导数及其应用单元测试卷

合集下载

高中数学选修第三章《导数及其应用》知识点归纳及单元测试

高中数学选修第三章《导数及其应用》知识点归纳及单元测试
2、当 由单调性知: ,化简得: ,解得
不合要求;综上, 为所求。
20.<1)解法1:∵ ,其定义域为 ,
∴ .
∵ 是函数 的极值点,∴ ,即 .
∵ ,∴ .
经检验当 时, 是函数 的极值点,
∴ .
解法2:∵ ,其定义域为 ,
∴ .
令 ,即 ,整理,得 .
∵ ,
∴ 的两个实根 <舍去), ,
当 变化时, , 的变化情况如下表:
<A) <B) <C) <D)
5.若曲线 的一条切线 与直线 垂直,则 的方程为< )
A. B. C. D.
6.曲线 在点 处的切线与坐标轴所围三角形的面积为< )
A. B. C. D.
7.设 是函数 的导函数,将 和 的图象画在同一个直角坐标系中,不可能正确的是< )
8.已知二次函数 的导数为 , ,对于任意实数 都有 ,则 的最小值为< )A. B. C. D. b5E2RGbCAP
A
如图所示,切线BQ的倾斜角小于
直线AB的倾斜角小于 Q
切线AT的倾斜角
O 1 2 3 4 x
所以选B
11.
12.32
13.
14. (1>
三、解答题
15. 解:设长方体的宽为x<m),则长为2x(m>,高为
.
故长方体的体积为
从而
令V′<x)=0,解得x=0<舍去)或x=1,因此x=1.
当0<x<1时,V′<x)>0;当1<x< 时,V′<x)<0,
17.设函数 分别在 处取得极小值、极大值. 平面上点 的坐标分别为 、 ,该平面上动点 满足 ,点 是点 关于直线 的对称点,.求(Ⅰ>求点 的坐标; (Ⅱ>求动点 的轨迹方程. RTCrpUDGiT

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

12.已知函数f{x)=x3+ax2+bx+a2在ul处有极值为10,则犬2)等于.JT13.函数y=尤+2cosx在区间[0,—]±的最大值是14.已知函数fM=x3+ax在R上有两个极值点,则实数。

的取值范围是15.已知函数八尤)是定义在R上的奇函数,/(1)=0,二⑴;'3)>0危>0),则不等式%x2f(x)>0的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16.设函数/(x)=2x3+3破2+3笊+8c在x=1刚好工=2取得极值.(1)求。

、b的值;(2)若对于随意的xg[0,3],都有/(x)<c2成立,求c的取值范围.17.已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点工=2处的切线方程;(2)若关于工的方程/(x)+m=0有三个不同的实根,求实数m的取值范围.18.设函S/W=x3-6x+5,x e R.(1)求f(x)的单调区间和极值;《导数及其应用》一、选择题1.r(x0)=o是函数y(尤)在点气处取极值的:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2、设曲线y=x2+l在点(x,/(x))处的切线的斜率为g(x),WI函数>=g(x)cosx的部分图象可以4.若曲线y=x2+ax+b在点(0,方)处的切线方程是x-j+l=0,贝!|()A.q=L b=lB.a=—1,b=lC.g=L b=—1D.a=—1,b=—15.函数/(x)=x3+ttx2+3x—9,已知处)在x=—3时取得极值,则0等于()A.2B.3C.4D.56.设函数f⑴的导函数为扩(x),且/(x)=x2+2x-r(l),则广(0)等于()A、0B>-4C、-2D、27.直线y=x是曲线y=a+lnx的一条切线,则实数。

的值为()A.-1B.eC.In2D.18.若函数f(x)=x3-12x^区间以-盘+1)上不是单调函数,则实数k的取值范围()A.kJ—3^4—1■ k<23B.—3<上<—l^(il<k<3C.-2<k<2D.不存在这样的实数k9.函数f(x)的定义域为(m),导函数/(%)在(。

《导数及其应用》单元测试题详细答案

《导数及其应用》单元测试题详细答案

导数单元测试题 11.29一、填空题1.函数()22)(x x f π=的导数是_______2.函数xex x f -⋅=)(的一个单调递增区间是________3.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则实数b 的范围是_______4.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为______ 5.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为_________6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是_______7.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为________ 8.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的______________条件9. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0//f f f f -<<< y (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<<(D ))3()2()2()3(0//f f f f <<-< O 1 2 3 4 x 10.函数()ln f x x x =的单调递增区间是____.11.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__.12.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是13.设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '=_____14.已知32()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为_______二.解答题15.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

高中数学导数及其应用多选题单元测试及解析

高中数学导数及其应用多选题单元测试及解析

高中数学导数及其应用多选题单元测试及解析一、导数及其应用多选题1.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m -=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭,令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-,所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.2.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x ,同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.3.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则2123x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴213x x -==≥,B对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.4.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知,方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.5.阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上B .若阿基米德三角形PABC .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC 【分析】设出直线AB 的斜截式方程、点,A B 的坐标,根据导数的几何意义求出切线,PA PB 的方程,进而求出点P 的坐标,将直线AB 的方程和抛物线方程联立,得到一元二次方程以及该方程两根的和、积的关系.A :把抛物线焦点的坐标代入直线AB 的斜截式方程中,根据抛物线的准线方程进行判断即可;B :根据正三角形的性质,结合正三角形的面积公式进行判断即可;C :根据直角三角形的性质,结合直角三角形的面积公式进行判断即可;D :根据点到直线距离公式、两点间距离公式进行求解判断即可.. 【详解】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2yx y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +,直线AB 的方程与抛物线方程联立得:2121220,y kx mx kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2y x 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,= 因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -, 因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,112x x =-⇒=, 因此正三角形PAB, 所以正三角形PAB的面积为11sin 6022︒==, 故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PAPBx x x xx x kk x x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ===,因为12121,4x x k x x +==-,所以21AB k =+, 因此直角PAB的面积为:2111(1)224k ⨯+=≥, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确; D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC 【点睛】关键点睛:解决本题的关键就是一元二次方程根与系数关系的整体代换应用,本题重点考查了数学运算核心素养的应用.6.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得13ax -=-,23a x -= 当x 变化时,()'f x ,()f x 的变化情况如下表:x,3a ⎛⎫--∞- ⎪ ⎪⎝⎭3a-- ,33a a ⎛⎫--- ⎪ ⎪⎝⎭3a- ,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭()'f x+-+()f x极大值 极小值故当3ax -=-,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭, 当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需0303a f a f ⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a ab -<<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f ⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a ab a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a ab ->>,D 选项,0,0a b <>,不一定满足,故D 不符合题意;故选:ABC 【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.7.关于函数()sin ,(,)x f e x x x π∈-=+∞+,下列结论正确的有( ) A .()f x 在(0,)+∞上是增函数 B .()f x 存在唯一极小值点0x C .()f x 在(,)π-+∞上有一个零点 D .()f x 在(,)π-+∞上有两个零点 【答案】ABD 【分析】根据函数()f x 求得()'f x 与()f x '',再根据()0f x ''>在(,)π-+∞恒成立,确定()'f x 在(,)π-+∞上单调递增,及(0,)x ∈+∞()0f x '>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',从而判断A ,B 选项正确;再据此判断函数()f x 的单调性,从而判断零点个数.【详解】由已知()sin ,(,)x f e x x x π∈-=+∞+得()cos x f x e x '=+,()sin xf x e x ''=-,(,)x π∈-+∞,()0f x ''>恒成立,()'f x 在(,)π-+∞上单调递增,又3423()0,()0,(0)20422f e f e f ππππ--'''-=-<-=>=>(0,)x ∴∈+∞时()(0)0f x f ''>>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',即00cos x e x =-,所以()f x 在(0,)+∞上是增函数,且()f x 存在唯一极小值点0x ,故A,B 选项正确. 且()f x 在0(,)x π-单调递减,0(,)x +∞单调递增,又()00f eππ--=+>,000000()sin sin cos )04x f x e x x x x π=+=-=-<,(0)10=>f ,所以()f x 在(,)π-+∞上有两个零点,故D 选项正确,C 选项错误.故选:ABD. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.8.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.9.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e > B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+> ⎪⎝⎭-【答案】BCD 【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误; 以B ,111(1)()110eF F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭,1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD. 【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.10.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x =+->,分析其单调性和最值,由此确定出1ln 10nn a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10nna a +->,则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.。

