中职数学第八章直线方程和圆知识点

合集下载

直线与圆的方程知识点总结

直线与圆的方程知识点总结

直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。

3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。

4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。

②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。

③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。

2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。

根据中职体育第八章直线方程和圆形知识点,给出10个例子。

根据中职体育第八章直线方程和圆形知识点,给出10个例子。

根据中职体育第八章直线方程和圆形知识点,给出10个例子。

根据中职体育第八章直线方程和圆形知识点,给出10个例子1. 直线方程例子:- 给定两个点A(3, 4)和B(7, -2),求过这两点的直线方程。

- 已知直线过点C(2, 5),斜率为2,求直线方程。

2. 圆形知识点例子:- 已知圆心为(2, -3),半径为4,求圆的方程。

- 圆O的半径为6,圆心为(-5, 2),点A(-1, -4)在圆上,求圆的方程。

3. 直线与圆交点例子:- 已知直线方程为y = 2x - 1,圆的方程为(x - 3)^2 + (y + 4)^2 = 5,求直线与圆的交点。

- 直线y = -3x + 2与圆(x - 2)^2 + (y + 1)^2 = 9交于两个点,求这两个点的坐标。

4. 直线与圆相切例子:- 直线y = -2x + 5与圆(x - 1)^2 + (y - 2)^2 = 4相切,求切点的坐标。

- 已知直线方程为2x + y = 7,圆的方程为(x - 3)^2 + (y - 4)^2 = 5,求直线与圆相切的点。

5. 直线与圆无交点例子:- 直线y = x + 2与圆(x - 3)^2 + (y - 2)^2 = 4无交点。

- 已知直线方程为2x + 3y = 6,圆的方程为(x - 4)^2 + (y - 6)^2 = 1无交点。

6. 直线与圆平行或重合例子:- 直线y = 3x - 1与圆(x - 2)^2 + (y - 3)^2 = 9无交点,但直线平行于圆的切线。

- 已知直线方程为4x - 2y = 8,圆的方程为(x - 1)^2 + (y - 2)^2 = 1与直线重合。

7. 直线与圆相交于两个交点例子:- 直线y = -x + 3与圆(x - 2)^2 + (y - 1)^2 = 4相交于点A和点B,求点A和点B的坐标。

- 已知直线方程为2x + y = 6,圆的方程为(x - 3)^2 + (y - 4)^2 =9相交于两个点,求这两个点的坐标。

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

第八章 直线与圆的方程第1节 两点间的距离与线段中点的坐标一、两点间的距离及线段中点的坐标: 设()111,y x P ,()222,y x P ,则()()21221221y y x x P P -+-=. 中点()000,y x P 的坐标为121200,22++==x x y y x y【习题】1.已知()10,28A 和()22,12B ,求线段AB 的长度。

2.已知三角形的顶点分别为)6,2(A ,)3,4(-B ,()00,C ,求ABC ∆三条边长。

3.已知()4,1A ,()1,5B ,()1,1C 说明ABC ∆为∆Rt 。

【习题】1.已知)5,1(),3,1(---N M ,求线段MN 的长度,并求线段MN 的中点坐标。

2.已知ABC ∆的三个顶点为(1,0)A 、(2,1)B -、(0,3)C ,试求BC 边上的中线AD 的长度.第2 节 直线的倾斜角与斜率一、直线的倾斜角与斜率倾斜角∂:直线l 向上的方向与x 轴正方向所夹的最小正角。

范围:001800<≤α斜率k :1212tan x x y y k --=∂= 注:①当轴x l //或重合时,0=k ②当轴x l ⊥时,k 不存在③k 与两点的位置无关【习题】1.已知直线的倾斜角,求斜率。

(1)6π=∂(2) 135=∂(3) 90=∂2.已知直线的斜率,求倾斜角。

(1)3=k (2)33-=k (3)1=k 3.求经过下列两点的直线的斜率与倾斜角。

(1)()0,2-A 和()3,1B (2)()4,1M 和()2,3N *4.证明三点()1,0-A ,()1,3B ,()3,3--C 在同一条直线上。

作业布置:1.已知点()2,41P ,()y P ,52-且过1P ,2P 的直线的斜率是31,求y 的值。

2.已知三角形的三个顶点()1,0A ,()3,8B ,()1,1-C 分别求三角形三边所在的直线的斜率。

中职直线与圆的方程知识点总结

中职直线与圆的方程知识点总结

中职直线与圆的方程知识点总结一、直线的方程在二维平面上,直线可以由一元一次方程表示,其一般形式为:Ax + By + C = 0其中 A、B 和 C 是实数且 A 和 B 不同时为 0。

