激光干涉仪讲解

合集下载

激光干涉仪

激光干涉仪

激光干涉仪的安装
线性测量的安装
激光头 固定反 射镜 移动反射 镜
线性测量原理
线性测量原理
激光干涉仪通过接受到得激光的明暗条 纹变化,再通过电子细分,从而知道距离的 细微和准确变化。
角度测量的安装
角度测量原理
激光头
直线度测量的安装
直线度测量原理
垂直测量的安装
平面度测量的安装
END
激光干涉仪
关于齿轮的效率 关于齿轮的类型
……
1
激光干涉仪的基本概念
目 录
2
激光及其特点
3
Байду номын сангаас激光的干涉特性
4
激光干涉仪的安装 激光干涉仪的原理
5
激光干涉仪的基本概念
什么是激光干涉仪
利用激光作为长度基准,对数控设备(加工中心,三坐标测量机等)的 位置精度(定位精度,重复定位精度等),几何精度(俯仰扭摆角度, 直线度,垂直度)进行精密测量的精密测量仪器
激光及其特点
激光输出可视为一束正弦波
激光具有三个重要特性
1 2 3
激光波长非常稳定,可以精密测量测量的要求。
激光波长非常短,可以用于高精度测量。(例:雷尼绍xl-80激 光波长为633nm) 激光具有干涉特性。
激光的干涉特性
相长干涉
如果两束光相位相同,光波会叠 加增强,表现为亮条纹。
相消干涉
如果两束光相位相反,光波 会互相抵消,表现为暗条纹。

激光干涉仪在物理研究中的应用

激光干涉仪在物理研究中的应用

激光干涉仪在物理研究中的应用激光干涉仪是一种基于激光的精密测量仪器,具有高精度、高分辨率、高灵敏度、高稳定性等特点。

它可以用于测量光程差、位移、形貌、波前畸变等物理量,在物理学、光学、材料科学、生物医学、机械制造等领域得到了广泛应用。

一、激光干涉仪的基本原理激光干涉仪基于光干涉原理,比较两个光程差的相位差来测量物理量。

其基本结构由激光源、分束器、样品、合束器、检测器等组成。

当激光束照射到分束器上时,会被分成两个光束,一个经过参考光路反射出来,一个经过样品光路或待测光路后反射出来,两个光束再经过合束器合成,形成干涉光。

当待测光路与参考光路的光程差发生改变时,由于光的相干性,干涉光的相位也会发生变化,通过检测器测量干涉光的相位差变化,就可以得到待测光路与参考光路的光程差。

二、激光干涉仪的应用1.表面形貌测量激光干涉仪可以准确地测量物体表面的高度、形状、表面粗糙度等物理量,广泛应用于工业制造、材料科学、光学成像、地质勘探等领域。

例如,研究人员可以利用激光干涉仪测量人类牙齿表面的微小变形,以研究牙齿结构和功能。

2.液体流速测量激光干涉仪可以利用激光束对流体进行横向扫描,通过测量传播到检测器上的干涉光的相位差变化,可以计算出流体的速度分布和流量。

这种方法广泛用于船舶液体流场测试、水利工程流量监测、工业制造过程流体流动分析等领域。

3.纳米位移测量激光干涉仪可以测量物体的纳米位移量,精度可以达到亚纳米级别。

利用这种方法,可以研究纤维、微电子器件、纳米材料等体系的变形、扭转、压缩等运动和变化量。

4.物体加工质量监测激光加工通常需要在线检测来保证工艺质量。

激光干涉仪可以实时、在线监测激光加工过程中物体表面的形貌、位置、尺寸等物理量,避免加工缺陷和误差的出现,提高加工产品的质量和精度。

5.光学元件测试激光干涉仪可以用于测试和监测光学元件的表面粗糙度、形状误差、面内波前畸变等物理量,以确定光学元件的质量和性能。

三、激光干涉仪的发展趋势随着科学技术的不断进步和发展,激光干涉仪将会越来越广泛地应用于科学研究和工业制造等领域。

激光干涉仪原理及应用

激光干涉仪原理及应用

激光干涉仪原理及应用
激光干涉仪是一种利用激光光束干涉现象进行测量和检测的仪器。

它利用激光的单色性、相干性和定向性等特点,通过激光光束的干涉现象来测量光线的相位和波前差,从而达到测量目的。

激光干涉仪的原理和应用都具有重要的科学研究价值和实际应用意义。

激光干涉仪的原理可以简单描述为:两束激光光束通过分束器分开,分别在一边经过样品(或目标物)后再次合并在一起,然后通过干涉物后进入光电探测器进行信号采集。

当两束光经过样品后的相位有差异时,就会产生干涉,形成干涉条纹。

通过观察和分析干涉条纹的变化,可以得到样品的相关信息,如形状、厚度、折射率等。

激光干涉仪的原理中,常见的有两种干涉方式,即自由空间干涉和光纤干涉。

自由空间干涉指的是激光光束在空气中进行干涉,可用于测量样品的曲率、平面度、倾斜度等参数。

而光纤干涉则是将激光光束传输到光纤中进行干涉,可用于对光纤的插入损耗、光纤传输的延迟等进行测量。

激光干涉仪的应用非常广泛。

首先,在科学研究中,激光干涉仪可用于测量光学元件的表面形貌,如透镜、棱镜等,以及光学薄膜的厚度和折射率。

其次,激光干涉仪在工业领域中也得到广泛应用,如测量金属工件的平面度、光滑度等,以及检测半导体器件的曲率、形状等。

此外,激光干涉仪还可用于测量纳米颗粒、生物细胞和薄膜等微小尺度的物体,应用于生物医学领域,如细胞生长的监测、精确测量等。

总之,激光干涉仪作为一种精密测量和检测仪器,在科学研究和工业应用中具有重要意义。

其原理的理解和应用的熟练掌握可推动光学测量和微纳技术的发展,为实现精确测量和控制提供基础和技术支持。

激光干涉仪测量距离和表面精度

激光干涉仪测量距离和表面精度

激光干涉仪测量距离和表面精度激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。

通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。

本文将介绍激光干涉仪的原理、测量距离和表面精度的方法,以及激光干涉仪在不同领域中的应用。

激光干涉仪是基于光波的干涉现象进行测量的仪器。

光波的干涉是指两束或多束光波相遇时发生的波的叠加现象。

激光干涉仪通过将激光分成两束,一束作为参考光束,一束照射到待测物体上反射回来作为待测光束,再将两束光波进行干涉,通过测量干涉条纹的变化来获得距离和表面精度的信息。