高中数学《导数及其应用》单元测试

高中数学《导数及其应用》单元测试
22.(本小题满分 12 分)
已知函数 f (x) ex a(x2 x ln x) ,其中 e 为自然对数的底数. x
(1)当 a e 时,求函数 f (x) 的单调区间; (2)若函数 f (x) 在 (0,1) 内存在极值,求实数 a 的取值范围.
第4页共8页
数学选修 1-1 第三章《导数及其应用》测试答案
19.(本小题满分 12 分)
【答案】(1) y 3 x2 1 x3 ,定义域为 (0, 6) ;(2) 4 . 48
【解析】(1)因为该正三棱柱形的容器的底面边长为 x ,
所以该正三棱柱形的容器的高为 3 6 x 3 (6 x) ,(2 分) 32 6
所以该正三棱柱形的容器的容积 y 1 x2sin60 3 (6 x) ,(4 分)
所以函数 y 3 x2 1 x3 (0 x 6) 在 (0, 4) 上单调递增,在 (4, 6) 上单调递减, 48
所以当 x 4 时,函数 y 3 x2 1 x3 (0 x 6) 取得最大值,(10 分) 48

ymax
3 42 4
1 43 8
4 ,故该正三棱柱形的容器的容积的最大值为 4 .(12
D. (,1]
12.已知函数 f (x) ax 1 (a 1) ln x 1 在 (0,1] 上的最大值为 3 ,则实数 a x
第2页共8页
A. 2
B. e
C. 3 或 e
D. e2
二、填空题(本题共 4 小题,每小题 5 分,共 20 分)
13.已知函数
f (x)
1 4
x4
2 3
x3
6 ,则 lim x0
D. f (3)
2.某物体的位移 s (米)与时间 t (秒)的关系式为 s t 2 t ,则该物体在 t 2 时的瞬时速度为

高二数学《导数及其应用》单元检测题

高二数学《导数及其应用》单元检测题

高二数学《导数及其应用》单元检测题.选择题(每小题5分,共60 分)f(x) ax bx c f (1) 2 f ( 1)A . 4 B. 2 C.2 D.42. 函数f(x) lg x 11的零点所在的区间是xA.0,1 B. 1,2 C. 2,3 D. 3,10 3.已知函数f(x)在R上满足f(x) 2f (2 x) x2 8x 8,则曲线y= f (x)在点(1, f (1))处的切线方程是A. y 2x 1B. y xC. y 3x- 2D. y 2x 34.曲线y x3 3x2在点(1, 2)处的切线方程为A. y 3x 1B. y 3x+3C. y 3x 5D. y 2x5.设y 2,则y =A.2B. 2C.0D.以上都不是6.已知f(x) x(2014 ln x),若 f (x°) 2013 ,则X。

A . 1B . l n 2 C. 1 D . ee7.曲线y x2 11在点P (1, 12)处的切线与y轴交点的纵坐标是A.-9B.-3C.9D.158.函数f(x) c 32x ax ,若f⑵1,则aA.4B.-C.-4D. 14 49.函数f(x) 3 亠=ax + bx 在x= 1处有极值—2,,则a, b的值分别为A.1, —3B.1,3C. —1,3D.--1, —310.函数f(x) 3=x —3x(|x| v 1)A.有最大值,但无最小值B. 有最大值,也有最小值C.无最大值,也无最小值D. 无最大值,但有最小值2・ '11. y x sinx,贝y yA. 2xsinx B . x2 cosx2 2C. 2xcosx x cosx D . 2xsinx x cosxn12. 函数f (x) = x + 2cosx在[0 ,空]上取得最大值时x为n n nA.0B."6C. —D. —二.简答题(每小题5分,共20分)X13. 过原点作曲线y e的切线,则切线的方程为 __________________ .114. 设函数f(x) = x(ex + 1) + qx2,则函数f(x)的单调递增区间为_____________15. 若曲线y X 1(a€ R)在点(1,2)处的切线经过坐标原点,则a =。