斜截式方程:斜率为 k,截距为 b 的直线方程可以表示为:y = kx + b其中 k 是斜率,b 是截距。

点斜式方程:已知直线上一点(x₁, y₁)和直线的斜率 k,可以使用以下点斜式方程表示直线:y - y₁ = k(x - x₁)二、圆的方程在二维平面上,圆可以由圆心的坐标 (h, k) 和半径 r 表示,其标准方程为:(x - h)² + (y - k)² = r²三、直线与圆的关系直线与圆有以下几种关系:1.直线与圆相切:当直线与圆只有一个交点时,即直线与圆相切。

相切的直线与圆的切线相切于圆的一点。

2.直线与圆相离:当直线与圆没有交点时,即直线与圆相离。

3.直线与圆相交:当直线与圆有两个交点时,即直线与圆相交。

相交的直线与圆会穿过圆的两个点。

4.直线在圆上:当直线经过圆心时,即直线在圆上。

四、直线与圆的方程求解1.判断直线与圆的位置关系:–将直线方程代入圆的标准方程,得到一个一元二次方程;–计算一元二次方程的判别式;–根据判别式的值得出直线与圆的位置关系。

2.求直线与圆的交点坐标:–将直线方程代入圆的标准方程,得到一个二元一次方程组;–解方程组,求得交点坐标。

五、举例例 1:判断直线与圆的位置关系,直线方程为 y = 2x + 1,圆的标准方程为 (x - 3)² + (y - 4)² = 9。

将直线方程代入圆的标准方程得到:(x - 3)² + (2x + 1 - 4)² = 9化简得:5x² - 14x + 9 = 0计算判别式 D = (-14)² - 4 * 5 * 9 = 4,判别式大于 0,因此直线与圆相交。

完整版中职数学直线和圆的方程课件

完整版中职数学直线和圆的方程课件
(2)圆心为(1, 2),半径为 11的圆.
归纳小结
(1)圆的一般方程的表达式为
x2 y2 Dx Ey F 0
D2 E2 4F 0
(2)与圆的标准方程的联系
配方
一般方程 展开 标准方程(圆心,半径)
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
x2
y2
Dx
Ey
F
0表示以点(
D 2
,
E) 2
为圆心,1 D2 E2 4F为半径的圆。 2
以下方程是圆的方程吗? x2+y2+2 x+2 y+8=0; x2+y2+2 x+2 y+2=0; x2+y2+2 x+2 y=0.
圆的一般方程
x2 y2 Dx Ey F 0
D2 E2 4F 0
(1)以原点为圆心,半径为 3 的圆的方程是 .
(2)圆 (x-1)2+(y+2)2=25 的圆心坐标是

半径是

把圆的标准方程展开:
(xa)2 ( y b)2 r2
x2 y2 2ax 2by a2 b2 r2 0
令 2a D,2b E,a2 b2 r2 F得
x2 y2 Dx ED 2E F 20 0
解得:D=-8,E=6,F=0. 于是所求圆的方程为
x2+y2-8 x+6 y=0.
将这个方程配方,得 (x-4)2+(y+3)2=25.
因此所求圆的圆心坐标是(4,-3),半径为 5.
练习1下列方程各表示什么图形?
(1)x2 y2 0 _原__点_(_0,_0_) _ (2)x2 y2 2x 4y 6 0____

直线方程和圆的方程概念和知识点总结

直线方程和圆的方程概念和知识点总结

直线的倾斜角与斜率直线的倾斜角1.倾斜角的定义(1)当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.直线的倾斜角α的取值范围为0°≤α<180°.直线的斜率1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.2.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°3.过两点的直线的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =1212x x y y --.两条直线(不重合)平行的判定两条直线垂直的判定l∥l(两直线的斜率都存在)⇔l的斜率不存在,l的斜率为0直线的方程直线的点斜式方程和斜截式方程y-y=k(x-x)y=kx+b直线的两点式方程和截距式方程直线的一般式方程关于x 和y 的二元一次方程都表示一条直线.我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.直线方程的一般式与斜截式、截距式的互化直线的五种形式的方程比较两条直线的交点1.两直线的交点已知直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.点A(a ,b). (1)若点A 在直线l 1:A 1x +B 1y +C 1=0上,则有A 1a +B 1b +C 1=0 .(2)若点A 是直线l 1与l 2的交点,则有⎩⎨⎧=++=++00222111C b B a A C b B a A2.两直线的位置关系两点间的距离公式公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式21P P =212212)()(y y x x -+-.特别提醒:(1)此公式与两点的先后顺序无关. (2) 原点O(0,0)与任一点P (x ,y )的距离22y x OP +=.点到直线的距离、两条平行线间的距离点P (x ,y )到直线两条平行直线圆的标准方程(1)条件:圆心为C (a ,b ),半径长为r . (2)方程:(x -a )2+(y -b )2=r 2.(3)特例:圆心为坐标原点,半径长为r 的圆的方程是x 2+y 2=r 2.点与圆的位置关系点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2的位置关系及判断方法圆的一般方程1.圆的一般方程当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0称为圆的一般方程.=0表示的图形2.方程x2+y2+Dx+Ey+F直线与圆的位置关系:直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系及判断直线与圆相切1.圆的切线方程的几个重要结论:(1)经过圆222r y x =+上一点P (x 0 , y 0)的圆的切线方程为200r y y x x =+。

