高三数学集合,逻辑用语,不等式

合集下载

精品高中数学专题:集合与常用逻辑用语、不等式、函数

精品高中数学专题:集合与常用逻辑用语、不等式、函数

专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。

自习篇一 集合、常用逻辑用语、复数、不等式的性质及解法、线性规划

自习篇一 集合、常用逻辑用语、复数、不等式的性质及解法、线性规划
1−i
1+i
(3)利用复数相等a+bi=c+di(a,b,c d∈R)列方程(组)时,注意a,b,c,d∈R这个
前提条件;
(4)注意不能把实数集中的所有运算法则和运算性质都照搬到复数集中来,
2
2
2
例如,若z1,z2∈C,1 +2 =0,则不能推出z1=z2=0,z <0在复数范围内有可能成立.
自习四
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[解析]
2
2
由m >1,得m<-1或m>1,∴“m>1”是“m >1”的充分不必要条件,故选A.
3. [2021·浙江卷] 已知非零向量a,b,c,则“a·c=b·c”是“a=b”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
1−3i2021
已知i为虚数单位,则复数z=
的虚部是
1+i
4.
A.-2
[解析]
B.2
C.-2i
( A )
D.2i
1−3i2021 1−3i (1−3i)(1−i) −2−4i
z=
=
=
=
=-1-2i,故z的虚部为-2.故选A.
1+i
1+i
2
(1+i)(1−i)
5. [2019·浙江卷]
[解析]
1
复数z= (i为虚数单位),则|z|=
RA)∩B=(
RA)∩B={x|x≥4}.
C )
5. 已知集合A={x|-2≤x≤-1},B={y|y=-2x+a,x∈A},若A⊆B,则实数a的取值范围

【高考数学考点预测】专题1集合、常用逻辑用语、不等式思维方法总结及18类常考题型归纳(新高考)原卷版

【高考数学考点预测】专题1集合、常用逻辑用语、不等式思维方法总结及18类常考题型归纳(新高考)原卷版

1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.3.若B⊆A,应分B=∅和B≠∅两种情况讨论.4.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.5.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.6.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.7.充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.8.根据充分、必要条件求解参数取值范围需抓住“两”关键(1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.9.解题时要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.探求充要条件的关键在于转化的等价性,解题时要考虑条件包含的各种情况,保证条件的充分性和必要性.10.判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断存在量词命题是真命题,只要在限定集合内找到一个x,使p(x)成立即可.否定全称量词命题和存在量词命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.11.已知命题的真假,可根据每个命题的真假利用集合的运算求解参数的取值范围.12.对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.13.作差法一般步骤:(1)作差;(2)变形;(3)定号;(4)结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.14.作商法一般步骤:(1)作商;(2)变形;(3)判断商与1的大小;(4)结论.15.函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.16.特殊值法:对于选择、填空题,可以选取符合条件的特殊值比较大小.17.解决此类题目常用的三种方法:(1)直接利用不等式的性质逐个验证;(2)利用特殊值法排除错误答案,利用不等式的性质判断不等式是否成立时要特别注意前提条件;(3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可以利用指数函数、对数函数、幂函数等函数的单调性进行判断.18.解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.19.利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.20.利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.21.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.22.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.23.设变量时一般要把求最大值或最小值的变量定义为函数.24.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.25.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.26.解一元二次不等式的一般步骤(1)化为标准形式.(2)确定判别式Δ的符号,若Δ≥0,则求出该不等式对应的一元二次方程的根,若Δ<0,则对应的一元二次方程无根.(3)结合二次函数的图象得出不等式的解集,特别地,若一元二次不等式左边的二次三项式能分解因式,则可直接写出不等式的解集.27.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.28.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.29.给出一元二次不等式的解集,相当于知道了相应二次函数的开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.30.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 31.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【查缺补漏】【考点一】集合的基本概念【典例1】已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【典例2】已知集合A={2a-1,a2,0},B={1-a,a-5,9},且A∩B={9},则a=()A.±3,5B.3,5C.-3D.5【典例3】已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A.2B.3C.4D.5【考点二】集合间的基本关系【典例1】若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M【典例2】已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.【典例3】(多选题)已知集合M ={x |x 2=1},N ={x |ax =1}.若N ⊆M ,则实数a 的值可能为( ) A.-1B.0C.1D.2【考点三】集合的运算【典例1】集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(-∞,1)D.(-∞,1]【典例2】已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 中有三个元素,则实数m 的取值范围是( ) A.[3,6) B.[1,2) C.[2,4)D.(2,4]【典例3】已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( ) A.(-∞,-3]∪[2,+∞) B.[-1,2] C.[-2,1]D.[2,+∞)【考点四】充分条件与必要条件的判定【典例1】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【典例2】已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sin α=sin β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【典例3】已知两条直线l,m及三个平面α,β,γ,则α⊥β的充分条件是() A.l⊂α,l⊥β B.l⊥α,m⊥β,l⊥mC.α⊥γ,β∥γD.l⊂α,m⊂β,l⊥m【考点五】充分、必要条件的应用【典例1】设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要不充分条件,则实数a的取值范围是________.【典例2】设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且非p是非q【典例3】已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求实数m的取值范围.【考点六】充要条件的探求【典例1】命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是()A.a≥4B.a>4C.a≥1D.a>1【典例2】关于x的方程ax2+bx+c=0(a≠0)有一个正根和一个负根的充要条件是________.【典例3】已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.【考点七】全称量词命题、存在量词命题的真假判断 【典例1】(多选题)下列四个命题中为真命题的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13xB.∃x ∈(0,1),log 12x >log 13xC.∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x>log 12xD.∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x【典例2】以下四个命题既是存在量词命题又是真命题的是( ) A.锐角三角形有一个内角是钝角 B.至少有一个实数x ,使x 2≤0 C.两个无理数的和必是无理数 D.存在一个负数x ,使1x >2【典例3】(多选题)下列命题中是真命题的有( ) A.∀x ∈R ,2x -1>0 B.∀x ∈N *,(x -1)2>0 C.∃x ∈R ,lg x <1 D.∃x ∈R ,tan x =2【考点八】含有一个量词的命题的否定【典例1】已知命题p :“∃x ∈R ,e x -x -1≤0”,则綈p 为( )A.∃x ∈R ,e x -x -1≥0B.∃x ∈R ,e x -x -1>0C.∀x ∈R ,e x -x -1>0D.∀x ∈R ,e x -x -1≥0【典例2】设命题p :所有正方形都是平行四边形,则綈p 为( ) A.所有正方形都不是平行四边形 B.有的平行四边形不是正方形 C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形【典例3】已知集合A 是奇函数集,B 是偶函数集.若命题p :∀f (x )∈A ,|f (x )|∈B ,则非p 为( )A.∀f (x )∈A ,|f (x )|∉BB.∀f (x )∉A ,|f (x )|∉BC.∃f (x )∈A ,|f (x )|∉BD.∃f (x )∉A ,|f (x )|∉B 【考点九】由命题的真假求参数的取值范围【典例1】已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x ∈R ,x 2+2ax +2-a =0.若命题p ,q 都是真命题,则实数a 的取值范围为________.【典例2】已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.【典例3】若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________.【考点十】比较两个数(式)的大小【典例1】已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定【典例2】若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c【典例3】若a =1816,b =1618,则a 与b 的大小关系为________. 【考点十一】不等式的性质【典例1】已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0【典例2】若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有( ) A .①② B .②③ C .①④ D .③④【典例3】若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( ) A .1 B .2 C .3 D .4 【考点十二】不等式性质的应用【典例1】已知a >b >0,给出下列四个不等式: ①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b . 其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④D .②③④【典例2】已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________.【典例3】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.【考点十三】一元二次不等式的求解 【典例1】求不等式-2x 2+x +3<0的解集.【典例2】解关于x 的不等式:x 2-(a +1)x +a <0.【典例3】求不等式12x2-ax>a2(a∈R)的解集.【考点十四】一元二次不等式恒成立问题【典例1】若一元二次不等式2kx2+kx-38<0对一切实数x都成立,则k的取值范围为()A.(-3,0] B.[-3,0)C.[-3,0]D.(-3,0)【典例2】设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求m 的取值范围.【典例3】对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范围.【考点十五】一元二次不等式的应用【典例1】某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.【考点十六】利用基本不等式求最值【典例1】已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 【典例2】已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.【典例3】已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my (m >0)的最小值为3,则m =________.【考点十七】基本不等式的实际应用【典例1】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【考点十八】基本不等式的综合应用【典例1】已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( ) A .9 B .8 C .4 D .2【典例2】已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24【典例3】已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( ) A.12 B.32 C .1 D .2 【真题训练】1. (2021•天津)设集合A ={﹣1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( ) A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}2. (2021•新高考Ⅱ)若全集U ={1,2,3,4,5,6},集合A ={1,3,6},B ={2,3,4},则A ∩∁U B =( ) A .{3}B .{1,6}C .{5,6}D .{1,3}3. (2021•北京)已知集合A ={x |﹣1<x <1},B ={x |0≤x ≤2},则A ∪B =( ) A .{x |﹣1<x <2} B .{x |﹣1<x ≤2} C .{x |0≤x <1}D .{x |0≤x ≤2}4. (2021•浙江)设集合A ={x |x ≥1},B ={x |﹣1<x <2},则A ∩B =( ) A .{x |x >﹣1}B .{x |x ≥1}C .{x |﹣1<x <1}D .{x |1≤x <2}5. (2021•甲卷)设集合M ={1,3,5,7,9},N ={x |2x >7},则M ∩N =( ) A .{7,9} B .{5,7,9}C .{3,5,7,9}D .{1,3,5,7,9}6. (2021•乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( ) A .∅B .SC .TD .Z7. (2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}8. (2021•上海)已知集合A ={x |x >﹣1,x ∈R },B ={x |x 2﹣x ﹣2≥0,x ∈R },则下列关系中,正确的是()A.A⊆B B.∁R A⊆∁R B C.A∩B=∅D.A∪B=R9.(2021•天津)已知a∈R,则“a>6”是“a2>36”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知两两不相等的x1,y1,x2,y2,x3,y3,同时满足①x1<y1,x2<y2,x3<y3;②x1+y1=x2+y2=x3+y3;③x1y1+x3y3=2x2y2,以下哪个选项恒成立()A.2x2<x1+x3B.2x2>x1+x3C.x22<x1x3D.x22>x1x311.(2021•乙卷)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+12.(2021•上海)已知函数f(x)=3x+(a>0)的最小值为5,则a=.13.(2022•新高考Ⅰ)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.{x|≤x<2}C.{x|3≤x<16}D.{x|≤x<16} 14.(2022•乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M15.(2022•乙卷)集合M={2,4,6,8,10},N={x|﹣1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}16.(2022•新高考Ⅱ)已知集合A={﹣1,1,2,4},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,2}B.{1,2}C.{1,4}D.{﹣1,4}17.(2022•甲卷)设全集U={﹣2,﹣1,0,1,2,3},集合A={﹣1,2},B={x|x2﹣4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{﹣2,1}D.{﹣2,0}18.(2022•新高考Ⅱ)若x,y满足x2+y2﹣xy=1,则()A.x+y≤1B.x+y≥﹣2C.x2+y2≤2D.x2+y2≥119.(2022•上海)为有效塑造城市景观、提升城市环境品质,上海市正在努力推进新一轮架空线入地工程的建设.如图是一处要架空线入地的矩形地块ABCD,AB=30m,AD=15m.为保护D处的一棵古树,有关部门划定了以D 为圆心、DA为半径的四分之一圆的地块为历史古迹封闭区.若空线入线口为AB边上的点E,出线口为CD边上的点F,施工要求EF与封闭区边界相切,EF右侧的四边形地块BCFE将作为绿地保护生态区.(计算长度精确到0.1m,计算面积精确到0.01m2)(1)若∠ADE=20°,求EF的长;(2)当入线口E在AB上的什么位置时,生态区的面积最大?最大面积是多少?【热点预测】【单选题】1.设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]2.已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±13.已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)4.设集合A={x|(x+2)(x-3)≤0},B={a},若A∪B=A,则a的最大值为()A.-2B.2C.3D.45.设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6. 王昌龄的《从军行》中的两句诗为“黄沙百战穿金甲, 不破楼兰终不还”,从中可知“攻破楼兰”是“返回家乡”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件7. 命题若“x 2+y 2=0,则x =y =0”的否命题为( ) A.若x 2+y 2=0,则x ,y 中至少有一个不为0 B.若x 2+y 2≠0,则x ,y 中至少有一个不为0 C.若x 2+y 2≠0,则x ,y 都不为0 D.若x 2+y 2=0,则x ,y 都不为0 8. 对任意实数a ,b ,c ,给出下列命题: ①“a =b ”是“ac =bc ”的充要条件;②“a +5是无理数”是“a 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A.1B.2C.3D.49. 已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A.M <N B.M >N C.M =ND.不确定10. 若0<a <b <1,c >1,则下列选项错误的是( ) A.c a <c b B.ba c <ab c C.b -a c -a <b cD.log a c <log b c11. 不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞D.⎝ ⎛⎭⎪⎫0,12 12. 若不等式ax 2+bx +c >0的解集为{x |-1<x <2},那么不等式a (x 2+1)+b (x -1)+c >2ax 的解集为( ) A.{x |-2<x <1} B.{x |x <-2或x >1} C.{x |0<x <3} D.{x |x <0或x >3}13. 已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A.3B.5C.7D.914. 已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.15. 已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.16. 已知a ,b ,c ∈(0,+∞),且a >4,ab +ac =4,则2a +2b +c +32a +b +c 的最小值是( ) A.8B.6C.4D.217. 《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形的长为a +b ,宽为内接正方形的边长d ,由刘徽构造的图形可以得到许多重要的结论.如图3,设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推断正确的是( )①由图1和图2面积相等可得d=aba+b;②由AE≥AF可得a2+b22≥a+b2;③由AD≥AE可得a2+b22≥21a+1b;④由AD≥AF可得a2+b2≥2ab.A.①②③④B.①②④C.②③④D.①③18.若a,b∈R,ab>0,则a4+4b4+1ab的最小值为________.19.已知函数f(x)=x2+ax+11x+1(a∈R),若对于任意的x∈N*,f(x)≥3恒成立,则a的取值范围是________.20.已知x>0,y>0,且2x+5y=20.(1)求u=lg x+lg y的最大值;(2)求1x+1y的最小值.。