(完整版)高中数学选修22导数及其应用单元测试卷

(完整版)高中数学选修22导数及其应用单元测试卷

章末检测一、选择题1.设 f(x)为可导函数,且知足 lim f 1-f 1-2x=- 1,则过曲线 y= f(x)上点 (1,f(1)) 处的切线x→02x斜率为 ()B.-1D. -2答案B分析lim f 1 - f 1- 2x= lim f 1-2x-f 1=- 1,即 y′ |x=1=- 1,则 y=f(x)在点 (1,f(1))x→ 02x x→0- 2x处的切线斜率为- 1.2.函数 y= x4- 2x2+ 5 的单一减区间为 ()A.( -∞,- 1)和 (0,1)B.( - 1,0)和 (1,+∞ )C.(- 1,1)D.( -∞,- 1)和 (1,+∞ )答案A分析y′= 4x3- 4x=4x(x2- 1),令 y′ <0 得 x 的范围为 (-∞,- 1)∪ (0,1),应选 A.3.一物体在变力F(x)=5- x2(力单位: N ,位移单位: m)作用下,沿与F(x)成 30°方向做直线运动,则由 x=1 运动到 x= 2时 F(x)做的功为 ()23A. 3 JB. 3J43C.3J 3 J答案C分析因为 F(x)与位移方向成30°角 .如图: F 在位移方向上的分力F ′=F ·cos 30,°W=2(51 3312- x2) · cos 30x=°d2(5- x2)dx=5x- x322311=3×8=43(J). 2334.若 f(x)= x2+ 21f(x)dx,则1f(x)dx 等于 ()001A.-1B.-3第1页共6页1C.3答案B分析∵ f(x)= x2+ 21f(x)dx,11∴1f(x)dx) 1f(x)dx= ( x3+ 2x0300=1+21f(x)dx,31∴1f(x)dx=-3.5.已知函数 f(x)=- x3+ ax2- x- 1 在(-∞,+∞ )上是单一函数,则实数 a 的取值范围是 ( )A.( -∞,- 3)B.[ - 3, 3]C.( 3,+∞ )D.( -3,3)答案B分析 f ′(x)=- 3x2+2ax- 1≤0 在 (-∞,+∞ )恒建立,=4a2-12≤0?-3≤ a≤ 3. 6.设 f(x)= xln x,若 f′ (x0)=2,则 x0等于 ()2 B.ln 2 C.ln 22答案D分析∵ f′ (x)=x(ln x)′+ (x)′ ·lnx= 1+ ln x,∴f′ (x0)=1+ ln x0= 2,∴ln x0= 1,∴x0=e.17.设函数 f(x)=3x- ln x(x>0),则 y= f(x)()1,1, (1, e)内均有零点A. 在区间e1B. 在区间e, 1, (1, e)内均无零点1, 1内无零点,在区间(1, e)内有零点C.在区间e1D.在区间e,1内有零点,在区间(1, e)内无零点答案Cx- 3分析由题意得 f ′ (x)=3x,令 f′ (x)>0得 x> 3;令 f′ (x)< 0 得 0< x<3;令 f′ (x)=0得 x=3,故知函数 f(x)在区间 (0,3)上为减函数,在区间(3,+∞)为增函数,在点x= 3 处有极小值 1- ln 3 < 0;又 f(1)=1>0, f(e)=e-1< 0, f1=1+1>0. 33e3e第2页共6页8.已知一物体在力F(x)= 4x- 1(单位: N) 的作用下,沿着与力 F 同样的方向,从x= 1 m 处运动到 x= 3 m 处,则力 F(x)所做的功为 ()A.10 JB.12 JC.14 JD.16 J答案C3分析力 F(x)所做的功 W=3F(x)dx=3(4x- 1)dx= (2x2- x)= 14(J).1119.由 x 轴和抛物线y= 2x2- x 所围成的图形的面积为()A. 5(2x2- x)dxB.5(x- 2x2)dxC.1(x- 2x2)dx 2D.1(x+ 2x2)dx 2答案C11分析先计算出抛物线与x 轴的交点的横坐标,分别为 x1= 0,x2=2,且在 0<x<2内,函数1图象在 x 轴下方,则由定积分的几何意义可知,所求图形面积的积分表达式为2 (x- 2x2)dx.10.函数 f(x)= xe x- e x+1的单一递加区间是 ()A.( -∞, e)B.(1 , e)C.(e,+∞ )D.(e - 1,+∞ )答案D分析x x x+1xf ′(x)= e + xe - e=(x-e+ 1)e ,由 f′ (x)> 0,得 x> e- 1.应选 D.二、填空题11.若曲线 y= kx+ ln x 在点 (1 ,k)处的切线平行于 x 轴,则 k=.答案- 11分析求导得 y′= k+x,依题意 k+1= 0,因此 k=- 1.12.已知函数 f(x)=- x3+ ax 在区间 (- 1,1)上是增函数,则实数 a 的取值范围是.答案a≥ 3分析由题意应有f′ (x)=- 3x2+ a≥0 在区间 (- 1,1)上恒建立,则a≥ 3x2在 x∈ (- 1,1)时恒建立,故a≥ 3.13.已知函数y=xf′ (x)的图象如下图( 此中 f′ (x)是函数 f(x)的导函数 ),给出以下说法:第3页共6页①函数 f(x)在区 (1,+∞ )上是增函数;②函数 f(x)在区 (-1,1)上无性;1③函数 f(x)在 x=-获得极大;④函数 f(x)在 x=1 获得极小.此中正确的法有.答案①④分析从象上能够,当x∈ (1,+∞ ),xf′ ( x)>0,于是f′ ( x)>0,故f(x)在区(1,+∞ )上是增函数,故① 正确;当 x∈ (-1,1), f′ (x)< 0,因此函数f(x) 在区 (- 1,1)上是减函数,②,③也;当 0<x< 1 , f(x)在区 (0,1) 上是减函数,而在区(1,+∞ )上是增函数,因此函数f(x)在x= 1 获得极小,故④正确 .n +1*)在 (1,1)的切与 x 的交点的横坐 x n, log2 015x1+ log2 015x214.曲 y= x(n∈N+⋯+ log 2 015x2 014的.答案-1分析∵ y′ |x=1= n+1,∴切方程y- 1= (n+ 1)(x- 1),令 y=0,得 x=1-1=n,即 x n=n. n+ 1 n+ 1n+ 1∴log 2 015x1+ log 2 015x2+⋯+ log2 015x2 014=log 2 015(x1·x2·⋯·x2 014)1 2 2 014= log2 0151=- 1.= log 2 015··⋯ ·2 3 2 015 2 015三、解答15.函数 f( x)=2x3- 3(a+ 1)x2+ 6ax+ 8,此中 a∈R .已知 f(x)在 x= 3 获得极 .(1)求 f( x)的分析式;(2)求 f( x)在点 A(1,16)的切方程.解 (1)f′ (x)= 6x2- 6(a+ 1)x+ 6a.∵ f(x) 在 x= 3 获得极,∴f′ (3)= 6× 9- 6(a+ 1)× 3+ 6a= 0,解得 a= 3.∴f(x) =2x3- 12x2+ 18x+ 8.第4页共6页(2)A 点在 f(x)上,由 (1) 可知 f ′ (x)= 6x 2- 24x + 18,f ′ (1) = 6- 24+18= 0,∴ 切线方程为 y = 16.2 3 616.设 3<a<1 ,函数 f(x)= x 3- 2ax 2+ b (- 1≤x ≤ 1)的最大值为1,最小值为-2 ,求常数 a ,b.解 令 f ′( x)= 3x 2- 3ax = 0, 得 x 1= 0,x 2=a.a 3f(0) =b , f( a)=- 2 + b,3f(- 1)=- 1- 2a + b ,3f(1) =1- 2a + b.23因为 3<a<1,因此 1- 2a<0,故最大值为 f(0) = b = 1,因此 f(x)的最小值为f(-1) =-3 a + b =- 3 1- a ,2 2因此- 3 a =- 662 ,因此 a =3 .2故 a = 36,b = 1.17.已知函数 f(x)= ( x +1)ln x -x + 1.(1)若 xf ′ (x)≤ x 2+ax + 1,求 a 的取值范围;(2)求证 (x - 1)f(x)≥ 0.(1)解 f ′ (x)=x + 1+ ln x - 1=ln x +1, xf ′ (x)=xln x + 1,而 xf ′ (x)≤ x 2+ax + 1 等价于 ln xx x- x ≤ a.令 g(x)= ln x - x ,则 g ′ (x)=1x - 1,当 0< x < 1 时, g ′ (x)> 0;当 x > 1 时, g ′ (x)<= 1 是 g(x)的极大值点,也是最大值点, ∴ g(x)≤ g(1) =- 1.综上可知, a 的取值范围是 [- 1,+ ∞ ).(2)证明 由(1) 知, g(x)≤ g(1) =- 1,即 ln x -x + 1≤ 0.当 0< x < 1 时, f( x)= (x + 1)ln x - x + 11- 1= xln x + (ln x - x + 1)≤ 0;当 x ≥ 1 时, f(x)= ln x + (xln x - x +1)= ln x + x ln x + x = ln x -11x ln - + 1 ≥ 0.∴(x - 1)f(x) ≥0.第 5页共6页18.已知函数 f(x)=- 1 3 2 23x + 2ax - 3a x +b(a >0).7(1) 当 f( x)的极小值为- 3,极大值为- 1 时,求函数 f(x)的分析式;(2) 若 f( x)在区间 [1,2] 上为增函数,在区间 [6,+∞ )上为减函数,务实数a 的取值范围 .解 (1)f ′ (x)=- x 2+ 4ax - 3a 2=- (x - a)(x - 3a),令 f ′ (x)≥ 0,得 a ≤ x ≤ 3a ,令 f ′ (x)≤0,得 x ≥ 3a 或 x ≤ a ,∴ f(x)在 (- ∞, a]上是减函数,在[a,3a]上是增函数,在 [3a ,+ ∞ )上是减7函数, ∴ f( x) 在 x = a 处取极小值,在x = 3a 处取极大值 . 由已知有f a =- 3, 即f 3a =- 1,13337- 3a + 2a - 3a+ b =- 3, a = 1, 1 解得b =- 1,- 3× 27a 3+18a 3- 9a 3+ b =- 1,∴ f(x) =- 1x 3+ 2x 2- 3x -1. 3(2)由 (1)知 f(x)在 (- ∞, a]上是减函数,在[a,3a] 上是增函数,在 [3a ,+ ∞)上是减函数, ∴要a ≤ 1,2≤ a ≤1.使 f(x)在区间 [1,2] 上为增函数,在区间 [6,+∞)上是减函数, 则一定有 3a ≥ 2,解得3a ≤ 6,3第 6页共6页。