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典第八章直线与圆的方程第一节两点间的距离与线段中点的坐标一、两点间的距离及线段中点的坐标:设点P1(x1.y1)和点P2(x2.y2),则点P1P2的距离为√[(x2-x1)²+(y2-y1)²]。

线段中点P(x,y)的坐标为x=(x1+x2)/2,y=(y1+y2)/2.题】1.已知点A(28,10)和点B(12,22),求线段AB的长度。

2.已知三角形的顶点分别为A(2,6),B(-4,3),C(0,3),求三角形ABC的三条边长。

3.已知点A(1,4),点B(5,1),点C(1,1),证明三角形ABC为直角三角形。

题】1.已知点M(-1,-3)和点N(-1,5),求线段MN的长度,并求线段MN的中点坐标。

2.已知三角形ABC的三个顶点为A(1,0)、B(-2,1)、C(0,3),求BC边上的中线AD的长度。

第二节直线的倾斜角与斜率一、直线的倾斜角与斜率直线的倾斜角α:直线向上的方向与x轴正方向所夹的最小正角。

范围:0≤α<180.直线的斜率k:k=tanα=(y2-y1)/(x2-x1)。

注:①当直线平行于x轴或重合时,斜率k不存在。

②当直线垂直于x轴时,斜率k=0.③斜率k与两点的位置无关。

题】1.已知直线的倾斜角,求斜率。

(1)α=π/6 (2)α=135° (3)α=90°2.已知直线的斜率,求倾斜角。

(1)k=3 (2)k=-3 (3)k=1/33.求经过下列两点的直线的斜率与倾斜角。

(1)A(-2,-1)和B(1,3) (2)M(1,4)和N(3,2)4.证明三点A(1,-1),B(3,1),C(-3,-3)在同一条直线上。

作业布置:1.已知点P1(4,2)、点P2(-5,y),且过点P1、P2的直线的斜率为1/3,求y的值。

2.已知三角形ABC的三个顶点为A(2,1)、B(8,3)、C(1,-1),分别求三角形ABC三条边所在的直线的斜率。

直线和圆的方程知识点总结职高

直线和圆的方程知识点总结职高

直线和圆的方程知识点总结职高直线和圆是数学中非常重要的概念,在职业高中的数学课程中也占据着重要的位置。

本文将对直线和圆的方程进行总结和概述,帮助职高学生更好地理解和掌握这些知识点。

一、直线的方程1. 斜率截距公式斜率截距公式是表示直线方程的常用形式之一。

对于一条直线,我们可以用直线上一点的坐标以及直线的斜率来确定直线的方程。

斜率截距公式的一般形式为:y=mx+b其中,m表示直线的斜率,b表示直线与 y 轴的交点。

2. 两点式另一种表示直线方程的常用形式是两点式。

通过直线上的两个点的坐标,我们可以得到直线的方程。

两点式的一般形式为:$(y - y_1) = \\frac{{y_2 - y_1}}{{x_2 - x_1}}(x - x_1)$其中,(x1,y1)和(x2,y2)分别表示直线上的两个点的坐标。