高考数学一轮复习第一章 《集合与常用逻辑用语、不等式》第5节二次函数与一元二次方程、不等式

高考数学一轮复习第一章 《集合与常用逻辑用语、不等式》第5节二次函数与一元二次方程、不等式

第五节二次函数与一元二次方程、不等式课标要求1.会从实际情景中抽象出一元二次不等式,了解一元二次不等式的现实意义.2.结合二次函数的图象,会判断一元二次方程根的个数,以及二次函数的零点与一元二次方程根的关系.3.掌握利用二次函数的图象解一元二次不等式.必备知识·整合〔知识梳理〕1.一元二次不等式只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a,b,c为常数,且a≠0).提醒解不等式ax2+bx+c>0(<0)时,不要忘记讨论当a=0时的情况.2.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2−4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+ bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=−b2a没有实根ax2+bx+c>0(a> 0)的解集{x|x<x1或x>x2}{xx≠−b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}⌀⌀提醒a>0时的一元二次不等式的解法口诀:大于取两边,小于取中间. 知识拓展1.简单分式不等式(1)f(x)g(x)≥0(≤0)⇔{f(x)g(x)≥0(≤0),g(x)≠0.(2)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0).2.不等式ax2+bx+c>0(<0)恒成立的条件要结合其对应的函数图象决定.(1)不等式ax2+bx+c>0对任意实数x恒成立⇔{a=b=0, c>0或{a>0,Δ<0.(2)不等式ax2+bx+c<0对任意实数x恒成立⇔{a=b=0,c<0或{a<0,Δ<0.〔课前自测〕1. 概念辨析(正确的打“√”,错误的打“×”).(1)ax2+bx+c<0为一元二次不等式.( × )(2)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × )(3)如果二次函数y=ax2+bx+c的图象开口向下,那么不等式ax2+bx+ c<0的解集一定不是空集.( √ )(4)x−ax−b≥0等价于(x−a)(x−b)≥0.( × )2. [2020全国Ⅰ,1,5分]已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=( D )A. {−4,1}B. {1,5}C. {3,5}D. {1,3}[解析]由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},因为B={−4,1,3,5},所以A∩B={1,3}.3. [2021辽宁大连质检]若不等式ax2+bx+2>0的解集为{x−12<x<13},则a−b的值是( A )A. −10B. −14C. 10D. 144. 易错题不等式(x−2)(3−2x)≥0的解集为( B )A. (32,+∞) B. [32,2] C. [2,+∞) D. (−∞,32][解析]由(x−2)(3−2x)≥0,得(x−2)(2x−3)≤0,解得32≤x≤2,故原不等式的解集为[32,2].易错提醒本题容易忽视二次项的符号致错.5. (新教材改编题)若关于x的不等式x2−2ax+18>0恒成立,则实数a的取值范围为(−3√2,3√2).[解析]由题意得4a2−4×18<0,解得−3√2<a<3√2.关键能力·突破考点一一元二次不等式的解法角度1 简单分式不等式的解法例1≥0的解集为( C )(1)不等式1−x2+xA. [−2,1]B. (−∞,−2)∪(1,+∞)C. (−2,1]D. (−∞,−2]∪(1,+∞)≥2的解集为( B )(2)[2022山东烟台二中模拟]不等式3x−2x+3A. (−∞,−3]∪[8,+∞)B. (−∞,−3)∪[8,+∞)C. (−3,8]D. (−∞,−3)∪(8,+∞)−2≥0,[解析]原不等式可化为3x−2x+3≥0,即(x−8)(x+3)≥0且x+3≠0,即x−8x+3∴x<−3或x≥8.所以原不等式的解集为(−∞,−3)∪[8,+∞).方法感悟将分式不等式进行同解变形,利用不等式的同解原理将其转化为整式不等式(组)即可求解.角度2 不含参数的不等式的解法例2(1)[2022重庆八中模拟]已知集合A={3,8},B={x|x2−x−6≤0},则A∩(∁R B)=( B )A. {3}B. {8}C. {−2,3,8}D. {−2}[解析]由x2−x−6≤0,得−2≤x≤3,则B ={x|x 2−x −6≤0}=[−2,3],∁R B ={x|x <−2或x >3} ,则A ∩(∁R B)={8} .(2) [2022广东潮州月考]不等式0<x 2−x −2≤4 的解集为{x|−2≤x < −1或2<x ≤3} .[解析]原不等式等价于{x 2−x −2>0,x 2−x −2≤4,即{x 2−x −2>0,x 2−x −6≤0,即{(x −2)(x +1)>0,(x −3)(x +2)≤0,解得{x >2或x <−1,−2≤x ≤3. 借助数轴,如图所示,原不等式的解集为{x|−2≤x <−1或2<x ≤3} .方法感悟解一元二次不等式的步骤角度3 含参数的不等式的解法例3 解关于x的不等式ax2−2≥2x−ax(a∈R).[答案]原不等式可化为ax2+(a−2)x−2≥0.①当a=0时,原不等式可化为x+1≤0,解得x≤−1.②当a>0时,原不等式可化为(x−2a )(x+1)≥0,解得x≥2a或x≤−1.③当a<0时,原不等式化为(x−2a)(x+1)≤0.当2a >−1,即a<−2时,解得−1≤x≤2a;当2a=−1,即a=−2时,解得x=−1;当2a <−1,即−2<a<0时,解得2a≤x≤−1.综上所述,当a=0时,不等式的解集为{x|x≤−1};当a>0时,不等式的解集为{x|x≥2a 或x≤−1};当−2<a<0时,不等式的解集为{x|2a≤x≤−1};当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为{x|−1≤x≤2a}.方法感悟含参数的一元二次不等式的解题策略(1)二次项中若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,需要讨论判别式Δ与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,需要讨论两根的大小关系,从而确定解集的形式.1. [2023广东湛江模拟]已知全集U=R,集合A={x|2x2−3x−2<0,x∈R},B={x12<x<3},则(∁U A)∩B=( B )A. (12,1)∪(1,3) B. [2,3) C. {0,1} D. {1}[解析]由2x2−3x−2=(2x+1)(x−2)<0,得−12<x<2,所以A={x−12<x<2},则∁U A={xx≤−12或x≥2},又B={x12<x<3},则(∁U A)∩B={x|2≤x<3}=[2,3).2. [2023山东济南一模]不等式x−12x+1≥0的解集为(−∞,−12)∪[1,+∞).[解析]x−12x+1≥0⇒{(x−1)(2x+1)≥0,2x+1≠0⇒x≥1或x<−12.3. 求不等式12x2−ax>a2(a∈R)的解集. [答案]原不等式可化为12x2−ax−a2>0,即(4x+a)(3x−a)>0,令(4x+a)(3x−a)=0,解得x1=−a4,x2=a3.当a>0时,不等式的解集为{x<x−a4或x>a3};当a=0时,不等式的解集为{x|x≠0};当a<0时,不等式的解集为{x|x<a3或x>−a4}.考点二三个两次的关系例4 [2021广东东莞高三期末]多选题若不等式ax2−bx+c>0的解集是(−1,2),则( AD )A. 相应的一元二次函数的图象开口向下B. b >0 且c >0C. a +b +c >0D. 不等式ax 2−cx +b ≤0 的解集是R[解析]由题意知a <0 ,所以A 正确;由题意可得−1 ,2是方程ax 2−bx +c =0 的两个根,所以{−1+2=ba ,−1×2=c a ,所以{b =a,c =−2a ,得b <0,c >0 ,所以B 不正确;因为−1 是方程ax 2−bx +c =0 的根,所以把x =−1 代入方程得a +b +c =0 ,所以C 不正确;把b =a ,c =−2a 代入不等式ax 2−cx +b ≤0 ,可得ax 2+2ax +a ≤0 ,因为a <0 ,所以x 2+2x +1≥0 ,此时不等式的解集为R ,所以D 正确. 方法感悟(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的图象开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.4. 已知关于x 的不等式ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,则不等式cx 2+bx +a <0 的解集是( A ) A. {x −1<x <12} B. {x <x −1或x >12} C. {x −12<x <1}D. {x <x −12或x >1}[解析]因为ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,所以−1 ,2是方程ax 2+bx +c =0 的两实数根,且a <0 ,由根与系数的关系得{−1+2=−ba ,−1×2=ca , 所以b =−a ,c =−2a ,所以不等式cx 2+bx +a <0⇒−2ax 2−ax +a <0 ,即2x 2+x −1<0 ,解得−1<x <12 ,故不等式cx 2+bx +a <0 的解集为{x −1<x <12} .考点三 一元二次不等式恒成立问题角度1 在R 上的恒成立问题例5 不等式ax(x +1)−1<0 对任意x ∈R 恒成立,则实数a 的取值范围是 (−4,0] .[解析]由ax(x +1)−1<0 ,得ax 2+ax −1<0 .当a =0 时,−1<0 恒成立;当a ≠0 时,有{a <0,Δ=a 2+4a <0⇒−4<a <0 .综上所述,实数a 的取值范围是(−4,0] .角度2 在给定区间上的恒成立问题例6 [2022广东深圳月考]若对于任意的x ∈[0,2] ,不等式x 2−2x +a >0 恒成立,则a 的取值范围为( B ) A. (−∞,1)B. (1,+∞)C. (0,+∞)D. [1,+∞)[解析]不等式x 2−2x +a >0 可化为a >−x 2+2x ,设f(x)=−x 2+2x ,x ∈[0,2] ,则f(x)=−(x −1)2+1 ,当x =1 时,f(x)max =f(1)=1 ,所以实数a 的取值范围是(1,+∞) .角度3 给定参数范围的恒成立问题例7 若mx2−mx−1<0对任意m∈[1,2]恒成立,则实数x的取值范围是(1−32,1+32).[解析]设g(m)=mx2−mx−1=(x2−x)m−1,其图象是直线,当m∈[1,2]时,图象为一条线段,则{g(1)<0, g(2)<0,即{x2−x−1<0, 2x2−2x−1<0,解得1−√32<x<1+√32,故x的取值范围为(1−√32,1+√32).方法感悟(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.(2)一元二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.对第一种情况,恒大于0就是相应的二次函数的图象全部在x轴上方,恒小于0就是相应的二次函数的图象全部在x轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法求解).5. 函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;[答案]当x∈R时,x2+ax+3−a≥0恒成立,只需Δ=a2−4(3−a)≤0,即a2+4a−12≤0,解得−6≤a≤2,∴实数a的取值范围是[−6,2].(2)当x∈[−2,2]时,f(x)≥a恒成立,求实数a的取值范围;[答案]由题意,可得x2+ax+3−a≥0在[−2,2]上恒成立,令g(x)=x2+ ax+3−a,则有①g(x)中Δ≤0或②{Δ>0,−a2<−2,g(−2)=7−3a≥0或③{Δ>0,−a2>2,g(2)=7+a≥0,解①得−6≤a≤2,解②得无实数解,解③得−7≤a<−6.综上可得,满足条件的实数a的取值范围是[−7,2].(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围. [答案]令ℎ(a)=xa+x2+3.当a∈[4,6]时,ℎ(a)≥0恒成立,只需{ℎ(4)≥0,ℎ(6)≥0,即{x2+4x+3≥0, x2+6x+3≥0,解得x≤−3−√6或x≥−3+√6.∴实数x的取值范围是(−∞,−3−√6]∪[−3+√6,+∞).考点四一元二次方程根的分布例8 [2023湖南益阳开学考]已知关于x的二次方程x2+2mx+2m+1=0. [解析]设函数f(x)=x2+2mx+2m+1.