n x ,使得0k n x x →,且0x F ∈.由0y Tx k n →及T 是闭线性算子可知0y Tx =,所以0()y T F ∈,即)(F T 是闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.证明思路:由于T 的定义域为X ,因此明显地,只需证明T 为闭线性算子.设有点列X x n ∈}{,X y x ∈,,当∞→n 时,x x n →,y Tx n →.由)(T R 是闭的,)(T R Tx n ∈可知必有X x ∈0,使得0Tx y =.由于T T=2,因此0)(2=-=-n n n n Tx x T x Tx T ,即)(T N x Tx n n ∈-.由)(T N 是闭的,可得)()(lim T N x Tx x y n n n ∈-=-∞→,从而0)(=-x y T .因此y Tx Tx T Ty Tx ====00)(,所以T 为闭线性算子.由闭图像定理可知),(X X L T ∈3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T . 3.16证明:由于n T 强收敛于,因此T 对任意x X ∈,有||||0n T x Tx -→,故对于任意*f Y ∈,有|()()||()|||||||||0n n n f T x f Tx f T x Tx f T x Tx -=-≤⋅-→,所以n T 弱收敛于T .黎永锦-部分习题解答147习题四4.2 试证明∞=l l *1.4.2证明:对于任意1x l ∈,有11lim ni ii i n i i x x ex e ∞→∞====∑∑,故对于任意*1f l ∈,有11()lim ()lim ()nni i i i n n i i f x f x e x f e →∞→∞====∑∑由于1111|()||||()|||||||||||||||||n n n niiiiiiii i i i x f e x f e x f e x f ====≤≤⋅⋅=⋅∑∑∑∑因此由1()i x x l =∈可知1||n ii x =∑收敛,从而1()niii x f e =∑绝对收敛,且11|()||()|sup |()|sup |()|||||i i i i i i i f x x f e f e x f e x ∞∞===≤=⋅∑∑令()(())i i y f e α==,则y l ∞∈,且对于任意,都1()i x x l =∈,有1()i i i f x x α∞==∑ 且||||||||f y =.反过来,对于任意 ()i y l α∞=∈,则定义f 为11(),()i iii f x x x x l α∞==∀=∈∑则f 是上的线性连续泛函,且||||sup ||||||i f y α==,所以 ∞=l l *1 4.4 试证明1*l l ≠∞.4.4证明: 用反证法,假设 *1l l ∞=,则由于1l 是可分的,因此是l ∞可分的,但这与1l 不可分矛盾,所以1*l l ≠∞泛函分析讲义-黎永锦1484.6 试证明在2l 中强收敛比按坐标收敛强.4.6证明:若()(0)202(),()n n i i x x l x x l =∈=∈,且0n x x →,则()(0)21/21(||)0n i i i x x ∞=-→∑因此,对于任意i 有()(0)()(0)21/21||(||)n n iii i i xxx x ∞=-≤-∑从而()(0)n ii x x →,所以强收敛比按坐标收敛强.4.7 设X 是无穷维的赋范空间,试证明*X 一定也是无穷维的赋范空间.证明思路:对于任意的自然数n ,由于X 是无穷维的赋范空间,因此存在n 个线性无关的的X e e e n ∈⋅⋅⋅,,,21,由Hahn-Banach 定理,不难证明存在*21,,,X f f f n ∈⋅⋅⋅,使得都成立对任意并且j i e f e f j i i i ≠==,0)(,1)(,从而只需证明n f f f ,,,21⋅⋅⋅是线性无关的,则n X >)dim(*,所以*X 一定也是无穷维的赋范空间.4.8设X 是赋范空间,X x x n ∈,,x x wn −→−,若}{n x 是相对紧的,试证明x x n −→−. 4.8证明:由于{}n x 是相对紧的,因此存在子列{}k n x 收敛于y ,但n x 弱收敛于x ,因此对于任意*f X ∈,有()()k n f x f x →.由{}k n x 收敛于y 可知|()()|||||k kn n f x f y f x y -≤⋅-→,从而()()f x f y =,对任意成*f X ∈立.因而x y =.故k n x x →,所以x x n −→−. 4.10设Y X ,为赋范空间,),(Y X L T ∈,若x x w n −→−,试证明Tx Tx wn −→− 4.10证明:对于任意*g Y∈,定义X 上的泛函()()f x g T x =,则由|()||()||||||f x g T x g T x =≤⋅⋅,可知f 是X 上的线性连续泛函,由于n x 弱收敛x ,因黎永锦-部分习题解答149此()()n f x f x →,因而()()n g Tx g Tx →,所以n Tx 弱收敛Tx .4.12 设X 为Banach 空间,*,,,X f f X x x n n ∈∈n x 弱收敛于x ,且n f 收敛于f ,试证明)()(x f x f n n →.4.12证明:由于n x 弱收敛于x 时,有0M >,使得||||n x M ≤<∞,因此|()()||()()||()()||||||||||()()||||||()()|n n n n n n n n n n n f x f x f x f x f x f x f f x f x f x M f f f x f x -≤-+-≤-⋅+-≤-+-所以,当n x 弱收敛于x ,且n f 收敛于f 时,有()()n n f x f x →.4.14设Y X ,是Banach 空间,),(Y X L T ∈,且1-T 存在且有界,试证明*T 的逆存在且*11*)()(--=T T .4.14证明:由 **11*()()T T T T I --==及 1**1*()()T T TT I --==可知*1()T -存在,并且*11*)()(--=T T .4.16设X 是赋范空间,}{,0n w n x span M x x =−→−,试证明M x ∈0. 4.16证明:反证法,假设0x M ∉,则由于M 是闭子空间,因此0(,)0d x M >,故由Hahn Banach-定理可知存在*f X ∈,使得00()(,)f x d x M =且对于任意 ,()0x M f x ∈=,所以00()0,()(,)0n f x f x d x M ==>,但这与n x 弱收敛于0x 矛盾,因而n x 弱收敛0x 时,一定有0x M ∈.