第三章.导数及其应用测试卷(含详细答案)

第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。

第五章一元函数的导数及其应用单元综合测试卷(原卷版)

第五章一元函数的导数及其应用单元综合测试卷(原卷版)

第五章 一元函数的导数及其应用 单元综合测试卷第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数()f x 在1x =处的导数为2,则()()011lim2x f x f x ∆→+∆-=∆ ( ) A .2 B .1 C .12 D .62.已知函数()()22cos f x t g x x ==,,则( )A .()()0,2sin f x g x x ''==-B .()()2,2sin f x t g x x =-''=C .()()02sin f x g x x ''==,D .()()2,2sin f x t g x x =''=3.2022年2月,第24届冬季奥林匹克运动会在北京隆重举行,中国代表团获得了9金4银2铜的优异成绩,彰显了我国体育强国的底蕴和综合国力.设某高山滑雪运动员在一次滑雪训练中滑行的路程l (单位:m )与时间t (单位:s )之间的关系为()2322l t t t =+,则当3s t =时,该运动员的滑雪速度为( ) A .7.5m /s B .13.5m /s C .16.5m /s D .22.5m /s4.函数()f x 的定义域为开区间(),a b ,导函数()f x '在(),a b 内的图象如图所示,则函数()f x 在开区间(),a b 内有极小值点( )A .1个B .2个C .3个D .4个5.函数(=cos2ln y x x ⋅的图像可能是( ) A . B .C .D .6.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '-++<,则( ) A .()()2130f f >>B .()()2130f f <<C .()()2310f f >>D .()()2310f f <<7.给定函数()()1e x f x x =-,则下列结论不正确的是( )A .函数()f x 有两个零点B .函数()f x 在()1,+∞上单调递增C .函数()f x 的最小值是1-D .当1a =-或0a ≥时,方程()f x a =有1个解8.若120x x a <<≤都有211212ln ln x x x x x x -<-成立,则a 的最大值为( )A .12 B .1 C .e D .2e二、选择题:本题共4小题,每小题5分,共20分。

第3章导数及其应用(单元测试)(原卷版).pdf

第3章导数及其应用(单元测试)(原卷版).pdf

第三单元导数及其应用单元测试【满分:100分时间:90分钟】一、选择题(本大题共18小题,每小题3分,共54分)1.(云南省玉溪市第一中学2019届调研)函数的最小值为()A.B.C.D.2.(山东省聊城市2019届三模)函数的图象在处的切线方程为()A.B.C.D.3.(广东省揭阳市2019年二模)以下四个数中,最大的是()A.B.C.D.4.(河北省石家庄市2019届模拟)已知当,时,,则以下判断正确的是()A.B.C.D.与的大小关系不确定5.(辽宁省朝阳市重点高中2019届模拟)已知函数(表示不超过实数的最大整数),若函数的零点为,则()A.B.-2 C.D.6.(甘肃省兰州市第一中学2019届模拟)定义在上的函数满足,,则关于的不等式的解集为() A.B.C.D.7.(湖南省长沙市第一中学2019届模拟)若不等式对成立,则实数m的取值范围是()A.B.C.D.8.(2019年山西省忻州市一中模拟)定义在上的可导函数满足,且,当时,不等式的解集为( ) A.B.C.D.9.(湖南省长沙市第一中学2019届模拟)已知函数是自然对数的底数)与的图象上存在关于x轴对称的点,则实数a的取值范围是()A.B.C.D.10.(辽宁省丹东市2019届质量测试)当是函数的极值点,则的值为()A.-2 B.3 C.-2或3 D.-3或211.(山东省淄博市部分学校2019届模拟)已知函数的图象如图所示,令,则下列关于函数的说法中正确的是()A.若函数的两个不同零点分别为,则的最小值为B.函数的最大值为 2C.函数的图象上存在点,使得在点处的切线与直线平行D.函数图象的对称轴方程为12.(重庆南开中学2019届模拟)若函数的图象不经过第四象限,则正实数的取值范围为( ) A.B.C.D.13.(江西省上饶市横峰中学2019届模拟)已知函数,若有3个零点,则的取值范围为( )A.(,0) B.(,0) C.(0,) D.(0,)14.(山东省泰安市教科研中心2019届模拟)若函数存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.B.C.D.15.(福建省龙岩市2019届模拟)若直线y=a分别与直线y=2x-3,曲线y=e x-x(x≥0)交于点A,B,则|AB|的最小值为()A.B.C.e D.16.(福建省厦门第一中学2019届模拟)已知函数有两个零点,,则下列判断:①;②;③;④有极小值点,且.则正确判断的个数是()A.4个B.3个C.2个D.1个17.(江西省新八校2019届第二次联考)已知函数,要使函数恒成立,则正实数应满足()A.B.C.D.18.(河南省洛阳市2019届模拟)已知函数,若的解集为,且中恰有两个整数,则实数的取值范围为()A.B.C.D.二、填空题(本大题共4小题,共16分)19.(天津市南开区2019届模拟)已知函数,则的值为___________。