(1)若方程有两根,其中一根在区间(−1,0)内,另一根在区间(1,2)内,求m 的取值范围;[答案]易知f(x)的图象与x轴的交点分别在区间(−1,0)和(1,2)内,画出示意图,得{ f(0)=2m +1<0,f(−1)=2>0,f(1)=4m +2<0,f(2)=6m +5>0,∴{m <−12,m ∈R m <−12,m >−56,∴−56<m <−12 .(2) 若方程两根均在区间(0,1) 内,求m 的取值范围.[答案]易知f(x) 的图象与x 轴的交点在区间(0,1) 内,画出示意图,得{ f(0)>0,f(1)>0,Δ≥0,0<−m <1,∴{ m >−12,m >−12,m ≥1+√2或m ≤1−√2,−1<m <0,∴−12<m ≤1−√2 .方法感悟一元二次方程根的分布一般要考虑以下几点: (1)一元二次函数图象的开口方向; (2)一元二次函数对应方程的根的判别式;(3)一元二次函数图象的对称轴与区间的关系; (4)一元二次函数在区间端点处函数值的符号.6. [2023广东茂名期中]已知方程2x 2−(m +1)x +m =0 有两个不等的正实根,则实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) . [解析]设f(x)=2x 2−(m +1)x +m , 由{Δ>0,−−(m+1)2×2>0,f(0)>0,得{(m +1)2−8m >0,m >−1,m >0,∴{m <3−2√2或m >3+2√2,m >−1,m >0,∴0<m <3−2√2 或m >3+2√2 ,即实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) .分层突破训练 基础达标练1. 不等式−x 2+3x +10>0 的解集为( A ) A. (−2,5) B. (−∞,−2)∪(5,+∞) C. (−5,2)D. (−∞,−5)∪(2,+∞)[解析]由x 2−3x −10<0 ,解得−2<x <5 .2. 多选题 下列不等式的解集为R 的是( BC ) A. x 2+2√5x +5>0 B. x 2+6x +10>0 C. −x 2+x −2<0D. 2x 2−3x −3<0[解析]对于A 选项,x 2+2√5x +5=(x +√5)2>0 ,故解集为{x|x ≠−√5} ; 对于B 选项,x 2+6x +10=(x +3)2+1>0 ,解集为R ; 对于C 选项,−x 2+x −2=−(x −12)2−74<0 ,解集为R ;对于D 选项,2x 2−3x −3<0 ,对应的二次函数图象开口向上,Δ=9−4×2×(−3)=33>0 ,故不等式的解集不是R .故选BC.3. [2023山东东营模拟]设x ∈R ,则“x ≤3 ”是“x 2≤3x ”的( B ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件[解析]由x 2≤3x ,得0≤x ≤3 ,所以“x ≤3 ”是“x 2≤3x ”的必要不充分条件.4. [2022江苏南通模拟]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,则实数a 的取值范围是( A ) A. (−∞,−2]B. (−∞,−2)C. (−∞,0]D. (−∞,0)[解析]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,故Δ=(−2)2+4(1+a)≤0 ,解得a ≤−2 ,故实数a 的取值范围是(−∞,−2] . 5. [2022湖北华中师大一附中模拟]不等式2x+1≤1 的解集是( A ) A. (−∞,−1)∪[1,+∞) B. (−∞,−1]∪[1,+∞) C. (−∞,−1)D. (−1,1)[解析]原不等式可化为2x+1−1≤0 ,即x−1x+1≥0 ,得(x −1)(x +1)≥0 且x +1≠0 ,得x <−1 或x ≥1 ,所以原不等式的解集为(−∞,−1)∪[1,+∞) . 6. [2022天津耀华中学模拟]对于任意实数x ,不等式(a −1)x 2−2(a −1)x −4<0 恒成立,则实数a 的取值范围是( D ) A. (−∞,3)B. (−∞,3]C. (−3,1)D. (−3,1][解析]当a =1 时,−4<0 恒成立; 当a ≠1 时,有{a −1<0,Δ<0, 解得−3<a <1 .综上,实数a 的取值范围是(−3,1] .7. 已知二次函数f(x)=(m +2)x 2−(2m +4)x +3m +3 的图象与x 轴有两个交点,一个大于1,一个小于1,则实数m 的取值范围为(−2,−12) . [解析]由题意得,(m +2)⋅f(1)<0 , 即(m +2)⋅(2m +1)<0 , ∴−2<m <−12 ,即m 的取值范围为(−2,−12) .8. [2023辽宁丹东期末]某种杂志以每本2.5 元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0.1 元,销售量就可能减少2 000本.要使提价后的销售总收入不低于20万元,则定价的最大值为4元.[解析]设定价为x 元,销售总收入为y 元,由题意得,y =(80 000−x−2.50.1×2 000)x =−2 0000x 2+130 000x ,因为要使提价后的销售总收入不低于20万元,所以y =−20 000x 2+130 000x ≥200 000 ,解得52≤x ≤4 ,所以要使提价后的销售总收入不低于20万元,则定价的最大值为4元.9. [2023河北保定模拟]已知集合A ={x ∈R ||x +2|<3} ,集合B ={x ∈R ∣x−m x−2<0} ,且A ∩B =(−1,n) ,则m = −1 ,n = 1.[解析]A ={x ∈R ||x +2|<3}={x|−5<x <1} ,B ={x ∈R ∣x−m x−2<0}={x ∣(x −m)(x −2)<0} ,因为A ∩B =(−1,n) ,所以−1 是方程(x −m)(x −2)=0 的根,则−1−m =0 ,解得m =−1 ,所以B ={x|−1<x <2} ,A ∩B =(−1,1) ,则n =1 .10. [2022广东化州第三中学月考]已知集合A ={−5,−1,2,4,5} ,请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是(x +4)(x −6)>0 (答案不唯一).[解析]不等式(x +4)(x −6)>0 的解集为{x|x >6或x <−4} ,解集中只有−5 在集合A 中.11. [2021江西南昌莲塘第一中学模拟]已知f(x)=−3x 2+a(6−a)x +6 . (1) 解关于a 的不等式f(1)>0 ; [答案]∵f(x)=−3x 2+a(6−a)x +6 , ∴f(1)=−3+a(6−a)+6=−a 2+6a +3 , ∴ 原不等式可化为a 2−6a −3<0 , 解得3−2√3<a <3+2√3 .∴ 原不等式的解集为{a|3−2√3<a <3+2√3} .(2) 若不等式f(x)>b 的解集为(−1,3) ,求实数a ,b 的值.[答案]f(x)>b 的解集为(−1,3) 等价于方程−3x 2+a(6−a)x +6−b =0 的两根为−1 ,3, 即{−1+3=a(6−a)3,−1×3=−6−b3,解得{a =3±√3,b =−3.能力强化练12. [2022重庆南开中学模拟]三位同学合作学习,对问题“已知不等式xy ≤ax 2+2y 2 对任意x ∈[1,2] ,y ∈[2,3] 恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析.” 乙说:“寻找x 与y 的关系,再进行分析.” 丙说:“把字母a 单独放在一边,再进行分析.”参考上述思路,或自己的其他解法,可求出实数a 的取值范围是( B ) A. [1,+∞)B. [−1,+∞)C. [−1,4)D. [−1,6][解析]选择用丙的方法.因为xy ≤ax 2+2y 2 ,x ∈[1,2] ,y ∈[2,3] , 所以xy −2y 2≤ax 2 等价于xy−2y 2x 2≤a ,即yx −2(yx )2≤a . 令y x =t ,则t ∈[1,3] .原式化为t −2t 2≤a 对任意t ∈[1,3] 恒成立,因为t −2t 2=−2(t −14)2+18 ,所以当t =1 时,(t −2t 2)max =−1 . 所以−1≤a ,即a ∈[−1,+∞) . 故选B.13. [2022重庆质量检测]若方程x 2+(m −2)x +6−m =0 的两根都大于2,则m 的取值范围是(−6,−2√5] .[解析]令f(x)=x 2+(m −2)x +6−m ,其图象的对称轴方程为x =2−m 2,由题意得,{2−m2>2,f(2)>0,Δ≥0,即{2−m2>2,4+2m −4+6−m >0,(m −2)2−4(6−m)≥0,解得−6<m ≤−2√5 ,故m 的取值范围是(−6,−2√5] .14. [2023江苏南京二模]已知定义在R 上的奇函数f(x) 满足f(1−x)+f(1+x)=2 ,当x ∈[0,1] 时,f(x)=2x −x 2 ,若f(x)≥x +b 对一切x ∈R 恒成立,则实数b 的最大值为−14 .[解析]因为f(1+x)+f(1−x)=2 ,所以f(x) 的图象关于点(1,1) 中心对称, 当x ∈[−1,0] 时,f(x)=−f(−x)=x 2+2x ,作出f(x) 的图象和直线y =x +b ,如图所示,结合图象可得,只需当x ∈[−1,0] 时,f(x)=x 2+2x ≥x +b 即可, 即b ≤(x +12)2−14 , 故b ≤−14 .故b的最大值为−1.415. 某地区上年度电价为0.8元/kW⋅h,年用电量为a kW⋅h.本年度计划将电价降到0.55元/kW⋅h至0.75元/kW⋅h之间,而用户期望电价为0.4元/kW⋅h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW⋅h.(1)写出本年度电价下调后,电力部门的收益y(元)与实际电价x(元/kW⋅h)的函数关系式;kW⋅h,∴下调电价后的总用电量为(a+ [答案]下调电价后新增的用电量为kx−0.4k)kW⋅h,x−0.4)(x−0.3)(0.55≤x≤0.75).∴y=(a+kx−0.4(2)设k=0.2a,问:电价最低定为多少时,仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价−成本价).)(x−0.3)≥a×(0.8−0.3)×(1+20%),0.55≤x≤[答案]由已知得(a+0.2ax−0.40.75,整理得x2−1.1x+0.3≥0,0.55≤x≤0.75,解得0.60≤x≤0.75.故电价最低定为0.60元/kW⋅h时,仍可保证电力部门的收益比上年度至少增长20%.+b,关于x的不等式xf(x)<0的解集为(1,3). 16. 已知函数f(x)=x+ax(1)求实数a,b的值;[答案]因为关于x的不等式xf(x)<0的解集为(1,3),所以不等式x2+bx+a<0的解集为(1,3),所以{1+3=−b,1×3=a,解得{a=3,b=−4,所以f(x)=x+3x−4.(2)求关于x的不等式xf(x)<(m−3)(x−1)(m∈R)的解集;[答案]由xf(x)<(m−3)(x−1)(m∈R),得x2+3−4x<(m−3)(x−1),即x2−(m+1)x+m<0,即(x−1)(x−m)<0.所以当m<1时,不等式的解集为(m,1);当m=1时,不等式无解;当m>1时,不等式的解集为(1,m).(3)若不等式f(2x)−k⋅2−x−2k≥0在R上恒成立,求实数k的取值范围.[答案]令t=2x(t>0),则f(t)−kt−2k≥0在(0,+∞)上恒成立,即t+3t −4−kt−2k≥0在(0,+∞)上恒成立,即t 2−(2k+4)t+3−kt≥0在(0,+∞)上恒成立,即t2−(2k+4)t+3−k≥0在(0,+∞)上恒成立,令g(t)=t2−(2k+4)t+3−k.当2k+42≤0,即k≤−2时,g(t)图象的对称轴在y轴的左侧,所以g(0)=3−k≥0,即k≤3,所以k≤−2;当2k+42>0 ,即k >−2 时,g(t) 图象的对称轴在y 轴的右侧,则Δ=(2k −4)2−4(3−k)≤0 ,所以3−√52≤k ≤3+√52 .综上,k ≤−2 或3−√52≤k ≤3+√52 .素养综合练17. [2022河北石家庄二中模拟]若函数f(x) 满足对任意的x ∈[n,m](n <m) ,都有n k ≤f(x)≤km 成立,则称函数f(x) 在区间[n,m](n <m) 上是“被k 约束的”.若函数f(x)=x 2−ax +a 2 在区间[1a ,a](a >0) 上是“被2约束的”,则实数a 的取值范围是( A )A. (1,2]B. (1,√323]C. (1,√2]D. (√2,2] [解析]由题意得12a ≤x 2−ax +a 2≤2a 对任意的x ∈[1a ,a](a >0) 都成立.由a >1a 且a >0 ,得a >1 ,则f(1a )=1a 2−1+a 2>2−1=1>12a 恒成立. 由f(a)=a 2−a 2+a 2=a 2≤2a ,且a >1 ,得1<a ≤2 .因为a >1 ,所以f(1a )=1a 2−1+a 2<1−1+a 2=a 2 .f(x)=x 2−ax +a 2 图象的对称轴方程为x =a 2 ,由f(a 2)=3a 24≥12a , 得a ≥√233 .因为√233<1 ,所以a 的取值范围为(1,2] .故选A.。