习题五泛函分析讲义-黎永锦1505.2设X 是内积空间,X y ∈,试证明),()(y x x f =是X 上的线性连续泛函,且||||||||y f =.5.2证明: 由()(,)f x x y =可知f 线性泛函,且|()||(,)|||||||||f x x y x y =≤⋅,因此f 是X 上的连续线性泛函,并且||||||||f y ≤,取||||y y x =,则||||||||1,|()||(,)|(,)||||y y x f x x y y y ====,所以,||||||||f y =.5.4 设X 是内积空间,X e e n ∈,,1 ,若=),(j i e e ⎩⎨⎧=≠.1j,0j i ,i试证明n e e ,,1 线性无关.5.4证明:若12,,,n e e e X ∈ ,且=),(j i e e ⎩⎨⎧=≠.1j ,0j i ,i则对于i K α∈,当10ni ii eα==∑时,有1(,)0ni i i i i e e αα===∑.因此120n ααα==== ,所以12,,,n e e e 线性无关.5.6 设M 是Hilbert 空间X 的闭真子空间,试证明⊥M 含有非零元素.5.6 证明: 由M 是X 的真子空间,因而对\x X M ∈,存在0x M ⊥∈,使得 00x x y =+,由x M ∉及0x M ∈可知00x x -≠所以0y ≠,且y M ⊥∈,即M ⊥含有非零元.5.8 设M 是Hilbert 空间X 的闭真子空间,试证明⊥⊥=M M .5.8证明:由于M M⊥⊥⊂,因此只须证MM ⊥⊥⊂.对于任意x M ⊥⊥∈有y M ⊥∈使得0x x y =+,由M M ⊥⊥⊂可知0x M ⊥⊥∈,故0x x M ⊥⊥-∈,因此0y x x M ⊥⊥=-∈,所以y y ⊥,因而0y =,从而MM ⊥⊥⊂.黎永锦-部分习题解答1515.9 设f 是实内积空间3R 上的线性连续泛函,若32132)(x x x x f ++=,试求X y ∈,使得),()(y x x f =.5.9 解答:取)3,2,1(,3=∈y R y ,则一定有32132)(x x x x f ++=. 5.10 设M 是内积空间X 的非空子集,试证明⊥⊥⊥⊥=M M . 5.10 证明:由()MM ⊥⊥⊥⊥⊥⊥=可知, M M ⊥⊥⊥⊥⊂.反过来,对任意x M ⊥⊥⊥∈,及y M M⊥⊥∈⊂,可知(,)0x y =,因而x y ⊥对于任意y M ∈成立,故x M ⊥∈因此M M ⊥⊥⊥⊥⊂,所以M M ⊥⊥⊥⊥=.5.12 设X 是Hilbert 空间,M 、N 是X 的闭真空间,N M ⊥,试证明N M +是X 的闭子空间.5.12证明:明显地N M +是X 的线性子空间,因此只须证N M +在X 中是闭的,若,,n n n n x y M N x M y N +∈+∈∈,且n n x y z +→,则由于X 是Hilbert 空间,M 是闭子空间,因此,,z x y x M y M ⊥=+∈∈,故,n n x x M y y M ⊥-∈-∈.因而22222||||||||||||||()||||||0n n n n n n n n x x y y x x y y x y x y x y z -+-=-+-=+-+=+-→,所以,n n x x y y →→,故,,z x y x M y N =+∈∈,即N M +是的X 闭子空间. 5.14 设X 是内积空间,X y x ∈,,试证明y x ⊥的充要条件为对任意K ∈α,有||||||||y x y x αα-=+.5.14 证明:若x y ⊥,则对任意K α∈,有2222||||(,)(,)(,)(,)(,)||||||||||x y x y x y x x x y y x y y x y αααααααα+=++=+++=+ 且2222||||||||||||||x y x y αα+=+ 因此||||||||y x y x αα-=+.泛函分析讲义-黎永锦152反过来,若K α∈,有||||||||y x y x αα-=+,则由(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα++=+++和(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα--=--+可知2(,)2(,)0x y y x αα+=令(,)x y α= ,则22|(,)||(,)|0x y x y += 因而(,)0x y =,所以x y ⊥.5.16设X 是内积空间,X y x ∈,,试证明y x ⊥当且仅当对任意K∈α,有||||||||x y x ≥+α.5.16证明:若x y ⊥,则对任意K α∈,有x y α⊥,因此 22222||||||||||||||||||x y x y x αα+=+≥,所以||||||||x y x ≥+α.反过来,若对任意K α∈,有||||||||x y x ≥+α,则 令2(,)||||x y y α=-,由22||||||||0x y x α+-≥及|||||),(|),(|||||),(||||||),(||||||),(|),(||),(),(),(),(),(),(),(),(),(224222222≥-=+--=++=-+++=-++y y x y y y y x y y x y y x y y x y y x x x y y x y y x x x x x y x y x αααααααα因此(,)0x y =,所以,x y ⊥.5.17 设}|{N i e i ∈是内积空间X 的正交规范集,试证明黎永锦-部分习题解答153|||||||||),)(,(|1y x e y e x i ii⋅≤∑∞=对任意X y x ∈,成立.5.17证明:由于{|}i e i N ∈是X 的正交规范集,因此对任意,x y X ∈,有222211|(,)|||||,|(,)|||||ii i i x e x y e y ∞∞==≤≤∑∑故21/221/2111|(,)(,)|[|(,)|][|(,)|]||||||||iiiii i i x e y e x e x e x y ∞∞∞===≤=⋅∑∑∑5.18设}|{N i e i ∈为Hilbert 空间的正交规范集,}{i e span M =,试证明M x ∈时,有i i i e e x x ∑∞==1),(.5.18证明:若x M ∈,则由于{}i e 是正交规范集,因此221|(,)|||||ii x e x ∞=≤∑.因为X 是完备的,所以由22||(,)|||(,)|0n p n p iiii ni nx e e x e ++===→∑∑ 可知1(,)i ii x e e ∞=∑是收敛级数,记1(,)iii y x e e ∞==∑,则1(,)((,),)(,)(,)0j i i j j j i x y e x x e e e x e x e ∞=-=-=-=∑故x y M -⊥,由,x y M ∈,可知x y M -∈,因而x y x y -⊥-,所以,0x y -=,即ii iee x x ∑∞==1),(.