第12章《一次函数》沪科版八年级上册单元测试卷(含解析)

合集下载

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气2、一次函数y=mx-n的图象如图所示,则下面结论正确的是()A.m<0,n<0B.m<0,n>0C.m>0,n>0D.m>0,n<03、已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A. B. C. D.4、如图,以两条直线l1, l2的交点坐标为解的方程组是()A. B. C. D.5、若一次函数的图象如图所示,则不等式的解集为()A. B. C. D.6、一列快车以100千米/小时的速度从甲地驶往乙地,一列特快车以150千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为1000千米.两车同时出发,则大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()A. B. C. D.7、如图,直线与直线交于点,关于x的不等式的解集是( )A. B. C. D.8、有一游泳池注满水,现按一定的速度将水排尽,然后进行清扫,再按相同的速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量V(立方米)随时间t (小时)变化的大致图象可以是()A. B. C.D.9、直线y=2x﹣1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、已知直线l1:与直线l2:在第三象限交于点M,若直线l1与x轴的交点为B(3,0),则k的取值范围是()A. B. C. D.11、一次函数与的图象如图所示,下列说法:①;②函数不经过第一象限;③不等式的解集是;④.其中正确的个数有( )A.4B.3C.2D.112、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.313、某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟14、下列函数中,自变量x的取值范围是x>2的函数是()A.y=B.y=C.y=D.y=15、甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们的骑行路程s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:(1)他们都骑了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k﹣b的值是________.17、直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是________.18、放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是________千米/分钟.19、y= 自变量x的取值范围是________.20、写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,-3)的一次函数表达式(写出一个即可)________.21、如图,已知一次函数y=−x+b和y=ax−2的图象交于点P(−1,2),则根据图象可得不等式−x+b>ax−2的解集是________.22、根据如图所示的程序,计算的值,若输入的值是1时,则输出的值等于________.23、一个y关于x的函数同时满足两个条件:①图象过(0,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为________.(写出一个即可)24、若一次函数与函数的图象关于X轴对称,且交点在X 轴上,则这个函数的表达式为:________.25、函数y= 中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.27、现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?28、将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.29、如表中是正比例函数y=kx的自变量x与函数y的对应值, 点A(m, ),B(n, )(m< n <0)在正比例函数y=kx 的图像上,试求出p的值,并比较和的大小,并说明理由.x -2 1y 4 y130、在建设社会主义新农村过程中,某村委决定投资开发项目,现有6个项目可供选择,各项目所需资金及预计年利润如下表:所需资金(亿元) 1 2 4 6 7 8预计利润(千万元)0.2 0.35 0.55 0.7 0.9 1(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果预计要获得0.9千万元的利润,你可以怎样投资项目?(3)如果该村可以拿出10亿元进行多个项目的投资,预计最大年利润是多少?说明理由.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、C5、C6、D7、A8、C9、B10、D11、A12、B13、D14、B15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,直线与的交点坐标为,则使的的取值范围为()A. B. C. D.2、如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90º后,所得直线的解析式为()A.y=x-2B.y=-x+2C.y=-x-2D.y=-2x-13、已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1, y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较4、在函数y= 中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤15、已知y=(m-3)x|m|-2+1是一次函数,则m的值是().A.-3B.3C.±3D.±26、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气7、药品研究所开发一种抗菌新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后,血液中药物浓度y(微g/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A. B. C. D.8、在函数中,自变量x的取值范围是()A. B. 且 C. D. 且9、一次函数y1=kx+b与y2=x+a的图象如图,下述结论:①k<0;②a>0;③当x<4时,y1<y2;④b<0,其中正确结论的个数有()A.4个B.1个C.2个D.3个10、已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定11、已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠312、在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x-1C.y=xD.y=x-213、均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.14、小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.则下列叙述中错误的是()A.甲乙两地相距30kmB.两人在出发75分钟后第一次相遇C.折线,线段OC是表示小明的函数图象y段OAB是表示小聪的函数图象y1D.小聪去乙地和返回甲地的平均速度相同215、如果直线y=kx+b经过一、二、四象限,则有()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0二、填空题(共10题,共计30分)16、已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是:a________b(填“<”,“=”,或“>”)17、如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/h.18、已知一次函数(k、b为常数,且)的图象如下图所示,则关于x的方程的解是________.19、根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a 时,输出数值为________.20、某商店为减少A商品的积压采取降价销售的策略.某商品原价为520元,随着不同幅度的降价,日销量(单位为件)发生相应的变化(如表):降价(元)10 20 30 40 50 60日销量(件)155 160 165 170 175 180(1)这个表反映了________ 和________ 两个变量之间的关系(2)从表中可以看出每降价10元,日销量增加________ 件,(3)可以估计降价之前的日销量为________ 件,(4)如果售价为440元时,日销量为________ 件.21、函数中自变量x的取值范围是________ .22、在一次函数y=(1﹣k)x﹣1中,函数y随x的增大而减小,请你写出一个符合条件的k的值:________(写一个即可)23、如图,的图像分别交x、y轴于点A、B,与y=x的图像交于第一象限内的点C,则△OBC的面积为________24、一次函数的图象与正比例函数的图象平行,且与轴交于点,则一次函数图象与轴的交点坐标是________.25、甲、乙两人在直线跑道上同起点同终点同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2s,在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出的下结论:①a=8,②c=92,③b=123,其中正确的是________.三、解答题(共5题,共计25分)26、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.27、已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.28、如图1,将等腰直角△ABC放在直角坐标系中,其中∠B=90°,A(0,10),B(8,4),动点P在直角边上,沿着A﹣B﹣C匀速运动,同时点Q在x轴正半轴上以同样的速度运动,当点P到达C时,两点同时停止运动.设运动时间为t秒,当点P在AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,(1)则Q开始运动时的坐标是?P点运动的速度是?(2)求AB的长及点C的坐标;(3)问当t为何值时,OP=PQ?29、行驶中的汽车,在刹车后由于惯性的作用,还将继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车进行测试,测得数据如下表:刹车时车速20 40 60 80 100 120(千米/时)刹车距离(米)1.0 3.6 7.8 13.6 21 30回答下列问题:(1)上表反映了哪两个变量之间的关系?(2)如果刹车时车速为60千米/时,那么刹车距离是多少米?30、端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、B5、A6、C7、C8、D9、B10、C11、B12、A13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、。

八年级数学上册《第十二章一次函数》单元测试卷-附答案(沪科版)

八年级数学上册《第十二章一次函数》单元测试卷-附答案(沪科版)

八年级数学上册《第十二章一次函数》单元测试卷-附答案(沪科版)一、选择题1.利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题的因变量是( ) A .太阳光强弱B .水的温度C .所晒时间D .热水管2.下列图象中,表示y 是x 的一次函数的是( )A .B .C .D .3.一次函数1y x =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.在同一平面直角坐标系中,若一次函数5y x =-+与31y x =+的图象交于点M ,则点M 的坐标为( )A .()14,B .()16-,C .()14-,D .()12--, 5.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位:N )与铁块被提起的高度x (单位:cm )之间的函数关系的图象大致是( )A .B .C .D .6.如图为一次函数y=kx+b (k 和b 为常数且00)k b ≠≠,的图象,则一次函数y bx k =+的图象大致是( )A .B .C .D .7.一次函数1y mx n =+与2y kx a =+的图象如图所示,则mx n kx a +>+的解集为( )A .2x <B .2x >C .1x >D .1x <8.若直线y =2x+n 与y =mx ﹣1相交于点(1,﹣2),则() A .m =12,n =﹣52 B .m =12,n =﹣1C .m =﹣1,n =﹣52D .m =﹣3,n =﹣329.已知点()P a b ,在一次函数2y x =-+的图象上,且在一次函数y x =图象的下方,则符合条件的a b -值可能是( ) A .-2B .-1C .0D .110.如图,直线1l y x m =+:与直线2l y x n =-+:相交于点()12P ,,则关于x y ,的方程组y x my x n =+⎧⎨=-+⎩的解为( )A .11x y =⎧⎨=-⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .11x y =-⎧⎨=⎩二、填空题11.饮食店里快餐每盒10元,买n 盒需付s 元,则其中因变量是 . 12.已知函数1()1f x x =-,那么(2)f = . 13.已知一次函数y kx k =-,当0k <时,图像不过第 象限.14.已知一次函数3y x =-与y kx =(k 是常数,0k ≠)的图像的交点坐标是()21-,,则方程组30x y kx y -=⎧⎨-=⎩的解是 . 三、解答题15.如图,正方形ABCD 的边长为2,P 为DC 上的点(不与C ,D 点重合).设线段DP 的长为x ,求梯形ABCP 的面积y 关于x 的函数关系式,并写出自变量x 的取值范围.16.如图,直线AB 分别与x 轴、y 轴交于点()20A -,,()03B ,直线CD 分别与x 轴、y 轴交于点()10C ,和()01D ,,与直线AB 交于点E .求四边形AODE 的面积.17.一次函数的图象经过点(35)-,且与直线13y x =-平行,求这个函数表达式. 四、综合题18.小南一家到度假村度假,小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发,爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,(取东西的时间忽略不计),如下图是他们离家的距离s (km )与小南离家的时间t (h )的关系图,请根据图回答下列问题:(1)图中的自变量是 ,因变量是 ,小南家到该度假村的距离是km(2)小南出发 小时后爸爸驾车出发,爸爸驾车的平均速度为 km /h (3)小南从家里到度假村的路途中,当他与爸爸相遇时,离家的距离是多少km ?19.如图,在平面直角坐标系中,O 为坐标原点,一次函数2y kx =+(k 为常数,0)k ≠的图象经过(21)A --,,并且交x 轴于点B ,交y 轴于点C .(1)求k 的值; (2)求BOC 的面积.20.网上购物快捷、简便,受到人们的广泛喜爱.小明家装修要用某种环保装饰材料,两个商家的原价相同.购物节优惠促销,甲店打9折,乙店不超过3件不打折,实际付费金额y甲(元),y乙(元)和x(件)(x为非负整数)的关系如图所示,小明家需要这种装饰材料6件,发现两家的付费金额恰好相同.(1)写出y甲(元)与x(件)的函数关系式,并求出a的值;(2)写出y乙(元)和x(件)的函数关系式,并写出乙店实际的优惠方案;(3)小宇家也需要这种装饰材料,按照上述的优惠方案,已知甲店比乙店付费金额高60元,求小宇家购买的件数.参考答案与解析1.【答案】B【解析】【解答】根据题意可得:因变量是水的温度。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,是某工程队在“村村通”工程中修筑的公路长度(米)与时间(天)之间的关系图象。

根据图象提供的信息,可知该公路的长度是()米。

A.504B.432C.324D.7202、在函数y= 中,自变量x的取值范围是()A.x≤1B.x≥1C.x<1D.x>13、如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<24、对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与轴正方向成45°角 C.函数图象不经过第四象限 D.函数图象与轴交点坐标是(0,6)5、下列四个函数中,y的值随着x值的增大而减小的是()A.y=2xB.y=x+1C.y= (x>0)D.y=x 2(x>0)6、一次函数的与的部分对应值如下表所示,根据表中数值分析.下列结论正确的是()A. 随的增大而增大B. 是方程的解C.一次函数的图象经过第一、二、四象限 D.一次函数的图象与轴交于点7、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.8、函数中自变量x的取值范围是()A.x≠1B.x>1C.x≠3D.x≥39、下列函数中,当 x>0 时 y 值随 x 值增大而减小的是( )A.y=x 2B.y= xC. y=D.y=x-110、如图,直线y=-x+4分别与x轴,y轴交于A、B两点,从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )A. B.6 C. D.11、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10%B.15%C.20%D.25%12、均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A. B. C. D.13、若一个等腰三角形的顶角度数为y(度),底角度数为x(度),则它们的函数表达式应是()A.y=180﹣2x(0<x<90)B.y=90﹣xC.y=180﹣x(0<x<90)D.y=90+x14、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的图象是()A. B. C.D.15、一次函数与的图象如下图,则下列结论(1);(2);(3)当时,(4)的解为中,正确的个数是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,已知点,直线与两坐标轴分别交于A,B两点,D,E 分别是AB,OB上的动点,则周长的最小值是________.17、函数的图象如图所示,则结论:①两函数图象的交点的坐标为;②当时,;③当时,;④当逐渐增大时,随着的增大而增大,随着的增大而减小.其中正确结论的序号是________.18、直线与y轴的交点坐标为________;19、如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式2x+b>ax﹣3的解集是________.20、当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.已知点A (1,6)与点B的坐标满足y=﹣x+b,且点B是“完美点”.则点B的坐标是________.21、如图,已知A(-4,0)、B(0,3),一次函数与坐标轴分别交于C、D 两点,G为CD上一点,且DG:CG=1:2,连接BG,当BG平分∠ABO时,则b的值为________.22、正比例函数y=kx的图象经过点(1,2),则k=________。