集合、常用逻辑用语、不等式

集合、常用逻辑用语、不等式
个非空真子集.
第1课时
集合
链接教材 夯基固本
典例精研
核心考点
课时分层作业
3.集合的基本运算
表示
{x|x∈A,且x∈B} ∁ A=_______________
{x|x∈A,或x∈B} A∩B=________________
{x|x∈U,且x∉A}
A∪B=________________
则(
)
A.M N
B.N

M
C.M=N
D.M∩N=⌀
(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是
[-1,+∞)
_____________.
1
2
2+1
,因为k∈Z,所以2k+1为奇数,故N
2
(1)B (2)[-1,+∞) [(1)因为x=k+ =
综上,S={0,1},或S={-1,1}.]
名师点评
解决集合含义问题的注意点
一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条
件)构造关系式解决相应问题.
第1课时
集合
链接教材
夯基固本
典例精研
核心考点
课时分层作业
[跟进训练]
1.(1)(2023·上海高考)已知集合P={1,2},Q={2,3},若M={x|x∈P且
(4)五个特定的数集的表示
集合
自然数集
正整数集
整数集
有理数集
实数集
记法
N
N* (或N+ )
____________
Z
___
Q
___
R
___
第1课时

高考复习-集合、常用逻辑用语、不等式

高考复习-集合、常用逻辑用语、不等式

2.全称命题、特称命题及其否定 (1)全称命题p:Ax∈M,p(x),其否定为特称命题:__p_:__E_x0_∈__M__,_p_(_x_0)____.
(2)特称命题p:Ex0∈M,p(x0),其否定为全称命题:__p_:__Ax_∈__M__,__p_(x_)____.
பைடு நூலகம்
3.充分条件与必要条件的三种判定方法 (1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q, 且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件). (2)集合法:利用集合间的包含关系.例如,命题p:x∈A,命题q:x∈B, 若A⊆B,则p是q的充分条件(q是p的必要条件);若A B,则p是q的充 分不必要条件(q是p的必要不充分条件);若A=B,则p是q的充要条件. (3)等价法:将命题等价转化为另一个便于判断真假的命题.
考前复习
回归教材
1.集合 (1)集合间的关系与运算 A∪B=A⇔ B ⊆A;A∩B=B⇔B ⊆ A. (2)子集、真子集个数计算公式 对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真 子集的个数依次为 2n,2n-1,2n-1,2n-2 . (3)集合运算中的常用方法 若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集, 用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.
易错提醒
1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元 素.如{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x, y)|y=lg x}——函数图象上的点集. 2.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时, 尤其要注意元素的互异性. 3.空集是任何集合的子集.解题时勿漏A=∅的情况. 4.判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取 值范围,还可以从集合的角度来思考,将问题转化为集合间的运算.

专题一 集合、常用逻辑用语、不等式、

专题一 集合、常用逻辑用语、不等式、

3.设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图中阴影部分表示的区间是 ( )
A.[0,1] B.[-1,2] C.(-∞,-1]∪[2,+∞) D.(-∞,-1)∪(2,+∞) 答案 D 因为A={x|x2-2x≤0}={x|0≤x≤2}=[0,2],B={y|-1≤y≤1}=[-1,1],所以 A∪B=[-1,2],所以∁R(A∪B)=(-∞,-1)∪(2,+∞).
跟踪集训
1.(2016河北石家庄模拟)已知集合A={-2,-1,2,3},B={x|-1<x<3},则A∩B=( A.(-2,3) B.(-1,3) C.{2} D.{-1,2,3} 答案 C 由交集定义可得A∩B={2},选项C正确. )
答案 C 由题意知A=[0,1],B=(-∞,1),所以A∩B=[0,1).
答案 A
若a<0,b<0,则一定有a+b<0,故选A.
答案 ①② 解析 易知①②正确.对于③,若x=-1,则x2=1,充分性不成立,故③错误.
若A=B,则A是B的充要条件.
(3)等价法:将命题等价转化为另一个便于判断真假的命题. 2.判断充分、必要条件时应关注三点 (1)要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出
B;“A是B的充分不必要条件”是指A能推出B,且B不能推出A.
(2)要善于举出反例:当从正面判断或证明一个命题的正确或错误不易进行时, 可以通过举出恰当的反例来说明. (3)要注意转化:¬ p是¬ q的必要不充分条件⇔p是q的充分不必要条件;¬ p是¬ q 的充要条件⇔p是q的充要条件.
跟踪集训
3.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是 . 答案 ∀x∈(0,+∞),ln x≠x-1 解析 “∃”改为“∀”,“x0”改为“x”,否定结论,即ln x≠x-1,故该命题的否定为 ∀x∈(0,+∞),ln x≠x-1.

第一章 必刷小题1 集合、常用逻辑用语、不等式-2025高中数学大一轮复习讲义人教A版

第一章 必刷小题1 集合、常用逻辑用语、不等式-2025高中数学大一轮复习讲义人教A版

必刷小题1集合、常用逻辑用语、不等式一、单项选择题1.已知全集U=R,集合A={x||x-1|≤3},B x |x-5x+1<0A∪B等于()A.(-1,4)B.(-1,4] C.(-2,5)D.[-2,5)答案D解析由|x-1|≤3,解得-2≤x≤4,即A=[-2,4].由x-5x+1<0,解得-1<x<5,即B=(-1,5),所以A∪B=[-2,5).2.“x<1”是“x2-4x+3>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式x2-4x+3>0,得x>3或x<1,所以“x<1”是“x2-4x+3>0”的充分不必要条件.3.若不等式2x2+2kx+3k>0对一切实数x都成立,则k的取值范围是() A.0≤k≤6B.-6<k<0C.0<k<6D.k<0或k>6答案C解析由题意,函数y=2x2+2kx+3k的图象开口向上,又不等式2x2+2kx+3k>0对一切实数x都成立,∴对应方程的判别式Δ=(2k)2-4×2×3k<0,解得0<k<6.4.若关于x 的一元二次方程x 2+qx +8-q =0有两个正实数根,则q 的取值范围是()A .q >8B .q <-4C .q >8或q <-4D .q <-8答案D解析=q 2-4(8-q )>0,q >0,-q >0,解得q <-8.5.若-π<α<β<π,则α-β的取值范围是()A .-2π<α-β<2πB .0<α-β<2πC .-2π<α-β<0D .{0}答案C 解析∵-π<β<π,∴-π<-β<π,又-π<α<π,∴-2π<α-β<2π,又α<β,∴α-β<0,∴-2π<α-β<0.6.若正实数a ,b 满足(a +1)(2b +1)=4,则a +2b +1的最小值为()A .2B .3 C.103D .4答案B 解析因为a ,b 为正实数,所以a +2b +1=a +1+2b +1-1≥2(a +1)(2b +1)-1=24-1=3,当且仅当a +1=2b +1,即a =1,b =12时等号成立.7.若关于x 的方程x 2+9=0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是()-27,-211,答案D解析令f (x )=x 2+9,-36>0,1)=11+2a<0,解得-211<a <0,即a -211,8.已知x 1>0,x 2>0,x 1+x 2<e x 1x 2(e 为自然对数的底数),则()A .x 1+x 2>1B .x 1+x 2<1C.1x 1+1x 2<1eD.1x 1+1x 2>1e 答案A 解析由题意得x 1+x 2x 1x 2=x 1x 1x 2+x 2x 1x 2=1x 1+1x 2<e.又(x 1+x 21+x 1x 2+x 2x 1+1≥2+2x 1x 2·x 2x 1=4,当且仅当x 1=x 2时等号成立,所以x 1+x 2>4e>1.二、多项选择题9.下列各结论正确的是()A .“xy >0”是“x y>0”的充要条件B.x 2+9+1x 2+9的最小值为2C .命题“∀x >1,x 2-x >0”的否定是“∃x ≤1,x 2-x ≤0”D .“二次函数y =ax 2+bx +c 的图象过点(1,0)”是“a +b +c =0”的充要条件答案AD 解析xy >0⇔x y>0,故A 正确;由基本不等式知,x 2+9+1x 2+9≥2,当且仅当x 2+9=1x 2+9,即x 2=-8时等号成立,由于x 2=-8无解,所以等号不成立,所以取不到最小值2,故B 错误;命题“∀x >1,x 2-x >0”的否定是“∃x >1,x 2-x ≤0”,故C 错误;二次函数y =ax 2+bx +c 的图象过点(1,0),显然有a +b +c =0,反之亦可,故D 正确.10.若实数a ,b 满足a <b <0,则()A.1a <1bB .ln a 2>ln b 2C .a |a |<b |b |D .a +1b <b +1a答案BCD 解析由a <b <0⇒ab >0⇒a ab <b ab ⇒1b <1a ,故A 不正确;由a <b <0⇒-a >-b >0⇒a 2>b 2>0⇒ln a 2>ln b 2,故B 正确;因为a <b <0,所以a |a |-b |b |=-a 2+b 2=(b -a )(b +a )<0⇒a |a |<b |b |,故C 正确;因为a <b <0,所以a +1b -b -1a =(a -b )(ab +1)ab<0⇒a +1b <b +1a ,故D 正确.11.若不等式ax 2-bx +c >0的解集是(-1,2),则下列选项正确的是()A .a <0B .b <0且c >0C .a +b +c >0D .不等式ax 2-cx +b <0的解集是R答案AB 解析由题意得,方程ax 2-bx +c =0的两根为-1,2,且a <0,故A 正确;1+2=b a,1×2=c a ,=a ,=-2a ,则b <0,c >0,故B 正确;所以a +b +c =a +a +(-2a )=0,故C 错误;不等式ax 2-cx +b <0即ax 2+2ax +a =a (x +1)2<0,又a <0,所以不等式为(x +1)2>0,该不等式的解集为{x |x ≠-1},故D 错误.12.已知a >0,b >0,且2a +b =2,则下列说法正确的是()A .a 2+b 2的最小值为54B .ab 的最大值为12C .4a 2+b 2的最小值为4D.1a +1b 的最小值为32+2答案BD解析由题意得,a >0,b =2-2a >0,从而0<a <1,所以a 2+b 2=a 2+(2-2a )2=5a 2-8a +4=+45.当a =45时,a 2+b 2有最小值45,故A 错误;因为2=2a +b ≥22ab ,所以ab ≤12,当且仅当a =12,b =1时等号成立,故B 正确;4a 2+b 2=(2a +b )2-4ab =4-4ab ≥4-4×12=2,当且仅当a =12,b =1时等号成立,故C 错误;1a +1b =12(2a +b +b a ++=3+222=32+2,当且仅当b a =2a b,即a =2-2,b =22-2时等号成立,故D 正确.三、填空题13.“α=β”是“sin α=sin β”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”中的一个)答案充分不必要解析若α=β,则sin α=sin β,当α=0,β=2π时,sin α=sin β,此时α≠β,所以“α=β”是“sin α=sin β”的充分不必要条件.14.已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},若B ⊆A ,则m 的取值范围为________.答案[-1,+∞)解析∵B ⊆A ,∴当B =∅时,2m -1>m +1,解得m >2,符合题意;当B ≠∅m -1≥-3,+1≤4,m -1≤m +1,解得-1≤m ≤2,综上所述,m ≥-1,即m 的取值范围为[-1,+∞).15.若对∀1≤x ≤4,不等式x 2-(a +2)x +4≥-a -1恒成立,则实数a 的取值范围为________.答案{a |a ≤4}解析对∀1≤x ≤4,不等式x 2-(a +2)x +4≥-a -1恒成立,即对∀1≤x ≤4,a (x -1)≤x 2-2x +5恒成立.当x =1时,不等式为0≤4,恒成立,此时a ∈R ;当1<x ≤4时,a ≤x 2-2x +5x -1=x -1+4x -1,∵1<x ≤4,∴0<x -1≤3,∴x -1+4x -1≥2(x -1)·4x -1=4,当且仅当x -1=4x -1,即x =3时取等号,∴a ≤4.综上,实数a 的取值范围为{a |a ≤4}.16.运货卡车以x 千米/时的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是6元/升,司机的工资是24元/时.则这次行车的总费用最低为________元.答案260解析设所用时间为t =130x 小时,这次行车的总费用为y 元.则由题意知y =130x ×624×130x =7800x +13x 6,x ∈[50,100].y =7800x +13x 6≥27800x ·13x 6=260,当且仅当7800x =13x 6,即x =60时等号成立.故当x =60千米/时,这次行车的总费用最低,最低为260元.。