3. 截距式和一般式除了斜率截距公式和两点式之外,还有截距式和一般式两种表示直线方程的方式。

截距式的一般形式为:ax+by=c其中,a和b表示直线的系数,c表示常数。

一般式的一般形式为:Ax+By+C=0其中,A、B和C表示直线的系数。

二、圆的方程1. 标准方程圆的标准方程是表示圆方程的一种常用形式。

标准方程可以通过圆心和半径来确定圆的方程。

标准方程的一般形式为:(x−ℎ)2+(y−k)2=r2其中,(ℎ,k)表示圆心的坐标,r表示圆的半径。

2. 一般方程除了标准方程之外,还有一般方程的表示方法。

一般方程的一般形式为:x2+y2+Dx+Ey+F=0其中,D、E和F分别表示圆的系数。

三、直线和圆的关系1. 直线与圆的位置关系直线和圆的位置关系有三种可能性:直线与圆相交、直线与圆外切、直线与圆相离。

•当直线与圆有两个不同的交点时,我们称之为直线与圆相交。

•当直线与圆有且仅有一个交点时,我们称之为直线与圆外切。

•当直线与圆没有交点时,我们称之为直线与圆相离。

2. 直线与圆的方程求解要确定直线与圆的位置关系,我们需要将直线的方程代入圆的方程中,然后解方程组得到结果。

中职数学第八章第八节直线与圆的方程应用举例复习课件

中职数学第八章第八节直线与圆的方程应用举例复习课件
学习要求:
1.了解直线与圆的方程与实际生活的联系. 2.学会用数学的思想和方法解决实际问题.
学法指导:
(1)学习教材直线与圆的方程的应用的内容. (2)本学时的重点是对应用题的阅读、理解和分析,列出方程或方 程组,难点是根据实际问题建系设点,建立数学模型. (3)在解解析几何应用题时,首先要注重对题目的阅读理解,分析 其含义;其次是寻找和整理数据,建立数学模型;寻求几何元素之 间关系,抓住几何特征列方程或方程组;然后解方程或方程组.
直点P的位置是坐标(
3 7 ,3 1
65 65

例2 某城市交通规划中,拟在半径为50m的高架圆形道东侧某处开一个 出口,以与圆形道相切的方式,引伸一条直道到距圆形道圆心正北150m 处的道路上,试建立适当的坐标系,写出所引伸直道的方程,并计算出 口应开在圆形道何处.
答案: 以圆心为坐标原点建立直角坐标系,所引伸直道的
课堂探究:
1.探究问题:
【探究】某操场400m跑道的直道长为86.96m,弯道是两个半圆弧,其半径 为36m,以操场中心为坐标原点建立坐标系,求弯道所在圆的方程.
x2 ( y 43.48)2 362
2.拓展提高:
例1 x-3y+2=0表示地面上的一条河,两村分别位于点A(-2,1),B(3,5),拟 在河边建一码头P,使两村到码头的路途之和最短,求点P的位置?.
方程是 2 2 x y 15 0
3.当堂训练: 小河同侧有两个村庄A、计划于河边上建一水电站供两村使用,
已知A、B两村到河边的垂直距离分别为500m和700m,且两村相距500m, 问:水电站建在何处,送电到两村所用电线最省?