激光干涉仪的测量距离的原理基于光波的干涉,利用干涉条纹的变化来获得物体到仪器的距离。

当两束光波相遇时,它们会发生干涉,干涉条纹的间距和形态会随着物体到仪器的距离的变化而改变。

通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离。

这种测量方法具有高精度和高分辨率的特点,适用于微小距离的测量。

激光干涉仪的测量表面精度的方法基于光波的干涉,利用干涉条纹的形态和间距来获得表面精度的信息。

当光波照射到物体表面时,由于表面的形态和光的反射特性的影响,干涉条纹的形态和间距会发生变化。

通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体表面的精度。

这种测量方法具有高精度和高分辨率的特点,适用于表面平整度和粗糙度的测量。

激光干涉仪广泛应用于多个领域,如制造业、科学研究和地质勘探等。

在制造业中,激光干涉仪可用于检测零件的尺寸和形状,以及测量零件表面的精度。

在科学研究中,激光干涉仪可用于研究光学现象、材料的性质和微小物体的运动。

在地质勘探中,激光干涉仪可用于测量地表的高程和形态,以及探测地下的岩层和地下水位。

总结一下,激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。

通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。

通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离和物体表面的精度。

激光干涉仪原理介绍——线性测量与回转轴校准(图文并茂)

激光干涉仪原理介绍——线性测量与回转轴校准(图文并茂)

现代集成制造与数控装备研究所 CIMS
机械与汽车工程学院
回转轴校准测量步骤
典型测试(步距为5°)的步骤如下: 1. 将XR20-W定位在被测轴上并调整激光系 统的准直(如右图所示)。 2. 在轴的起始位置将激光装置置零,在计算 机上开始采集数据并运行数控程序。 3. 轴到达起始目标位置,记录激光读数。 4. 被测轴以5°步距移至第二个目标,XR20-W 内置的反射镜反向旋转5°。 5. 系统结合XL-80与XR20-W的读数,记录被 测轴在5°的位置误差。 6. 通过使回转轴依次到达一系列测量点, 可测量并绘出轴的总体精度图。
机械与汽车工程学院
激光的产生
LASER是Light Amplification by Stimulated Emission of Radiation 的缩写,意为通过受激发射线的放射达到光的放大,即激光。 大多数现代位移干涉仪都使用氦氖 (He-Ne) 激光管,这些激光管具 有633纳米 (nm) 的波长输出 氦氖激光管的构成如下所示:
现代集成制造与数控装备研究所 CIMS
机械与汽车工程学院
激光及其特点 激光输出可视为一束正弦波。
波长
激光具有三个重要特性:
•激光波长非常稳定,可以精密测量测量的要求。 •激光波长非常短,可以用于高精度测量。 •激光具有干涉特性。
现代集成制造与数控装备研究所 CIMS
机械与汽车工程学院
光的干涉
•当相位角相差180°(半个波长)时,复合光强为0,产生暗条纹。
现代集成制造与数控装备研究所 CIMS
机械与汽车工程学院
二、激光干涉测量原理
XL-80激光测量回路如下
•如果测量光路长度改变(角 锥反射镜C移动),干涉光束 的相对相位将改变,由此产 生的相长干涉和相消干涉的 循环将导致叠加光束强度的 明暗周期变化。 • 角锥反射镜每移动316 nm, 就会出现一个光强变化循环 (明-暗-明)通过计算这 些循环来测量移动。 • 通过在这些循环之间进行相 位细分,实现更高分辨率 (1 nm) 的测量。