2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式1.5基本不等式课件

2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式1.5基本不等式课件

(4)a1+2 b1≤ ab≤a+2 b≤
a2+2 b2(a>0,b>0).
即有:正数 a,b 的调和平均数≤几何平均数≤算术平均数≤平方平均数.
5. 三元均值不等式
(1)a+3b+c≥ 3 abc. (2)a3+b33+c3≥abc. 以上两个不等式中 a,b,c∈R,当且仅当 a=b=c 时等号成立. 6. 二维形式柯西不等式:若 a,b,c,d 都是实数,则(a2+b2)(c2+d2)≥(ac +bd)2,当且仅当 ad=bc 时,等号成立.
考点一 利用基本不等式求最值
命题角度 1 直接求最值 已知 a>0,b>0,且 4a+b=1,则 ab 的最大值为__________.
解法一:因为 a>0,b>0,4a+b=1,所以 1=4a+b≥2 4ab=4 ab,当且仅当 4a=b=12,即 a=18,b=12时,等号成立. 所以 ab≤14,ab≤116,则 ab 的最大值 为116.
2 P(简记为:积定和最小). (2)设 x,y 为正数,若和 x+y 等于定值 S,那么当 x=y 时,积 xy 有最大值14S2(简
记为:和定积最大).
【常用结论】
4. 常用推论
(1)(a+b)2≤2(a2+b2).
(2)a2+b2+c2≥ab+bc+ac.
(3)|2ab|≤a2+b2⇔-(a2+b2)≤2ab≤a2+b2.
所以a+1 1+2b=16[2(a+1)+b]a+1 1+2b =162+a+b 1+4(ab+1)+2 ≥162 a+b 1·4(ab+1)+4=16×(4+4)=43,
当且仅当a+b 1=4(a+b 1),即 a=12,b=3 时取等号, 所以a+1 1+2b的最小值是43. 故选 B.

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结一、集合与常用逻辑用语。

1. 集合。

- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。

- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。

- 集合的运算:交集、并集、补集的定义、性质和运算规则。

例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。

2. 常用逻辑用语。

- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。

- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。

- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。

- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。

例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。

二、函数。

1. 函数的概念。

- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应关系。

定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。

2. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合交集运算·T1本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合交集运算·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算·T1Ⅱ卷集合的并集运算·T1Ⅲ卷求集合交集中元素个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的交集运算、一元二次不等式的解法·T1Ⅲ卷集合的补集运算·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B 【类题通法】破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A ∩(∁U B )=( )A .{2}B .{1,2}C .{-1,0,1,2}D .{0,1,2}解析:由题意知,A ={x ∈Z |4x -x 2≥0}={x ∈Z |0≤x ≤4}={0,1,2,3,4},B ={y |y >2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数 【类题通法】判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|·cos〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D 【类题通法】1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第107页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A. 答案:A2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},∴A ∩B ={1,2}.故选C. 答案:C5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A7.(2018·石家庄模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件. 答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧x ,y ⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

2023年高考数学一轮考点复习第一章集合、常用逻辑用语、不等式第2讲充分条件与必要条件

2023年高考数学一轮考点复习第一章集合、常用逻辑用语、不等式第2讲充分条件与必要条件
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
[解析] (4)当 α=β=π2时,tan α、tan β 都无意义.因此不能推出 tan α =tan β,当 tan α=tan β 时,α=β+kπ,k∈Z,不一定 α=β,因此是既不 充分也不必要条件.
(5)在△ABC 中,由 A>B,则 a>b,由正弦定理 sin A>sin B,反之也 成立.
p 是 q 的__充__分__不__必__要___条件
p⇒q 且 q p
p 是 q 的__必__要__不__充__分___条件
p q 且 q⇒p
p 是 q 的__充__要___条件
p⇔q
p 是 q 的__既__不__充__分__也__不__必__要___条件
p q且q p
第一章 集合、常用逻辑用语、不等式
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
题组一 走出误区 1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)p是q的充分不必要条件等价于q是p的必要不充分条件.( √ ) (2)已知集合A,B,则(A∪B)⊆(A∩B)的充要条件是A=B.( √ ) (3)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.( √ ) (4)“α=β”是“tan α=tan β”的充分不必要条件.( × ) (5)在△ABC中,A>B是sin A>sin B的充要条件.( √ )
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
[解析] 解法一:由 sin x=1,得 x=2kπ+π2(k∈Z),则 cos2kπ+π2= cos π2=0,故充分性成立;又由 cos x=0,得 x=kπ+π2(k∈Z),而 sinkπ+π2 =1 或-1,故必要性不成立.所以“sin x=1”是“cos x=0”的充分不 必要条件,故选 A.

2023年高考数学一轮考点复习第一章集合、常用逻辑用语、不等式第3讲全称量词与存在量词

2023年高考数学一轮考点复习第一章集合、常用逻辑用语、不等式第3讲全称量词与存在量词
(3) 根 据 全 称 量 词 命 题 与 存 在 量 词 命 题 的 否 定 关 系 , 可 得 綈 p 为 “∀x∈R,ex-x-1>0”,故选C.
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
否定全称量词命题和存在量词命题时,一是要改写量词,全称量词 改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般 命题的否定只需直接否定结论.
返回导航
[解析] (1)“所有”改为“存在”(或“有的”),“都是”改为 “不都是”(或“不是”),即綈p为有的正方形不是平行四边形.
(2)含有一个量词的命题的否定规律是“改量词,否结论”,所以, 命 题 “ ∀ x ∈ [0 , + ∞) , x3 + x≥0” 的 否 定 是 “ ∃ x ∈ [0 , + ∞) , x3 + x<0”,故选C.
知,∀x∈R,2x>0,则D为真命题.故选C.
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
4.(必修1P32T6改编)已知命题p:∀x∈R,sin x≥0,则下列说法正 确的是( A )
A.p的否定是存在量词命题,且是真命题 B.p的否定是全称量词命题,且是假命题 C.p的否定是全称量词命题,且是真命题 D.p的否定是存在量词命题,且是假命题 [解析] 命题p:∀x∈R,sin x≥0,该命题为假命题.p的否定是存 在量词命题,且是真命题.故选A.
第一章 集合、常用逻辑用语、不等式
返回导航
考点突破 · 互动探究
高考一轮总复习 • 数学
返回导航
考点一
含有一个量词的命题的否定——自主练透
例1 (1)(2022·青岛模拟)设命题p:所有正方形都是平行四边形,

集合,常用逻辑用语与不等式知识点整理

集合,常用逻辑用语与不等式知识点整理

集合,常用逻辑用语与不等式知识点整理1.集合是由一组对象组成的整体。

A set is a whole composed of a group of objects.2.如果A是B的子集,则B包含A的所有元素。

If A is a subset of B, then B contains all elements of A.3.并集是指集合中所有元素的总集合。

The union is the total set of all elements in a set.4.交集是指集合中共同元素的集合。

The intersection is the set of common elements in a set.5.补集是指所有不属于该集合的元素的集合。

The complement is the set of all elements not belonging to that set.6.空集是不包含任何元素的集合。

The empty set is a set with no elements.7.子集个数为n的集合,其幂集的元素个数为2的n次方。

For a set with n elements, the number of elements in its power set is 2 to the power of n.8.逻辑与表示同时满足两个条件。

Logic AND represents the satisfaction of two conditions simultaneously.9.逻辑或表示满足其中一个条件即可。

Logic OR represents the satisfaction of one condition.10.逻辑非表示条件的否定。

Logic NOT represents the negation of a condition.11.逻辑等价表示两个条件具有相同的真值。

Logic equivalence indicates that two conditions have the same truth value.12.逻辑蕴含表示如果条件A成立,则条件B一定成立。