直线和圆的方程知识点

直线和圆的方程知识点

直线和圆--知识总结一、直线的方程 1、倾斜角:,X 围0≤α<π,若x l //轴或与x 轴重合时,α=00. 2、斜率: k=tan αα=0⇔κ=0已知L 上两点P 1〔x 1,y 1〕 0<α<02>⇔k πP 2〔x 2,y 2〕 α=κπ⇔2不存在⇒k=1212x x y y --022<⇔<<κππ当1x =2x 时,α=900,κ不存在.当0≥κ时,α=arctank,κ<0时,α=π+arctank 3、截距〔略〕曲线过原点⇔横纵截距都为0. 几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0③平行于x 轴:y=b④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程.②任何一个关于x 、y 的二元一次方程都表示一条直线.5、直线系:〔1〕共点直线系方程:p 0〔x 0,y 0〕为定值,k 为参数y-y 0=k 〔x-x 0〕 特别:y=kx+b,表示过〔0、b 〕的直线系〔不含y 轴〕 〔2〕平行直线系:①y=kx+b,k 为定值,b 为参数.②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系〔3〕过L 1,L 2交点的直线系A 1x+B 1y+C 1+入〔A 2X+B 2Y+C 2〕=0〔不含L2〕 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上.二、两直线的位置关系2、L 1到L 2的角为0,则12121tan k k k k •+-=θ〔121-≠k k 〕3、夹角:12121tan k k k k +-=θ4、点到直线距离:2200BA c By Ax d +++=〔已知点〔p 0<x 0,y 0>,L :AX+BY+C=0〕①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B Ad③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是5、对称:〔1〕点关于点对称:p<x 1,y 1>关于M 〔x 0,y 0〕的对称)2,2(1010Y Y X X P --' 〔2〕点关于线的对称:设p<a 、b>一般方法:如图:<思路1>设P 点关于L 的对称点为P 0<x 0,y 0> 则 Kpp 0﹡K L =-1P, P 0中点满足L 方程解出P 0<x 0,y 0>〔思路2〕写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0<x 0,y 0>的坐标.P yL P 0x〔3〕直线关于点对称L :AX+BY+C=0关于点P 〔X 0、Y 0〕的对称直线l ':A 〔2X 0-X 〕+B 〔2Y 0-Y 〕+C=0 〔4〕直线关于直线对称①几种特殊位置的对称:已知曲线f<x 、y>=0关于x 轴对称曲线是f<x 、-y>=0 关于y=x 对称曲线是f<y 、x>=0 关于y 轴对称曲线是f<-x 、y>=0 关于y= -x 对称曲线是f<-y 、-x>=0 关于原点对称曲线是f<-x 、-y>=0 关于x=a 对称曲线是f<2a-x 、y>=0关于y=b 对称曲线是f<x 、2b-y>=0一般位置的对称、结合平几知识找出相关特征,逐步求解. 三、简单的线性规划不等式表示的区域约束条件、线性约束条件、目标函数、线性目标函数、线性规划,可行解,最优解. 要点:①作图必须准确〔建议稍画大一点〕.②线性约束条件必须考虑完整.③先找可行域再找最优解. 四、园的方程1、园的方程:①标准方程 ()22)(r b y a x =-+-,c 〔a 、b 〕为园心,r 为半径.②一般方程:022=++++F EY DX y x ,⎪⎭⎫ ⎝⎛--2,2E D C ,2422FE D r -+=当0422=-+F E D 时,表示一个点. 当0422<-+F E D 时,不表示任何图形. ③参数方程: θcos r a x +=θsin r b y +=θ为参数以A 〔X 1,Y 1〕,B 〔X 2,Y 2〕为直径的两端点的园的方程是 〔X-X 1〕〔X-X 2〕+〔Y-Y 1〕〔Y-Y 2〕=02、点与园的位置关系:考察点到园心距离d,然后与r 比较大小.3、直线和园的位置关系:相交、相切、相离判定:①联立方程组,消去一个未知量,得到一个一元二次方程:△>0⇔相交、△=0⇔相切、△<0⇔相离②利用园心c<a 、b>到直线AX+BY+C=0的距离d 来确定: d <r ⇔相交、d =r ⇔相切d >r ⇔相离〔直线与园相交,注意半径、弦心距、半弦长所组成的kt △〕 4、园的切线:〔1〕过园上一点的切线方程与园222r y x =+相切于点〔x 1、y 1〕的切线方程是211r y y x x =+与园222)()(r b y a x =-+-相切于点〔x 1、y 1〕的切成方程 为:211))(())((r b y b y a x a x =--+--与园022=++++F EY DX y x 相切于点〔x 1、y 1〕的切线是〔2〕过园外一点切线方程的求法:已知:p 0<x 0,y 0>是园 222)()(r b y a x =-+- 外一点①设切点是p 1<x 1、y 1>解方程组 先求出p 1的坐标,再写切线的方程②设切线是)(00x x k y y -=-即000=+--y kx y kx 再由r k y kx b ka =++--120,求出k,再写出方程.〔当k 值唯一时,应结合图形、考察是否有垂直于x 轴的切线〕③已知斜率的切线方程:设b kx y +=〔b 待定〕,利用园心到L 距离为r,确定b. 5、园与园的位置关系由园心距进行判断、相交、相离〔外离、内含〕、相切〔外切、内切〕 6、园系①同心园系:222)()(r b y a x =-+-,〔a 、b 为常数,r 为参数〕 或:022=++++F EY DX y x 〔D 、E 为常数,F 为参数〕 ②园心在x 轴:222)(r y a x =+- ③园心在y 轴:222)(r b y x =-+④过原点的园系方程2222)()(b a b y a x +=-+- ⑤过两园0:111221=++++F Y E X D y x C 和0:222222=++++F Y E X D y x C 的交点的园系方程为0(2222211122=+++++++++F Y E X D y x F Y E X D y x 入〔不含C 2〕,其中入为参数若C 1与C 2相交,则两方程相减所得一次方程就是公共弦所在直线方程.。