人教版导数及其应用多选题单元综合模拟测评检测试卷

人教版导数及其应用多选题单元综合模拟测评检测试卷

人教版导数及其应用多选题单元综合模拟测评检测试卷一、导数及其应用多选题1.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD 【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e ,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确, 故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.2.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2xx aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则0x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x xaae ef x a -+=⋅,()2x x aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa ae e e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<, 02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.3.已知2()ln f x x x =,2()()f x g x x'=,()'f x 是()f x 的导函数,则下列结论正确的是( )A .()f x 在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增.B .()g x 在(0,)+∞上两个零点C .当120x x e <<< 时,221212()()()m x x f x f x -<-恒成立,则32m ≥D .若函数()()h x f x ax =-只有一个极值点,则实数0a ≥ 【答案】ACD 【分析】求出导函数()'f x ,由()0f x '>确定增区间,判断A ,然后可得()g x ,再利用导数确定()g x 的单调性与极值,结合零点存在定理得零点个数,判断B ,构造函数2()()x f x mx ϕ=-,由()ϕx 在(0,)e 上递减,求得m 范围,判断C ,利用导数研究()h x 的单调性与极值点,得a 的范围,判断D . 【详解】()(2ln 1)(0)f x x x x '=+>,令()0f x '>,得1212ln 10ln 2x x x e -+>⇒>-⇒>,故A 正确2ln 1()x g x x+=,212ln ()x g x x -'=,令()0g x '>得121ln 2x x e <⇒<,()0g x '<得120x e <<, 故()g x 在120,e ⎛⎫ ⎪⎝⎭上为减函数,在12e ⎛⎫+∞⎪⎝⎭上为增函数. 当x →时,()g x →-∞;当x →+∞时,()0g x →且g()0x >()g x ∴的大致图象为()g x ∴只有一个零点,故B 错.记2()()x f x mx ϕ=-,则()ϕx 在(0,)e 上为减函数,()(2ln 1)20x x x mx ϕ'∴=+-≤对(0,)x e ∈恒成立22ln 1m x ∴≥+对(0,)x e ∈恒成立 23m ∴≥32m ∴≥. 故C 正确.2()()ln h x f x ax x x ax =-=-,()(2ln 1)h x x x a =+'-,设()(2ln 1)H x x x =+,()h x 只有一个极值点, ()h x '0=只有一个解,即直线y a =与()y H x =的图象只有一个交点.()2(ln 1)12ln 3H x x x '=++=+,()H x '在(0,)+∞上为增函数,令()0H x '=,得32x e-=,当0(0,)x x ∈时,()0H x '<;当0(,)x x ∈+∞时,()0H x '>.()H x ∴在0(0,)x 上为减函数,在0(,)x +∞上为增函数,332203()21202H x e e --⎡⎤⎛⎫=⨯-+=-< ⎪⎢⎥⎝⎭⎣⎦,0(0,)x x ∈时,322ln 12ln 120x e -+<+=-<,即()0H x <,且0x →时,()0H x →,又x →+∞时,()H x →+∞,因此()H x 的大致图象如下(不含原点):直线y a =与它只有一个交点,则0a ≥.故D 正确. 故选:ACD . 【点睛】关键点点睛:本题考查用导数研究函数的性质,解题关键是由导数确定函数的单调性,得出函数的极值,对于零点问题,需要结合零点存在定理才能确定零点个数.注意数形结合思想的应用.4.阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上 B .若阿基米德三角形PAB 33C .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC 【分析】设出直线AB 的斜截式方程、点,A B 的坐标,根据导数的几何意义求出切线,PA PB 的方程,进而求出点P 的坐标,将直线AB 的方程和抛物线方程联立,得到一元二次方程以及该方程两根的和、积的关系.A :把抛物线焦点的坐标代入直线AB 的斜截式方程中,根据抛物线的准线方程进行判断即可;B :根据正三角形的性质,结合正三角形的面积公式进行判断即可;C :根据直角三角形的性质,结合直角三角形的面积公式进行判断即可;D :根据点到直线距离公式、两点间距离公式进行求解判断即可.. 【详解】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2yx y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +,直线AB 的方程与抛物线方程联立得:2121220,y kx mx kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2y x 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,= 因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -,因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,112x x =-⇒=, 因此正三角形PAB, 所以正三角形PAB的面积为11sin 602224︒==, 故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PAPBx x x xx x kk x x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ===,因为12121,4x x k x x +==-,所以21AB k =+, 因此直角PAB的面积为:2111(1)224k ⨯+=≥, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确; D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC【点睛】关键点睛:解决本题的关键就是一元二次方程根与系数关系的整体代换应用,本题重点考查了数学运算核心素养的应用.5.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x +'∴=+=>,当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立,所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误; 对于D ,函数()f x 和()h x的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线方程为(2e y k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.6.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( )A .1,2a b ==B .3,3a b =-=-C .0,2a b ><D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得13ax -=-,23a x -= 当x 变化时,()'f x ,()f x 的变化情况如下表:x,3a ⎛⎫--∞- ⎪ ⎪⎝⎭3a-- ,33a a ⎛⎫--- ⎪ ⎪⎝⎭3a- ,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭()'f x+-+()f x极大值 极小值故当3ax -=-,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭, 当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需00f f ⎧⎛<⎪ ⎪⎝⎨⎪<⎪⎩,即00b b ⎧<⎪⎪<,即0b <<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需00f f ⎧⎛>⎪ ⎪⎝⎨⎪>⎪⎩,即00b b ⎧>⎪⎪>,即0b >>,D 选项,0,0a b <>,不一定满足,故D 不符合题意; 故选:ABC 【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.7.关于函数()sin ,(,)x f e x x x π∈-=+∞+,下列结论正确的有( ) A .()f x 在(0,)+∞上是增函数 B .()f x 存在唯一极小值点0x C .()f x 在(,)π-+∞上有一个零点 D .()f x 在(,)π-+∞上有两个零点 【答案】ABD 【分析】根据函数()f x 求得()'f x 与()f x '',再根据()0f x ''>在(,)π-+∞恒成立,确定()'f x 在(,)π-+∞上单调递增,及(0,)x ∈+∞()0f x '>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',从而判断A ,B 选项正确;再据此判断函数()f x 的单调性,从而判断零点个数.【详解】由已知()sin ,(,)x f e x x x π∈-=+∞+得()cos x f x e x '=+,()sin xf x e x ''=-,(,)x π∈-+∞,()0f x ''>恒成立,()'f x 在(,)π-+∞上单调递增,又3423()0,()0,(0)20422f e f e f ππππ--'''-=-<-=>=>(0,)x ∴∈+∞时()(0)0f x f ''>>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',即00cos x e x =-,所以()f x 在(0,)+∞上是增函数,且()f x 存在唯一极小值点0x ,故A,B 选项正确. 且()f x 在0(,)x π-单调递减,0(,)x +∞单调递增,又()00f e ππ--=+>,000000()sin sin cos )04xf x e x x x x π=+=-=-<,(0)10=>f ,所以()f x 在(,)π-+∞上有两个零点,故D 选项正确,C 选项错误.故选:ABD. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.8.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可,对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x -'=, (]0,x π∈,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以()f x 在区间(]0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >,所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确;对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,所以()()sin xg x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确. 故选:ACD. 【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin xf x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.9.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.10.函数()ln f x x x =、()()f x g x x'=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥ 【答案】AD 【分析】对A ,根据()ln f x x x =,得到()()ln 1f x xg x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性. 【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、,()2ln xg x x -'=, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭, 故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点,即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+,要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<. 故要满足题意,则102a <<,故错误;对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立, 即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确. 故选:AD. 【点睛】本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.。