新高考数学一轮复习讲义:集合、常用逻辑用语、不等式

新高考数学一轮复习讲义:集合、常用逻辑用语、不等式

新高考数学一轮复习讲义:集合、常用逻辑用语、不等式§1.1集合考试要求1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.3.在具体情境中,了解全集与空集的含义.4.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.5.能使用Venn图表示集合间的基本关系及集合的基本运算.【知识梳理】1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B或B⊇A.(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示运算文字语言集合语言图形语言记法并集所有属于集合A或属于集合B的元素组成的集合{x|x∈A,或x∈B}A∪B交集所有属于集合A且属于集合B的元素组成的集合{x|x∈A,且x∈B}A∩B补集全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集{x|x∈U,且x∉A} ∁U A思考1.若一个集合A中有n个元素,则集合A有几个子集,几个真子集?提示子集:2n,真子集:2n-1.2.从A∩B=A,A∪B=A中可以分别得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.【基础自测】题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若1∈{x2,x},则x=-1或x=1.( ×)(4)对任意集合A,B,都有(A∩B)⊆(A∪B).( √)题组二教材改编2.(多选)若集合A={x∈N|2x+10>3x},则下列结论正确的是( )A.22∉A B.8⊆AC.{4}∈A D.{0}⊆A答案AD3.已知集合P={1,a},Q={1,a2},若P=Q,则a=________.答案04.设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=________.答案(-∞,0)∪[1,+∞)解析因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).题组三 易错自纠5.已知集合A ={x |x -a >0},B ={x |x >1},若A B ,则实数a 的取值范围是________. 答案 (1,+∞)6.已知集合M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 答案 0或1或-1解析 易得M ={a }.∵M ∩N =N ,∴N ⊆M , ∴N =∅或N =M , ∴a =0或a =±1.题型一 集合的含义与表示1.(多选)已知集合A ={x |x =3k -1,k ∈Z },则下列表示正确的是( ) A .-1∉A B .-11∉A C .3k 2-1∈A D .-34∈A答案 BCD解析 当k =0时,x =-1,所以-1∈A ,所以A 错误; 令-11=3k -1,得k =-103∉Z ,所以-11∉A ,所以B 正确;因为k ∈Z ,所以k 2∈Z ,则3k 2-1∈A ,所以C 正确; 令-34=3k -1,得k =-11,所以-34∈A ,所以D 正确.2.已知集合U ={(x ,y )|x 2+y 2≤1,x ∈Z ,y ∈Z },则集合U 中的元素的个数为( ) A .3 B .4 C .5 D .6 答案 C解析 当x =-1时,y =0; 当x =0时,y =-1,0,1; 当x =1时,y =0.所以U ={(-1,0),(0,-1),(0,0),(0,1),(1,0)},共有5个元素. 3.若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 ①当a -3=-3时,即a =0, 此时A ={-3,-1,-4}, ②当2a -1=-3时,即a =-1, 此时A ={-4,-3,-3}舍,③当a 2-4=-3时,即a =±1,由②可知a =-1舍,则a =1时,A ={-2,1,-3},综上,a =0或1.4.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={}a 2,a +b ,0,则a 2 021+b 2 021=________.答案 -1解析 由已知得a ≠0,则b a=0, 所以b =0,于是a 2=1,即a =1或a =-1,又由集合中元素的互异性知a =1应舍去, 故a =-1, 所以a2 021+b2 021=(-1)2 021+02 021=-1.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.题型二 集合间的基本关系例1 (1)已知集合A ={x ∈R |x 2-3x +2=0},B ={x ∈N |0<x <5},则满足条件A ⊆C ⊆B 的集合C 的个数为________.答案 4解析 由题意可得,A ={1,2},B ={1,2,3,4}.又∵A ⊆C ⊆B ,∴C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},共4个.(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 [-1,+∞) 解析 ∵B ⊆A ,①当B =∅时,2m -1>m +1,解得m >2, ②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞).思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练1 (1)(八省联考)已知M ,N 均为R 的子集,且∁R M ⊆N ,则M ∪(∁R N )等于( ) A .∅ B .M C .N D .R 答案 B解析 画Venn 图即可,注意最后求并集.(2)已知集合A ={x |x 2-4x -5≤0},B ={x |m -5≤x ≤2m +1},若A B ,则实数m 的取值范围是________. 答案 [2,4]解析 A ={x |(x +1)(x -5)≤0}={x |-1≤x ≤5}, ∵AB ,∴⎩⎪⎨⎪⎧m -5≤-1,2m +1>5或⎩⎪⎨⎪⎧m -5<-1,2m +1≥5,解得2≤m ≤4.题型三 集合的基本运算命题点1 集合的运算例2 (1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B 等于( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}答案 C解析 A ∪B ={x |1≤x ≤3}∪{x |2<x <4} ={x |1≤x <4}.(2)设集合A ={x |x 2-3x +2=0},则满足A ∪B ={0,1,2}的集合B 可以是________.(只要写出一个即可)答案 {0}或{0,1}或{0,2}或{0,1,2} 解析 A ={x |x 2-3x +2=0}={1,2},∵A ∪B ={0,1,2},∴0∈B ,∴集合B 可以是{0}或{0,1}或{0,2}或{0,1,2}.命题点2 利用集合的运算求参数的值(范围)例3 (1)已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1) D .(-∞,1)∪(3,+∞)答案 B解析 因为A ∩B 有4个子集,所以A ∩B 中有2个不同的元素,所以a ∈A ,所以a 2-3a <0,解得0<a <3.又a ≠1,所以实数a 的取值范围是(0,1)∪(1,3),故选B.(2)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a 等于( ) A .-4 B .-2 C .2 D .4 答案 B解析 A ={x |-2≤x ≤2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-a 2. 由A ∩B ={x |-2≤x ≤1},知-a2=1,所以a =-2.[高考改编题] 已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是( ) A .a <-2 B .a ≤-2 C .a >-4 D .a ≤-4答案 D解析 集合A ={x |-2≤x ≤2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-a2, 由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a2≥2,即a ≤-4.思维升华 (1)对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn 图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,能简化运算. 跟踪训练2 (1)已知全集U =R ,集合A ={x |2x>4},B ={x |(x -1)(x -3)<0},则(∁U A )∩B 等于( ) A .(1,2) B .(1,2] C .(1,3)D .(-∞,2]答案 B解析A={x|2x>4}={x|x>2},∁U A={x|x≤2},B={x|1<x<3}.∴(∁U A)∩B={x|1<x≤2}.(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.-1<a≤2 B.a>2C.a≥-1 D.a>-1答案 D解析在数轴上画出集合A,B(如图),观察可知a>-1.题型四集合的新定义问题例4 (1)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素数字之和为( )A.15 B.16 C.20 D.21答案 D解析由x2-2x-3≤0,得(x+1)(x-3)≤0,得A={0,1,2,3}.因为A*B={x|x=x1+x2,x1∈A,x2∈B},所以A*B中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A*B={1,2,3,4,5,6},所以A*B中的所有元素数字之和为21.(2)若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)是集合A的同一种分拆.若集合A有三个元素,则集合A的不同分拆种数是________.答案27解析不妨令A={1,2,3},∵A1∪A2=A,当A1=∅时,A2={1,2,3},当A1={1}时,A2可为{2,3},{1,2,3}共2种,同理A1={2},{3}时,A2各有两种,当A1={1,2}时,A2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A1={1,3},{2,3}时,A2各有4种,当A1={1,2,3}时,A2可为A1的子集,共8种,故共有1+2×3+4×3+8=27种不同的分拆.素养提升 解决集合新定义问题的关键是(1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆. (2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.(3)从新定义出发,结合集合的性质求解,提升逻辑推理核心素养.跟踪训练3 定义一种新的集合运算※:A ※B ={x |x ∈A 且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算※,B ※A 等于( )A .{x |3<x ≤4}B .{x |3≤x ≤4}C .{x |3<x <4}D .{x |2≤x ≤4}答案 B解析 由题意知,A ={x |1<x <3},在数轴上表示出A ,B 的区间,可得B ※A ={x |3≤x ≤4}.课时精练【基础保分练】1.已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩(∁U A )等于( ) A .{1,6} B .{1,7} C .{6,7} D .{1,6,7} 答案 C解析 ∵U ={1,2,3,4,5,6,7},A ={2,3,4,5}, ∴∁U A ={1,6,7}.又B ={2,3,6,7},∴B ∩(∁U A )={6,7}.2.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N 等于( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]答案 A解析 ∵M ={0,1},N ={x |0<x ≤1}, ∴M ∪N ={x |0≤x ≤1}.3.设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B 等于( ) A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅答案 C解析 首先注意到集合A 与集合B 均为点集,联立⎩⎪⎨⎪⎧x +y =2,y =x 2,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4.从而集合A ∩B ={(1,1),(-2,4)}.4.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M N B .N M C .M ∈N D .N ∈M 答案 A解析 N ={x |x =2n +1,n ∈Z },当n =2k ,k ∈Z 时,N ={x |x =4k +1,k ∈Z }=M , 当n =2k +1,k ∈Z 时,N ={x |x =4k +3,k ∈Z }, 所以M N .5.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5 答案 C 解析 因为32-x∈Z ,且x ∈Z ,所以2-x 的取值有-3,-1,1,3,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.6.(多选)已知集合A ={1,2,3,4},B ={y |y =2x -3,x ∈A },则集合A ∩B 的真子集可以为( )A .∅B .{1}C .{3}D .{1,3} 答案 ABC解析 由题意,得B ={-1,1,3,5}, ∴A ∩B ={1,3}.故集合A ∩B 的真子集可以为∅,{1},{3}.7.(多选)已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x≤8},则下列判断正确的是( ) A .A ∪B =B B .(∁R B )∪A =R C .A ∩B ={x |1<x ≤2}D .(∁R B )∪(∁R A )={x |x ≤1或x >2} 答案 CD解析 因为x 2-3x +2≤0,所以1≤x ≤2, 所以A ={x |1≤x ≤2};因为2<2x≤8,所以1<x ≤3,所以B ={x |1<x ≤3}. 所以A ∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2}.(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.8.(多选)已知集合A ={1,2},B ={x |mx =1,m ∈R },若B ⊆A ,则实数m 可能的取值为( )A .0B .1 C.12 D .2答案 ABC解析 当m =0时,B =∅⊆A 成立;当m ≠0时,则B ={x |mx =1,m ∈R }=⎩⎨⎧⎭⎬⎫1m ,∵B ⊆A ,∴1m =1或1m=2,解得m =1或m =12.综上所述,实数m 可能的取值为0,1,12.9.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________. 答案 0或3解析 因为B ⊆A ,所以m =3或m =m .即m =3或m =0或m =1,根据集合中元素的互异性可知m ≠1,所以m =0或3.10.已知集合A ={x |-5<x <1},B ={x |(x -m )(x -2)<0},若A ∩B =(-1,n ),则m +n =________. 答案 0解析 ∵A ∩B =(-1,n ), ∴m =-1,n =1, ∴m +n =0.11.已知集合A ={x |-2<x <3},B ={x |m <x <m +9},若A ∩B ≠∅,则实数m 的取值范围是________. 答案 {m |-11<m <3}解析 若A ∩B =∅,则有m +9≤-2或m ≥3, 解得m ≤-11或m ≥3, 所以当A ∩B ≠∅时,实数m 的取值范围为{m |-11<m <3}.12.已知集合A ={1,2,3},B ={3,5},则用列举法表示A *B ={2a -b |a ∈A ,b ∈B }=________. 答案 {-1,-3,1,3}解析 当a =1,b =3时,2a -b =-1, 当a =1,b =5时,2a -b =-3, 当a =2,b =3时,2a -b =1, 当a =2,b =5时,2a -b =-1,当a=3,b=3时,2a-b=3,当a=3,b=5时,2a-b=1,∴A*B={2a-b|a∈A,b∈B}={-1,-3,1,3}.【技能提分练】13.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5 B.0.6C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用Venn图表示如图,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.14.已知集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则实数a的取值范围为________.答案(-∞,2]解析当a>1时,A=(-∞,1]∪[a,+∞),B=[a-1,+∞),当a-1≤1时,A∪B=R,故1<a≤2;当a=1时,A=R,B={x|x≥0},A∪B=R,满足题意;当a<1时,A=(-∞,a]∪[1,+∞),B=[a-1,+∞),又∵a-1<a,∴A∪B=R,故a<1满足题意,综上知a∈(-∞,2].【拓展冲刺练】15.已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0},若A∩B=B,则实数a的取值范围是( )A.∅B.{2}C.(2,10) D.[2,10)答案 D解析由题意,可得A={x|x2-3x+2=0}={1,2},因为A ∩B =B ,所以B ⊆A .(1)当B =∅时,方程x 2-ax +3a -5=0无解,则Δ=a 2-4(3a -5)<0,解得2<a <10,此时满足题意.(2)当B ≠∅时,若B ⊆A ,则B ={1}或{2}或{1,2}.①当B ={1}时,1-a +3a -5=0,得a =2,此时B ={x |x 2-2x +1=0}={1},满足题意; ②当B ={2}时,4-2a +3a -5=0,得a =1,此时B ={x |x 2-x -2=0}={-1,2},不满足题意,即a ≠1;③当B ={1,2}时,根据根与系数的关系可得⎩⎪⎨⎪⎧1+2=a ,1×2=3a -5,此时无解.综上得,实数a 的取值范围为[2,10).16.(多选)由无理数引发的数学危机一直延续到19世纪直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =∅,M 中的每一个元素小于N 中的每一个元素,则称(M ,N )为戴德金分割.试判断下列选项中,可能成立的是( ) A .M ={x |x <0},N ={x |x >0}是一个戴德金分割 B .M 没有最大元素,N 有一个最小元素 C .M 有一个最大元素,N 有一个最小元素 D .M 没有最大元素,N 也没有最小元素 答案 BD解析 对选项A ,因为M ={x |x <0},N ={x |x >0},M ∪N ={x |x ≠0}≠Q ,故A 错误; 对选项B ,设M ={x ∈Q |x <0},N ={x ∈Q |x ≥0},满足戴德金分割,则M 中没有最大元素,N 有一个最小元素0,故B 正确;对选项C ,若M 有一个最大元素,N 有一个最小元素,则不能同时满足M ∪N =Q ,M ∩N =∅,故C 错误;对选项D ,设M ={x ∈Q |x <2},N ={x ∈Q |x ≥2},满足戴德金分割,此时M 没有最大元素,N 也没有最小元素,故D 正确.§1.2 充分条件与必要条件考试要求 理解必要条件、充分条件与充要条件的含义.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当q是p的必要条件时,p是q的充分条件.( √)(2)已知集合A,B,则A∪B=A∩B的充要条件是A=B.( √)(3)q不是p的必要条件时,“p⇏q”成立.( √)(4)若p⇒q,则p是q的充分不必要条件.( ×)题组二教材改编2.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案充分不必要3.