沪科版八年级数学上册试题 第12章 一次函数 章节测试卷 (含解析)

沪科版八年级数学上册试题 第12章 一次函数 章节测试卷 (含解析)

第12章《一次函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,已知直线y=kx+b与直线y=2x+2022平行,且与y轴交于点M (0,4),与x轴的交点为N,则△MNO的面积为()A.2022B.1011C.8D.42.当x>−3时,对于x的每一个值,函数y=kx(k≠0)的值都小于函数y=−12x+3的值,则k的取值范围是()A.k≥−32且k≠0B.k≤−12C.−32≤k≤−12D.0<k≤−123.已知(x1,y1),(x2,y2),(x3,y3)为直线y=−3x+1上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2=1,则y1y3>0B.若x1x3=−2,则y1y2>0C.若x2x3=3,则y1y3>0D.若x2x3=−1,则y1y2>04.关于函数y=(k−3)x+k(k为常数),有下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图像必经过点(−1,3);③若图像经过二、三、四象限,则k的取值范围是k<0;④若函数图像与x轴的交点始终在正半轴,则k的取值范围是0<k<3.其中,正确结论的个数是().A.1B.2C.3D.45.若平面直角坐标系内的点M满足横,纵坐标都为整数,则把点M叫做“整点”,例如,P (1,0),Q(2,−2)都是“整点”,四边形OABC(O为原点)为正方形且B点坐标为(6,6),有4条直线y=kn x+bn(n=1,2,3,4),其中k1,k2,k3,k4互不相等,则这4条直线在正方形OABC内(包括边上)经过的整点个数最多是()个.A.22B.24C.28D.256.如图,在△ABC中,点P是BC边上一点,点P从B点出发沿BC向点C运动,到达C点时停止.若BP=x,图中阴影部分面积为S,则图中可以近似地刻画出S与x之间关系的是()A. B.B.C.D.7.如图,直线y=1x−2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将直线2沿x轴向左平移,当点B落在平移后的直线上时,则直线平移的距离是()A.6B.5C.4D.38.甲乙两人在同一条笔直的公路上步行从A地去往B地,已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图像如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A 地21千米;④A,B 两地距离为27千米.其中错误的个数为( )A .1个B .2个C .3个D .4个9.如图,A (x 1,y 1),B (x 2,y 2)分别是直线y =2x +1,y =−x +4上的动点,若|x 1−x 2|≤1时,都有|y 1−y 2|≤4,则x 1的取值范围为( )A .−13≤x 1≤0B .0≤x 1≤2C .−73≤x 1≤−13D .−23≤x 1≤210.如图,已知直线a :y =x ,直线b :y =−12x 和点P (1,0),过点P (1,0)作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线,交直线b 于点P 2,过点P 2作y 轴的平行线,交直线a 于点P 3,过点P 3作x 轴的平行线交直线b 于点P 4,…,按此作法进行下去,则点P 15的横坐标为( )A.−26B.−27C.−214D.−215二.填空题(共6小题,满分18分,每小题3分)11.若一次函数y=2x−5的图像过点(a,b),则b−2a+1=.12.若一次函数y=kx+b与y=mx的图象交于点(2,4),则关于x的方程(2k+b)x=mx+m 的解为x=.13.一次函数y=(k+3)x+k+1的图象不经过第二象限,则k的取值范围是.14.如图,在平面直角坐标系中,点A,B的坐标分别为(2,0),(1,2),直线l的函数表达式为y=kx+4−3k(k≠0).若线段AB与直线l没有交点,则k的取值范围是.15.如图,四边形ABCD的顶点坐标分别为A(−4,0),B(−2,−1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD的面积分成面积相等的两部分时,则直线l的函数表达式为.16.如图,有一种动画程序,在平面直角坐标系屏幕上,直角三角形是黑色区域(含直角三角形边界),其中A(1,1),B(2,1),C(1,3),用信号枪沿直线y=3x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是.三.解答题(共7小题,满分52分)17.(6分)已知函数y=(2m+1)x+m−3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.18.(6分)已知y+2与x成正比例函数关系,且x=3时,y=7.(1)写出y与x之间的函数解析式;(2)求当x=−3时,y的值;(3)求当y=4时,x的值.19.(8分)已知:同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =k 2x +b 2的图象,分别与x 轴交于点A ,B ,两直线交于点C .已知点A (−1,0),B (2,0),C (1,3),请你观察图象并结合一元一次方程、一元一次不等式和一次函数的相关知识回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是_______;关于x 的方程k 2x +b 2=0的解是________;(2)请直接写出关于x 的不等式k 1x +b 1≥k 2x +b 2的解集;(3)请直接写出关于x 的不等式组{k 1x +b 1>0k 2x +b 2>0的解集.(4)求△ABC 的面积.20.(8分)本市城镇居民年度生活天然气收费标准如下表所示:阶段使用量(立方米)单价(元/立方米)第一阶段0−310(含) 3.00第二阶段310−520(含) 3.30第三阶段超过520 4.20根据表格信息回答问题:(1)一同学家2021年度截止到4月已使用328立方米天然气,求至2021年4月,此同学家中使用燃气总共花费多少钱?(2)试写出缴纳燃气总费用y(元)关于燃气使用量x(立方米)(310<x≤520)的函数解析式.(3)如果该同学家2020年度天然气总缴费1665元,求该同学家2020年度天然气使用总量.21.(8分)定义:在平面直角坐标系xOy中,函数图象上到两坐标轴的距离之和等于n(n>0)的点,叫做该函数图象的“n阶和点”.例如,(2,1)为一次函数y=x−1的“3阶和点”.(1)若点(−1,−1)是y关于x的正比例函数y=mx的“n阶和点”,则m= ______ ,n= ______ ;(2)若y关于x的一次函数y=kx−2的图象经过一次函数y=x+3图象的“5阶和点”,求k的值;(3)若y关于x的一次函数y=nx−4的图象有且仅有2个“n阶和点”,求n的取值范围.22.(8分)一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,在整个过程中进水速度不变,同时修船过程中排水速度不变,船修好后不再进水,此时的排水速度与修船过程中进水速度相同,直到将船内积水排尽,设轮船触礁后船舱内积水量为y(t),时间为x(min),y与x之间的函数图象,如图所示.(1)修船过程中排水速度为t/min,a的值为 .(2)求修船完工后y与x之间的函数关系式,并写出自变量x的取值范围.(3)当船内积水量是船内最高积水量的3时,直接写出x的值.423.(8分)如图,在平面直角坐标系中,直线l与x轴相交于点P,直线l上的两点A(1,a),B(b,1)满足a−3+|b+1|=0,将线段AB向右平移5个单位长度得到线段DC.(1)点C的坐标为_________;(2)连接AD,BC,AC,点Q是x轴上一点(不与点P重合),连接AQ,交BC于点E.①当AC恰好平分∠DAQ时,试判断∠AQP与∠ACB有什么数量关系?并说明理由;②设点Q(t,0),记三角形ABQ的面积为S,三角形AOC的面积为S0.当S=811S0时,求点Q的坐标.答案一、选择题1.D【分析】先根据两直线平行k值相等,以及直线经过点M(0,4),即可求出直线MN的解析式,进而可求出N点坐标,然后根据三角形的面积公式即可求解.【详解】∵直线y=kx+b与直线y=2x+2022平行,∴k=2,即y=2x+b,∵直线y=2x+b过点M(0,4),∴4=2×0+b,即b=4,∴直线MN的解析式为y=2x+4,当y=0时,有x=-2,∴N点坐标为(-2,0),∴ON=2,∵M(0,4),∴OM=4,∴△MON的面积为:S=12×2×4=4,故选:D.2.C【分析】先求得x=−3时,y=−12x+3=92,当k=−12,直线y=kx(k≠0)与直线y=−1 2x+3平行,且在直线y=−12x+3下方;当直线y=kx与直线y=−12x+3的交点在(−3,92)的上方时,函数y=kx(k≠0)的值都小于函数y=−12x+3的值,据此求解即可.【详解】解:当x=−3时,y=−12x+3=92,即有点(−3,92),将点(−3,92)代入y=kx,有92=−3k,解得k=−32,当k=−12,直线y=kx(k≠0)与直线y=−12x+3平行,且在直线y=−12x+3下方;结合图象可知:直线y =kx 与直线y =−12x +3的交点在(−3,92)的上方时,并随着交点的不断上移,直至直线y =kx (k ≠0)与直线y =−12x +3平行时,满足当x >−3时,函数y =kx (k ≠0)的值都小于函数y =−12x +3的值,∴−32≤k ≤−12,故选:C .3.D【分析】根据一次函数增减性,结合各选项条件逐项验证即可得到答案.【详解】解:∵直线y =−3x +1中−3<0,∴ y 随x 的增大而减小,∵ x 1<x 2<x 3,∴ y 1>y 2>y 3,A 、若x 1x 2=1,则x 1x 2>0,即x 1与x 2同号(同时为正或同时为负),∵ x 1<x 2<x 3,∴若取x 1与x 2同为负数,由x 1<x 2<x 3不能确定x 3的正负,∵ (x 1,y 1),(x 3,y 3)为直线y =−3x +1上的三个点,∴ y 1=−3x 1+1>0,y 3=−3x 3+1正负不能确定,则无法判断y 1y 3符号,该选项不合题意;B 、若x 1x 3=−2,则x 1x 3<0,即x 1与x 3异号(一正一负),∵ x 1<x 2<x 3,∴x1<0,x3>0,由x1<x2<x3不能确定x2的正负,∵(x1,y1),(x2,y2)为直线y=−3x+1上的三个点,∴y1=−3x1+1>0,y2=−3x2+1正负不能确定,则无法判断y1y2符号,该选项不合题意;C、若x2x3=3,则x2x3>0,即x2与x3同号(同时为正或同时为负),∵x1<x2<x3,∴若取x2与x3同为正数,由x1<x2<x3不能确定x1的正负,∵(x1,y1),(x3,y3)为直线y=−3x+1上的三个点,∴y1=−3x1+1正负不能确定,y3=−3x3+1正负不能确定,则无法判断y1y3符号,该选项不合题意;D、若x2x3=−1,则x2x3<0,即x1与x3异号(一正一负),∵x1<x2<x3,∴x2<0,x3>0,由x1<x2<x3确定x1<0的正负,∵(x1,y1),(x2,y2)为直线y=−3x+1上的三个点,∴y1=−3x1+1>0,y2=−3x2+1>0,则y1y2>0,该选项合题意;故选:D.4.D【分析】①根据一次函数定义即可求解;②y=(k−3)x+k=k(x+1)−3x,即可求解;③图像经过二、三、四象限,则k−3<0,k<0,解关于k的不等式组即可;④函数图像与x轴的交点始终在正半轴,则x>0,即可求解.【详解】解:①根据一次函数定义:形如y=kx+b(k≠0)的函数为一次函数,∴k−3≠0,∴k≠3,故①正确;②y=(k−3)x+k=k(x+1)−3x,∴无论k取何值,函数图像必经过点(−1,3),故②正确;③∵图像经过二、三、四象限,∴{k−3<0k<0,解不等式组得:k<0,故③正确;④令y=0,则x=−kk−3,∵函数图像与x轴的交点始终在正半轴,∴−kk−3>0,∴kk−3<0,经分析知:{k>0k−3<0,解这个不等式组得0<k<3,故④正确.∴①②③④都正确.故选:D.5.A【分析】根据“整点”的定义可知,在正方形OABC内(包括边上)扥整点横坐标的取值范围是0到6的自然数,直线y=kn x+bn(n=1,2,3,4)在0≤x≤6范围时,当k=±1,k=0时对应的整点数最多为7个,其次是k=±2或k=±12时对应的整点数最多为4个,由此即可得到答案.【详解】解:由画图可知:,直线y=x在正方形OABC内(包括边上)经过的整点的个数有7个,直线y=−x+6在正方形OABC内(包括边上)经过的整点的个数有7个,直线y=3在正方形OABC内(包括边上)经过的整点的个数有7个,直线y=2x−2在正方形OABC内(包括边上)经过的整点的个数有4个,其中点(3,3)是三条直线y=x、y=−x+6、y=3的交点,点(2,2)是直线y=x、y=2x−2的交点,∴经过的整点的个数最多是:7+7+7+4−3=22(个),故选:A.6.C【分析】如图:作△ABC的高AD,则AD为定值.根据三角形的面积公式得出S=12PB⋅AD=12x⋅AD=12AD⋅x;可判断得到S是x的正比例函数,最后根据正比例函数的图像与性质即可求解.【详解】解:如图,作△ABC的高AD,则AD为定值.△PAB(图中阴影部分)的面积S=12PB⋅AD=12x⋅AD=12AD⋅x,即S=12AD⋅x,∵AD为定值,∴12AD为定值,∴S是x的正比例函数.