激光干涉仪的基本原理

激光干涉仪的基本原理

激光干涉仪的基本原理激光干涉仪是一种高精度的测量仪器,它可以用来测量物体的形状、表面质量、位置以及运动状态等。

在工业、航空航天、医学等领域都有广泛的应用。

本文将介绍激光干涉仪的基本原理。

1. 激光的特性首先,我们需要了解激光的特性。

激光是一种单色性和相干性极高的光波。

其波长稳定,方向一致,段差小,能够形成高质量的平行光束。

这些特性使得激光在干涉测量中有着很大的优势。

2. 干涉原理干涉现象是指两束光波在空气中相遇时,由于相位差的存在,会发生一系列的干涉现象。

常见的干涉现象有等厚干涉、等附加厚度干涉、菲涅尔双棱镜干涉、迈克尔逊干涉等。

在迈克尔逊干涉中,激光光束从分束器射出,经过反射镜反射后再次聚焦于分束器,形成一种干涉图形。

在干涉图形中,可以通过测量干涉带的位移、亮度等来计算物体的形态、位置、偏移量等信息。

3. 激光干涉仪的工作原理激光干涉仪是一种基于干涉原理的测量仪器。

它包括激光源、分束器、反射镜、检测器等部分。

当激光从激光源经过分束器后,会被分为两束光束。

其中一束光束经过反射镜后返回分束器,与另一束光束发生干涉。

通过调整反射镜的位置,可以改变干涉光束之间的相位差,从而形成干涉图形。

检测器会将干涉图形转化为电信号,通过电路处理后输出测量结果。

4. 激光干涉仪的优点和应用激光干涉仪有着高精度、高稳定性、非接触性测量等一系列优点。

它可以被应用于各种领域,例如:在机械加工领域,激光干涉仪可以用来测量机床导轨、定位板、工件表面形态等参数,从而提高加工质量和效率。

在医学领域,激光干涉仪可以用来测量角膜曲率、晶体位移等参数,从而用于诊断和治疗眼科疾病。

在航空航天领域,激光干涉仪可以用来测量航天器的姿态、运动状态等参数,从而实现精确的导航和控制。

总之,激光干涉仪是一种重要的测量仪器,具有广泛的应用前景。

了解其基本原理可以帮助我们更好地理解其工作原理和优点,从而更好地应用于实际应用中。

激光干涉仪测量原理

激光干涉仪测量原理

激光干涉仪测量原理激光干涉仪是一种基于干涉原理的测量仪器,主要用于测量长度、角度和平面度等。

它通过利用激光的干涉现象,实现高精度测量。

激光干涉仪有多种类型,包括腔长度干涉仪、双光束干涉仪和多光束干涉仪等。

激光干涉仪的原理基于干涉现象,即光的波动性质,当两束光线相遇时,在空间中形成干涉图案。

这个干涉图案的形状和光线的相位差有关,而相位差又与参考光线和测量光线的路径差有关。

在激光干涉仪中,激光器产生的强度稳定且单色的激光通过分束器被分成两束光线,一束作为参考光线,另一束被引导到待测物体上,形成测量光线。

当测量光线经过待测物体反射或透射后再次与参考光线相遇时,两束光线会发生干涉现象。

干涉现象会产生干涉条纹,这些条纹反映了两束光线间的相位差,从而反映了待测物体上的形状、位移或折射率等信息。

为了更好地观察干涉条纹,激光干涉仪通常使用干涉仪,例如迈克尔逊干涉仪或菲涅尔干涉仪。

在迈克尔逊干涉仪中,参考光线和测量光线分别通过反射镜和半透镜被反射或透射,然后再次相遇形成干涉条纹。

在菲涅尔干涉仪中,参考光线和测量光线分别通过透镜和透明棱镜后再次相遇。

为了测量待测物体的形状、位移或折射率等信息,需要通过改变参考光线和测量光线的光程差来修改干涉图样。

常见的方法是通过改变光程差来改变干涉环的位置或数量。

光程差可以通过调整反射镜或透镜的位置来实现。

通过测量干涉条纹的位置和数量的变化,可以获得待测物体的形状或位移的信息。

激光干涉仪具有高精度、高分辨率和快速响应的特点,因此被广泛应用于各种测量领域。

例如,激光干涉仪可用于测量长度、角度和平面度等机械工件的精度。

它还可以用于光学元件的制造和表面形貌的测量。

此外,激光干涉仪还可以应用于光学实验、光学校准和科学研究等领域。

总之,激光干涉仪是一种基于干涉原理的精密测量仪器。

它通过利用激光的干涉现象来实现高精度测量,并广泛应用于各种测量领域。

激光干涉仪在工业界和科学研究领域具有重要的应用价值。

激光干涉仪的工作原理

激光干涉仪的工作原理

激光干涉仪的工作原理
激光干涉仪是一种利用激光的干涉现象来测量物体形状、表面粗糙度、位移等参数的仪器。

其工作原理可以概括为以下几个步骤:
1. 激光发射:激光器产生一束单色、相干性很好的激光束。

2. 激光分束:激光束通过半透镜或棱镜等光学元件进行分束,形成两束平行光。

3. 光程差:其中一束光线经过反射镜或透射片,到达被测物体表面,而另一束光线不经过被测物体。

4. 光程相差:经过被测物体后的一束光线与不经过被测物体的光线发生干涉,形成干涉图样。

5. 干涉图案检测:通过光电转换器或像素阵列等器件,捕捉并分析干涉图案。

6. 信号处理:利用计算机或其他电子设备对捕捉到的干涉图案进行处理,得到测量结果。

7. 测量结果:根据干涉图案的特征,可以测量出物体的形状、表面粗糙度或位移等参数。

总的来说,激光干涉仪利用激光的干涉效应来测量物体的特性,通过计算机或其他电子设备对干涉图案进行处理,得到物体的相关参数。

激光干涉仪测量原理及应用

激光干涉仪测量原理及应用

激光干涉仪测量原理及应用激光干涉仪是一种基于干涉原理的精密测量仪器,广泛应用于科学研究、工业制造和医疗领域。

本文将介绍激光干涉仪的测量原理、测量对象以及应用领域。

一、测量原理激光干涉仪利用激光光束的干涉现象进行测量。

首先,通过激光发生器产生一个相干的激光束,然后将光束分为两束,其中一束通过参比光路径传播,另一束通过待测物体的表面反射。

两束光束重新合并后,通过干涉现象形成干涉条纹。

根据干涉条纹的变化,可以计算出待测物体的表面形态、位移或变形信息。

在激光干涉仪中,常用的测量原理有两条著名的分支:相位差法和长度差法。

1. 相位差法相位差法通过测量干涉条纹的相位差来确定待测物体的形态、位移或变形信息。

当待测物体发生形变或位移时,相位差会发生变化。

利用激光干涉仪测量相位差,并通过相位差与位移间的关系,可以获得待测物体的位移信息。

2. 长度差法长度差法通过测量干涉条纹的长度差来确定待测物体的形态、位移或变形信息。

待测物体的表面形态、位移或变形导致光程差的改变,进而影响干涉条纹的长度差。

通过测量长度差,并通过长度差与位移间的关系,可以获得待测物体的位移信息。

二、测量对象激光干涉仪广泛应用于各个领域的测量任务中,包括科学研究、工业制造和医疗领域。

1. 科学研究在科学研究领域,激光干涉仪常用于测量微小位移和形变。

例如,在光学领域,激光干涉仪可用于测量光学元件的表面形态和位移,以及光学系统的变形;在材料科学中,激光干涉仪可用于测量材料的热膨胀、压力变形等。

2. 工业制造在工业制造领域,激光干涉仪被广泛应用于检测和测量任务中。

例如,激光干涉仪可以用于检测零件的形状和尺寸,以确保制造过程的准确性和一致性。

此外,激光干涉仪还可以用于测量机械零部件的运动、振动和变形。

3. 医疗领域在医疗领域,激光干涉仪被应用于眼科手术和体内干涉成像。

在眼科手术中,激光干涉仪可以测量眼角膜的形态和厚度,以辅助眼科医生进行手术;在体内干涉成像中,激光干涉仪可以测量生物组织的纤维结构和表面形态,以帮助医生进行疾病诊断。