“sin α=sin β”是“α=β”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案必要不充分4.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.答案m=-2题组三 易错自纠5.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 C解析 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.6.已知p :x >a 是q :2<x <3的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,2]解析 由已知,可得{x |2<x <3}{x |x >a },∴a ≤2.题型一 充分、必要条件的判定例1 (1)已知p :⎝ ⎛⎭⎪⎫12x<1,q :log 2x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 由⎝ ⎛⎭⎪⎫12x<1知x >0,所以p 对应的x 的范围为(0,+∞),由log 2x <0知0<x <1,所以q对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件. (2)“a >2,b >2”是“a +b >4,ab >4”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a >2,b >2,则a +b >4,ab >4.当a =1,b =5时,满足a +b >4,ab >4,但不满足a >2,b >2,所以a +b >4,ab >4⇏a >2,b >2, 故“a >2,b >2”是“a +b >4,ab >4”的充分不必要条件. 思维升华 充分条件、必要条件的两种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练1 (1)已知a ,b ,c ,d 是实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 当a =b =c =d =0时,ad =bc ,但a ,b ,c ,d 不成等比数列,当a ,b ,c ,d 成等比数列时,ad =bc ,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要不充分条件.(2)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行, 则2λ(1-λ)-6(λ-1)=0, 解得λ=1或λ=-3,经检验λ=1或λ=-3时两直线平行,故选A.题型二 充分、必要条件的应用例2 已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件,即所求m 的取值范围是[0,3].若将本例中条件改为“若x ∈A 是x ∈B 的必要不充分条件”,求m 的取值范围.解 由x ∈A 是x ∈B 的必要不充分条件,知B A , ∴⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m ≤1+m ,1-m >-2,1+m ≤10,解得0≤m ≤3或0≤m <3,∴0≤m ≤3, 故m 的取值范围是[0,3].思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练2 (1)使2x≥1成立的一个充分不必要条件是( )A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案 B解析 由2x≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若关于x 的不等式|x -1|<a 成立的充分不必要条件是0<x <4,则实数a 的取值范围是________. 答案 [3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分不必要条件是0<x <4,所以(0,4)(1-a ,1+a ),所以⎩⎪⎨⎪⎧1-a ≤0,1+a >4或⎩⎪⎨⎪⎧1-a <0,1+a ≥4,解得a ≥3.题型三 充要条件的探求例3 已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解 因为mx 2-4x +4=0是一元二次方程, 所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=161-m ≥0,Δ2=16m 2-44m 2-4m -5≥0,解得m ∈⎣⎢⎡⎦⎥⎤-54,1.因为两方程的根都是整数, 故其根的和与积也为整数, 所以⎩⎪⎨⎪⎧4m ∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数.又因为m ∈⎣⎢⎡⎦⎥⎤-54,1,所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根不是整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.思维升华 探求充要条件的关键在于转化的等价性,解题时要考虑条件包含的各种情况,保证条件的充分性和必要性.跟踪训练3 (1)命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1 D .a >1答案 B解析 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.(2)关于x 的方程ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是_______. 答案 ac <0解析 ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是⎩⎪⎨⎪⎧Δ=b 2-4ac >0,ca<0.即ac <0.课时精练1.“log 2(2x -3)<1”是“4x>8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由log 2(2x -3)<1⇔0<2x -3<2⇔32<x <52,4x >8⇔2x >3⇔x >32,所以“log 2(2x -3)<1”是“4x>8”的充分不必要条件,故选A.2.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 A解析 由(a -b )a 2<0可知a 2≠0,则一定有a -b <0,即a <b ;但是a <b 即a -b <0时,有可能a =0,所以(a -b )a 2<0不一定成立,故“(a -b )a 2<0”是“a <b ”的充分不必要条件,故选A.3.“|x -1|<2”是“x <3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由|x -1|<2,可得-1<x <3, ∵{x |-1<x <3}{x |x <3},∴“|x -1|<2”是“x <3”的充分不必要条件. 4.“x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由ln(x +1)<0⇒0<x +1<1, 即-1<x <0,故“x <0”是“ln(x +1)<0”的必要不充分条件,故选B.5.若“x >1”是“不等式2x>a -x 成立”的必要不充分条件,则实数a 的取值范围是( ) A .a >3 B .a <3 C .a >4 D .a <4答案 A解析 若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x+x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.因为当x >1时,f (x )>3,∴a >3. 6.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B解析 由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B.7.(多选)若x 2-x -2<0是-2<x <a 的充分不必要条件,则实数a 的值可以是( ) A .1 B .2 C .3 D .4 答案 BCD解析 由x 2-x -2<0,解得-1<x <2. ∵x 2-x -2<0是-2<x <a 的充分不必要条件, ∴(-1,2)(-2,a ),∴a ≥2. ∴实数a 的值可以是2,3,4. 8.(多选)下列说法正确的是( ) A .“ac =bc ”是“a =b ”的充分不必要条件 B .“1a >1b”是“a <b ”的既不充分也不必要条件C .若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆BD .“a >b >0”是“a n>b n(n ∈N ,n ≥2)”的充要条件 答案 BC解析 A 项,ac =bc 不能推出a =b ,比如a =1,b =2,c =0,而a =b 可以推出ac =bc ,所以“ac =bc ”是“a =b ”的必要不充分条件,故错误;B 项,1a >1b 不能推出a <b ,比如12>-13,但是2>-3;a <b 不能推出1a >1b ,比如-2<3,-12<13,所以“1a >1b”是“a <b ”的既不充分也不必要条件,故正确;C 项,因为“x ∈A ”是“x ∈B ”的充分条件,所以x ∈A 可以推出x ∈B ,即A ⊆B ,故正确;D 项,a n>b n(n ∈N ,n ≥2)不能推出a >b >0,比如a =1,b =0,1n>0n(n ∈N ,n ≥2)满足,但是a >b >0不满足,所以必要性不满足,故错误.9.已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 命题p 等价于0<a <4.命题q :对∀x ∈R ,ax 2+ax +1>0等价于⎩⎪⎨⎪⎧a =0,1>0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件.10.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.11.若x ∈{-1,m }是不等式2x 2-x -3≤0成立的充分不必要条件,则实数m 的取值范围是________. 答案 ⎝⎛⎦⎥⎤-1,32解析 不等式可转化为(x +1)(2x -3)≤0,解得-1≤x ≤32,由于x ∈{-1,m }是-1≤x ≤32的充分不必要条件,结合集合元素的互异性,得到m ∈⎝⎛⎦⎥⎤-1,32.12.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”成立的________条件.(填“充分不必要”“必要不充分”“充要”“即不充分也不必要”) 答案 充要解析 设f (x )=x +ln x ,显然f (x )在(0,+∞)上单调递增, ∵a >b ,∴f (a )>f (b ),∴a +ln a >b +ln b ,充分性成立; ∵a +ln a >b +ln b ,∴f (a )>f (b ),∴a >b ,必要性成立,故“a >b ”是“a +ln a >b +ln b ”成立的充要条件.13.对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 令x =1.8,y =0.9,满足|x -y |<1,但〈1.8〉=2,〈0.9〉=1,〈x 〉≠〈y 〉,可知充分性不成立.当〈x 〉=〈y 〉时,设〈x 〉=x +m ,〈y 〉=y +n ,m ,n ∈[0,1),则|x -y |=|n -m |<1,可知必要性成立.所以“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.故选B.14.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎢⎡⎦⎥⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.15.已知集合A =26113x x x --⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎭⎩≤,B ={x |log 3(x +a )≥1},若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,0] 解析 由26113x x --⎛⎫⎪⎝⎭≤,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案 ⎝⎛⎦⎥⎤0,255解析 画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d =222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255.§1.3 全称量词与存在量词考试要求1.理解全称量词和存在量词的意义.2.能正确地对含一个量词的命题进行否定.1.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示.(2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.2.全称命题、特称命题及含一个量词的命题的否定命题名称 语言表示符号表示 命题的否定 全称命题对M 中任意一个x ,有p (x )成立∀x ∈M ,p (x )∃x 0∈M ,綈p (x 0)特称命题 存在M 中的一个x 0,使p (x 0)成立∃x 0∈M ,p (x 0) ∀x ∈M ,綈p (x )思考1.怎样判断一个特称命题是真命题?提示 要判定特称命题“∃x 0∈M ,P (x 0)”,只需在集合M 找到一个x 0,使P (x 0)成立即可. 2.命题p 和綈p 可否同时为真,思考一下此结论在解题中的作用?提示 命题p 和綈p 的真假性相反,若判断一个命题的真假有困难时,可判断此命题的否定的真假.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)至少有一个三角形的内角和为π是全称命题.( × ) (2)“全等三角形的面积相等”是特称命题.( × ) (3)写特称命题的否定时,存在量词变为全称量词.( √ ) 题组二 教材改编2.命题“∀x ∈R ,x 2+x +1>0”的否定是________. 答案 ∃x 0∈R ,x 20+x 0+1≤03.命题“∃x 0∈N ,x 20≤0”的否定是________. 答案 ∀x ∈N ,x 2>04.命题“对于函数f (x )=x 2+ax(a ∈R ),存在a ∈R ,使得f (x )是偶函数”为________命题.(填“真”或“假”) 答案 真解析 当a =0时,f (x )=x 2(x ≠0)为偶函数.题组三 易错自纠5.(多选)下列命题的否定中,是全称命题且为真命题的有( ) A .∃x 0∈R ,x 20-x 0+14<0B .所有的正方形都是矩形C .∃x 0∈R ,x 20+2x 0+2=0 D .至少有一个实数x ,使x 3+1=0 答案 AC解析 由条件可知:原命题为特称命题且为假命题,所以排除BD ;又因为x 2-x +14=⎝⎛⎭⎪⎫x -122≥0,x 2+2x +2=(x +1)2+1>0,所以AC 均为特称命题且为假命题,故选AC.6.若命题“∃t 0∈R ,t 20-2t 0-a <0”是假命题,则实数a 的取值范围是________. 答案 (-∞,-1]解析 命题“∃t 0∈R ,t 20-2t 0-a <0”是假命题,等价于∀t ∈R ,t 2-2t -a ≥0是真命题, ∴Δ=4+4a ≤0,解得a ≤-1.∴实数a 的取值范围是(-∞,-1].题型一 全称命题、特称命题的真假例1 (1)以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形有一个内角是钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2答案 B解析 A 中锐角三角形的内角都是锐角,所以A 是假命题;B 中当x =0时,x 2=0,满足x 2≤0,所以B 既是特称命题又是真命题;C 中因为2+(-2)=0不是无理数,所以C 是假命题;D 中对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题.(2)下列四个命题:①∃x 0∈(0,+∞),003211x x⎛⎫<⎛⎫ ⎝⎪⎪⎭⎝⎭;②∃x 0∈(0,1),013120lo log g x x >;③∀x ∈(0,+∞),1212log xx ⎪>⎛⎫⎝⎭;④∀x ∈⎝ ⎛⎭⎪⎫0,13,1312log xx ⎪<⎛⎫ ⎝⎭.其中真命题的序号为________. 答案 ②④解析 对于①,当x ∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x成立,故①是假命题;对于②,当x =12时,有231113111log log 1log 322>==成立,故②是真命题;对于③,当0<x <12时,121log 21xx ⎛⎫⎪⎝⎭>>,故③是假命题;对于④,∀x ∈⎝ ⎛⎭⎪⎫0,13,131log 12xx <<⎛⎫ ⎪⎝⎭,故④是真命题.思维升华 判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判定特称命题是真命题,只要在限定集合内找到一个x 0,使p (x 0)成立.跟踪训练1 (1)下列命题中的假命题是( ) A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0 C .∃x 0∈R ,lg x 0<1 D .∃x 0∈R ,tan x 0=2 答案 B解析 当x ∈N *时,x -1∈N ,可得(x -1)2≥0,当且仅当x =1时取等号,故B 不正确;易知A ,C ,D 正确,故选B. (2)已知函数f (x )=12x ,则( ) A .∃x 0∈R ,f (x 0)<0 B .∀x ∈(0,+∞),f (x )≥0 C .∃x 1,x 2∈[0,+∞),f x 1-f x 2x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),f (x 1)>f (x 2) 答案 B解析 幂函数f (x )=12x 的值域为[0,+∞),且在定义域上单调递增,故A 错误,B 正确,C 错误,D 选项中当x 1=0时,结论不成立.题型二 含有一个量词的命题的否定1.已知命题p :“∃x 0∈R ,0e x-x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x-x 0-1>0 C .∀x ∈R ,e x-x -1>0 D .∀x ∈R ,e x -x -1≥0 答案 C解析 根据全称命题与特称命题的否定关系,可得綈p 为“∀x ∈R ,e x-x -1>0”,故选C. 2.设命题p :所有正方形都是平行四边形,则綈p 为( ) A .所有正方形都不是平行四边形 B .有的平行四边形不是正方形 C .有的正方形不是平行四边形D .不是正方形的四边形不是平行四边形 答案 C解析 “所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即綈p 为有的正方形不是平行四边形.3.命题:“∃x 0∈R ,sin x 0+cos x 0>2”的否定是________________. 答案 ∀x ∈R ,sin x +cos x ≤24.若命题p 的否定是“对所有正数x ,x >x +1”,则命题p 是____________________. 答案 ∃x 0∈(0,+∞),x 0≤x 0+1思维升华 对全称命题、特称命题进行否定的方法(1)找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; (2)对原命题的结论进行否定.题型三 根据命题的真假求参数的取值范围例2 (1)已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x ∈R ,x 2+2ax +2-a =0.若命题p ,q 都是真命题,则实数a 的取值范围为__________. 答案 (-∞,-2]解析 由命题p 为真,得a ≤0,由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a ≤-2.(2)已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫14,+∞ 解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由题意得f (x )min ≥g (x )min ,即0≥14-m ,所以m ≥14.本例中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,。