故答案是C.7.A【分析】先求出平移过B点的直线解析式,再求出其与x轴的交点坐标,交点记为C,把A点横坐标与C点的横坐标相减即可作答.【详解】如下图,过B作x轴垂线,垂足为D,记平移后的直线与x轴的交点为C,对于直线y=12x−2,令y=0,解得x=4,∴A点坐标为(4,0)∴OA=4∵△OAB为等腰直角三角形,BD⊥x轴∴易得OD=2,BD=2∴B(2,2);设平移后的直线为:y=12x+b,把B(2,2)代入得2=1+b,解得b=1,所以平移后的直线解析式为y=12x+1,令其y=0得0=12x+1解之得x=-2∴C(0,-2),∴OC=2∴平移的距离为OA+OC=4+2=6.故选:A.8.A【分析】①由函数图象数据可以求出甲的速度,再由追击问题的数量关系建立方程就可以求出乙的速度;②由函数图象的数据由乙到达终点时走的路程-甲走的路程就可以求出结论;③乙或甲行驶的路程就是乙追上甲时,两人距A地的距离;④求出乙到达终点的路程就是A,B两地距离.【详解】解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7-4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9-4)×7-9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9-4)=35千米,故④错误.综上所述:错误的只有④.故选:A.9.B【分析】将A(x1,y1),向右平移1个单位得到点C,过点C作x的垂线,交y=−x+4于点B,交y=2x+1于点D,当BC≤4时,符合题意,同理将点A向左平移一个单位得到C,进而即可求解.【详解】解:如图,将A(x1,y1),向右平移1个单位得到点C,过点C作x的垂线,交y=−x+4于点B,交y=2x+1于点D,当BC≤4时,符合题意,∴C(x1+1,2x1+1),B(x1+1,−(x1+1)+4)即B(x1+1,−x1+3),∴BC=2x1+1−(−x1+3)=3x1−2∴3x1−2≤4解得x1≤2如图,将点A向左平移一个单位得到C,∴C(x1−1,2x1+1),B(x1−1,−(x1−1)+4)即B(x1−1,−x1+5),∴BC=−x1+5−(2x1+1)=−3x1+4≤4解得x1≥0综上所述,0≤x1≤2,故选B10.B【分析】点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(−2,1),即P2的横坐标为−2=−21,同理,P3的横坐标为−2=−21,P4的横坐标为4=22,P5的横坐标为22,P6的横坐标为−23,P7的横坐标为−23,P8的横坐标为24,P9的横坐标为24,……,求得P4n的横坐标为22n,于是得到结论.【详解】解:∵过点P(1,0)作y轴的平行线交直线a于点P1,∴P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=−2,∴P2(−2,1),即P2的横坐标为−2=−21,∵P2P3∥y轴,∴P3的横坐标为−2=−21,且P3在直线y=x上,∴y=−2,∴P3(−2,−2),∵P3P4∥x轴,∴P4的纵坐标=P3的纵坐标=−2,且P4在直线y=−12x上,∴−2=−12x,∴x=4,∴P4(4,−2),即P4的横坐标为4=22,∵P4P5∥y轴,∴P5的横坐标为4=22,且P5在直线y=x上,即:P1的横坐标为1,P2的横坐标为−21,P3的横坐标为−21,P4的横坐标为22,P5的横坐标为22,用同样的方法可得:P6的横坐标为−23,P7的横坐标为−23,P8的横坐标为24,P9的横坐标为24,……,∴P4n的横坐标为22n,∴P12的横坐标为22×3=26,P13的横坐标为26,∴P14的横坐标为−27,P15的横坐标为−27.故选:B.二.填空题11.−4【分析】先把点(a,b)代入一次函数y=2x−5,得到b=2a−5,然后代入代数式计算即可.【详解】解:∵一次函数y=2x−5的图像过点(a,b),∴b=2a−5,∴b−2a+1=2a−5−2a+1=−4.故答案为:−4.12.1【分析】由一次函数y=kx+b与y=mx的图象交于点(2,4)得到2k+b=2m,代入方程(2k+b)x=mx+m即可求出方程的解.【详解】解:∵一次函数y=kx+b与y=mx的图象交于点(2,4),∴当x=2时,kx+b=mx,m≠0,∴2k+b=2m,由(2k+b)x=mx+m得2mx=mx+m,∵m≠0,∴x=1,故答案为:1.13.−3<k<−1【分析】已知中,一次函数y=(k+3)x+k+1的图象不经过第二象限,可判断即k+3>0,且k+1<0,解之可得k的取值范围.【详解】解:∵一次函数y=(k+3)x+k+1的图象不经过第二象限,∴{k+3>0k+1<0解得:−3<k<−1,故答案为:−3<k<−1.14.k<0或0<k<1或k>4【分析】分别利用当直线y=kx+4−3k(k≠0)过点B(1,2)时,k值最小,当直线y=kx+4−3k(k≠0)过点A(2,0)时,k值最大,即可求出线段AB与直线l有交点时,k的取值范围,据此即可求解.【详解】解:当直线y=kx+4−3k(k≠0)过点B(1,2)时,k值最小,则k+4−3k=2,解得k=1,当直线y=kx+4−3k(k≠0)过点A(2,0)时,k值最大,则2k+4−3k=0,解得k=4,故线段AB与直线l有交点时,k的取值范围为1≤k≤4,故线段AB与直线l没有交点时,k的取值范围为k<0或0<k<1或k>4,故答案为:k<0或0<k<1或k>4.15.y=54x+32【分析】先求出四边形ABCD的面积为14,然后根据当直线l与x轴平行时,直线l不能平分四边形ABCD的面积,可设直线l的解析式为y=kx+b,即可求出直线l的解析式为y=kx+2k−1,则直线l与x轴的交点坐标为(1−2kk,0),求出直线CD的解析式为y=−x+3,则直线l与直线CD的交点坐标为(4−2kk+1,5k−1k+1),再由过点B的直线l将四边形ABCD的面积分成面积相等的两部分,得到7=12×(3−1−2k k)×(5k−1k+1+1),由此即可得到答案.【详解】解:∵A(-4,0),B(-2,-1),C(3,0),D(0,3),∴AC=7,∴S四边形ABCD =12AC⋅OD+12AC⋅(−yB)=14,∵当直线l与x轴平行时,直线l不能平分四边形ABCD的面积,∴可设直线l的解析式为y=kx+b,∴−2k+b=−1,∴b=2k−1,∴直线l的解析式为y=kx+2k−1,∴直线l与x轴的交点坐标为(1−2kk,0)∵点C坐标为(3,0),点D坐标为(0,3),∴直线CD的解析式为y=−x+3,∵当k=−1时,直线l与直线DC平行,此时直线l不可能平分四边形ABCD的面积∴联立{y=kx+2k−1y=−x+3,解得{x=4−2k k+1y=5k−1k+1,∴直线l与直线CD的交点坐标为(4−2kk+1,5k−1k+1),∵过点B的直线l将四边形ABCD的面积分成面积相等的两部分,∴7=12×(3−1−2k k)×(5k−1k+1+1),解得k=54或k=0(舍去),∴直线l的解析式为y=54x+32,故答案为:y=54x+32.16.−5≤b≤0【分析】根据直线的解析式可知此直线必然经过一三象限,当经过点B时b的值最小,当经过点C时b的值最大,由此可得出结论.【详解】解:∵直线y=3x+b中,k=3>0,∴此直线必然经过一三象限.∵A(1,1),B(2,1),C(1,3),∴当经过点B时,1=6+b,解得b=−5;当经过点C时,3=3+b,解得b=0,∴−5≤b≤0.故答案为:−5≤b≤0.三.解答题17.(1)解:把(0,0)代入y=(2m+1)x+m−3,得m−3=0,解得∶m=3;(2)解:∵y随x的增大而减小,∴2m+1<0,解得:m<−12;(3)解:∵函数是一次函数,且图象不经过第四象限,即:k>0,b>0,{2m+1>0m−3≥0解得:m≥3.18.(1)解:依题意得:设y+2=kx.将x=3,y=7代入:得k=3所以,y=3x−2.(2)由(1)知,y=3x−2,∴当x=−3时,y=3×(−3)−2=−11,即y=−11;(3)由(1)知,y=3x−2,∴当y=4时,4=3x﹣2,解得,x=2.19.(1)∵一次函数y=k1x+b1和y=k2x+b2的图象,分别与x轴交于A(−1,0),B(2,0),∴关于x的方程k1x+b1=0的解是x=−1;关于x的方程k2x+b2=0的解是x=2;(2)∵一次函数y=k1x+b1和y=k2x+b2的图象交于点C(1,3)∴根据图象可以得到:关于x的不等式k1x+b1≥k2x+b2的解集为x≥1;(3)根据图象可以得到:关于x的不等式k1x+b1>0的解集为x>−1,关于x的不等式k2x+b2>0的解集为x<2∴关于x的不等式组{k1x+b1>0k2x+b2>0的解集为−1<x<2;(4)∵A(−1,0),B(2,0),∴AB=2−(−1)=3∴△ABC的面积=12×AB×yC=12×3×3=92.20.(1)解:由题意得:310×3+(328−310)× 3.3=989.4(元),答:此同学家中使用燃气总共花费989.4元;(2)解:由题意得:y=310×3+(x−310)× 3.3= 3.3x−93(310<x≤520);(3)解:由(2)知,y= 3.3x−93(310<x≤520),当x=520时,y= 3.3x−93=1623,∵1665>1623,∴该同学家2020年度天然气总使用量超过了520立方米,(1665−1623)÷4.2+520=530(立方米),答:该同学家2020年度天然气使用总量为530立方米.21.(1)解:∵点(−1,−1)是y关于x的正比例函数y=mx的点,∴−m=−1,∴m=1,∵点(−1,−1)到两坐标轴的距离之和等于2,∴点(−1,−1)是y关于x的正比例函数y=mx的“2阶和点”,∴n=2.故答案为:1;2;(2)设一次函数y=x+3图象的“5阶和点”为(a,b),则|a|+|b|=5,b=a+3,一次函数y=x+3图象经过第一、二、三象限,当(a,b)在第一象限时,a+b=5,∴a=1,b=4,∴一次函数y=x+3图象的“5阶和点”为(1,4),∴k−2=4,∴k=6;当(a,b)在第二象限时,−a+b=5,由于b=a+3,此种情形不存在;当(a,b)在第三象限时,−a−b=5,∴a=−4,b=−1,∴一次函数y=x+3图象的“5阶和点”为(−4,−1),∴−4k−2=−1,.∴k=−14综上,y关于x的一次函数y=kx−2的图象经过一次函数y=x+3图象的“5阶和点”,k的值为;6或−14(3)由题意得:n>0,∵−4<0,∴y关于x的一次函数y=nx−4的图象经过第一、三、四象限,设M(x,y)为y关于x的一次函数y=nx−4的图象的“n阶和点”,∴|x|+|y|=n,①当M在第一象限时,x+y=n,∴x+nx−4=n,,∴x=n+4n+1∵n>0,∴n+1>0,n+4>0,∴x>0,符合题意,∴当M在第一象限时,n>0;②当M在第三象限时,−x−y=n,∴−x−nx+4=n,<0,∴x=4−nn+1∵n>0,∴n+1>0,∴4−n<0,∴n>4;∴当M在第三象限时,n>4;③当M在第四象限时,x−y=n,∴x−nx+4=n,>0,∴x=n−41−n∴1<n<4.∴当M在第四象限时,1<n<4.∵y关于x的一次函数y=nx−4的图象有且仅有2个“n阶和点”,∴以上①②③三个条件中同时满足其中两个即可,当满足①②不满足③时,n>4;当满足①③不满足②时,1<n<4;当满足②③不满足①时,n的值不存在,综上,y关于x的一次函数y=nx−4的图象有且仅有2个“n阶和点”,n的取值范围为n>4或1<n<4.22.(1)解:进水速度为:205=4(t/min),排水速度为:(13−5)×4−(44−20)13−5=1(t/min),∵船修好后不再进水,此时的排水速度与修船过程中进水速度相同,∴a=13+44÷4=24;故答案为:1;24.(2)解:设修船完工后y与x之间的函数关系式为y=kx+b(k≠0),根据题意得:{24k+b=013k+b=44,解得:{k=−4b=96,∴修船完工后y与x之间的函数关系式为y=−4x+96(13≤x≤24);(3)解:设修船过程中y与x之间的函数关系式为y=k'x+b'(k'≠0),根据题意得:{5k'+b'=2013k'+b'=44,解得:{k=3'b=5',∴修船过程中y与x之间的函数关系式为y=3x+5(5≤x≤13)当修船过程中,船内积水量是船内最高积水量的34时,根据题意得:3x+5=44×34,解得:x=283;当船修好后不再进水,船内积水量是船内最高积水量的34时,根据题意得:−4x+96=44×34,解得:x=634;综上分析可知,当x=283或x=634时,船内积水量是船内最高积水量的34.23.(1)解:∵a−3+|b+1|=0,∴a=3,b=−1,∵A(1,a),B(b,1),∴A(1,3),B(−1,1),∵B向右平移5个单位得到C,∴C(4,1)故答案为:(4,1).(2)①∠AQP=2∠ACB.理由如下:∵AC平分∠DAQ,∴∠DAQ=2∠DAC,∵AB向右平移5个单位得到CD,∴AD∥BC,∴∠ACB=∠DAC,∠AQP=∠DAQ ∴∠AQP=2∠ACB.②令直线l的解析式为y=kx+b,∵A(1,3),B(−1,1)在直线l上,∴{k+b=3−k+b=1,解得{k=1 b=2∴直线l的解析式为y=x+2,当y=0时,x=−2∴P(−2,0)∵A(1,3),C(4,1),∴S0=3×4−12×4×1−12×3×1−12×3×2=112,如图,连接BQ,∵Q(t,0),A(1,3),B(−1,1),P(−2,0),∴S=S△APQ −S△BPQ=12|t+2|×3−12|t+2|×1=|t+2|∵S=811S0,∴|t+2|=811×12,解得t=2或t=−6∴Q点坐标为(2,0)或(−6,0).。