泛函分析讲义-黎永锦1545.19设}{n x 是Hilbert 空间X 的正交集,试证明1{}ii x ∞=∑弱收敛当且仅当21||||ii x ∞=<∞∑.5.19证明:若1ii x ∞=∑弱收敛,则存在0M >,使得M x ni i≤∑=||||1对任意n 成立,故由{}ix 是正交集可知22211||||||||ii i i x x M ∞∞===≤∑∑,所以21||||i i x ∞=<∞∑.反之,若21||||ii x ∞=<∞∑,则由0||||||||2121→=∑∑++=++=pn n i ipn n i ix x 可知1{}i i x ∞=∑是X 的Cauchy 列,所以1i i x ∞=∑在Hilbert 空间X 中收敛,因而1i i x ∞=∑弱收敛.5.20设}|{∧∈=ααe S 是内积空间X 的正交规范集,则对于任意}|),{(,∧∈∈ααe x X x 中最多只有可列个不为零,且22|||||),(|x e x i ≤∑∧∈α.5.20证明:若Λ是有限集,则明显地,有22|||||),(|x e x i≤∑∧∈α若Λ不是有限集,则对于任意}1),(|{,me x e S N m m ≥=∈αα,只能是有限集,因而'1m m S S ∞== 是可数集,且对任意'\e S S α∈,有(,)0x e α=,故22|||||),(|x e x i ≤∑∧∈α5.21 设X 是Hilbert 空间,),(X X L T ∈,若1-T 存在,且),(1X X L T∈-,试证明1*)(-T 存在且*11*)()(--=T T .5.21 证明:由于X 是Hilbert 空间,且),(1X X L T∈-,因此1*()T -存在.对于任意,x y X ∈,有11**1*(,)(,)(,())(,())x y T Tx y Tx T y x T T y ---===黎永锦-部分习题解答155又因为11*1**(,)(,)(,)(,())x y TT x y T x T y x T T y ---===,所以,*1*1**()()T T T T --=,因而*11*)()(--=T T .5.22 设X 是Hilbert 空间,),(,X X L T T n ∈,若T T n →,试证明**T T n →.5.22证明:由***()n n T T T T -=-及*||()||||||n n T T T T -=-,可知n T T →时,有**||||||||0n n T T T T -=-→,因此**T T n →.5.24 若X 是Hilbert 空间,),(,X X L T S ∈是自伴算子,R ∈βα,,试证明T S βα+是自伴算子.5.24证明:由于,S T 是自伴算子,因此*S S = ,且*T T =,所以对于***,,()R S T S T S T αβαβαβαβ∈+=+=+.5.25 设X 是Hilbert 空间,),(X X L T ∈,若T 是自伴算子,N n ∈,试证明n T 是自伴算子.5.25证明:由于*T T =,因此***()()()n nnT T T T T T =⋅⋅⋅== ,所以n T 是自伴的.5.26 设X 是复H i l b e r t 空间,),(X X L T ∈若试证明存在唯一的自伴算子),(,21X X L T T ∈,使得21iT T T +=,且21*iT T T -=.5.26 证明:令**111222(),()iT T T T T T =+=-,则),(,21X X L T T ∈,且*1212,T T iT T T iT =+=-由于***1111*******11122222()(),[()]()()iii T T T T T T T T T T T T T T =+=+==-=--=-=因此1T 和2T 都是自伴算子.假设存在自伴算子12,(,)S S L X X ∈,使得12T S iS =+,则1212S iS T iT +=+且**12121212()()S iS S iS T iT T iT -=+=+=-,因此1122,S T S T ==.泛函分析讲义-黎永锦156所以,存在唯一的自伴算子),(,21X X L T T ∈,使得*1212,T T iT T T iT =+=-. 5.27 设X 是Hilbert 空间,T T X X L T T n n →∈),,(,,若n T 是正规算子,试证明T 是正规算子.5.27 证明:由于n T 是正规,因此**n n n T T T T =故************************||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||n n n n n n n n n n n n n n n nn n n nn n n n n T T TT TT T T T T T T TT T T TT T T TT T T TT TT TT T T T T T T T T T T T T T T T T T T T T T -≤-+-+-≤-+-≤-+-⋅-+-≤⋅-+⋅-+⋅-+⋅**||n T -由n T T →可知**n T T →,所以**||||0T T TT -=即T 是正规算子.5.28 设X 是复H i l b e r t 空间,),(X X L T ∈,试证明T 是正规算子当且仅当||||||||*Tx x T =对于任意X x ∈成立.5.28 证明:若T 是正规算子,则**T T TT =,因此对于任意x X ∈,有**((),)0T T TT x x -=,故**(,)(,)T Tx x TT x x =,因此**(,)(,)Tx Tx T x T x =,所以*||||||||T x T x =对任意x X ∈成立.反之,若对任意x X ∈有*||||||||T x Tx =,则**(,)(,)Tx Tx T x T x =,故**(,)(,)T Tx x TT x x =.因而**((),)0T T TT x x -=对任意x X ∈成立.所以**0TT T T -=,即是T 正规算子.5.29 设X 是Hilbert 空间, T 是X 到X 的线性算子,若对任意,x y X ∈,有(,)(,)Tx y x Ty =,试证明T 是连续线性算子.5.29 证明:由于()D T X =,因此只须证T 是闭线性算子,若00,n n x x Tx y →→,则对于黎永锦-部分习题解答157任意y X ∈,有000(,)lim(,)lim(,)(,)(,)n n n n y y Tx y x Ty x Ty Tx y →∞→∞====故00(,)(,)y y Tx y =对任意y X ∈成立,因此00Tx y =,因而T 是闭线性算子,所以由闭图象定理可知T 是连续的.