激光干涉仪原理及实验装置概述

激光干涉仪原理及实验装置概述

激光干涉仪原理及实验装置概述激光干涉仪是一种利用激光干涉原理测量物体表面形貌和长度的仪器。

它是利用激光的准直性、单色性和相干性,通过光的干涉现象来实现高精度的测量。

激光干涉仪具有测量精度高、测量速度快、非接触式测量等优点,在实验研究、制造业等领域有广泛的应用。

一、激光干涉仪原理激光光源发射的单色、准直的光经过分束器被分成两束,分别形成参考光和测量光。

这两束光同时照射到待测物体上,然后被反射回来。

由于待测物体表面形貌的不同,两束光返回时光程差发生变化,进而产生干涉现象。

通过探测和分析干涉信号,就可以推断出待测物体的形貌和长度。

激光干涉的基本原理是光程差干涉,它产生的干涉条纹是由于两束光的相干性和光程差的变化引起的。

当两束光的相位差为奇数倍的半波长时,干涉会出现亮条纹;当相位差为偶数倍的半波长时,干涉会出现暗条纹。

二、实验装置概述激光干涉仪主要由激光器、分束器、反射镜、干涉仪和检测器等组成。

下面分别介绍其中的几个重要组成部分。

1. 激光器:激光干涉仪的激光器是产生高亮度、单色激光光源的关键设备。

常用的激光器有氦氖激光器、二极管激光器等。

激光器的输出功率要稳定,光束质量好,满足实验要求。

2. 分束器:分束器是将激光分成两束光的光学元件。

常用的分束器有半反射镜、双折射晶体等。

分束器需要具备高反射和高透射的特性,以保证光能被正确地分割。

3. 反射镜:反射镜用于将分出的两束光照射到待测物体上,并接收反射回来的光。

反射镜要具备高反射率、光学稳定性和机械稳定性,以保证光的质量和测量的稳定性。

4. 干涉仪:干涉仪是激光干涉仪中的核心部件,用于产生干涉现象并形成干涉条纹。

常用的干涉仪有马赫曾德干涉仪、迈克尔逊干涉仪、光栅干涉仪等。

不同类型的干涉仪适用于不同的实验需求。

5. 检测器:检测器用于接收干涉信号并将其转化为电信号,以实现干涉信号的分析和处理。

常用的检测器有光电二极管、CCD等。

检测器的灵敏度和响应速度需要满足实验测量的要求。

激光干涉仪相关基础知识

激光干涉仪相关基础知识

一.激光干涉仪概述激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量工具。

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。

通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

二.激光干涉仪工作原理激光器发射单一频率光束射入线性干涉镜,然后分成两道光束,一道光束(参考光束)射向连接分光镜的反射镜,而第二道透射光束(测量光束)则通过分光镜射入第二个反射镜,这两道光束再反射回到分光镜,重新汇聚之后返回激光器,其中会有一个探测器监控两道光束之间的干涉(见图)。

若光程差没有变化时,探测器会在相长性和相消性干涉的两极之间找到稳定的信号。

若光程差有变化时,探测器会在每一次光程变化时,在相长性和相消性干涉的两极之间找到变化信号,这些变化会被计算并用来测量两个光程之间的差异变化。

三.激光干涉仪功能SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。

通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。

在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。

1.静态测量SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。

SJ6000基本线性测量配置:SJ6000全套系统:1.1. 线性测量1.1.1. 线性测量构建要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,这个组合装置就是“线性干涉镜”。

激光干涉仪原理

激光干涉仪原理

激光干涉仪原理激光干涉仪是一种利用激光干涉现象来测量物体表面形状、薄膜厚度、折射率等参数的精密光学仪器。

其原理基于激光的相干性和干涉现象,通过激光光束的分束、干涉和合束,实现对被测物体的精密测量。

激光干涉仪的原理主要包括干涉、分束、合束和干涉图样的形成。

首先,激光干涉仪利用激光的相干性,使得两束光线相互叠加形成干涉条纹。

当两束相干光线相遇时,由于光波的叠加效应,形成明暗交替的干涉条纹,通过测量干涉条纹的位置和形态,可以得到被测物体的形状和参数信息。

其次,激光干涉仪通过分束器将激光光束分为两束,分别照射到被测物体表面,然后再利用合束器将两束光线重新合成一束,使得两束光线相互干涉,形成干涉条纹。

通过测量干涉条纹的位置和形态变化,可以得到被测物体表面的形状信息。

激光干涉仪的干涉图样是由两束相干光线相互叠加形成的,其形态和位置的变化与被测物体的形状和参数密切相关。

通过对干涉图样的分析和处理,可以得到被测物体的形状、薄膜厚度、折射率等参数信息。

总的来说,激光干涉仪利用激光的相干性和干涉现象,通过分束、干涉和合束的过程,实现对被测物体的精密测量。

其原理简单而又精密,广泛应用于工业制造、科学研究、医学诊断等领域,为精密测量提供了重要的技术手段。

激光干涉仪的应用非常广泛,包括但不限于工业制造中的零件测量、表面质量检测、薄膜厚度测量;科学研究中的光学实验、材料表征、精密测量;医学诊断中的眼底成像、生物组织测量等。