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案一、单选题(共10小题,满分40分)1.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到一个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .62.如图直线l 1:y=ax+b ,与直线l 2:y=mx+n 交于点A (1,3),那么不等式ax+b <mx+n 的解集是( )A .x >3B .x <3C .x >1D .x <13.已知函数(13)y m x =-是正比例函数,且y 随x 的增大而增大,那么m 的取值范围是( ). A .13m > B .13m < C .1m > D .1m <4.正比例函数2y x =和一次函数5y kx =+(k 为常数,且0k ≠)的图象交于点(),2A m ,则关于x 的不等式25x kx <+的解集为( )A .1x <B .2x <C .1x >D .2x >5.如图,函数12y x =-与23y ax =+的图象相交于点()1,2A -,则关于x 的不等式23x ax ->+的解集是( )A .2x >B .2x <C .1x <-D .1x >-6.若点()12,y -、()22,y 都在一次函数3y x b =-+的图象上,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .大小关系不能确定7.若关于x 的一次函数y =(k ﹣2)x +3,y 随x 的增大而减小,且关于x 的不等式组26100x x k +≥⎧⎨+<⎩无解,则符合条件的所有整数k 的值之和是( )A .﹣3B .﹣2C .﹣1D .08.把两根木条AB 和AC 的一端按如图所示的方式固定在一起,木条AC 转动至AC '.在转动过程中,下面的量是常量的为( )A .AC 的长度B .BC 的长度 C .ABC 的面积D .BAC ∠的度数9.已知点()12,y -,()21,y -和()31,y 都在直线32y x =-+上,则1y ,2y 和3y 的值的大小关系是( ) A .312y y y << B .123y y y << C .312y y y >> D .123y y y >>10.直线()10y kx k =≠与直线()240y ax a =+≠在同一平面直角坐标系中的图象如图所示,则不等式4kx ax <+的解为( )A .1x <-B .1x >-C .1x >D .1x <二、填空题(共8小题,满分32分)11.如图,直线l 1:y =2x +b 与直线l 2:y =mx +n 相交于点P (1,3),则关于x ,y 的方程组2y x b y mx n =+⎧⎨=+⎩的解为 .12.下列对于一次函数132y x =--的说法,正确的有 (填写序号) ①图象经过二、三、四象限;①图象与两坐标轴围成的面积是6;①y 随x 的增大而减小;①当6x >-时0y <;①当3y >-时0x <.13.在平面直角坐标系中,横、纵坐标都是整数的点叫作整点.直线4y x =-+与坐标轴围成的三角形内(不包含边界)有 个整点,三角形的边上有 个整点.若直线4(0)y kx k =+>与坐标轴围成的三角形内(不包含边界)有且仅有6个整点,则k 的取值范围是 .14.快慢两车分别从相距360千米的甲、乙两地同时出发,匀速行驶,途中慢车因故障停留1小时,然后 以原速度的43倍继续向甲地行驶,到达甲地后停止行驶;快车匀速到达乙地后,立即按原路原速返回甲 地(快车掉头时间忽略不计),并且比慢车提前15分钟到达甲地,快慢两车之间的距离y (千米)与快 车行驶时间x (小时)之间的函数图象如图所示.则当两车第二次相遇时,两车距甲地还有 千米.15.下列函数关系是:①1y kx =+(k≠0);①2y x =;①21y x =+;①2y x x ,其中是一次函数的有 个.16.在平面直角坐标系xOy 中,一次函数(0y kx b k =+≠,k ,b 均为常数)与正比例函数12y x =-的图象如图所示,则关于x 的不等式12kx b x +>-的解集为 .17.如图,直线y=kx+b 经过A (﹣1,2)和B 70)两点,则不等式0<kx +b <﹣2x 的解集为 .18.若点()3,A a -,()2,B b 都在一次函数()216y k x =-++(k 为常数)的图象上,那么a 和b 的大小关系是:a b (选填“>”,“<”或“=”).三、解答题(共6小题,每题8分,满分48分)19.如图,在平面直角坐标系中,将直线12y x =向上平移1个单位得到直线1:l y kx b =+,1l 分别与x 轴、y 轴交于点A 、B ,直线23:4l y x m =-+分别与x 轴、y 轴交于点C 、D ,两直线交于点E ,且点E 的横坐标为4.(1)求直线1l 与直线2l 的解析式;(2)根据图象直接写出不等式34kx b x m +≥-+的解集;(3)求四边形OBEC 的面积.20.4月23日是世界读书日,某书店计划在“世界读书日”前夕,同时购进A ,B 两类图书,这两类图书的进价和售价如下表: 类型 进价(元/本) 售价(元/本)A36 38 B 45 50该书店计划用4500元购进这两类图书(每类图书都要购进),设购进A 类图书x 本,B 类图书y 本.(1)求y 关于x 的函数关系式;(2)进货时,A 类图书的购进数量不少于60本,若书店全部售完这些图书可获利W 元,求W 关于x 的函数关系式,并说明应该如何进货才能使书店所获利润最大,最大利润为多少元?21.已知:一次函数3y kx =+,当1x =时4y =;(1)求这个一次函数的解析式,并画出此函数的图象;(2)把此函数图象向上平移2个单位,直接写出所得的函数图象的解析式.22.如图,直线y =kx +6与x 轴、y 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OP A 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,三角形OP A 的面积为9,并说明理由.23.已知直线l 1:y 1=2x +3与直线l 2:y 2=kx -1交于点A ,点A 的横坐标为-1,且直线l 1与x 轴交于点B ,与y 轴交于点D ,直线l 2与y 轴交于点C .(1)直线l 2对应的函数表达式;(2)连接BC ,求S △ABC .24.已知一次函数()134502y kx k k =++≠ (1)无论k 为何值,函数图像必过定点,求该点的坐标;(2)如图1,当k =-12时,该直线交x 轴,y 轴于A ,B 两点,直线l 2:y =x +1交AB 于点P ,点Q 是l 2上一点,若S ∆ABQ =6,求Q 点的坐标;(3)如图2,在第2问的条件下,已知D 点在该直线上,横坐标为1,C 点在x 轴负半轴,∠ABC =45︒,动点M 的坐标为(a ,a ),求CM+MD 的最小值.参考答案1.A2.D3.B4.A5.C6.C7.B8.A9.D10.B11.13x y =⎧⎨=⎩12.①①①①13. 3 123k 14≤< 14.4515.116.2x <17.﹣<x <﹣1 18.> 19.(1)11:12l y x =+ 23:64=-+l y x ; (2)4x ≥;(3)14.20.(1)41005y x =- (2)当购进A 类图书60本,B 类图书52本时书店所获利润最大,最大利润为380元21.(1)一次函数的解析式为3y x ;(2)5y x =+22.(1)34;(2)S 94=x +18 (-8<x <0);(3)(-4,3). 23.(1)y 2=-2x -1;(2)S △ABC =1.24.(1)(51342-,);(2)(3,4)或(-1,0);(3109。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量(x)的函数关系如图2所示,则降价后每件商品的销售价格为()图1 图2A.5元B.10元C.12.5元D.15元2、已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP 为等腰三角形,则点P的个数为()个.A.2B.4C.6D.83、小丽从家出发开车前去观看球赛,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.如图能反映S与t的函数关系的大致图象是()A. B. C. D.4、已知直线y=(m﹣3)x﹣3m+1不经过第一象限,则m的取值范围是()A.m≥B.m≤C. ≤m<3D. ≤m≤35、在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系一定是()A. 、异号B. 、同号C. >0,<0D. <0,>06、将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A. , 1B.﹣, 1C.﹣,﹣1D. ,﹣17、一次函数y=2x+1的图象沿y轴向上平移3个单位,所得图象的函数解析式为()A.y=2x+4B.y=2x-4C.y=2x﹣2D.y=2x+78、如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<29、下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1B.y=x 2﹣1C.D.10、已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()A.y>0B.y<0C.﹣2<y<0D.y<﹣211、已知关于x的函数y=k(x+1)和y= (k≠0)它们在同一坐标系中的大致图象是( )A. B. C. D.12、定义新运算:a※b= ,则函数y=3※x的图象大致是()A. B. C. D.13、如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.14、赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A. B. C. D.15、甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2小时,并且甲车图中休息了0.5小时后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(千米)与行驶的时间x (小时)之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40千米/小时,乙车的速度是80千米/小时;③当甲车距离A地260千米时,甲车所用的时间为7小时;④当两车相距20千米时,则乙车行驶了3或4小时,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、写出一个图象经过点(-1,-1),且不经过第一象限的函数表达式________.17、函数y= 的自变量x的取值范围是________.18、若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是________.19、已知直线y=﹣x+6和直线y= x﹣2相交于点P,且直线y=﹣x+6分别交x轴、y轴于点A、B,直线y= x﹣2交y轴于点C,则点A的坐标为________,点P的坐标为________.20、某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如表:t(小时)0 1 2 3y(升)120 112 104 96由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为0.21、将一次函数的图象向下平移3个单位长度,相应的函数表达式为________.22、若正比例函数y=(m﹣2)x m2﹣10的图象在第一、三象限内,则m=________ .23、如图,在坐标系中,一次函数与一次函数的图像交于点,则关于的不等式的解集是________.24、一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为________.25、若函数与的图象相交于x轴上的一点,则b的值为________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?28、已知一次函数的图象过点,且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.29、一次函数满足,当,,求这条直线的函数解析式.30、博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少门票价格应是多少元?参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、D5、A6、D7、A8、D9、D10、D11、A12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

沪科版八年级上册第12章一次函数单元测试卷-(含答案解析)

沪科版八年级上册第12章一次函数单元测试卷-(含答案解析)

一次函数单元测试卷考试范围:12章;考试时间:120分钟;一、单选题(每题4分,共40分)1.下列图象中,表示y是x的函数的是()A.B.C.D.2.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加!C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径3.已知一次函数y=(a+1)x+b的图象如图所示,那么a,b的取值范围分别是()A.a>-1,b>0B.a>-1,b<0C.a<-1,b>0D.a<-1,b<0$4.已知A,B两地相距80km,甲,乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,根据图象得出的下列信息错误的是()A.乙到达B地时甲距A地120km.B.乙出发小时被甲追上.C.甲,乙相距20km时,t为.D.甲的速度是乙的速度的倍.5.若函数y=kx+b(k<0),过(0,1),(2,0)两点,那么当y>0时,x的取值范围是()A .x>1B .x>2C .x<1D .x<26.一个正比例函数的图象经过(2,-1),则它的表达式为( )A .y=-2xB .y=2xC .12y x =-D .12y x = )7.已知()113,P y -、()222,P y 是一次函数2y x b =-+图象上的两个点,则1y 与2y 的大小关系为( )A .12y y <B .12y y ≥C .12y y >D .不能确定1y 与2y 的大小8.有一种手持烟花,点然后每隔1.4秒发射一发花弹。