2025版高考数学复习第1章集合常用逻辑用语不等式第5讲基本不等式课件

2025版高考数学复习第1章集合常用逻辑用语不等式第5讲基本不等式课件
S2 那么当 x=y 时,xy 有最大值 4 .(简记:“和定积最大”)
归纳拓展
常用的几个重要不等式
(1)a+b≥2 ab(a>0,b>0).(当且仅当 a=b 时取等号)
(2)ab≤a+2 b2(a,b∈R).(当且仅当 a=b 时取等号) (3)a+2 b2≤a2+2 b2(a,b∈R).(当且仅当 a=b 时取等号)
∴x+y= 3sin θ+cos θ=2sinθ+π6∈[-2,2],故 A 错误,B 正确,
∵x2+y2=
3
1
3 sin 2θ-3cos 2θ
+43=23sin2θ-π6+43∈23,2,故 C 正确,D 错误.故选 BC.
x+12y+1
7.(2019·天津,13)设 x>0,y>0,x+2y=4,则
x2+y2 -xy≥x2+y2- 2 ,即 x2+y2≤2,当且仅当 x=y 时等号成立.故 C
正确,D 错误,故选 BC.
解法二:(三角换元) 由 x2+y2-xy=1 可得,
=1,
x-2y=cos θ, 令 3
2 y=sin θ,
x=
3 3 sin
θ+cos
θ,
则 2 3
y= 3 sin θ,
log2a+log2b=log2(ab)≤log2
=log2
=-2,当且仅当 a
1 =b=2时,等号成立,故 C 错误;
( a+ b)2=a+b+2 ab=1+2 ab≤1+a+b=2,得 a+ b≤ 2, 1
当且仅当 a=b=2时,等号成立,故 D 正确.
6.(多选题)(2022·新高考卷Ⅱ)若x,y满足x2+y2-xy=1,则( BC ) A.x+y≤1 B.x+y≥-2 C.x2+y2≤2 D.x2+y2≥1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学闯关练习----集合、逻辑用语、不等式1.设变量x 、y 满足约束条件122x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则目标函数22z x y =+的取值范围为( )A.[]2,8B.[]4,13C.[]2,13D.1.C 【解析】 试题分析:作出可行域图形,将目标函数看作是可行域内的点到原点的距离的平方的取值范故正确答案为C.考点:1.简单线性规划;2.点到直线、两点间的距离.2.如果实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤--≤-+103203x y x y x ,目标函数y kx z -=的最大值为6,最小值为0,则实数k 的值为( )A.1B.2C.3D.4 2.B 【解析】试题分析:不等式组表示的可行域如图,()()()0,3,1,1,2,1C B A -∵目标函数y kx z -=的最小值为0,∴目标函数y kx z -=的最小值可能在A 或B 时取得; ∴①若在A 上取得,则02=-k ,则2=k ,此时,y x z -=2在C 点有最大值,6032=-⨯=z ,成立;②若在B 上取得,则01=+k ,则1-=k ,此时,y x z --=,在B 点取得的应是最大值, 故不成立,2=∴k ,故答案为B.考点:线性规划的应用.3.若不等式()()042222<--+-x a x a 对一切R x ∈恒成立,则a 的取值范围是( )A 、(]2,∞- B 、[]22,- C 、(]22,- D 、()2-∞-, 3.C 【解析】试题分析:当2=a 时,不等式04<-恒成立,因此2=a 满足, 当2≠a 时,不等式()()042222<--+-x a x a 恒成立,满足()()()⎩⎨⎧<----<-042424022a a a ,解得22<<-a 综上,22≤<-a .考点:不等式恒成立的问题.4.已知函数 2()2(,)f x x bx c b c R =++∈的值域为 [)0,+∞,若关于x 的不等式()f x m <的解集为(,10)n n +,则实数m 的值为A .25B .-25C .50D .-50 4.C 【解析】试题分析:由函数 2()2(,)f x x bx c b c R =++∈的值域为 [)0,+∞知,∆=280b c -=,所以c =,不等式()f x m <,即(,10)n n +,的两根为1x ,2x ,,12x x =所以10=|(n+10)-n|=|1x -2x |=m =50,故选C .考点:二次函数性质,二次函数与不等式的关系,根与系数关系5.设,1>m 在约束条件⎪⎩⎪⎨⎧≤+≤≥1y x m x y xy 下,目标函数my x z +=的最大值大于2,则m 的取值范围为( ).C.()3,1D.()+∞,3 5.B 【解析】系,当截距最大时,z 最大,当过点考点:线性规划的应用.6.若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是( ).. A.31≤<-a B.31≤≤-a C.42<≤-a D.42≤≤-a6.D 【解析】试题分析:存在实数x 使|||1|3x a x -+-≤成立得313≤-≤-a ,即42≤≤-x . 考点:绝对值不等式.7.设二次函数())(42R x c x ax x f ∈+-=的值域为[0,+∞)( )B.2D.17.C【解析】试题分析:由二次函数特点可知,在定义域R 上其值域为),0[+∞,则0>a ,且最大值,利用前面关系,建立,由C. 考点:(1)二次函数性质;(2)函数最值;(3)基本不等式. 8.已知0,0,lg2lg8lg2x y x y >>+=,则 ) A. 4 B. 3 C. 2D. 1 8.A 【解析】试题分析:由lg 2lg8lg 2x y +=,得()lg 28lg 2x y ⋅=,即322x y+=,亦即31x y +=,且0,0x y >>,从而,又31x y +=,即取得最小值4,注意乘“1”法技巧的使用.考点:指数、对数的运算和基本不等式求最值.9. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) A.充分条件 B.必要条件C.充分必要条件D.既非充分又非必要条件 9.B 【解析】试题分析:因为a =1,b =4,满足4>+b a ,但2,2>>b a 且不成立,故命题:若4>+b a ,则2,2>>b a 且是假命题,根据不等式性质知,若2,2>>b a 且,则4>+b a 是真命题,故“4>+b a ”是“2,2>>b a 且”的必要条件,故选B 考点:充要条件10.设,a b R ∈,则a b >是2()0a b b ->的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要10.B 【解析】试题分析:当b=0时,显然结论是错误的;反之,若2()0a b b ->成立,又02>b ,显然得a>b 成立. 故选B.考点:充要条件的定义. 11.命题“12,0200<+-∈∃x x R x ”的否定是 。

11.012,2≥+-∈∀x x R x 【解析】试题分析:∵命题“012,0200<+-∈∃x x R x ”是特称命题,∴命题的否定为:012,2≥+-∈∀x x R x .考点:命题的否定.12.下列有关命题的说法正确的是_____①命题“若21x =则1x =”否命题为:21x =则1x ≠;②“1x =-” 是2560x x --=的必要不充分条件;③命题“sin 0x R x ∃∈<使得”的否定是:x R ∀∈,均有“sin 0x <”; ④命题“若x y =,则sin sin x y =”的逆否命题为真。

12.④ 【解析】13.已知:44;:(2)(3)0p a x a q x x -<<+-->,若⌝p 是⌝q 的充分不必要条件,则实数a 的取值范围为 .13.[-1,6] 【解析】试题分析:因为⌝p 是⌝q 的充分不必要条件,所以q 是p 的充分不必要条件.又因为:23q x <<,所以4243a a -≤⎧⎨+≥⎩,解得:1 6.a -≤≤16a a =-=当或时,.p q ≠考点:不等式解集,充要关系 14.已知0,0>>y x ,若恒成立,则实数m 的取值范围是 .14.-4m 2≤≤. 【解析】试题分析:因为0,0>>y x ,所以由基本不等式知,x y 2=等号成立.m m 282+≥,由一元二次不等式解法知,-4m 2≤≤.考点:一元二次不等式及其解法;均值不等式的应用.15.不等式组280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域的面积为______________.15.11 【解析】试题分析:作出可行域如图中阴影部分所示,易求得C (4,0),B (4,2),D (0,3),A(2,3),所以阴影部分面积为考点:二元一次不等式组表示的平面区域16.已知{}31|≤<-=x x A ,{}m x m x B 31|+<≤=. (1)当m =1时,求A ∪B ;(2)若B ⊆A C R ,求实数m 的取值范围. 16.试题解析:(1)当m =1时,{}{}41|31|<≤=+<≤=x x m x m x B ,所以{}41|<<-=⋃x x B A ;因为{}31|≤<-=x x A 所以 {}{}3|1|>⋃-≤=x x x x A C R , 又因为⊆B A C R 所以当φ=B 时应满足 当φ≠B 时,应满足⎩⎨⎧-≤+>+⎩⎨⎧>>+13131331m mm m m m 或即3>m ; 综上可得:3>m 或 考点:集合间的基本关系及运算.17的解集为R ,求实数m 的取值范围。

17.m 22820(4)40x x x -+=-+>,不等式的解集为R ∴不等式22(1)940mx m x m ++++<①的解集为R当0m =时,不等式①可化为240x +<,解集不为R ,不合题意.当0m ≠时,则[]22(1)4(94)0m m m m <⎧⎪⎨+-+<⎪⎩ ∴m 考点:不等式恒成立问题;考查数学转化思想方法;分类讨论的数学思想方法.18.某工厂建一个长方形无盖蓄水池,其容积为4800m 3,深度为3m 。

如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,怎么设计水池能使造价最低?最低造价多少元?18.297600,xm 设池底长为,则宽为当40 x m 时,等号成立。

所以设计池底为40m ,宽为40 m 时,总造价最低位297600元。

考点:基本不等式在最值问题中的应用;函数的最值及其几何意义.。

相关文档
最新文档