随着激光技术的不断发展和完善,激光干涉仪的应用领域将会更加广阔,为各行各业的精密测量提供更加可靠、精准的技术支持。

综上所述,激光干涉仪利用激光的相干性和干涉现象,通过分束、干涉和合束的过程,实现对被测物体的精密测量。

其原理简单而又精密,应用广泛,为精密测量提供了重要的技术手段。

随着激光技术的不断发展,激光干涉仪的应用领域将会更加广阔,为各行各业的精密测量提供更加可靠、精准的技术支持。

激光干涉仪检测与调整过程讲解

激光干涉仪检测与调整过程讲解

激光干涉仪检测与调整过程讲解激光干涉仪是一种常用的光学测量工具,可以用于测量非常小的距离和角度变化。

它通常由两个关键组件组成:稳定的激光源和一个高质量的干涉仪。

在本文中,我们将介绍激光干涉仪的工作原理、使用方法和调整过程。

激光干涉仪的工作原理激光干涉仪的设计基于激光干涉原理,该原理是将激光束分为两个光束,分别通过被测物体的两个侧面,然后将两束光重新合成。

当光束互相干涉时,它们会产生间隔的明暗条纹,这些条纹的间隔可以被用于测量小的长度变化。

在实践中,激光干涉仪使用的激光源通常是由半导体光源提供的,这种光源在可见光范围内有非常狭窄的频谱分布。

可以使用反射镜和分束器将光分为两束。

在光路上分别安装一个光栅使得干涉仪可以使用逆反射干涉,提高测量的精度。

使用激光干涉仪进行测量在进行测量时,需将两束光线分别传输给要被测量的物体的两个侧面。

当两束光线重新合并时,它们会形成明暗相间的条纹图案,这是干涉产生的结果。

通过测量条纹的间隔,我们可以轻松地计算出被测物体的位移变化。

激光干涉仪可用于测量非常小的长度、位移和角度变化,其度量精度可以达到亚微米级别。

此外,通过使用高质量的干涉仪,我们可以将其用于高精密表面形貌测量。

调整激光干涉仪如果干涉仪的调试不当,会导致干涉条纹模糊或者严重扭曲的情况,降低干涉仪的度量精度。

因此,在使用激光干涉仪进行测量之前,必须对其进行调整。

以下是调整激光干涉仪的步骤:1.调整激光源:确保激光源光束的宽度和强度足够稳定。

可以将激光传输到墙上的标定留置板来检查光束的准直性和焦点。

2.双色干涉圈合并:在数字式激光干涉仪中,需要将蓝色和红色光线重合在一个干涉圈内。

使用向一侧旋转/切向板识别同步点,其中图案由蓝色和红色光线表示。

提示:每次转动方向8分钟。

3.气象因素:排除湿度、温度固定输出、地面震动等因素的影响。

工作时确保放在一个平稳的场所,切不可震动。

4.探头选择:一般选其低灵敏度的测头。

不完全平整的表面则需要高灵敏度的探头。

激光干涉仪相关基础知识

激光干涉仪相关基础知识

一.激光干涉仪概述激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量工具。

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。

通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

二.激光干涉仪工作原理激光器发射单一频率光束射入线性干涉镜,然后分成两道光束,一道光束(参考光束)射向连接分光镜的反射镜,而第二道透射光束(测量光束)则通过分光镜射入第二个反射镜,这两道光束再反射回到分光镜,重新汇聚之后返回激光器,其中会有一个探测器监控两道光束之间的干涉(见图)。

若光程差没有变化时,探测器会在相长性和相消性干涉的两极之间找到稳定的信号。

若光程差有变化时,探测器会在每一次光程变化时,在相长性和相消性干涉的两极之间找到变化信号,这些变化会被计算并用来测量两个光程之间的差异变化。

三.激光干涉仪功能SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。

通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。

在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。

1.静态测量SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。

SJ6000基本线性测量配置:SJ6000全套系统:1.1. 线性测量1.1.1. 线性测量构建要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,这个组合装置就是“线性干涉镜”。