要求每一发花弹爆炸时的高度要超过15米,否则视为不合格,在一次测试实验中,该烟花发射出的第一发花弹的飞行高度(米)随飞行时间(秒)变化的规律如下表所示.下列这一变化过程中说法正确的是( )A .飞行时间t 每增加0.5秒,飞行高度h 就增加5.5米B .飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C .估计飞行时间t 为5秒时,飞行高度h 为11.8米D .只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格:9.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0:③b >0;④x <2时,kx+b <x+a 中,正确的个数是( )A .110.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .二、填空题(每题5分,共20分)&11.正比例函数y kx =经过点(2,-4),则k =______.12.把直线1y x =-+沿着y 轴向下平移4个单位,得到新直线的解析式是____. 13.已知,一次函数y=kx+b (k≠0)的图象经过点(0,2),且y 随x 的增大而减小,请你写出一个符合上述条件的函数关系式:__.14.如图,直线AB 的解析式为y=x+4,与y 轴交于点A ,与x 轴交于点B ,点P 为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,则线段EF 的最小值为_____.三、解答题(15、16、17、18每题8分,19、20每题10分,21、22每题12分、23题14分,满分90)15.下图是某个学校一电热水器水箱的水量y (升)与供水时间x (分)的函数图像 》求:(1)y 与x 之间的函数关系式;(2)在(1)的条件下,30分钟时水箱中的水量是多少16.某市出租车收费标准如下:3km以内(含3km)收费8元,超过3km的部分每千米收费元,回答下列问题:(1)写出应收车费y(元)与出租车行驶路程x(km)之间的函数关系式(2)小明乘车行驶4km需要付多少钱(3)小华若付车费元,则出租车行驶了多少千米17.如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x+y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;|(2)画出(1)中所求函数的图象.18.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元).(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y与x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元{19.如图,已知一次函数y=mx+3的图象经过点A(2,6),B(n,-3).求:(1)m,n的值;(2)△OAB的面积.20.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t= 时.-21.如图,在平面直角坐标系中,一次函数y=-x+b的图象与正比例函数y=kx的图象都经过点B(3,1)(1)求一次函数和正比例函数的表达式;(2)若直线CD与正比例函数y=kx平行,且过点C(0,-4),与直线AB相交于点D,求点D的坐标.(3)连接CB,求三角形BCD的面积.22.某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同.设汽车每月行驶xkm,应付给个体车主的月租费用是y1元,应付给出租公司的月租费用是y2元,y1、y2分别与x之间的函数关系图像(两条射线)如图所示,观察图像回答下列问题:((1)每月行驶的路程在什么范围内时,租国有公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算23.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。

沪科版八年级数学上册《第12章一次函数》单元达标测试卷-附带答案

沪科版八年级数学上册《第12章一次函数》单元达标测试卷-附带答案

沪科版八年级数学上册《第12章一次函数》单元达标测试卷-附带答案一、单选题1.某电影院的某个电影的每张电影票的售价为58元 售票张数为x 票房收入为w 元 在这个售票过程中 始终不变的量是( )A .售票的张数B .余票的张数C .每张电影票的售价D .该电影院的票房收入2.下列各点在一次函数2y x =+的图像上的是( )A .()20,B .()13,C .()02-,D .()31,3.一次函数132y x =-+的图象过点()11x y , ()122x y +, 则1y 和2y 的大小关系是( ) A .12y y <B .12y y =C .12y y >D .无法确定4.如图所示的计算程序中 y 与x 之间的函数关系式是( )A .y =﹣3x+2B .y =3x+2C .y =﹣3x ﹣2D .y =3x ﹣25.用图象法解某二元一次方程组时 在同一直角坐标系中作出相应的两个一次函数的图象如图所示 则所列的二元一次方程组是( )A .203210x y x y --=⎧⎨--=⎩B .2103210x y x y --=⎧⎨--=⎩C .2103250x y x y --=⎧⎨+-=⎩D .20210x y x y +-=⎧⎨--=⎩6.若点 ()11M x y , 与点 ()22N x y , 是一次函数y=kx+b 图象上的两点.当 12x x < 时 12y y > 则k 、b 的取值范围是( ) A .k>0 b 任意值. B .k<0 b>0. C .k<0 b<0.D .k<0 b 取任意值.7.如图 直线y=﹣x+c 与直线y=ax+b 的交点坐标为(3 ﹣1) 关于x 的不等式﹣x+c≥ax+b 的解集为( )A .x≥﹣1B .x≤﹣1C .x≥3D .x≤38.一次函数y=x ﹣1的图象向上平移2个单位后 不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图是一次函数y 1=kx+b 与y 2=x+a 的图象 则下列结论中错误的是( )A .k <0B .a >0C .b >0D .方程kx+b=x+a 的解是x=310.无论m 为何实数.直线2y x m =+与4y x =-+的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.已知一次函数 ()y kx 4k 0=-≠ y 随x 的增大而减小 则k 0.12.如图 已知一次函数y=2x+b 和y=kx ﹣3(k≠0)的图象交于点P (4 ﹣6) 则二元一次方程组{y −2x =b y −kx =−3的解是 .13.一次函数y 1=kx+b 与y 2=x+a 的图象如图 则下列结论①k <0 ②a >0 ③当x <3时 y 1>y 2中正确的序号是14.直线 y 2x 1=- 沿 y 轴平移3个单位 则平移后直线与 y 轴的交点坐标为 .三、解答题15.甲、乙两车从A 地驶向B 地 并以各自的速度匀速行驶 甲车比乙车早行驶2h 并且甲车途中休息了0.5h 如图是甲乙两车行驶的距离y (km )与时间x (h )的函数图象.(1)求出图中m a 的值(2)求出甲车行驶路程y (km )与时间x (h )的函数解析式 并写出相应的x 的取值范围 (3)当乙车行驶多长时间时 两车恰好相距50km .16.小强骑自行车去交游 下图表示他离家的距离y (千米)与所用的时间x (小时)之间的函数图象根据图象所提供的数据 请你写出3个信息.17.已知代数式﹣2x+4(1)当x 取3﹣a 时 请你以a 的取值为横坐标 对应的﹣2x+4的值为纵坐标 画出其图象 (2)若(1)中的图象与横轴、纵轴分别相交于点A 、B 点P 在线段AB 上(不与A B 重合) P 到横轴、纵轴的距离分别为d 1、d 2 求d 1 d 2的取值范围.18.一条小船沿直线向码头匀速前进.在0min 2min 4min 6min 时 测得小船与码头的距离分别为200m 150m 100m 50m .小船与码头的距离是时间的函数吗?如果是 写出函数的解析式 并画出函数图象.四、综合题19.在一条笔直的公路旁依次有 A 、 B 、 C 三个村庄 甲、乙两人同时分别从 A 、 B 两村出发 甲骑摩托车 乙骑电动车沿公路匀速驶向 C 村 最终到达 C 村.设甲、乙两人到 C 村的距离1y 2(km)y 与行驶时间 (h)x 之间的函数关系如图所示 请回答下列问题:(1)A 、 C 两村间的距离为 km a(2)求出甲、乙两人到 C 村的距离 1y 2(km)y 与行驶时间 (h)x 之间的函数关系式 并求出图中点 P 的坐标(3)乙在行驶过程中 何时距甲 10km ?20.某驻村扶贫小组实施产业扶贫 帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克 规定销售单价不低于成本 又不高于成本的两倍.经过市场调查发现 某天西瓜的销售量 y (千克)与销售单价x (元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(2)求当 1012x <≤ 时销售西瓜获得的利润的最大值.21.某工厂现有甲种原料360千克 乙种原料290千克 计划用这两种原料全部生产A 、B 两种产品共50件 生产A 、B 两种产品与所需原料情况如下表所示:原料型号甲种原料(千克)乙种原料(千克)A 产品(每件)93B 产品(每件)410(1)该工厂生产A 、B 两种产品有哪几种方案?(2)若生成一件A 产品可获利80元 生产一件B 产品可获利120元 怎样安排生产可获得最大利润?22.平面直角坐标系xOy 中 直线y =32 x+b 与直线y = 12x 交于点A (m 1).与y 轴交于点B (1)求m 的值和点B 的坐标(2)若点C 在y 轴上 且△ABC 的面积是1 请直接写出点C 的坐标.23.为改善生态环境 防止水土流失 某村计划在堤坡种植白杨树 现甲、乙两家林场有相同的白杨树苗可供选择 其具体销售方案如下:甲林场 乙林场 购树苗数量 销售单价 购树苗数量 销售单价 不超过1000棵时 4元/棵 不超过2000棵时 4元/棵 超过1000棵的部分3.8元/棵超过2000棵的部分3.6元/棵设购买白杨树苗x 棵 到两家林场购买所需费用分别为 y 甲 (元)、 y 乙 (元).则:(1)该村需要购买1500棵白杨树苗 若都在甲林场购买所需费用为 元 若都在乙林场购买所需费用为 元(2)分别求出y甲、y乙与x之间的函数关系式(3)如果你是该村的负责人应该选择到哪家林场购买树苗合算为什么?答案解析部分1.【答案】C【解析】【解答】在这个售票过程中票房收入随售票张数的变化而变化所以售票张数与余票张数以及票房收入都是变量只有每张电影票的售价是始终不变的量.故答案为:C.【分析】根据变量的定义即可求解。

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案一、单选题(共10小题,满分40分)1.直线l 是以二元一次方程8x -y =5的解为坐标所构成的直线,则该直线不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.一次函数y =2x ﹣4的图象由正比例函数y =2x 的图象( )A .向左平移4个单位长度得到B .向右平移4个单位长度得到C .向上平移4个单位长度得到D .向下平移4个单位长度得到3.常值函数并不是没有自变量,而是可以看作一次函数中自变量的系数为0,比如常值数2y =即是02y x =+,那么在这个函数中,当5x =时,y =( )A .10B .0C .2D .任意数 4.函数1x y +=x 的取值范围是( ). A .1x ≥-B .3x ≠-C .1x ≥-且3x ≠-D .1x <-5.有一个如图形状的容器,从上口匀速注入清水,能大致反映图中水面高度h 与注水时间t 的函数关系的图像是( )A .B .C .D .6.小明和他家长晚餐后散步,去了离家500米的报亭,稍作停留后返回,如图是他们散步过程中离家的距离随时间变化的情况,下面可能的情节是( )A .他们匀速步行去报亭,回家时加快了速度,匀速步行回家B .他们匀速步行去报亭,回家时减慢了速度,匀速步行回家C .他们去报亭时速度越来越快,回家时平均速度更快,但步行速度越来越慢D .他们去报亭时速度越来越快,回家时平均速度更慢,步行速度也越来越慢7.对于一次函数y =﹣2x +4,下列结论错误的是( )A .函数值随自变量的增大而减小B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .函数的图象与x 轴的交点坐标是(0,4)8.已知点()1,m -与点()0.5,n 都在直线21y x =+上,则m 、n 的大小关系是( )A .m n >B .m n <C .m n =D .无法判断9.函数1(1)n y m x n -=++是一次函数,m ,n 应满足的条件是 ( )A .1m ≠-且0n =B .1m ≠-且2n =C .2m ≠且2n =D .2m ≠-且0n =10.函数y =a |x |与y =x +a 的图象恰有两个公共点,则实数a 的取值范围是( )A .a >1B .-1<a <1C .a >1或a <-1D .a ≥1或a ≤-1二、填空题(共8小题,满分32分)11.请写出一个过点()11,A y -和点()25,B y 且函数值满足12y y >的一次函数解析式: . 12.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为 .13.如图,已知直线1y x a =+与2y kx b =+相交于点(1,2)P -,则关于x 的不等式x a kx b +>+的解集是 .14.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示,根据图象信息知,点A 的坐标是 ;15.若点 P (1,1) 在直线 1l : y =kx +2上,点 Q (m , 2m -1) 在直线 2l 上,则直线 1l 和2l 的交 点坐标是 . 16.一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为 ,自变量的取值范围是 .17.学校举办图画展览,需要依次把图画作品横着钉成一排(如图),图中黑色实心圆点表示图钉,照这样,钉x 张图画需要图钉y 颗,请写出y 与x 的函数关系式 .18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,则A 5的坐标是 .三、解答题(共6小题,每题8分,满分48分)19.已知一次函数y=kx+b 的图像经过点(1,1),(-2,-5).(1)求此函数的解析式.(2)若点(a ,3)在此函数的图像上,求a 的值为多少?20.如图,图1是1个纸杯和6个叠放在一起的纸杯的示意图,量得1个纸杯的高为10厘米,6个叠放在一起的纸杯的高为14厘米.(1)2个纸杯叠放在一起的高为厘米;(2)若设x个纸杯叠放在一起的高为y厘米(如图2),并将这x个纸杯叠放在一起按如图3所示的方式放进竖立的方盒中,方盒的厚度不计.①求y关于x的函数表达式;①若竖立的方盒的高为33.5厘米,求x的最大值.21.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=k x+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)求n,k ,b的值;(2)若函数y=k x+b的函数值大于函数y=x+1的函数值,则x的取值范围是多少?(3)求四边形AOCD的面积;22.A、B 两乡分别由大米200 吨、300 吨.现将这些大米运至C、D 两个粮站储存.已知C 粮站可储存240 吨,D 粮站可储存200 吨,从A 乡运往C、D 两处的费用分别为每吨20 元和25 元,B 乡运往C、D 两处的费用分别为每吨15 元和18 元.设A 乡运往C 粮站大米x 吨.A、B 两乡运往两个粮站的运费分别为y A、y B元.(1)请填写下表,并求出y A、y B与x 的关系式:C 站D 站总计A 乡x 吨200 吨B 乡300 吨总计240 吨260 吨500 吨(2)试讨论A、B 乡中,哪一个的运费较少;(3)若B 乡比较困难,最多只能承受4830 元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?23.小明根据学习函数的经验,对函数y=11x-+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=11x-+1的自变量x的取值范围是;(2)下表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣32﹣1﹣121232252372…y (3)5m130﹣1n2533275…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:①当函数值11x-+1>32时,x的取值范围是:①方程11x-+1=x的解为:24.单位组织员工自驾游,并打算在一家租车公司租用同一品牌同款的5座或7座越野车组成一个车队.该租车公司同品牌同款的7座越野车的日租金比5座的多300元.已知该单位参加自驾游的员工共有40人,其中10人可以担任司机,但这10人中至少需要留出3人做为机动司机,以备轮换替代.(1)有人建议租8辆5座的越野车,刚好可以载40人.他的建议合理吗?请说明理由;(2)请为该单位设计一种租车方案,使车队租车的日租金最少,并说明理由参考答案1.B2.D3.C4.A5.C6.A7.D8.B9.B10.C11.21y x =-+12.()0,8或80,3⎛⎫ ⎪⎝⎭/80,3⎛⎫ ⎪⎝⎭或()0,8 13.x >-114.(40,1600)15.(1,1)16. y =24-1.2x 0≤x ≤2017.22y x =+18.(15,16).19.20.(1)10.8;(2)①0.89.2y x =+;①x 的最大值为30.21.(1)n ,k ,b 的值分别为:2,3,-1;(2)x >1(3)5622.(1)y A =20x+25×(200−x)=−5x+5000(0⩽x ⩽200);y B =15×(240−x)+18×(x+60)=3x+4680(0⩽x ⩽200);(2)当x<40时,B 乡运费少;当x=40时,A. B 两乡运费一样多;当x>40时,A 乡运费少;(3)当x=50时,总运费最低,最低费用为9580元.23.(1)x≠1;(2)12,3;(3)略;(4)①函数图象经过原点且关于点(1,1)对称,①1<x <3,①x =0或x =224.(1)建议不合理;(2)租车方案是:租4辆5座越野车,3辆7座越野车;当12y y =即600a =时,日租金最少的方案是:租1辆5座越野车,5辆7座越野车,或租4辆5座越野车,3辆7座越野车;当12y y <即600a >时,日租金最少的方案是:租1辆5座越野车,5辆7座越野车;当12y y >即600a <时,日租金最少的方案是:租4辆5座越野车,3辆7座越野车.。

沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)

沪科版数学八年级上册  第十二章 一次函数 单元测试(含答案)

第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、下列函数中,是一次函数但不是正比例函数的为().A.y=-B.y=-C.y=-D.y=2、P1(x1, y1),P2(x2, y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y23、如图,利用三个面积分别为5,x,y的正方形拼成一个直角三角形,则y关于x之间的函数图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、从1,2,3,4,5这五个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的右侧,则这样的有序数组(p,q)共有()A.7对B.9对C.11对D.13对5、已知射线y1=ax+1与射线y2=bx+2在同一平面直角坐标系中的图象如图所示,则下列说法中①a=2b;②m=4;③点A的坐标为(2,3),正确的()A.①②B.①③C.②③D.①②③6、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C. D.7、直线y =a x+b经过第二、三、四象限,那么下列结论正确的是()A. B.反比例函数,当x > 0时的函数值y随x增大而减小 C.一元二次方程的两根之和大于零 D.抛物线的对称轴过第一、四象限8、P1(x1, y1),P2(x2, y2)是正比例函数y=﹣2x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y29、如图,直线过点和点,则方程的解是()A. B. C. D.10、函数y=x图象向下平移2个单位长度后,对应函数关系式是()A.y=2xB.C.y=x +2D.y=x-211、平面直角坐标系中,若一个点的横、纵坐标都是整数,则称该点为整点。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y= x2﹣2交于A,B 两点,且A点在y轴左侧,P点坐标为(0,﹣4),连接PA,PB.以下说法正确的是()①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=﹣时,BP2=BO•BA;④三角形PAB面积的最小值为.A.③④B.①②C.②④D.①④2、在下列图象中,能作为一次函数y=﹣x+1的图象的是()A. B. C. D.3、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.4、一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x <3时,y1<y2;④当y1>0且y2>0时,﹣a<x<4.其中正确的个数是()A.1个B.2个C.3个D.4个5、如图,函数和的图象相交于A(m,3),则不等式的解集为()A. B. C. D.6、在△ABC中,底边长为a,底边上的高是b,则三角形的面积S=ab,当b为定长时,此式中()A.S、a是变量、、b是常量B.S、a、b是变量,是常量 C.a、b是变量,、s是常量 D.S是变量,、a、b是常量7、小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900﹣30t(t>15)C.y=45t﹣225(t>15)D.y=45t﹣675(t>15)8、若函数是一次函数,则m,n应满足的条件是()A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=09、下列四个点中,在函数y=3x+1的图像上的是()A.(-1,2)B.(0,-1)C.(1,4)D.(2,-7)10、如图所示,函数和的图象相交于,两点.当时,的取值范围是()A. B. C. D. 或11、如图,在平面直角坐标系中,点M是直线y=-x上的点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为()A. B. C. D.12、下列函数中,自变量x的取值范围为的是()A. B. C. D.13、一次函数y=ax+b与反比例函数y= ,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.14、如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<415、如图是一次函数y=-x+3的图象,当-3<y<3时,x的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<4二、填空题(共10题,共计30分)16、函数y=-2x+3的图像不经过第________象限.17、已知反比例函数y= ,则自变量x的取值范围是________;若式子的值为0,则x=________.18、圆的面积s与半径r之间的关系式为S=πr2,其中常量是________ ,变量是________ .19、如图,直线y=kx+b经过点A(2,﹣1),当kx+b<时,x的取值范围为________.20、直线不经过的象限为________.21、我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为________.22、函数y= 中,自变量x的取值范围是________.23、小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需________ 小时,(2)小明出发两个半小时离家________ 千米.(3)小明出发________ 小时离家12千米.24、函数是一次函数,则m=________.25、一次函数y=﹣2x+ 的图象与y轴的交点坐标是________.三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格均为每吨1.95万元;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.设甲厂在同一公司一次购买无纺布的数量为x吨(x>0).(Ⅰ)根据题意,填写下表:一次购买数量(吨)10 20 35 …A公司花费(万元)39 …B公司花费(万元)40 …(Ⅱ)设在A公司花费万元,在B公司花费万元,分别求、关于x的函数解析式;(Ⅲ)如果甲厂所需购买的无纺布是50吨,试通过计算说明选择哪家公司费用较少.28、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为 km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.29、如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).(1)求m、n的值;(2)求直线PC的解析式.[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,)].30、受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、B5、C6、A7、C8、C9、C10、D11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

沪科版八年级上册数学第12章一次函数单元测试卷(Word版-含答案)

沪科版八年级上册数学第12章一次函数单元测试卷(Word版-含答案)

沪科版八年级上册数学第12章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.如图,把两根木条AB 和AC 的一端A 用螺栓固定在一起,木条AB 自由转动至AB ′位置.在转动过程中,下面的量是常量的为( )A .∠BAC 的度数B .AB 的长度C .BC 的长度D .∠ABC 的面积2.若关于x 的方程﹣2x +b =0的解为x =2,则直线y =﹣2x +b 一定经过点( )A .(2,0)B .(0,3)C .(4,0)D .(2,5)3.如图,直线3y x =-+与y mx n =+交点的横坐标为1,则关于x 、y 的二元一次方程组3x y mx y n +=⎧⎨-+=⎩的解为( )A .13x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是3-,若输入x 的值是8-,则输出y 的值是( )A .10B .14C .18D .225.已知函数y =(m ﹣3)28m x -+4是关于x 的一次函数,则m 的值是( )A .m =±3B .m ≠3C .m =3D .m =﹣36.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1C .y x =0D .yx >﹣77.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是()A .12x = B .1x = C .2x = D .4x =8.对于一次函数y =﹣x ﹣2的相关性质,下列描述错误的是( )A .函数图像经过第二、三、四象限B .函数图像与x 轴的交点坐标为(﹣1,0)C .y 随x 的增大而减小D .函数图像与坐标轴围成的三角形面积为29.在平面直角坐标系中,A 点坐标为(4,2),在x 轴上有一动点M ,直线y =x 上有一动点N ,则∠AMN 的周长的最小值( )AB .C .10D .4010.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩11.函数y中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2 C .x >﹣2且x ≠1 D .x ≥﹣2且x ≠112.在平面直角坐标系中,点()5,1A --关于原点对称的点的坐标为(),A a b ',关于x 轴对称的点的坐标为(),B c d ,则一次函数()()y a c x b d =--+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本大题共8小题,每小题3分,共24分)13.如图,平面直角坐标系xoy 中,直线y 1=k 1x +b 1的图像与直线y 2=k 2x +b 2的图像相交于点(-1,-3),当y 1<y 2时,实数x 的取值范围为__________.14.如图,直线AB 是一次函数1y kx k =+-的图象,若关于x 的方程10kx k +-=的解是23x =-,则直线AB 的函数关系式为_________.15.如图,直线5y x =+与直线0.515y x =+交于点()20,25A ,则方程50.515x x +=+的解为______.16.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当∠OBC 的面积为3时,点C 的坐标为______.17.若平面直角坐标系中,设点(2,)P a 在正比例函数y x =的图像上,则点,35()a Q a -位于第______象限.18.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限. 19.一次函数10y kx =+的图象与两坐标轴围成的三角形的面积等于5,则该直线的表达式为________. 20.如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.三、解答题(本大题共5小题,每小题8分,共40分)21.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x 元,去甲商店购买实付y 甲元,去乙商店购买实付y 乙元,其函数图象如图所示.(1)分别求y,y乙关于x的函数关系式;甲(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当∠ABC的面积是17.5时,求点C的坐标.23.如图,直线1y=kx+b与坐标轴交于A(0,2),B(m,0)两点,与直线2y=-4x+12交于点P(2,n),直线2y=-4x+12交x轴于点C,交y轴于点D.(1)求m ,n 值;(2)直接写出方程组412y kx b y x =+⎧⎨=-+⎩的解为 ; (3)求△PBC 的面积.24.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息如表:(1)每台A 型空气净化器的销售利润是 元;每台B 型空气净化器的销售利润是 元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B 型空气净化器的进货量不少于A 型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?25.如图,在平面直角坐标系xOy中,直线y=2x﹣6交x轴于点C,交y轴于点D,点A,B的坐标分别为(1,0),(0,2),直线AB与直线CD相交于点P.(1)直线AB的表达式为;S△=;(2)点P的坐标为,连接OP,则APO(3)若直线CD上存在一点E,使得∠BPE的面积是∠APO的面积的4倍,求点E的坐标.参考答案:1.B2.A3.C4.C5.D6.B7.B8.B9.B10.A11.D12.B13.x <-114.32y x =+15.20x16.()3,6-17.一18.二19.1010y x =-+或1010y x =+20.(-1,0)21.(1)y 甲=0.85x ;y 乙与x 的函数关系式为y 乙=()03000.790(300)x x x x ⎧≤≤⎨+⎩> (2)(600,510)(3)当x <600时,选择甲商店更合算;当x =600时,两家商店所需费用相同;当x >600时,选择乙商店更合算.22.(1)73y x =;(2)(6,0)或(4,0)-. 23.(1)2m =-,4n =;(2)24x y =⎧⎨=⎩; (3)1024.(1)200,150(2)26,54(3)4台25.(1)y=﹣2x+2(2)(2,﹣2),1(3)E(3,0)或(1,﹣4)。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≥2B.x≠2C.x>2D.x≤22、已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个3、已知y=kx+k的图象与y=x的图象平行,则y=kx+k的大致图象为()A. B. C. D.4、在平面直角坐标系中,将直线 y=3x 的图像向左平移 m 个单位,使其与直线 y=-x+6 的交点在第二象限,则 m 的取值范围是()A.m>2B.-6<m<2C.m>6D.m<65、下列图象中,不表示y是x的函数的是()A. B. C. D.6、如图,直线与x轴交于点,与y轴交于点,则关于x的不等式的解集为()A. B. C. D.7、一个长方体木箱的长为4㎝,宽为,高为宽的2倍,则这个长方体的表面积S与的关系及长方体的体积V与的关系分别是()A. ,B. ,C. ,D. ,8、表示皮球从高处d落下时,弹跳高度b与下落高度d的关系如下表所示:则d与b之间的关系式为()下落高度d …80 100 150 …弹跳高度b …40 50 75 …A.d=b 2B.d=2bC.d=b+40D.d= b9、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-310、点在函数的图像上,则代数式的值等于()A.5B.3&nbsp;C.-3D.-111、如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数y= 的图象一定在()。