2023年职高数学二轮复习——直线与圆的方程

2023年职高数学二轮复习——直线与圆的方程

第八章:直线与圆一、知识点汇总:1、两点间距离公式与中点坐标公式:①2122122211)()(),,(),,(y y x x AB y x B y x A -+-=则设 ②)2,2(2121y y x x ++中点坐标为 2、直线的斜率:⎪⎩⎪⎨⎧--==已知坐标时用)已知倾斜角时用()(tan 1212x x y y k k α 注意:直线倾斜角不存在轴时,直线斜率或者直线垂直k x 090=α 3、直线方程:①)(00x x k y y -=-点斜式:(已知点( y x ,),斜率k ) ②b kx y +=斜截式: (b 叫直线在y 轴上的截距) ③ )不同时为、一般式:0B A (0C By Ax =++,其中斜率BCb B A k -=-=截距, ④特殊直线的方程: 0y y = (1)垂直于x 轴或平行y 轴的直线方程:0x x =(2)垂直于y 轴或平行x 轴的直线方程:0y y = 0x x = 4、方向向量和法向量①方向向量:指与直线平行或重合的向量,其中一个方向向量),1(k a = ②法向量:指与直线垂直的向量,其中一个法向量),(B A n = 5、两直线的平行和垂直:① 212121b k k //b l l ≠=⇔, ② ⎩⎨⎧=+-=⇔⊥0121212121B B A A k k l l规律总结:①与直线0=++C By Ax 平行的直线是0=++D By Ax②与直线0=++C By Ax 垂直的直线是0=+-D Ay Bx1、点到直线的距离公式和平行线间的距离公式:22BA C By Ax d +++=2212BA C C d +-=平yxo2、圆的方程:①标准方程:222)()(r b y a x =-+- r b a 半径圆心),,( ②一般式方程:)04(02222>-+=++++F E D F Ey Dx y x24),2,2(22FE D r ED -+=--半径圆心8、如图.圆半径为r ,圆心到直线距离为d.9、圆与直线的弦长:222||d r AB -=10、.,2222r y y x x y x r y x =+=+ )的圆的切线方程为:上一点(经过圆二、题型训练1. 过两点C(-m,2),D(1,3m)的直线的斜率为21,则m=( ) A.1 B.75 C.53 D.21 2. 直线)2(31--=+x y 所过定点和倾斜角分别是( ) A.(2,1),32π B.(2,-1),3π- C.(2,-1),32π D.(2,-1),65π 3.直线)象限时,此直线必不过第(当0,0,0a ,0>>>=++c b c by ax A. 一 B. 二 C. 三 D. 四4.过点(1,-1),且与直线,02=+-y x 平行的直线方程是( ) A.02=+-y x B.02=++y x C.02y x =-+ D.02=--y x5.直线与02)1()1(:1=--++y a x a L 03)21()1(:2=+-+-y a x a L 垂直,则a=( ) A.0或1 B.1或-3 C.0 D.1位置d 与rdrd=rr d6. 已知A(0,2), B(-2,0),则线段AB 的垂直平分线方程为( ) A.0=+y x B.01=-+y x C.02=+-y x D.02=-+y x7. 方程)的取值范围(表示圆的方程,则实数a 022=++-+a y x y x A.a<21 B. a>21 C. a<21- D. a>21- 8. 圆)的距离的最小值为(上的点到直线0254x 3122=-+=+y y x A.6 B.5 C.4 D.19. 以点A (-3,2)为圆心,且与y 轴相切的圆的标准方程为( )9)2()3(.22=-++y x A 4)2()3(.22=-++y x B 9)2()3(.22=++-y x C 4)2()3(.22=++-y x D10. 以两点A(5,5), B(-3,-1)为直径端点的圆的方程是( )25)2()1(.22=+++y x A 100)2()1(.22=-+-y x B 100)2()1(.22=++-y x C 25)2()1(.22=-+-y x D11在点Q (2,1)处与圆522=+y x 相切的直线方程为( )A. 2x+y -5=0B. 2x+y+5=0C. x -2y -5=0D. x -2y+5=0 12.过圆044222=---+y x y x 圆心,且在y 轴上的截距是该圆的半径的直线方程( )A. x -y+3=0B. x -y -3=0C. x+y+3=0D. x +y -3=0 13.x ²+y ²+(m-1)x+2my+m=0表示圆,则m 的取值范围是( )A. m >0B. 51≤m ≤1C. m >1或m <51D. R14.一条直线平行于3x+4y-6=0,且原点到直线的距离是9,则该直线方程是( )A、3x+4y+45=0 B、3x+4y-45=0 C、3x+4y-45=0或3x+4y+45=0 D、4x-3y-45=015.直线01)1(:062:221=-+-+=++a y a x l y ax l 与直线垂直,则等于a ( )。

中职数学教学课件:第8章 直线和圆的方程

中职数学教学课件:第8章 直线和圆的方程

例2、若 A B 0 ,则求直线Ax By C 0 的倾斜
角 的取值范围 。
练习:若直线 (m 2)x 2y 3 0 的斜率为2,求实数m.
练习:若直线(m 1)x y 5 0 的倾斜角的范9围00 1800
求m的范围。
例3、已知直线过点(2,3)且在x轴,y轴上截距之和为10,求直线方程。
(2)直线经过点(1,-2,)倾角为 5

6


(3)直线经过点 (5,3), (3,1)


如图所示,设直线l与x轴交于点 A(a, 0) ,与y轴交于点 B(0,b).则

a叫做直线l在x轴上的截距(或横截距); b叫做直线l在y轴上的截 距

思 (或纵截距).



想一想

直线在x轴及

这说明点 P1(x1, y1) 在经过点P0 (0,1)且倾斜角为 45 的直线上.
一般地,如果直线(或曲线)L与方程 F(x, y) 0 满足下列关系:
(1)直线(或曲线)L上的点的坐标都是二元方程F(x, y) 0的解;


(2)以方程 F(x, y) 0的解为坐标的点都在直线(或曲线)L上.