学年论文可选的题目学完一门课程,如能对所学内容做些比较系统的整理和思考,对加深该课程的理解和进一步学习都会有很好的帮助.学年论文的写作,可以提高阅读有关文献资料的能力,学会从书本和论文中了解有关信息、得到启发.并可有目的、有计划地搜集相关资料,可以养成独立思考和研究探索的好习惯. 下面的一些题目和思路可供参考:1. 抽象空间的球具有哪些奇怪的性质,在度量空间和赋范空间中,它们的性质有哪些不同,如开球的闭包一定是与开球球心和半径一样的闭球吗?开球有可能是闭集吗?2. 不动点定理的推广和应用,特别是在微分方程中的一些应用.3. 度量空间和赋范空间中,序列的各种收敛性的相互关系.4. 度量空间和赋范空间中,紧、完备、闭、有界等的相互关系.5. 凸集和凸函数的性质.6. 线性连续泛函和可加泛函的性质.7. 一致有界原理的应用.8. 逆算子定理或闭算子定理的应用. 9. Hahn-Banach 定理及其推广和应用. 10. 内积空间中的正交性的推广.11. 平面几何的有关概念和性质在Hilbert 空间的推广.泛函分析讲义-黎永锦12. 数学分析中的Fourier 级数相关概念在内积空间的推广.13. 赋范空间中的级数收敛的判别法.158。
泛函分析知识点范文
泛函分析知识点范文泛函分析是数学中的一门学科,研究向量空间上的函数和函数空间的性质,涉及到实数或复数域上的向量空间。
泛函分析包括线性代数、实变函数分析和拓扑学等多个学科的内容,因此具有广泛的应用领域,如物理、工程、经济等。
泛函分析的核心内容包括线性空间、拓扑空间和连续映射等概念、线性算子和泛函的基本性质以及泛函分析中的基本定理等。
1.线性空间:泛函分析的基础是线性空间,也就是向量空间。
线性空间满足线性组合和分配律等性质,例如实数域或复数域上的向量空间。
线性空间中的向量可以是函数、矩阵等不同的对象。
2.拓扑空间:泛函分析中的向量空间往往是赋予了拓扑结构的空间,即拓扑向量空间。
拓扑空间是一种具有连续性质的空间,它引入了开集、闭集和收敛性等概念。
拓扑空间的拓扑结构可以通过开集、闭集、邻域、基等方式来定义。
3.连续映射:泛函分析中的重要概念是映射的连续性。
连续映射是保持拓扑结构的映射,即对于拓扑空间中的开集,其原像仍然是开集。
连续映射可以用来描述泛函和线性算子的性质。
4.线性算子和泛函:线性算子是线性空间之间的映射,它可以是有界算子或无界算子。
线性算子的基本性质包括线性性、有界性、闭图像性等。
泛函是线性空间到数域的映射,它可以看作是线性算子的特殊情况。
泛函的基本性质包括线性性、有界性、连续性等。
5. Hahn-Banach定理:Hahn-Banach定理是泛函分析中的基本定理,它是关于泛函延拓的定理。
该定理说明了任意线性子空间上的有界泛函可以延拓到整个空间上,并且保持原有泛函的范数不变。
6.可分性:可分性是拓扑空间的一个重要性质,它指的是拓扑空间中存在可数稠密子集。
可分性保证了拓扑空间中存在足够多的元素,使得在拓扑空间上可以进行良定义的运算。
7.反射空间:反射空间是泛函分析中的一类特殊线性空间,它是线性空间和拓扑空间的交叉概念。
反射空间具有良好的性质,例如有界闭集外包性、扩张定理等。
8.紧算子和迹类算子:紧算子是对有界算子的一种推广,它在泛函分析中具有重要的地位。
泛函入门教材
泛函入门教材
以下是一些适合泛函分析初学者的教材:
•《泛函分析讲义》,作者:张恭庆,林源渠,郭懋正。
这本书分为上下册,内容较为基础,适合初学者学习。
•《泛函分析基础》,作者:步尚全。
这本书内容比较全面,涵盖了泛函分析的基本概念、理论和应用。
•《工科泛函分析基础》,作者:孙明正,李冱岸,张建国,邹杰涛。
这本书注重实际应用,适合工科背景的学生学习。
•《泛函分析》,作者:孙炯,贺飞,郝晓玲,王万义,赫建文。
这本书的特点是用大量例子让抽象概念和定理形象化,使学习变得更容易。
•《泛函分析讲义》,作者:许全华,马涛,尹智。
这本书是讲义性质的教材,注重实用性,有全套视频资源可供学习。
•《实变函数论与泛函分析》,作者:夏道行等。
这本书分为上下两册,上册讲实变函数,下册讲泛函分析。
特点是全面、细致、框架体系完善。
请注意,以上教材只是其中的一部分,具体选择哪一本还要看个人的学习需求和基础水平。
91国优教材:泛函分析讲义
91国优教材:泛函分析讲义泛函分析讲义一、泛函分析的基本概念1、定义泛函分析又称为泛函相似性。
它是一种数学的技术,可以在极端情况下精准地求解和分析复杂的函数关系。
2、概念向量空间,空间中所有向量的集合;泛函,一个函数的集合,可以表述成 f: 某特定的n 向量变量集合→某特定的m 向量变量值集合,其中 n,m>0;泛函分析,对于给定的一个泛函 f 和泛函中多个变量空间 Xi (i=1,2,3,..m),求解 f 中部分变量取特定值下另外部分变量的取值范围。
3、性质(1)泛函分析属于泛函理论的应用,它可以求解复杂的函数关系。
(2)泛函分析可以帮助我们对于复杂系统中的变量进行有针对性的分析。
(3)泛函分析可以有效地提高系统的分析效率和精确度。
二、泛函分析法的特点1、函数可以没有限制地拓展泛函分析法不仅可以求解多元函数,还可以求解多项式函数,甚至是非常大的函数。
当有不同复杂度函数相互连接时,也可以采用泛函分析方法。
2、精确度较高泛函分析的结果能接近实际的变量取值情况。
3、适用范围广泛泛函分析可以应用到许多不同领域,比如机械、电子、建筑等等。
1、应用于元件分析泛函分析可以用于分析电路元件及其特性参数,以便精确地计算出所需要的结果。
2、应用于系统模拟泛函分析可以用来模拟系统的特性参数,预测系统性能,以优化系统的整体结构和设计。
3、用于参数估算泛函分析可以用于分析复杂的系统结构,在给定的参数的情况下,估算出系统的性能状态。
4、用于控制设计泛函分析可以帮助设计及优化某一系统的控制算法,便于提高系统的应用性能。
泛函分析简介
泛函分析简介泛函分析是数学中的一个重要分支,它研究的对象是函数的空间,而不仅仅是函数本身。
泛函分析在数学理论研究和实际问题求解中都有着广泛的应用。
本文将简要介绍泛函分析的基本概念、重要定理以及其在现代数学和物理学中的应用。
泛函分析的基本概念包括向量空间、内积空间、赋范空间和希尔伯特空间等。
在泛函分析中,向量空间是最基本的概念之一。
向量空间是指一个集合,其中的元素称为向量,满足一定的运算规则,比如加法和数乘。
内积空间是在向量空间的基础上引入了内积的概念,内积可以衡量向量之间的夹角和长度。
赋范空间是在向量空间的基础上引入了范数的概念,范数可以衡量向量的大小。
希尔伯特空间是一个完备的内积空间,其中的每一个柯西序列都收敛于空间中的一个元素。
泛函分析中的重要定理包括巴拿赫空间定理、霍尔德不等式、开映射定理、闭图像定理等。
巴拿赫空间定理是泛函分析中的一个基本定理,它指出了完备赋范空间的闭单位球是紧的。
霍尔德不等式是用来估计函数的导数和函数本身之间的关系的一个重要不等式。
开映射定理和闭图像定理则是关于线性算子的性质和映射的性质的重要定理。