A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限12、在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限13、已知(-1,y1),(1.8,y2),(- , y3)是直线 y = -3x + m (m 为常数)上的三个点,则 y1, y2, y3的大小关系是( )A.y3>y1>y2B.y1>y3>y2C.y1>y2>y3D.y3>y2>y114、函数y= 中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣315、张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是()A. B. C. D.二、填空题(共10题,共计30分)16、把直线向下平移________个单位得到直线.17、周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18、某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5kgA原料、1.5kgB原料;乙产品每袋含2kgA原料、1kgB原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为________元.19、甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确序号是________.20、函数中,自变量x的取值范围是________。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数中,自变量x的取值范围是()A.全体实数B.x≠1C.x>1D.x≥12、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A. B. C. D.3、函数y=ax2与y=-ax+b的图象可能是()A. B. C. D.4、下列函数中,为一次函数的是().A. B. C. D.5、函数中自变量x的取值范围为()A.x≥0B.x≥-1C.x>-1D.x≥16、如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A. B. C.D.7、函数y= 中自变量x的取值范围是()A.x≥-3B.x≠-3C.x>-3D.x≤-38、若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A.x>1B.x>2C.x<1D.x<29、已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P 的坐标为()A.(﹣1,0)B.(,0)C.(,0)D.(1,0)10、在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.11、如图,过点A0(2,0)作直线l:y= x的垂线,垂足为点A1,过点A1作A1A2⊥x 轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1, A1A2, A2A3,…,则线段A2016A2107的长为()A.()2015B.()2016C.()2017D.()201812、一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限13、某个一次函数的图象与直线平行,并且经过点,则这个一次函数的解析式为()A. B. C. D.14、如图,一次函数y1=x-1与反比例函数y= 的图像交于点A(2,1),B(-1,-2),则使y1>y2的x的取值范围是().A.x>2B.x>2或-1<x<0C.-1<x<2D.x>2或x<-115、如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是()A.张强在体育场锻炼45分钟B.张强家距离体育场是4千米C.张强从离家到回到家一共用了200分钟D.张强从家到体育场的平均速度是10千米/小时二、填空题(共10题,共计30分)16、已知关于的函数,当时,.那么,当函数值等于时,自变量的取值为________.17、如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是________.18、已知函数y=中,自变量x的取值范围是________.19、如图,直线与直线交于点,则关于的不等式的解集是________.20、将函数的图象向下平移个单位得到的图象经过点(2,-8),那么的值等于________.21、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是________.22、如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为________.23、一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:________ .24、已知正比例函数:y = (3m-2)x的图像上两点A(x1, y1),B(x2, y2),当x1 < x2时,有y1 >y2那么m的取值范围是________.25、如图,一次函数y=-2x+b与反比例函数y= (x>0)的图象交于A,B两点,连结OA,过B作BD⊥x轴于点D,交OA于点C,若CD:CB=1:8,则b=________.三、解答题(共5题,共计25分)26、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.27、求与直线y=5x-4平行且经过点(1,6)的直线解析式.28、已知直线经过点、两点,求这条直线的表达式.29、当m为何值时,函数y=﹣(m﹣2)+(m﹣4)是一次函数.30、已知抛物线y=ax2+bx+c的对称轴是直线x=2,且经过点(1,4)和点(5,0),求这个函数的解析式.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、D5、B6、A7、A8、A9、B10、D11、B12、D13、C14、B15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图像大致是( )A. B. C. D.2、函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1, y2的值都大于零的x的取值范围是()A.x>-1B.x>2C.x<2D.-1<x<23、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.4、若正比例函数的图象经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)5、如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6-D.3 -16、已知正比例函数的图象与反比例函数图象相交于点,下列说法正确的是()A.反比例函数的解析式是B.两个函数图象的另一交点坐标为C.当或时,D.正比例函数与反比例函数都随的增大而增大7、已知一次函数y=kx+b的图象如图所示,则下列判断中不正确的是()A.方程kx+b=0的解是x=﹣3B.k>0,b<0C.当x<﹣3时,y<0 D.y随x的增大而增大8、将函数y=﹣3x+1的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+3B.y=﹣3x﹣1C.y=﹣3(x+2)+1D.y=﹣3(x﹣2)+19、一次函数y=(k﹣2)x+k2﹣4的图象经过原点,则k的值为()A.2B.-2C.2或﹣2D.310、已知一次函数y=ax+5和y=bx+3,假设a>0且b<0,则这两个一次函数的图象的交点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限11、如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A (1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=-2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为()A.3<b<6B.2<b<6C.3≤b≤6D.2<b<512、下图是韩老师早晨出门散步时,离家的距离与时间之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A. B. C. D.13、下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个14、如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时.设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A. B. C. D.15、已知A、B两地相距630千米,在A、B之间有汽车站C站,如图1所示.客车由A地驶向C站、货车由B地驶向A地,两车同时出发,匀速行驶,货车的速度是客车速度的.图2是客、货车离C站的路程y1、y2(千米)与行驶时间x(小时)之间的函数关系图象.则下列说法不正确的是()A.货车行驶2小时到达C站B.货车行驶完全程用时14小时C.图2中的点E的坐标是(7,180)D.客车的速度是60千米∕时二、填空题(共10题,共计30分)16、已知关于x的一元一次方程kx+b=0的解是x=-2,一次函数y=kx+b的图象与y轴交于点(0,2),则这个一次函数的表达式是________.17、已知关于x的一次函数的图像经过原点,则________.18、已知直线与的交于点,分别与y轴交于点A、B,则△ABP 的面积为________;19、如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿梯形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图象如图2所示,那么△ABC的面积为________.20、在函数y= 中,自变量x的取值范围是________.21、如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q 同时停止移动.设点P出发xs时,△PAQ的面积为ycm2, y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为________.22、如果每盒钢笔有10支,总售价100元,那么购买钢笔的总钱数y(元)与所买支数x 之间的关系式为________.23、某电信公司推出了A,B两种手机上网套餐,每种套餐一个月的手机上网费用y(元)与上网时间x(分钟)之间的关系如图,如果顾客一个月上网300分钟,那么选择套餐________(填A或B)产生的费用比较高,高________元。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、已知甲乙两人沿同一条公路从A地到B地,图中线段OC,DE分别表示甲乙从离开A地到达B地的过程中路程s(单位:km)与时间t(单位h)的函数关系,则从A地到B地的路程为()A.60kmB.80kmC.90kmD.120km2、点A(1,m)在函数y=2x的图象上,则m的值是()A.1B.2C.D.03、如图,一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).与反比例函数的图像交于点Q,反比例函数图像上有一点P满足:① PA⊥x轴;②PO=(O为坐标原点),则四边形PAQO的面积为()A.7B.10C.4+2D.4-24、表格列出了一项实验的统计数据,表示皮球从高度d落下时弹跳高度b与下落高d的关系,试问下面的哪个式子能表示这种关系(单位cm)()d 50 80 100 150b 25 40 50 75A. B. C. D.5、为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:①若每户居民每月用电量不超过100度,则按0.60元/度计算;②若每户居民每月用电量超过100度,则超过部分按0.8元度计算(未超过部分仍按0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为以(单位:元),则y与x的函数关系用图象表示正确的是( )A. B. C. D.6、一次函数=kx-k(k<0)的图象大致是()A. B. C. D.7、如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<08、若点A(2,4)在函数y=kx-2的图象上,则下列各点也在此函数图象上的是( )A.(0,-2)B.(1.5,0)C.(8,20)D.(0.5,0.5)9、下列函数中,y随x的增大而增大的是()A.y=B.y=﹣x+5C.y= xD.y= (x<0)10、若正比例函数y=kx的图象经过点(1,2),则k的值为()A. B.-2 C. D.211、如图,反比例函数y=(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是()A. B. C.D.12、如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△APB的面积S与点P运动的路程之间的函数图象大致是()A. B. C. D.13、现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y的值为()A.3.2米B.4米C.4.2米D.4.8米14、已知P1(﹣1,y1),P2(2,y2)是正比例函数y=﹣x图象上的两个点,则y1、y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定15、若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0B.a﹣b>0C.a 2+b>0D.a+b>0二、填空题(共10题,共计30分)16、一次函数y=﹣3x+6的图象不经过________象限.17、如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为________ .18、函数 y=的自变量x的取值范围是________ .19、在平面直角坐标系内,一次函数y1=k1x+b1与y2=k2x+b2的图像如图所示,则关于x、y 的方程组的解是________.20、函数的自变量x的取值范围是________ .21、如图,一次函数y=﹣2x和y=kx+b的图象相交于点A(m, 3),则关于x的方程kx+b+2x=0的解为________.22、如图,直线 y1=k1x+b 和直线 y2=k2x+b 交于 y 轴上一点,则不等式 k1x+b>k2x +b 的解集为________.23、某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为________24、函数y=的自变量x的取值范围是________25、直线y=﹣3x+5不经过的象限为________ .三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、如图:一次函数的图象与反比例函数的图象交于A(-2,6)和点B(4,n)(1)求反比例函数的解析式和B点坐标(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.28、如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.29、某产品每件的成本是100元,为了解市场对该产品的认可规律,销售部门分别按两种方案组织了试销售,情况如下:方案A:固定以每件140元的价格销售,日销售量为50件;方案B:每天都适当调整售价,发现日销售量y(件)近似是售价x(元)的一次函数,且前三天的销售情况如下表所示:x130 140 150 (元)y70 50 30 (件)如果方案B中的第四天的售价为155元、第五天的售价为160元,那么前五天中,哪种方案的销售总利润大?30、如图,在靠墙(墙长8m)的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m,求鸡场的一边y(m)与另一边x(m)的函数关系式,并求出自变量的取值范围.参考答案一、单选题(共15题,共计45分)1、C2、B4、D5、C6、D7、D8、A9、C10、D11、D12、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章一次函数一、选择题(每小题4分,共40分)1.函数y=中自变量x的取值范围是()A.x≠﹣4B.x≠4C.x≤﹣4D.x≤42.下列四个点中,恰好与点(﹣2,4)在同一个正比例函数图象上的是()A.