《导数及其应用》单元测试题

《导数及其应用》单元测试题

《导数及其应用》单元测试题班别_________姓名_______ 学号______成绩______一、选择题(本大题共有10小题,每小题4,共40分)1. f(x)=x 3, 0'()f x =6,则x 0= ( )B. C.± D. ±12.若函数f(x)=2x 2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy), 则x y∆∆=( )A. 4B. 4ΔxC. 4+2Δx D . 2Δx3.若()()()k x f k x f x f k 2lim ,20000--='→则的值为 ( ) A .-2 B. 2 C.-1 D. 14.曲线y=x 3+x-2在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是 ( )A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4)5.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -166.设y=x-lnx ,则此函数在区间(0,1)内为 ( )A .单调递增B 、有增有减C 、单调递减D 、不确定7. 已知f(x)=3x ·sinx ,则f’(1)= ( ) A .31+cos1 B. 31sin1+cos1 C. 31sin1-cos1 D.sin1+cos18. 若函数()f x 在区间(,)a b 内函数的导数为正,且()0f b ≤,则函数()f x 在(,)a b 内有 ( )A. f(x) 〉0B. f(x)〈 0C. f(x) = 0D. 无法确定9. 抛物线y =(1-2x)2在点x =32处的切线方程为 ( )A. y=0 B .8x -y -8=0 C.x =1 D . y=0或者8x -y -8=010.函数()12ln 2+=x y 的导数是 ( ) A.1242+x xB. 1212+x C.()10ln 1242+x x D. ()e x x22log 124+二、填空题(每小题4分,共20分)11.若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是_________12.若函数a x x y +-=2323在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是______13.函数y=(1-sinx)2的导数是='y ________________14.函数()ln (0)f x x x x =>的单调递增区间是____.15.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是三、解答题:本大题5小题,共40分,解答写出文字说明、证明过程或演算步骤)。

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

高二数学选修1-1《导数及其应用》单元测试卷班级: 姓名: 座号: 成绩:一、选择题(共7个小题,每小题6分)1、一个物体的运动方程为21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( )A .5米/秒B .6米/秒C .7米/秒D .8米/秒2、函数()3f x x x =+的单调递增区间是 ( )A .()0,+∞B .(),1-∞C .(),-∞+∞D .()1,+∞3、已知()3232f x ax x =++且()14f '-=,则实数a 的值等于 ( )A .193B .163C .133D .1034、函数()()22f x x π=的导数是 ( )A .()4f x x π'=B .()24f x x π'=C .()28f x x π'=D .()16f x x π'=5、“函数()00f x '=”是“可导函数()f x 在点0x x =处取到极值”的 条件。

( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要6、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .47、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,,()()1n n f x f x +'=,n ∈N ,则()2005f x = ( )A .sin xB .sin x -C .cos xD .cos x -二、填空题(共3个小题,每小题6分)8、曲线31y x x =++在点()1,3处的切线方程是 .9、已知直线10x y --=与抛物线2y ax =相切,则a = .10、三次函数()3f x ax x =+在(),-∞+∞内是增函数,则a 的取值范围是 .三、解答题(共2个小题,每题20分)11、已知函数()32f x x ax bx c =+++,当1x =-时,取得极大值7;当3x =时,取得极小值.试求a 、b 、c 的值及这个极小值.12、设函数3()3(0)f x x ax b a =-+>.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.高二数学选修1-1《导数及其应用》单元测试卷参考答案1-5 ACDCB 6-7 AC 8. 410x y --= 9. 1410. 0a > 11、解:()32f x x ax bx c =+++,∴()232f x x ax b '=++由题意知,1-和3是方程2320x ax b ++=的两个实数根 ∴2133133a b ⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得:39a b =-⎧⎨=-⎩()17f -=∴()()()()3211319157f c c -=--⨯--⨯-+=+=∴2c =∴极小值()32333393225f =-⨯-⨯+=-12、(Ⅰ)()'233f x x a =-,∵曲线()y f x =在点(2,())f x 处与直线8y =相切,∴()()()'203404,24.86828f a a b a b f ⎧=-=⎧=⎧⎪⎪⇒⇒⎨⎨⎨=-+==⎪⎩⎪⎩⎩(Ⅱ)∵3()3(0)f x x ax b a =-+>,由()'0f x x =⇒=当(,x ∈-∞时,()'0f x >,函数()f x 单调递增,当(x ∈时,()'0f x <,函数()f x 单调递减,当)x ∈+∞时,()'0f x >,函数()f x 单调递增,∴此时x =()f x 的极大值点,x =()f x 的极小值点.知识改变命运。

(完整版)导数及其应用单元测试卷

(完整版)导数及其应用单元测试卷

《导数及其应用》单元测试卷一、 选择题1.已知物体的运动方程是23416441t t t s +-=(t 表示时间,s 表示位移),则瞬时速度为0的时刻是:( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒2.下列求导运算正确的是( )A .211()1x x x '+=+B .21(log )ln 2x x '= C .3(3)3log x x e '= D .()2cos 2sin x x x '=- 3.曲线324y x x =-+在点(13),处的切线的倾斜角为( )A .30°B .45°C .60°D .120°4.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -165.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )6.设函数1()21(0),f x x x x=+-< 则()f x ( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数7.如果函数y=f (x )的图像如右图,那么导函数y=f (x )的图像可能是( )8.设()ln f x x x =,若0'()2f x =,则0x =( )A . 2eB . eC .ln 22 D . ln 2s O A . s O s O s O B . C . D .9.已知函数y=f(x)在区间(a,b)内可导,且x 0∈(a ,b )则000()()lim h f x h f x h h→+-- 的值为( ) A 、f’(x 0) B 、2 f’(x 0) C 、-2 f’(x 0) D 、010.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2- 11.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( )A .3a >-B .3a <-C .13a >- D .13a <- 12 f (x )与g(x )是定义在R 上的两个可导函数,若f (x ),g(x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足A. f (x ) = g (x )B.f (x )-g (x )为常数函数C. f (x )=g (x )=0D.f (x )+g (x )为常数函数二 填空题13.直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = . 14.函数f(x)=(x 2-1) 3 +1有极_____值______.15.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a .13.函数y=x+2cosx 在区间[0,2π]上的最大值是 三 解答题 17.已知函数32()f x x bx cx d =+++的图像过点P (0,2),且在点M (-1,)1(-f )处的切线方程为076=+-y x .①求函数)(x f y =的解析式;②求函数)(x f y =的单调区间.18.已知函数321()33f x x x x =+-,讨论函数()f x 的单调区间.19.设a ∈R ,函数233)(x ax x f -=,2=x 是函数)(x f y =的极值点. (Ⅰ)求a 的值;(Ⅱ)求函数233)(x ax x f -=在区间[]1,5-上的最值.20.某厂生产某种产品x 件的总成本32()120075c x x =+(元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50元,生产多少件产品时利润最大?21.已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3.(1)求a 、b 的值;(2)求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;22已知a 为实数,x=4是函数f (x)=a lnx +x2-12x 的一个极值点。