泛函分析在现代数学和物理学中有着广泛的应用。
在数学中,泛函分析被广泛运用于偏微分方程、概率论、调和分析等领域。
在物理学中,泛函分析被广泛运用于量子力学、热力学、电磁学等领域。
泛函分析的理论不仅为这些领域提供了重要的数学工具,而且深刻影响了这些领域的发展。
总之,泛函分析作为数学中的一个重要分支,其基本概念和重要定理为研究者提供了丰富的数学工具和理论支持。
泛函分析在数学和物理学中有着广泛的应用,对于理解和解决实际问题具有重要意义。
希望本文的简要介绍能够帮助读者更好地理解泛函分析的基本概念和重要定理,以及其在现代数学和物理学中的应用。
《泛函分析》课程教学大纲-黎永锦
《泛函分析》教学大纲Functional Analysis课程编号:适用专业:数学与应用数学总学时数:学分:一、本课程简介《泛函分析》是现代数学中的的主要数学分支之一,它综合地运用分析、代数和拓扑的观点、方法,来研究数学中的许多问题,它在抽象空间上研究类似于实数上的分析问题,形成了综合运用代数和拓扑来分析处理问题的方法.通过这一课程,能使学生了解泛函分析的基本思想、原理及在各门学科中的应用,掌握泛函分析中主要的基本概念和重要的基本理论,学会用代数、分析和拓扑综合处理问题的新方法,弄清有限维空间与无穷维空间的差别,学会无穷维空间中处理线性问题的分析方法,该课程是学习其他数学分支与科研工作的重要基础.二、本课程与其他课程的关系《泛函分析》、《抽象代数》、《拓扑学》是现代数学的重要课程,它综合了分析、代数和拓扑的研究方法,因此学生最好有数学分析、线性代数、空间解析几何及点集拓扑学的基础.三、教学内容、学时安排和基本要求本课程主要是线性泛函分析的基本理论,重点介绍距离空间和赋范空间的基础,Banach空间最重要的定理,如Hahn-Banach保范延拓定理、逆算子定理、一致有界原理和Riesz表示定理等.本课程学时为54学时.(一)度量空间(12学时)1、具体内容度量空间的基本概念,度量空间中开集、闭集、完备性与可分性、连续映照的概念、距离空间中列紧集、紧集上连续映照的性质、不动点定理.2、基本要求(1)正确理解度量空间基本概念、度量空间点列收敛等概念.(2)理解并掌握度量空间中的内点,极限点,开集闭集,闭包等.(3)理解并掌握列紧集及紧集的概念,紧集、列紧集上的连续映射的性质.(5)熟练掌握压缩映照原理及其应用.3、重点、难点重点:度量空间的紧性、不动点定理.难点:具体度量空间上紧性的判别、压缩映射的构造及不动点定理的具体应用.(二)赋范线性空间(10学时)1、具体内容赋范空间的定义,范数的等价性,有限维赋范空间, Schauder基等.2、基本要求(1)理解线性空间和范数的概念以及相关的例子.(2)掌握范数的等价性及判别方法.(3)掌握具有基的Banach空间、有限维赋范线性空间的性质.(4)线性连续泛函与Hahn-Banach保范延扩定理.3、重点、难点重点:有限维赋范空间的性质和Hahn-Banach保范延扩定理.难点:Hahn-Banach保范延扩定理及其推论的应用.(三) 有界线性算子(10学时)1、具体内容有界线性算子基本性质、一致有界原理、开映射定理、闭图像定理、逆算子定理以及应用.2、基本要求(1) 熟练掌握线性算子范数的计算.(2) 熟练掌握一致有界原理.(3) 熟练掌握开映射定理、闭图像定理、逆算子定理以及应用.3、重点、难点重点:Banach空间中的一致有界原理、开映射定理、闭图像定理、逆算子定理.难点:点点有界与一致有界的区别,闭图像定理、逆算子定理以及应用.这些是泛函分析的核心内容,因此必须重点讲述.(四)共轭空间(10学时)1、具体内容具体空间的共轭空间,自反Banach空间的性质,弱收敛,共轭算子的性质.2、基本要求(1)掌握求序列空间的共轭空间的基本方法,具体空间上的有界线性泛函的表示.(2)理解并掌握共轭算子以及性质.(3)理解J映射和自反Banach空间的定义和性质.(4)理解并掌握弱收敛.3、重点、难点重点:求序列空间的共轭空间的方法,自反Banach空间的判别.难点:J映射的理解,自反Banach空间的性质和判别.(五) Hilbert空间(12学时)1、具体内容内积空间的定义,投影定理,Hilbert空间的正交集,Riesz表示定理.2、基本要求(1)掌握内积的定义,内积中的一些不等式.(2)理解并掌握内积空间的正交集以及性质.(3)理解投影定理.(4)理解并掌握Riesz表示定理.3、重点、难点重点:正交的性质,Riesz表示定理.难点:投影定理的理解,Riesz表示定理的掌握和应用.四、考核方法本课程考核的形式采用闭卷笔试.各教学环节占总分比例:作业及平时测验:30%,期末考试:70%.五、教学和学习的参考书1、黎永锦编,《泛函分析讲义》,科学出版社.2、张恭庆等编,《泛函分析讲义》(第一册),北京大学出版社.3、鲁丁著,刘培德译,《泛函分析》,机械工业出版社.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文章编号:1004-4353(2004)03-0157-04New basic principles of functional analysisL I Rong -lu 1,ZHON G Shu -hui 1,CU I Cheng -ri 2(1.Dep t.M ath.,H ar bin I ns titute of T echnology ,H ar bin 150001,China ;2.D ep t.M ath.,College of Science and Engineer ing,Yanbian Univer sity ,Yanj i 133002,China )Abstract:New basic principles of functional analysis such as equicontinuity theorem,uniform boundedness principle,open mapping theorem and closed graph theorem are established by smash -ing the bonds of linearity of concerned m appings.Key words:Second category;Open mapping;Closed graphC LC number:O177.3 Document code:ALet X ,Y be topological vector spaces and N (X )the family of neighborhoods of 0I X.As usual,L (X ,Y)is t he space of continuous linear operators.1 New equicontinuity theoremLet C (0)={U I C C :lim t y 0U (t )=U (0)=0;|U (t )|\|t|,P |t|[1}.Definition 1.1 A mapping f :X y Y is said to be dissecting if there exist U I C (0)and U I N (X )such that f (x +tu )=rf (x )+sf (u)w henever x I X ,u I U and |t|[1,w here r and s are determined by x ,u and t ,|r -1|[|U (t)|,|s|[|U (t)|.Let F U ,U (X ,Y )be the family of dissecting mappings w hich are related to U I C(0)and U I N (X ).It is trivial that F U ,U (X ,Y )includes all linear operators.How ever,many nonlinear mappings are also dissecting.In fact,for U (t )=et and U =(-1,1),F U ,U (R ,R )includes many nonlinear functions such as |x |,sin x ,e |x|-1,etc.Example 1.1 Let (X ,+#+)be a seminormed space and U ={x I X :+x +<12},U (t)=e 2t,P t I C.Then every linear operator T :X y Y yields various nonlinear dissecting mappings in F U ,U (X ,Y)such as f T (x )=11++x +T (x ),g T (x )=(1+12sin +x +)T (x ),h T (x )=e -+x +T (x ),etc.Let F <Y X ,x I X.F is said to be equicontinuous at x if P V I N (Y )v W I N (X )such that f (x +W )<f (x )+V ,P f I F [1].F is equicontinuous on X if F is equicontinuous at each x I X .Theorem 1.1(Equicont inuity T heorem) Suppose that X is of second category in itself,and F <F U ,U (X ,Y)such that each f I F is continuous.If F is pointwise bounded on X ,第30卷 第3期2004年9月 延边大学学报(自然科学版)Journal of Yanbian U niversity (Natural Science) Vol.30No.3 Sep.2004收稿日期:2003-12-20 基金项目:国家自然科学基金资助项目(10361005)作者简介:李容录(1943-),男(朝鲜族),吉林龙井人,哈尔滨工业大学数学系教授.158延边大学学报(自然科学版)第30卷then F is equicont inuous on X.Since L(X,Y)<F U,U(X,Y),the usual equicontinuity theorem[2]is a special case of T heorem1.1.T he proof of T heorem1.1,see[3],[4].2New uniform boundedness principleF(<Y X)is said to be uniformly bounded on each bounded subset of X if{f(x):f I F, x I B}is bounded for each bounded B<X.Theorem2.1(U niform Boundedness Principle)Suppose that X is of second category in itself,and F<F U,U(X,Y)such that each f I F is continuous.If F is pointw ise bounded on X,then F is uniformly bounded on each bounded subset of X.The usual resonance theorem[5,6]is a special case of Theorem2.1.T he proof of Theorem 2.1,see[3],[4].Another consequence of T heorem1.1is the follow ing:Theorem2.2(New Banach-Steinhaus Closure T heorem)Suppose that X is of second category in itself,and{f n}<F U,U(X,Y)such that each f n is continuous.If lim n f n(x)= f(x)exists at each x I X,t hen f is also cont inuous and f I F U,U(X,Y).3New open mapping theorem+#+:X y[0,+])is called a paranorm if+0+=0,+-x+=+x+,+x+u+ [+x+++u+and+t n x n-tx+y0w henever|t n-t|y0and+x n-x+y0.(X,+#+)is a Fr chet space if it is a complete separated paranormed space.Definition3.1Let(X,+#+)be a Fr chet space.A mapping f:X y Y is said to be conditionally additive if f(0)=0and for every x,u I X t here exist A,B I C,|A|[1,|B|[ 1,such that f(x)+f(u)=f(A x+B u).M oreover,f:X y Y is said to be conditionally countably additive if f(0)=0and for every{x i}<X w ith E]i=1+x i+<+]there exists {u i}<X such that+u i+[+x i+for all i and E]i=1f(x i)=f(E]i=1u i).If f:X y Y is