激光干涉仪角度、垂直度、直线度、平面度测量原理

激光干涉仪角度、垂直度、直线度、平面度测量原理

激光干涉仪角度、垂直度、直线度、平面度测量原理激光干涉仪是一种利用光的干涉原理进行高精度测量的仪器。

以下是激光干涉仪在角度、垂直度、直线度和平面度测量中的原理:1.角度测量原理:当角度反射镜旋转或移动产生角摆时,两束反射光会有相对应的光程差产生。

激光干涉仪采集到该光程差的干涉信号,经过运算处理,即可得出对应的角度值。

这种技术主要应用于运动轴的角摆测量和转轴的旋转角度测量。

2.垂直度测量原理:垂直度测量是通过比较正交轴的直线度值从而确定正交轴的非直角度。

例如,三坐标测量机的垂直度误差可能由导轨磨损、事故造成导轨损坏、机器地基差、正交轴上两原点传感器未准直等因素造成。

垂直度误差将对机器的定位精度及插补能力产生直接影响。

SJ6000激光干涉仪以光波为载体,在动态测量软件的配合下,可实现三坐标测量机的垂直度检测分析。

3.直线度测量原理:通过检测光路与干涉镜和反射镜之间的横向位移,可以得到导轨相对于激光光路参考线的直线度误差。

这可以在水平面或垂直面上进行,取决于直线度干涉镜和反射镜的布置。

激光干涉仪的直线度测量组件包括LH2000激光测头、直线度光学镜组、直线度测量附件和LaserLC测量软件。

数据采集方法通常涉及使待测机床轴移动到若干个不同位置(或“目标”),然后测量直线度误差。

4.平面度测量原理:激光干涉仪中的一束光经过分束器分成两束光线,经过不同的光路后重合在屏幕上形成干涉条纹。

根据干涉条纹的形状和变化,可以获得被测物体表面的形状、位移和平面度等信息。

在测量平面度时,首先在被测试的表面上涂抹一层反光涂料,以便激光光线能够被反射回来形成干涉条纹。

然后将激光干涉仪垂直于被测表面,调整其位置和角度,使得激光光线能够正常照射到被测表面上。

通过观察和记录干涉条纹的图案,可以确定表面的平整度和精度。

请注意,这些测量原理都依赖于激光干涉技术,它利用光的干涉现象来测量物体的几何特性。

激光干涉仪具有高精度和高灵敏度的特点,因此在工业测量和质量控制等领域中得到了广泛应用。

激光干涉仪的使用方法和技巧

激光干涉仪的使用方法和技巧

激光干涉仪的使用方法和技巧激光干涉仪(Laser Interferometer)是一种常用于测量物体长度和表面形貌等精密测量的仪器。

本文将介绍激光干涉仪的基本原理、使用方法和技巧,以帮助读者更好地应用激光干涉仪进行精密测量。

一、激光干涉仪的基本原理激光干涉仪基于干涉现象进行测量。

激光光源发出的单色光通过分束板分成两束光,然后分别经过两个光路,最后再次汇聚到一起。

当两束光的相位差为整数倍的波长时,两束光相互叠加干涉,形成明暗交替的干涉条纹。

通过测量干涉条纹的特征,可以计算出被测物体的长度、形状等信息。

二、激光干涉仪的使用方法1. 准备工作在使用激光干涉仪之前,需要确保仪器处于良好的工作状态。

首先,检查激光光源是否正常工作,确保光束的稳定性和质量。

其次,校准激光干涉仪的光路,确保两束光在汇聚时能够产生明确的干涉条纹。

2. 调整测量位置将激光干涉仪放置在待测物体的旁边或上方,并使用调节装置将光束对准物体表面。

确保光束垂直于物体表面,以获得准确的测量结果。

3. 观察干涉条纹打开激光干涉仪的显示屏或调节装置上的干涉条纹显示功能。

观察干涉条纹的形态和变化,根据实际测量需求调整光路或物体位置,使干涉条纹清晰可辨。

4. 实施测量根据所需测量的参数,选择合适的测量模式和功能。

根据干涉条纹的特征,采集测量数据,并使用仪器自带的软件或计算工具进行数据处理和分析。

三、激光干涉仪的使用技巧1. 注意环境条件激光干涉仪对环境条件相对敏感,尤其是光线和振动。

在测量过程中,尽量避免光线的干扰,选取较为安静的环境。

如果必要,可以使用隔离罩或振动吸收装置来降低外界环境对测量的影响。

2. 规避反射干扰激光干涉仪对光线的反射比较敏感,测量时应注意避免光线被反射到其他表面上,产生干涉干扰。

可以通过调整光源角度、使用吸光材料等方式减少反射干扰。

3. 熟悉仪器功能熟悉激光干涉仪的各种功能和测量模式,合理选择并设置相应的参数。

根据不同测量对象和要求,调整仪器的测量范围、采样率、干涉条纹的对比度等,以获得最佳的测量结果。

激光干涉仪原理介绍

激光干涉仪原理介绍

激光干涉仪原理介绍激光干涉仪(Interferometer)是一种基于干涉原理的精密测量仪器。

它利用激光的相干性和波动性,通过测量光程差或位相差的变化,可以对物体的长度、形状、表面质量等进行高精度的测量。

本文将介绍激光干涉仪的原理、构成和使用方法。

一、激光干涉原理激光干涉仪的基本原理是激光光束的干涉,干涉是指两个或多个波的叠加形成的干涉图案。

激光干涉仪一般是利用两束平行或近似平行的激光光束进行干涉。

当两束光束相遇时,由于光的波动性,会产生相长相消的干涉条纹。

根据干涉条纹的变化,可以测量物体表面的形状、光程差等。

二、激光干涉仪的构成1.激光器:激光干涉仪使用的激光器一般是氦氖激光器或半导体激光器,能够提供稳定的、单色、相干光源。

2.分束器:分束器是将激光光束分为两束平行的光束的光学元件,常用的分束器有半反射镜或分波镜。

分束器分为两个光路,一个称为参考光路,另一个称为测量光路。

3.反射镜:反射镜用于将分离出的两束光束反射回归并形成干涉。

反射镜一般被安置在待测物体的两端,将参考光束和测量光束反射回到检波器。

4.检波器:检波器用于测量干涉条纹的强度和位置。

常用的检波器有光电二极管和CCD相机等。

它将干涉图案转化为电信号,方便进行数据分析和处理。

三、激光干涉仪的使用方法1.相对干涉法:相对干涉法是通过比较两个物体之间的长度差异来测量物体的形状或表面质量。

在测量时,将待测物体和参考物体分别安置在两个光路中。

随后,根据两个干涉图案的变化,可以计算出两个物体之间的长度差异。

2.绝对干涉法:绝对干涉法是通过测量干涉图案中的位相差来进行测量。

在测量时,同时测量待测物体和参考物体表面的干涉图案。

通过分析两个干涉图案的位相差,可以计算出物体表面的形状和高度差。

应用领域:在制造业中,激光干涉仪常用于测量工件的形状、平整度和表面光洁度。

例如,在光学元件的制造中,可以使用激光干涉仪来精确测量元件的曲率和表面误差。

在科学研究中,激光干涉仪可用于测量物体的振动、变形和位移等动态过程。

激光干涉仪使用实训报告

激光干涉仪使用实训报告

一、实训目的本次实训旨在使学生了解激光干涉仪的基本原理、结构特点和应用领域,掌握激光干涉仪的操作方法,提高学生的动手能力和实践技能。

二、实训时间2021年X月X日三、实训地点XXX实验室四、实训器材1. 激光干涉仪一台2. 计量台一台3. 精密水准仪一台4. 标准测量块若干5. 计算机一台五、实训内容1. 激光干涉仪的基本原理激光干涉仪是利用光的干涉现象来测量物体长度、角度、形状等几何参数的仪器。

其基本原理是利用两个或多个光波在空间相遇时,由于相位差的存在,产生干涉条纹。

通过测量干涉条纹的间距,可以计算出被测物体的几何参数。

2. 激光干涉仪的结构特点(1)激光发生器:产生稳定、单色的激光光束。

(2)分光器:将激光光束分为两束,一束用于测量,另一束作为参考光束。

(3)反射镜:用于反射激光光束,形成干涉条纹。

(4)探测器:用于检测干涉条纹,并将信号传输至计算机进行处理。

(5)计算机:用于处理探测器接收到的信号,计算被测物体的几何参数。

3. 激光干涉仪的操作方法(1)打开激光干涉仪,连接计算机,进入软件界面。

(2)调整激光干涉仪的位置,使其与被测物体保持一定的距离。

(3)调整反射镜,使激光光束照射到被测物体上。

(4)启动测量程序,观察干涉条纹的变化。

(5)根据干涉条纹的间距,计算被测物体的几何参数。

4. 实验步骤(1)将标准测量块放置在计量台上,调整激光干涉仪的位置,使其与标准测量块保持一定的距离。

(2)调整反射镜,使激光光束照射到标准测量块上。

(3)启动测量程序,观察干涉条纹的变化。

(4)记录干涉条纹的间距,计算标准测量块的几何参数。

(5)将实际测量值与标准值进行比较,分析误差原因。

六、实训结果与分析1. 实验结果通过本次实训,我们成功测量了标准测量块的几何参数,并计算出其实际长度。

实验结果如下:标准测量块长度:L = 10.00 ± 0.01 mm2. 分析(1)实验过程中,我们严格按照操作步骤进行操作,确保了实验结果的准确性。

激光干涉仪讲解

激光干涉仪讲解

第一章、前言—、本次我们主要研究:如何检测机床的螺距误差。

因此我们主要的任务在于:1.应该使用什么仪器进行测量2.怎么使用测量仪器3.怎么进行数据分析4.怎么将测量所得的数据输入对应的数控系统二、根据第一点的要求,我们选择的仪器为:Renishaw激光器测量系统.此仪器检测的范围包括:1.线性测量2.角度测量3.平面度测量4.直线度测量5.垂直度测量6.平行度测量线性测量:是激光器最常见的一种测量。

激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。

三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。

因此,我们此次使用的检测方法——线性测量。

总结以上我们的核心在于:如何操作Renishaw激光器测量系统结合线性测量的方法进行检测.之后将检测得到的数据进行分析.最后将分析得到的数据存放到数控系统中。

这样做的目的在于一:是高机床的精度。

-1 -A-/r- -^― .Trt".弟一早、2.1什么是螺距误差?基础知识开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。