新课标人教A版选修11《导数及其应用》单元测试(含答案)

新课标人教A版选修11《导数及其应用》单元测试(含答案)

精选文档《导数及其应用》单元检测题(文科)一、选择题(此题共12题,每题4分,共48分)1 .一个物体的运动方程为S=1+t+t2此中s的单位是米,t的单位是秒,那么物体在3秒末的刹时速度是(A)A7米/秒B6米/秒C5米/秒D8米/秒2若f(x)sin cosx,则f'()等于(A)A sinB cosC sin cos D2sin3.曲线f(x)=x3+x-2在p0处的切线平行于直线y=4x-1,则p0点的坐标为(C)A (1,0)B(2,8)C(1,0)和(1,4)D(2,8)和(1,4)4.函数f(x)2x2lnx的递加区间是(C)A.(0,1)B.(1,0)及(1,)C.(1,)D.(,1)及(0,1)2222225.f'(x)0(x (a,b))是可导函数y=f(x)在区间(a,b)内单一递加的(B)A.充足不用要条件B .必需不充足条件C.充要条件D.非充足非必需条件6.函数y=x3-3x2-9x(-2<x<2)有(C)A 极大值5,极小值27B极大值5,极小值11C极大值5,无极小值D极小值27,无极大值7 .函数y=2x3-3x2-12x+5在区间[0,3]上最大值与最小值分别是(a)A.5,-15 B.5,-4 C.-4,-15 D.5,-168.设函数f x的导函数为f x,且f x x22x f1,则f0等于(B)A、0B、4C、2D、29 .已知函数f(x)x3ax2x1在(,)上是单一函数,则实数的取值范围是(B)A(,3][3,)B[3,3]C(,3)(3,)D(3,3)10.已知函数y f(x)的导函数y f(x)的图像以下,则y(A)A.函数f(x)有1个极大值点,1个极小值点B.函数f(x)有2个极大值点,2个极小值点????C.函数f(x)有3个极大值点,1个极小值点x2x3O x4xx1D.函数f(x)有1个极大值点,3个极小值点11.函数f(x)x3ax2bxa2在x1处有极值10,则点(a,b)为(B)A.(3,3)B.(4,11)C.(3,3)或(4,11)D.不存在12.以下四图,都是同一坐标系中三次函数及其导函数的图像,此中必定不正确的序号是(C)A.①、②B.①、③C.③、④D.①、④二、填空题(此题共4个题,每题4分,共16分)13.(1)(sinx)=(2)(e x lnx)=x14.已知函数y f(x)的图象在点M(1,f(1))处的切线方程是y 1x2,则2f(1) f(1).15.若直线y b与函数f x1x34x4的图象有3个交点,则b的取值范围316.已知函数y1x3x2ax5在[1,)上老是单一函数,则a的取值范围.3精选文档精选文档三、解答题(此题共5个答题,此中17,18每题10分,19,20,21每题12分,共56分)20.设函数f(x)2x33ax23bx8c在x1及x2时获得极值.17.求以下直线的方程:、(1)求ab的值;(1)曲线yx3x21在P(-1,1)处的切线;(2)曲线yx2过点P(3,5)的切线;(2)若关于随意的x[0,3],都有f(x)c2建立,求c的取值范围.18、设f(x)=x3-3ax2+2bx在x=1处有极小值-1,(1)试求a、b的值;(2)求出f(x)的单一区间.21、已知函数1af(x)lnxax1(aR)x(1)当a1时,求曲线y f(x)在点(2,f(2))处的切线方程;(2)当a 1时,议论f(x)的单一性. 219、某工厂生产某种产品,已知该产品的月生产量x(t)与每吨产品的价钱p(元/t)之间的关系式为:p=24200-12?最大5x,且生产xt的成本为:R=50000+200x(元).问该产品每个月生产多少吨才能使收益达到最大收益是多少?(收益=收入-成本)精选文档精选文档《导数及其应用》单元检测题(文科)答案一、选择题(此题共 12题,每题 4分,共48分) 1-5 AACCB6-10 CABBA 11-12BC二、填空题(此题共 4个题,每题 4分,共16分)xcosxsinx14.315.( 4 28)16.[1,)13.x23 ,3三、解答题(此题共5个答题,此中17,18 每题10分,19,20,21 每题12分,共 56分)17、解:(1)点P(1,1)在曲线yx 3x 21上,y /3x22xky /|-1 3-2 1x所以切线方程为 y 1x1,即x y 2 0(2)明显点P (3,5)不在曲线上,所以可设切点为A(x ,y )则 y 0 x 0 20 0①又函数的导数为 y /2x ,所以过 A(x 0,y 0) 点的切线的斜率为k y /|x x 0 2x 0 ,2x 0y 0 5又切线过A(x 0,y 0)、P(3,5)点,所以有x 03②,x 0 1或 x 0 5由①②联立方程组得,y 01 y 0 25 ,即切点为(1,1)时,切线斜率为 k 1 2x 0 2;;当切点为(5,25)时,切线斜率为 k 22x 0 10;所以所求的切线有两条,方程分别为y 1 2(x1)或y2510(x 5),即y2x1或y 10x2518.解:(1)f (x )=3x 2-6ax+2b ,由题意知3 126a 1 2b 0,36a 2b 0,1312即 23a 2b 0.3a 2b 11,解之得a=1,b=-1.经查验知切合题意 2)由(1)知f (x )=x 3-x 2-x ,f (x )=3x 2-2x -1=3(x+1)(x -1).3当f (x )>0时,x>1或x<-1,当f (x )<0时,-1<x<1.33∴函数f (x )的单一增区间为(-∞,-1)和(1,+∞),减区间为(-1,1).33精选文档1219、解:每个月生产x 吨时的收益为f(x)=(24200-x)x -(50000+200x)51 3=-x+24000x -50000(x ≥0).5由f ′(x)=-3x 2+24000=0,解得x 1=200,x 2=-200(舍去).5f(x)在[0,+∞)内只有一个点x 1=200使f ′(x)=0,∴它就是最大值点 .f(x)的最大值为 f(200)=3150000(元).∴每个月生产200t 才能使收益达到最大,最大收益是 315万元.20.解:(1)f(x)6x 26ax 3b ,因为函数f(x)在x 1及x 2 获得极值,则f(1)0,f(2)0.6 6a 3b,解得a3,b 4.即24 12a 3b .经查验知切合题意(2)由(1)可知,f(x)2x 3 9x 212x8c ,f(x)6x 2 18x 12 6(x 1)(x 2).令f'(x) 0得x 1或x 2由f'(x)0得x 1或x 2 ;由f '(x)0得1x 2当x 在[0,3]变化时,f '(x),f(x)的变化状况以下表:x0 (0,1)1 (1,2)2 (2,3) 3f'(x)+ 0-+f(x)8c↗5 8c ↘4 8c↗98c则当x0,3 时,f(x)的最小值为f(0) 8c .