linear and continuous,then f is conditionally countably additive.In fact, continuous linear operator T:X y Y satisfies a more strong condit ion:E]x i converges]E]i=1T(x i)=T(E]i=1x i).i=1How ever,many nonlinear mappings are also conditionally countably additive.To see this, letA(R)={U I R R:U is continuous,U(0)=0;P t,s I R v A,B I[-1,1]such that U(t)+U(s)=U(A t+B s)}.A(R)includes U(t)=2t.If U I R R such that U(0)=0,U c(t)>0for t X0and U c(t)is increasing in(0,+])but decreasing in(-],0),then U I A(R),e.g.,U(t)=e t -1,t \0,t , t <0,W (t )=t 2, t \0,t 3, t <0,etc.Example 3.1 Let U I A (R ), e.g.,U (t )=e t -1,t \0,t , t <0.For every continuous linear T :c 0y Y define f :c 0y Y by f (E ]j =1t j e j )=T (E ]j =1U (t j )e j ), E ]j =1t j e jI c 0.T hen f is conditionally countably additive but f is not linear whenever T X 0.Definition 3.2 A mapping f :X y Y is said to be slightly transitive if for every x I X and U I N (X )there is a V I N (X )such that f (x )+f (V )<f (x +U ).It is trivial that every linear operator is slightly transitive,and many nonlinear mappings are also slightly transitive, e.g.,f :c 0y Y in Example 3.1.Definition 3.3 Let (X ,+#+)be a paranormed space and U a ={x I X :+x +<a},P a >0.A mapping f :X y Y is said to be slightly homogeneous if(i)P D >0and n I N v m I N such that f (n U D )<mf (U D ),(ii)P D >0v G (D )>0such that -f (U D )<f (U G (D ))and lim D y 0G (D )=0.Trivially,linear operators are slightly homogeneous,and many nonlinear mappings are also slightly homogeneous,e.g.,f :c 0y Y in Example 3.1.Thus,if U (t)=e t -1,t \0,t, t <0,then each T I L (c 0,Y)yields a nonlinear,conditionally countably additive,slightly transitive and slightly homogeneous f :c 0y Y:f (E ]j =1t j e j )=T (E ]j =1U (t j )e j ), E ]j =1t j e j I c 0.Theorem 3.1 Let X ,Y be Fr chet spaces.If f :X y Y is conditionally countably additive,slightly transitive,slightly homogeneous and onto,i.e.,f (X )=Y ,Then f is open,i.e.,f (G )is open for each open G A X .If,in addition,f is continuous and one to one,then f is a homeomorphism of X onto Y .The usual open mapping theorem[7]is a special case of Theorem 3.1.T he proof ofT heorem 3.1,see [8].4 New closed graph theoremDefinition 4.1 A mapping f :X y Y is said to be harmonious at 0ifx n y x in Xlim n,m y +]f (x n -x m )=0]lim nf (x n -x )=0.If f (0)=0and f is cont inuous at 0,then f is harmonious at 0.The converse is not true.Example 4.1 Let f :R y R such that f (0)=0,f (t )=1,t X 0.Then f is harmonious at 0but f is not continuous at 0.Moreover,the graph {(t ,1):t X 0}G {(0,0)}is not closed in R @R .159 第3期李容录,等:新的泛函分析基本原理We have a trivial fact as follows.Lemma4.1Let Y=(Y,+#+)be a paranormed space.If f:X y Y is linear,then(1)f(0)=0;(2)+f(-x)+=+f(x)+,P x I X;(3)+f(x+u)+[+f(x)+++f(u)+,P x,u I X;(4)+f(t n x n-tx)+y0,if|t n-t|y0and+f(x n-x)+y0;(5)v M\L>0such thatL+f(x-u)+[+f(x)-f(u)+[M+f(x-u)+,P x,u I X.M any nonlinear mappings also satisfy the