但丝杠总有—定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知:螺距误差是指由螺距累积误差引起的常值系统性定位误差。

2.2为什么要检测螺距i 吴差?根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。

2.3怎么检测螺距误差?(1)安装高精度位移检测装置。

(2)编制简单的程序,在整个行程中顺序定位于一些位置点上。

所选点的数目及距离则受数控系统的限制。

(3)记录运动到这些点的实际精确位置。

(4)将各点处的误差标出,形成不同指令位置处的误差表。

(5)多次测量.取平均值。

(6)将该表输入数控系统,数控系统将按此表进行补偿。

2.4什么是增量型误差、绝对型误差?①增量型误差增量型i吴差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5螺距误差补偿的原理是什么?螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较•计算出在数控加工全行程上的误差分布曲线,再将误差以表格的形式输入数控系统中。

激光位移干涉仪

激光位移干涉仪

激光干涉仪激光干涉仪是利用光的干涉原理测量光程之差从而测定有关物理量的一种精密光学测量仪器。

其基本原理和结构为迈克尔逊干涉仪。

两束相干光间光程差的任何变化会非常灵敏地导致干涉场的变化(如条纹的移动等),而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉场的变化可测量几何长度尺寸或折射率的微小改变量,从而测得与此有关的其他物理量。

测量精度决定于测量光程差的精度,如传统迈克尔逊干涉仪中干涉条纹每移动一个条纹间距,光程差就改变1/2个波长,所以干涉仪是以光波波长为单位测量光程差的。

现代激光干涉仪是以波长高度稳定的稳频激光器为测量工具,其稳定度一般优于10的—7次方。

激光干涉仪的测量精度之高是任何其他测量方法所无法比拟的。

(一) 第一代激光干涉仪最早的干涉仪以单频激光器作光源,基本与迈克尔逊干涉仪一样,只是平面镜被角锥棱镜代替,同时加入了两个探测器来探测干涉场,如图1所示。

系统设法使两个探测器探测到的信号相位差90°,以便实现可逆计数。

单频干涉仪的输出信号可以表示为()()⎥⎦⎤⎢⎣⎡±+=⎰tdt t v A A t u 0004cos λπϕ 其中0A 为直流分量,A 为交流分量振幅(有用的信号)。

在短距离测量时,一般来说直流分量变化不大,认为是恒定值,单频干涉仪以其简单、反射镜移动速度不受原理限制、有用信号占有的频带范围较窄等表现出它的优越性。

但是激光功率的飘移,光电接收系统飘移,长距离测量时测量光束强度下降等因素,使直流分量和交流分量均不断下降,轻则造成工作点飘移、干涉条纹分数部分测量误差等,严重时整形电路停止工作,干涉仪失效。