A 1, B 1 k A 1
B (1)
450
(3)因为当x=0时y=3,当y=0时x=3 所以在y轴上的截距为3,在
x轴上的截距为-3。
(4)S

1 33 2

9 2
S

1 2
a
b
A 1, B 1,C 3 在x轴上的截距为 C

根据中职地理第八章直线方程和圆盘知识点,给出10个例子。

根据中职地理第八章直线方程和圆盘知识点,给出10个例子。

根据中职地理第八章直线方程和圆盘知识点,给出10个例子。

根据中职地理第八章直线方程和圆盘知识点,给出10个例子1. 直线方程:假设直线上两点分别为A(x1, y1)和B(x2, y2),则直线的方程可以表示为:(y - y1) = ((y2 - y1)/(x2 - x1))(x - x1)。

例如,若A(2, 3)和B(5, 7),则直线方程为:(y - 3) = ((7 - 3)/(5 - 2))(x - 2)。

2. 直线方程:如果直线与x轴垂直,那么直线的方程可以简化为x = a的形式,其中a为x轴上的某个常数。

例如,直线与x轴垂直且经过点(3, 0),则直线方程为x = 3。

3. 直线方程:如果直线与y轴垂直,那么直线的方程可以简化为y = b的形式,其中b为y轴上的某个常数。

例如,直线与y轴垂直且经过点(0, 4),则直线方程为y = 4。

4. 直线方程:如果直线过原点(0, 0),则直线方程为y = kx的形式,其中k为斜率。

例如,斜率为2的直线过原点,则直线方程为y = 2x。

5. 直线方程:如果直线上两点A(x1, y1)和B(x2, y2)的斜率为k,则直线方程可以表示为y = kx + b的形式,其中b为直线与y轴的截距。

例如,若A(1, 4)和B(3, 7)的斜率为3/2,则直线方程为y = (3/2)x + 2。

6. 圆的方程:如果圆心坐标为(h, k),半径为r,则圆的方程可以表示为:(x - h)^2 + (y - k)^2 = r^2。

例如,圆心坐标为(2, 3),半径为5,则圆的方程为:(x - 2)^2 + (y - 3)^2 = 25。

7. 圆的方程:如果圆的直径已知,可以使用直径点的坐标来求解圆的方程。

例如,直径坐标为A(1, 2)和B(5, 6),则圆的方程可以表示为:(x - 3)^2 + (y - 4)^2 = 8。

8. 圆的方程:如果圆与坐标轴垂直,那么圆的方程可以简化为x^2 + y^2 = r^2或者y^2 = r^2 - x^2的形式。

根据中职历史第八章直线方程和圆周知识点,给出10个例子。

根据中职历史第八章直线方程和圆周知识点,给出10个例子。

根据中职历史第八章直线方程和圆周知识
点,给出10个例子。

根据中职历史第八章直线方程和圆周知识点,给出10个例子
1. 直线方程例子:假设直线的斜率为2,截距为3,则直线的
方程可表示为 `y = 2x + 3`。

2. 直线方程例子:如果两个点 `(2, 5)` 和 `(4, 9)` 在同一直线上,则直线方程可通过求解斜率和截距来得到。

3. 直线方程例子:如果直线过点 `(3, 4)` 且与 x 轴垂直,则可
表示为 `x = 3`。

4. 圆周知识点例子:假设圆的半径为5,则圆的面积可表示为
`π * 5^2`。

5. 圆周知识点例子:如果圆的直径为10,则圆的周长可表示为`π * 10`。

6. 圆周知识点例子:如果圆上一点的坐标为 `(3, 4)`,圆心坐标
为 `(0, 0)`,则点到圆心的距离可通过勾股定理计算。

7. 直线方程例子:如果直线与 x 轴平行且过点 `(2, 5)`,则直线
方程可表示为 `y = 5`。

8. 直线方程例子:如果直线与 y 轴平行且过点 `(3, 4)`,则直线方程可表示为 `x = 3`。

9. 直线方程例子:如果直线经过点 `(1, 1)` 和 `(3, 5)`,则直线方程可通过求解斜率和截距来得到。

10. 直线方程例子:如果直线垂直于 x 轴且过点 `(4, -2)`,则直线方程可表示为 `x = 4`。

以上是根据中职历史第八章直线方程和圆周知识点给出的10个例子。

这些例子展示了直线方程和圆周知识的应用。

直线与圆的方程章节小结 中职

直线与圆的方程章节小结 中职