因为关于随意的x 0,3 ,有f(x)c 2恒建立,所以8c c 2,解得0c821.【命题立意】此题主要考察导数的观点、导数的几何意义和利用导数研究函数性质的能力 .考察分精选文档类议论思想、数形联合思想和等价变换思想.【思路点拨】(1)依据导数的几何意义求出曲线y f(x)在点(2,f(2))处的切线的斜率;(2)直接利用函数与导数的关系议论函数的单一性,同时应注意分类标准的选择.【规范解答】(1)当a1时,f(x)lnxx 2(0,x2x2 1,x),所以fx2x x所以,f21,即曲线yf(x)在点(2,f(2))处的切线斜率为1,.又f(2)ln22,所以曲线y f(x)在点(2,f(2))处的切线方程为y(ln22)x2,即x y ln20.(2)因为f(x)1a,所以f'(x)1a1ax2x1alnxax1x a2x2x(0,),x x令g(x)ax2x1a,x(0,),(1)(2)当a0时,g(x)x1,x0,,所以当x0,1时,g x>0,此时f x0,函数f x单一递减;当x1,时,gx<0,此时fx0,函数f x单一递加.(3)当a0时,由f x0,即ax2x1a0,解得x11,x211.a①当a 1x2,gx0恒建立,此时fx0,函数f x在(0,+∞)上单一递减;时,x12②当0a110,时,112ax0,1时,gx0,此时f x0,函数f x单一递减x1,11时,gx<0,此时fx0,函数fx单一递加ax11,时,g x0,此时f x0,函数fx单一递减a③当a0时,因为110,ax0,1时,g x0,此时f x0,函数f x单一递减:x1,时,g x<0,此时f x0,函数f x单一递加.综上所述:当a0时,函数f x在0,1上单一递减;函数f x在1,上单一递加当a1时,函数f x在0,上单一递减2当0a1时,函数f x在0,1上单一递减;函数fx在1,11上单一递加;2a函数f x在11,上单一递减.a【方法技巧】1、分类议论的原由某些观点、性质、法例、公式分类定义或分类给出;(2)数的运算:如除法运算中除式不为零,在实数集内偶次方根的被开方数为非负数,对数中真数与底数的要求,不等式两边同乘以一个正数仍是负数等;含参数的函数、方程、不等式等问题,由参数值的不一样而致使结果发生改变;在研究几何问题时,因为图形的变化(图形地点不确立或形状不确立),惹起问题的结果有多种可能.2、分类议论的原则要有明确的分类标准;对议论对象分类时要不重复、不遗漏;精选文档精选文档(3)当议论的对象不只一种时,应分层次进行. 3、分类议论的一般步骤明确议论对象,确立对象的范围;确立一致的分类标准,进行合理分类,做到不重不漏;(1)逐段逐类议论,获取阶段性结果;(2)概括总结,得出结论.精选文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数及其应用》单元测试卷
一、 选择题
1.定义在闭区间上的连续函数有唯一的极值点,且
,则下列说法正确的是 ( )
A.函数有最小值
B. 函数有最小值,但不一定是
C.函数的最大值也可能是
D. 函数不一定有最小值
2.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是( )
A .21<<-a
B .63<<-a
C .3-<a 或6>a
D .1-<a 或2>a 3.已知函数c x x y +-=33的图像与x 轴恰有两个公共点,则c =( )
A .3-或1
B .9-或3
C .1-或1
D .2-或2 4.下列说法正确的是 ( )
A. 函数在闭区间上的极大值一定比极小值大;
B. 函数在闭区间上的最大值一定是极大值;
C. 对于,若,则无极值;
D.函数在区间上一定存在最值.
5已知函数2()1f x x mx m nx =++,以下四个命题中正确的个数有几个( ) ①当0m >时,函数()y f x =有零点
②若函数()y f x =有零点,则0m >
③存在0m <,函数()y f x =有唯一的零点
④若函数()y f x =有唯一的零点,则1m ≥-
A . 1个
B . 2个
C . 3个
D . 4个
6.如图是函数2
()f x x ax b =++的部分图象,则函数()ln ()g x x f x '=+的零点所在的区间是( )
A.11,42⎛⎫ ⎪⎝⎭
B.(1,2)
C. 1,12⎛⎫ ⎪⎝⎭
D.(2,3)
7.已知()x x x f cos 4
12+=,()x f '为()x f 的导函数,则()x f '的图象是( )
二 填空题
8.已知函数f(x)=
,试确定a 、b 的值,使f(x)在x=0处可
导,a=_____,b=_______. 9.设f(x)=,求f ′(1)_______
10.设f(x)在点x 处可导,a 、b 为常数,则
=_____ 11.已知函数()()2ln 1f x a x x =+-,在区间()0,2内任取两个实数,p q ,且p q ≠,若不等式()()111f p f q p q
+-+>-恒成立,则实数a 的取值范围为 . 12.已知函数0011()sin ,[0,],cos ([0,])33
f x x x x x x ππ=-∈=∈,给出下面四个命题:①()f x 的最大值为0()f x ;②()f x 的最小值为0()f x ;③()f x 在0[0,]x 上是减函数;④()f x 在0[,]x π]上是减函数.其中真命题的序号是 .
13.若函数343
y x bx =-+有三个单调区间,则b 的取值范围是 三 解答题
14.求下列函数的导数
(1) y =x (2)
y =+35log (5)y x x =+
(4) y =(+1) (5) f(x-1)=2x 2-x, 求()f x '
15.设函数3()3(0)x x ax b a =-+≠f .
(Ⅰ)若曲线()y x =f 在点(2,()x f )处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()x f 的单调区间与极值点.
16.设函数若对于任意都有成立, 求实数的取值范围.
17.已知函数2()(1,(1))1ax b
f x M f x +=+在点处的切线方程为10.x y --=
(I )求()f x 的解析式;
(II )设函数()ln ,:()()[1,)g x x g x g x x =≥∈+∞证明对恒成立.
18.设函数 (Ⅰ)求的单调区间和极值; (Ⅱ)若关于的方程有3个不同实根,求实数a 的取值范围. (Ⅲ)已知当
恒成立,求实数k 的取值范围.
19.若实数a >0且a≠2,函数3211()(2)2132
f x ax a x x =-+++. (1)证明函数f (x )在x =1处取得极值,并求出函数f (x )的单调区间;
(2)若在区间(0,+∞)上至少存在一点x 0,使得f (x 0)<1成立,求实数a 的取值范围.。

相关文档
最新文档