conditions(1)-(5).Example4.2LetU(t)=32n+(t-2n),2n[t[2n+1,n=0,1,2,,,32n+1+12(t-2n-1),2n+1[t[2n+2,n=0,1,2,,, -U(-t),t<0.Let+E]j=1t j e j+=sup j|t j|for E]j=1t j e j I c0<R N andf(E]j=1t j e j)=E]j=1U(t j)e j,E]j=1t j e j I c0.T hen f is not linear but f satisfies the condit ions(1)-(5).Lemma4.2Let Y be a Fr chet space.If f:X y Y satisfies the condition(5)and,in addition,f has closed graph,then f is harmonious at0.We are interested in the follow ing(5c)w hich is strictly w eaker than(5).(5c)limn f(x n-x)=0]limnf(x n)=f(x).Example4.3Let f(x)=e|x|-1,x I R.Then f sat isfies(5c)but(5)fails for f.Theorem4.1Let X,Y be Fr chet spaces.If a mapping f:X y Y satisfies t he conditions(1)-(4),(5c)and,in addition,f is harmonious at0,then f is continuous.C orollary4.1Let X,Y be Fr chet spaces.If a mapping f:X y Y satisfies t he conditions(1)-(5)and,in addition,f has closed graph,then f is continuous.The usual closed graph t heorem is a special case of Corollary4.1.T he proof of Theorem 4.1,see[9].References:[1]Wilansky A.T opolog y for Analysis[M].Jo hn Wiley,1970.129.[2]KÊthe G.T o pological V ector Spaces I[M].Spr ing er-Verlag,1969.169.[3]L i Rong lu,Zhong Shuhui,Cui Chengr i.A new uniform boundedness principle[J].to appear.[4]L i Rong lu.A n Intro duction to Funct ional Analysi s[M].Harbin:HIT Press,2003.[5]L i R onglu,Swartz C.Spaces for w hich t he unifor m boundedness pr inciple holds[J].Studia Sci M ath Hungar,1992,(27):379-384.[6]Swartz C.Infinite M atrices and the Gliding Hump[M].Singa-pore-N ew Jersey-L ondon-Hong Kong:World Sci.,1996.[7]Wilansky A.M odern M ethods in T opological V ector Spaces[M].M cGr aw-H ill,1978.58.(下转第189页) 160延边大学学报(自然科学版)第30卷3 结果与分析从数值仿真结果可以得到如下结论:3.1 一般情况下,驱动力矩的频率小于简支梁第一阶固有频率时,高阶频率的影响很小,所以只取前二阶模态就可以满足工程精度要求.3.2 由图4可知,驱动力矩的频率与简支梁的某个固有频率相同时发生/共振0.3.3 若驱动力矩的频率与简支梁某高阶固有频率相近时,计算模态应取到比该高阶模态多一、二个模态,这样才能提高计算精度,满足高精度的工程要求.参考文献:[1] 陆佑方.弹性多体系统动力学[M ].北京:高等教育出版社,1996.[2] 冯冠民,王彬,陆佑方.转动规范理论及其在柔体系统动力学中的应用[A].多体系统动力学)))理论、计算方法和应用[C].上海:上海交通大学出版社,1992.Influence of rotational flexibility machine arm high level moldshape to the power responseJIN Za -i quan(Dep ar tment of M echanical Engineer ing ,College of Science and Engineer ing ,Yanbian Univ ersity ,Y anj i 133002,China )Abstract:T his paper,basing on the rotational flexibility machine arm Benoull-i Euier beam kinetics pattern w hich established from the rotational specification theory ,discusses the influence of high level mode shape on the pow er response,and explains how to mode shape cuts off in the imitate the ture system of the rotational flex ibility machine arm Benoull-i Euier beam.Key words:Flex ibility machine arm;Mode shape;T he power response(上接第160页)[8] L i Rong lu,Zhong Shuhui.A new open mapping theorem[J].to appear.[9] L i Rong lu,Zhong Shuhui.A new closed g raph theorem[J].to appear.新的泛函分析基本原理李容录1, 钟书慧1, 崔成日2( 1.哈尔滨工业大学数学系,黑龙江哈尔滨150001; 2.延边大学数学系,吉林延吉133002)摘要:突破了线性分析的框架,对包含所有线性算子在内的更广泛的一类算子族建立了新的等度连续原理、一致有界原理、开映射原理和闭图像原理等泛函分析基本原理.关键词:第二纲;开映射;闭图像189 第3期金在权:转动弹性机械臂高阶模态对动力响应的影响。