直线与圆的方程章节总结一、两点间的距离公式:已知点A ),11y x (,B ),22y x (,则=AB ___________________典型例题:1.已知点A (5,-2)、B (-1,6),求=AB __________________2.已知A(2,3)、B (x ,1),且则x 的值为_________________ 二、中点坐标公式:已知点A ),11y x (,B ),22y x (,点),P 000y x (为线段AB 的中点中点坐标公式为___________ 典型例题:(1)已知ABC ∆的三个点(2,2),(0,1),(2,5)A B C ---,则BC 边上的中点D 的坐标______则BC 边上的中线AD 的长度___________(2)若点(1,2)A 与点B 关于点P(0,5)对称,则点B 的坐标___________ 三、直线的倾斜角与斜率之间的关系(1)倾斜角090α≠时,则斜率k=_________(2)当直线斜率不存在时,倾斜角=______α (3)直线与x 轴平行或重合的时候,则斜率k=_________典型例题:已知直线l 则直线的倾斜角为______________ 四、已知两点求直线的斜率:已知点A ),11y x (,B ),22y x ((1)当12x x ≠时,则斜率 公式k=_________(2)当12=x x 时,则则斜率k_________典型例题:(1)已知A(3,2),B(-4,1)则直线AB 的斜率为______________(2)已知(M,N ,则直线M N 的倾斜角为______________(3)已知A(3,1),B(-2,k),C(8,11)在同一直线上,则k 的值为______________ 五、直线的点斜式方程(1)直线l 斜率为k ,且直线l 经过点),P 000y x (,则直线l 的方程为__________________ (2)直线l 与x 轴平行且过点),P 000y x (,则直线l 的方程为__________________ (3)直线l 斜率不存在且过点),P 000y x (,则直线l 的方程为__________________ 典型例题:(一)求满足下列条件的直线方程 (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角为45︒; (3)经过点C (-1,1),与x 轴平行; (4)经过点D (1,1),与x 轴垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学第八章直线方程和圆知识点
直线方程和圆
1.两点间距离公式:
设点A(x1,y1)和点B(x2,y2),则AB的长度为AB = √[(x2-x1)²+(y2-y1)²]。

当x1=x2时,AB = |y2-y1|。

当y1=y2时,AB = |x2-x1|。

2.中点坐标:
设点A(x1,y1)和点B(x2,y2),则线段AB的中点M的坐标为[(x1+x2)/2,(y1+y2)/2]。

当x1≠x2时,M的纵坐标为(y2-y1)/(x2-x1)×(x-x1)+y1.
3.直线的倾斜角和斜率:
直线的倾斜角α∈[0,π)。

直线的斜率k=tanα (α≠π/2)。

当α=30°时,k=√3/3;当α=45°时,k=1;当α=60°时,
k=√3;当α=120°时,k=-√3;当α=150°时,k=-√3/3.
4.直线方程:
点斜式:设直线过点A(x1,y1),斜率为k,则直线的点斜式方程为y-y1=k(x-x1)。

斜截式:设直线与y轴交点为b,则直线的斜截式方程为y=kx+b。

两点式:设直线过点A(x1,y1)和点B(x2,y2),则直线的两点式方程为(x-x1)/(x2-x1)=(y-y1)/(y2-y1)。

截距式:设直线与x轴和y轴的截距分别为a和b,则直
线的截距式方程为x/a+y/b=1 (a≠0,b≠0)。

一般式:设直线的一般式方程为Ax+By+c=0 (A和B不同时为0)。

5.两直线的位置关系:
当两直线斜率都不存在时,若它们的截距不相等,则两直线平行;若它们的截距相等,则两直线重合。

当两直线斜率都存在时,若它们的斜率相等且截距不相等,则两直线平行;若它们的斜率相等且截距相等,则两直线重合;若它们的斜率乘积为-1,则两直线垂直。

当一条直线斜率不存在时,另一条直线斜率存在且不为0时,它们不可能平行或垂直。

当两直线斜率都存在且不为0时,若它们的斜率不相等,则它们相交,且夹角为arctan|k1-k2|;若它们的斜率相等且截
距不相等,则它们平行;若它们的斜率相等且截距相等,则它们重合。

6.点到直线的距离公式:
设点P(x0,y0),直线的一般式方程为Ax+By+c=0,则点P
到直线的距离为d=|Ax0+By0+c|/√(A²+B²)。

点到X轴的距离为d=|y|,点到Y轴的距离为d=|x|。

两平
行线间距离公式为
圆的标准方程为(x-a)^2+(y-b)^2=r^2,其中圆心为C(a,b),半径为r。

一般方程为x^2+y^2+Dx+Ey+F=(D^2+E^2-4F)/4,
圆心为(-D/2,-E/2),半径为r=√(D^2+E^2-4F)/2.
直线与圆的位置关系:圆心到直线的距离为d,圆半径为r,交点个数为1(d>r)、2(d<r)、无穷(d=r)。

圆心坐标
为(a,b),当圆与X轴相切时,则有b=r,当圆与Y轴相切时,
则有a=r。

当圆与两坐标轴相切时,则有a=b=r。

圆被直线截得的弦长为AB=2√(r^2-d^2)。

弦的中垂线必过圆心,圆心和切点的连线与切线垂直。

相关文档
最新文档