因此第一代干涉仪由于可靠性的问题,在实际应用中受到很大限制。

(二) 第二代激光干涉仪1. 内相位调制干涉仪内相位调制干涉仪是在参考镜上加上某一振幅和频率的调制振动信号,那么干涉仪的光程差就会相对于平均位置正负的交替变化,干涉仪信号为()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=⎰t dt t v A A t u m t ωελπcos 4cos 00 图1 探测器分光棱镜激光器测量镜 探测器 参考镜其中ε和m ω分别是调制信号的振幅和圆频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EC10机架后部有电源插座、电源开关(on/off、一个状态灯、以及数据链接电缆插座,可将EC10装臵连接PC10或PCM20接口卡。
三、警告
EC10的原厂设臵应已符合您所在国家的电压及频率规格。不过,在您使用EC10前,特别是在国外使用EC10或在非标准电源的场所使用时,请先确定将电源设定在适当的电压。请检查装臵下部的开关设臵,如下图5所示:
第一章、前言
一、本次我们主要研究:如何检测机床的螺距误差。因此我们主要的任务在于:1.应该使用什么仪器进行测量2.怎么使用测量仪器3.怎么进行数据分析
4.怎么将测量所得的数据输入对应的数控系统
二、根据第一点的要求,我们选择的仪器为:Renishaw激光器测量系统,此仪器检测的范围包括:
1.线性测量2.角度测量3.平面度测量4.直线度测量5.垂直度测量6.平行度测量
电压选择开关应设臵为:100伏、120伏则EC10设定为:120伏;220伏、240伏则EC10设定为:
240伏
如下改变电压设定:
1.确定先将电源开关关闭。
1.用一枚硬币或一把大型的平头螺丝起子或类似
工具将开关转到正确的设定。
1.打开开关。现在即可安全使用装臵。
EC10机架后部的电源插座旁边的收放式托盘中,有一根T级保险丝管防护火线(通电)输入。该托盘也有备用保险丝的放臵槽。工作的保险丝放在内侧。
采用螺距误差补偿功能应注意:螺距误差补偿功能的实现方法又有增量型和绝对型之分。所谓补偿就是指通过特定方法对机床的控制参数进行调整,其参数调整方法也依各数控系统不同而各有差异。
第三章、
- 2 -
认识激光干涉仪
本次试验我们使用的仪器为:Renishaw激光器测量系统
3.1激光干涉仪是由什么硬件组成
3.1.1什么是硬件?
三、安装三脚架
安装三脚架的时候要注意水平的问题,水平的调节在三只脚的调试上。每次挪动三脚架后都必须看三脚架上的水平指示器,判断时候水平。
四、计算机接口
DX10接口组件(USB
DX10已取代PCM20 (PCMCIA卡,成为ML10和EC10与笔记本电脑通信的标准接口。它同样也适用于台式机,取代了PC10接口卡(现已停产)。DX10是可靠的高速通信设备,可以5 kHz的速度将数据直接传输到Laser10。
DX10与Windows XP、SP1和SP2兼容,但与老版本的Windows操作系统不兼容。
对于双轴数据采集,只需使用两个DX10接口,分别插入两个USB
端口或一个单独的集线器
上即可。
DX10接口组件(USB包括:
DX10接口(USB
3米USB电缆
DX10驱动程序安装光盘
5.1.2连接简略图
5.2启用软件
线性测量:是激光器最常见的一种测量。激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。
三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。因此,我们此次使用的检测方法——线性测量。
总结以上我们的核心在于:如何操作Renishaw激光器测量系统结合线性测量的方法进行检测,之后将检测得到的数据进行分析,最后将分析得到的数据存放到数控系统中。这样做的目的在于——提高机床的精度。
(1)ML10激光器
Renishaw ML10 Gold Standard激光器
- 3 -
- 4 -
以上四个图案为激光罩在不同的状态下的作用
A无光束射出B缩小横截面光束及目标C)最答光束及目标D)标
准测量位置射出最大光来的横截面以及反射光束的探测器孔Renishaw ML10 Gold Standard激光器:
5.2.1如何安装和配置软件?
一、安装软件
1.开启计算机,等候它在Windows中启动,然后插入CD-ROM光盘至光盘驱动器。安装程序现在应会自动运行。
若安装程序没有自动运行,请从计算机的任务栏中选择开始/运行,进入运行对话框。单击浏览按钮,并由浏览对话框来使用安装CD-ROM光盘上的Setup.exe文件。选择Setup.exe,然后单击打开按钮。现在,从运行对话框中选择‚确定‛以开始软件安装程序。
中激光的返回光点偏移或光源受阻挡,灰色表正常。
图2主要是显示当前ML10与EC10的工作状态,并且显示了当
前使用的单位标准、测量方式、数据采集的方式。
图2
图3主要记录检测到的实际数据并且以图形的形式显示出来。
图3
图4显示为当前激光返回信号的强度,其实我们也可以使用此信号的显Байду номын сангаас情况判断当前光线是否准直,即镜子的安装是否正确。
(4)线性测量镜组
线性测量镜组可用于测量线性定位精度。线性测量镜组组件包括下列要件,如图1所示:①分光镜
②两个线性反射镜③两个光靶以助于光学准直
- 11 -
注:当您组合一个分光镜和线性反射镜后,便成为一个线性干涉镜。
(5)用于将镜组安装到机床机床上的安装组件
- 12 -
镜组安装组件是用来将Renishaw测量镜组安装到CMM或机床上。本系统的设计可以轻易地交换不同的测量镜组,无需重新准直激光器。组件包括:
①.安装ML10:
一、激光安全-切勿凝视光束
根据EN60825-1以及美国标准ANSI 2136,RENISHAW ML10激光器属II级激光,因而不需要佩戴护目镜(正常条件下人会自然地眨动眼睛并转移目光以避免伤害)。切勿直接凝视光束或照射他人的眼睛。注视漫射光束不会造成伤害。
二、警告
1.主电源导线是一根三股的电缆线。地线(接地)的电源部分需有效接地。
6.搞清楚什么是增量误差和什么是绝对误差,应该怎么输入到系统中。
7.在检测之前应该生成一个检测程序给数控系统,这个程序应该怎么生成?
8.对光的时候发现两平行线之间的光点不重合并且不能试用微调适合的轴向时应该怎么办?(提
示:调镜子的方向)
第五章、安装激光干涉仪
5.1连接硬件部分
5.1.1连接硬件时必备知识?
②.安装EC10
一、重要注意事项
应先连接EC10的气温及材料温度传感器电源,再开启EC10电源。一旦EC10检测到其中一个传感器通道尚未接通,将不会再度探测该通道。当使用少于三个材料温度传感器时,需按照从右到左的顺序使用插座。
注:请返回3.1.2第一大点的第三小点中的图三即EC10后视图
二、EC10数据链接
三脚架、安装云台和ML10激光器三合一体,可为ML10光束准直提供下列调整:
∙ ∙ ∙ ∙
高度调整水平平移调整角度偏转偏转调整角度俯仰调整
其中高度调整是由图9上显示的高度曲柄控制的,水平平移是由图2上显示的平移控制旋钮控制,角度偏转偏移是由图2上显示的旋转微调旋钮控制。图2后的两个示意图为水平平移和角度偏移的使用方法。
①增量型误差
增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差
绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5螺距误差补偿的原理是什么?
螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将误差以表格的形式输入数控系统中。这样数控系统在控制该轴的运动时,会自动考虑到误差值,并加以补偿。
硬件:硬件就是我们看到的一堆由金属、塑料等材料堆成的被称之为‚Renishaw激光干涉仪‛的东西(事实上,它是由一些机壳和电路板等物构成。因为是一些看得见、摸得着的东西,又因为都是‚硬‛的,所以被人们形象地称为‚硬件‛。
3.1.2具体硬件名称以及各自的用途是什么?
一、本次使用激光检测仪主要检测螺距误差,因此我们主要使用到以下的仪器:
renishawm8螺丝钉可拧上底板标准磁基或其它三个安装杆安装杆有两个底板renishawcmm探头臵m8配器可连接标准磁基或两个安装块和安装螺钉可将光学元件连接至安装杆镜组安装组件不包括任何可将安装的镜组夹上待测机床的元件要这么做需视不同的机床和安装杆装上机一种通用的方式是用磁性安装块直接将钢制底板或而异
- 20 -
图4
第四章、使用激光干涉仪器前应该注意什么问题?
1.搞清楚为什么要对光点,最终是为了什么?
2.如何知道现在仪器检测到的信号强弱如何?
3.对光的时候应该注意什么?是否有诀窍?
4.搞清楚如何安装仪器即仪器之间的信号线和电源线之间的关系是怎么样的,绘图说明。
5.搞清楚三脚架的使用方法,四个主要的旋钮的名称是什么?各自的作用是什么?
- 1 -
第二章、
2.1什么是螺距误差?
基础知识
开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。
由上面的原因可以得知:
螺距误差是指由螺距累积误差引起的常值系统性定位误差。2.2为什么要检测螺距误差?
根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。
3.2激光干涉仪是由哪些软件组成
3.1.2什么是软件?
软件:是人们为了告诉电脑要做什么事而编写的,电脑能够理解的一串指令,有时也叫代码、程序。
3.2.2具体的软件名称以及各自的用途是什么?
(1)Renishaw Laser10是配套Renishaw激光器测量系统的软件,此软件的资源管理器窗口:
- 13 -
ML10是一种单频HeNe激光器,内含对输出激光束稳频的电子线路及对由测量光学镜产生的干涉条纹进行细分和计数处理。
其主要作用简单概括为:发射红外线以及返收红外线供特定的软件做分析,记录相关的数据
(2)三脚架
- 5 -
三脚架及云台可用来安装ML10激光器,将ML10激光器设臵在不同的高度,并充分控制ML10激光束的准直。对于大多数机床校准设臵,建议将ML10激光器安装在三脚架和云台上。
相关文档
最新文档