(4,﹣2)B.(2,﹣4)C.(﹣4,2)D.(2,4)3.在下列各图象中,y是x的函数有()A.1个B.2个C.3个D.4个4.若点A(x1,﹣3),B(x2,﹣2),C(x3,1)在一次函数y=3x﹣b的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x3<x2<x1D.x1<x3<x2 5.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为()A.10B.8C.5D.36.将直线y=2x+1向右平移2个单位.再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是()A.与x轴交于(2,0)B.与y轴交于(0,﹣1)C.y随x的增大而减小D.经过第一、二、四象限7.已知y是x的一次函数,下表中列出了部分对应值,则m等于()x﹣101y1m﹣5A.﹣1B.0C.﹣2D.8.若点A(﹣2,a),B(b,)在同一个正比例函数图象上,则的值是()A.B.﹣3C.3D.﹣9.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.10.如图①,在矩形ABCD中,动点P从A出发,以恒定的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x.△P AB面积为y,若y与x的函数图象如图②所示,则矩形ABCD的面积为()A.36B.54C.72D.81二、填空题(每小题5分,共20分)11.(5分)函数y=﹣2x+6,当函数值y=4时,自变量x的值是.12.(5分)请写出一个一次函数满足以下条件:(1)y随x的减小而减小;(2)图象与x轴交在负半轴上.13.(5分)已知:一次函数y=(a+1)x﹣(a﹣2)中,该函数的图象不过第四象限,则a 的范围是.14.(5分)某市出租车白天的收费起步价为14元,即路程不超过3公里时收费14元,超过部分每公里收费2.4元.如果乘客白天乘坐出租车的路程x(x>3)公里,乘车费为y 元,那么y与x之间的关系式为.三、解答题(本答题共两小题,每题8分,满分16分)15.(8分)已知直线m与直线y=2x+1平行,且经过(1,4).(1)求直线m的解析式.(2)求直线m与x轴的交点.16.(8分)已知y﹣2与x+3成正比例,且x=﹣4时,y=0.(1)求y与x之间的函数关系式;(2)点P1(2m﹣2,2m+1)在(1)中所得函数的图象上,求m的值.四、解答题(本答题共两小题,每题8分,满分16分)17.(8分)某汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定的重量,则需要购买行李票,行李票费用y(元)与行李重量x(千克)之间函数关系的图象如图所示.(1)求y与x之间的函数关系.(2)旅客最多可以免费携带多少千克的行李?18.(8分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.五、解答题(本答题共两小题,每题10分,满分20分)19.(10分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=10,O为坐标原点,设△OP A的面积为S.(1)求S关于x的函数解析式;(2)当S=4时,求P点的坐标.20.(10分)(1)根据画函数图象的步骤,在如图的直角坐标系中,画出函数y =|x |的图象;(2)求证:无论m 取何值,函数y =mx +2(m +1)的图象经过的一个确定的点;(3)若(1),(2)中两图象围成图形的面积刚好为3,求m 值.六、解答题(本题满分12分)21.(12分)如图,在平面直角坐标系中,直线y =﹣x +3过点A (5,m )且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与y =2x 平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.七、解答题(本题满分12分)22.(12分)预防新型冠状病毒期间,某种消毒液甲城需要7吨,乙城需要8吨,正好A 地储备有10吨,B 地储备有5吨,市预防新型冠状病毒领导小组决定将A 、B 两地储备的这15吨消毒液全部调往甲城和乙城,消毒液的运费价格如下表(单位:元/吨),设从A 地调运x 吨消毒液给甲城.终点起点甲城 乙城A 地100 120 B 地 110 95(1)根据题意,应从B地调运吨消毒液给甲城,从B地调运吨消毒液给乙城;(结果请用含x的代数式表示)(2)求调运这15吨消毒液的总运费y关于x的函数关系式,并直接写出x的取值范围;(3)求出总运费最低的调运方案,并算出最低运费.八、解答题(本题满分14分)23.(14分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.参考答案与试题解析一、选择题(每小题4分,共40分)1.函数y=中自变量x的取值范围是()A.x≠﹣4B.x≠4C.x≤﹣4D.x≤4【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,4﹣x≠0,解得x≠4.故选:B.2.下列四个点中,恰好与点(﹣2,4)在同一个正比例函数图象上的是()A.(4,﹣2)B.(2,﹣4)C.(﹣4,2)D.(2,4)【分析】设正比例函数的解析式为:y=kx,把(﹣2,4)代入得到关于k的一元一次方程,解之,即可得到正比例函数的解析式,依次把各个选项的横坐标代入求得的解析式中,求纵坐标,即可得到答案.【解答】解:设正比例函数的解析式为:y=kx,把(﹣2,4)代入得:4=﹣2k,解得:k=﹣2,即正比例函数的解析式为:y=﹣2x,A.把x=4代入y=﹣2x得:y=﹣8,即A项错误,B.把x=2代入y=﹣2x得:y=﹣4,即B项正确,C.把x=﹣4代入y=﹣2x得:y=8,即C项错误,D.把x=2代入y=﹣2x得:y=﹣4,即D项错误,故选:B.3.在下列各图象中,y是x的函数有()A.1个B.2个C.3个D.4个【分析】利用函数定义进行解答即可.【解答】解:第一个、第二个、第三个图象y都是x的函数,第四个不是,共3个,故选:C.4.若点A(x1,﹣3),B(x2,﹣2),C(x3,1)在一次函数y=3x﹣b的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x3<x2<x1D.x1<x3<x2【分析】根据k=3>0时,y随x的增大而增大,从而可知x1、x2、x3的大小.【解答】解:∵一次函数y=3x﹣b中,k=3>0,∴y随x的增大而增大;∵点A(x1,﹣3),B(x2,﹣2),C(x3,1),∴x1<x2<x3;故选:A.5.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为()A.10B.8C.5D.3【分析】根据一次函数y=﹣2x+6的图象向下平移k不变,可设平移后的函数解析式为:y=﹣2x+6﹣n,把点(﹣1,﹣2)代入即可求得n.【解答】解:∵若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度,∴平移后的函数解析式为:y=﹣2x+6﹣n,∵函数解y=﹣2x+6﹣n的图象经过点(﹣1,﹣2),∴﹣2=﹣2×(﹣1)+6﹣n,解得:n=10,故选:A.6.将直线y=2x+1向右平移2个单位.再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是()A.与x轴交于(2,0)B.与y轴交于(0,﹣1)C.y随x的增大而减小D.经过第一、二、四象限【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:将直线y=2x+1向右平移2个单位.再向上平移2个单位后得到直线y=2x ﹣1,A、直线y=2x﹣1与x轴交于(2,0),错误;B、直线y=2x﹣1与y轴交于(0,﹣1),正确C、直线y=2x﹣1,y随x的增大而增大,错误;D、直线y=2x﹣1经过第一、三、四象限,错误;故选:B.7.已知y是x的一次函数,下表中列出了部分对应值,则m等于()x﹣101y1m﹣5A.﹣1B.0C.﹣2D.【分析】设一次函数解析式为y=kx+b,找出两对x与y的值代入计算求出k与b的值,即可确定出m的值.【解答】解:设一次函数解析式为y=kx+b,将x=﹣1,y=1;x=1,y=﹣5代入得:,解得:k=﹣3,b=﹣2,∴一次函数解析式为y=﹣3x﹣2,令x=0,得到y=2,则m=﹣2,故选:C.8.若点A(﹣2,a),B(b,)在同一个正比例函数图象上,则的值是()A.B.﹣3C.3D.﹣【分析】设正比例函数解析式为y=kx,将A,B两点代入可计算ab的值,再将原式化简后代入即可求解.【解答】解:设正比例函数解析式为y=kx,∵点A(﹣2,a),B(b,)都在该函数图象上,∴a=﹣2k,bk=,即k=a,∴,∴ab=﹣3,∴原式==,故选:A.9.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】利用一次函数的图象性质依次判断可求解.【解答】解:A:直线y1过第一、二、三象限,则a>0,b<0,直线y2过第一、二、四象限,则b<0,a<0,前后矛盾,故A选项错误;B:直线y1过第一、二、三象限,则a>0,b<0,直线y2过第二、三、四象限,则b<0,a>0,故B选项正确;C:直线y1过第一、三、四象限,则a>0,b>0,直线y2过第一、二、四象限,则b<0,a<0,前后矛盾,故C选项错误;D:直线y1过第一、三、四象限,则a>0,b>0,直线y2过第二、三、四象限,则b<0,a>0,前后矛盾,故D选项错误;故选:B.10.如图①,在矩形ABCD中,动点P从A出发,以恒定的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x.△P AB面积为y,若y与x的函数图象如图②所示,则矩形ABCD的面积为()A.36B.54C.72D.81【分析】由题意及图形②可知当点P运动到点B时,△P AB面积为y,从而可知矩形的宽;由图形②从6到18这段,可知点P是从点B运动到点C,从而可知矩形的长,再按照矩形的面积公式计算即可.【解答】解:由题意及图②可知:AB=6,BC=18﹣6=12,∴矩形ABCD的面积为6×12=72.故选:C.二、填空题(每小题5分,共20分)11.(5分)函数y=﹣2x+6,当函数值y=4时,自变量x的值是1.【分析】代入y=4求出与之对应的x值.【解答】解:当y=4时,﹣2x+6=4,解得:x=1.故答案为:1.12.(5分)请写出一个一次函数y=x+1满足以下条件:(1)y随x的减小而减小;(2)图象与x轴交在负半轴上.【分析】根据题意可以写出一个符合要求的函数解析式,注意本题答案不唯一.【解答】解:y=x+1满足条件y随x的减小而减小,图象与x轴交在负半轴上,故答案为:y=x+1.13.(5分)已知:一次函数y=(a+1)x﹣(a﹣2)中,该函数的图象不过第四象限,则a 的范围是﹣1<a≤2.【分析】根据一次函数y=(a+1)x﹣(a﹣2)不过第四象限可得出关于a的不等式组,解不等式组即可.【解答】解:∵一次函数y=(a+1)x﹣(a﹣2)的图象不过第四象限,∴,解得﹣1<a≤2.故答案为﹣1<a≤2.14.(5分)某市出租车白天的收费起步价为14元,即路程不超过3公里时收费14元,超过部分每公里收费2.4元.如果乘客白天乘坐出租车的路程x(x>3)公里,乘车费为y 元,那么y与x之间的关系式为y=2.4x+6.8.【分析】根据乘车费用=起步价+超过3千米的付费得出.【解答】解:依题意有:y=14+2.4(x﹣3)=2.4x+6.8.故答案为:y=2.4x+6.8.三、解答题(本答题共两小题,每题8分,满分16分)15.(8分)已知直线m与直线y=2x+1平行,且经过(1,4).(1)求直线m的解析式.(2)求直线m与x轴的交点.【分析】(1)设直线m为y=kx+b,根据直线m与直线y=2x+1平行,可得k=2,把(1,4)代入即可求出函数解析式;(2)令y=0,即可得到2x+2=0,求得x=﹣1,即可求得直线m与x轴的交点(﹣1,0).【解答】解:(1)设直线m为y=kx+b,∵直线m与直线y=2x+1平行,∴k=2,把(1,4)代入y=2x+b得:b=2,∴直线m的解析式为:y=2x+2;(2)在直线m:y=2x+2中,令y=0,则2x+2=0,解得x=﹣1,∴直线m与x轴的交点为(﹣1,0).16.(8分)已知y﹣2与x+3成正比例,且x=﹣4时,y=0.(1)求y与x之间的函数关系式;(2)点P1(2m﹣2,2m+1)在(1)中所得函数的图象上,求m的值.【分析】(1)根据题意,设出函数关系式,把x=﹣4,y=﹣2代入求出待定系数,确定函数关系式;(2)把点P1(2m﹣2,2m+1)代入(1)求得的解析式,得到关于m的方程,解方程即可.【解答】解:(1)设y﹣2=k(x+3)(k≠0),把x=﹣4,y=0代入得,0﹣2=k(﹣4+3),解得,k=2,∴y﹣2=2(x+3),即:y=2x+8,(2)∵点P1(2m﹣2,2m+1)在y=2x+8的图象上,∴2m+1=2(2m﹣2)+8,∴m=﹣,四、解答题(本答题共两小题,每题8分,满分16分)17.(8分)某汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定的重量,则需要购买行李票,行李票费用y(元)与行李重量x(千克)之间函数关系的图象如图所示.(1)求y与x之间的函数关系.(2)旅客最多可以免费携带多少千克的行李?【分析】(1)由图,已知两点,可根据待定系数法列方程,求函数关系式;(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.【解答】解:(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=90时,y=10,∴解之,得,∴所求函数关系式为y=x﹣2(x≥15);(2)当y=0时,x﹣2=0,所以x=15,故旅客最多可免费携带15kg行李.18.(8分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【分析】(1)运用待定系数法,即可求出y与x之间的函数表达式;(2)解方程或不等式即可解决问题,分三种情形回答即可.【解答】解:(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100;(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.五、解答题(本答题共两小题,每题10分,满分20分)19.(10分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=10,O为坐标原点,设△OP A的面积为S.(1)求S关于x的函数解析式;(2)当S=4时,求P点的坐标.【分析】(1)根据题意画出图形,由x+y=10可知y=10﹣x,再由三角形的面积公式即可得出结论;(2)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【解答】解:(1)如图所示,∵x+y=10,∴y=10﹣x,∴S=×4×(10﹣x)=20﹣2x;(2)由(1)知,S=20﹣2x,∴20﹣2x=4,解得x=8,∴y=2,∴P(8,2).20.(10分)(1)根据画函数图象的步骤,在如图的直角坐标系中,画出函数y=|x|的图象;(2)求证:无论m取何值,函数y=mx+2(m+1)的图象经过的一个确定的点;(3)若(1),(2)中两图象围成图形的面积刚好为3,求m值.【分析】(1)将函数y=|x|,变形为y=x(x≥0),y=﹣x(x≤0),然后利用两点法画出函数图象即可;(2)将函数解析式变形为:y=m(x+2)+2,从而可知直线经过点(﹣2,2);(3)首先由勾股定理求得OC的长,然后根据三角形的面积为3,可求得OD的长度,从而可得到点D的坐标,将点D的坐标代入函数解析式可求得m的值.【解答】解:(1)当x≥0时,y=|x|=x,即y=x(x≥0),将x=0代入得:y=0;将x=1代入得:y=1,当x≤0时,y=|x|=﹣x,即y=﹣x(x≤0),将x=0代入得:y=0;将x=﹣1代入得:y=1.过点O(0,0),A(﹣1,1)作射线OA,过点O(0,0),B(1,1)作射线OB,函数y=|x|的图象如图所示:(2)∵y=mx+2(m+1)=m(x+2)+2,∴x+2=0,y=2∴x=﹣2,y=2,即无论m取何值,函数y=mx+2(m+1)的图象经过的一个确定的点(﹣2,2);(3)如下图:∵函数y=mx+2(m+1)的图象经过顶点(﹣2,2)∴OC==2.∴OD•OC=3,∴OD=,所以点D的坐标为(,).将x=,y=代入y=mx+2(m+1)得:m=﹣.六、解答题(本题满分12分)21.(12分)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.【分析】(1)先把A(5,m)代入y=﹣x+3得A(5,﹣2),再利用点的平移规律得到C (3,2),接着利用两直线平移的问题设CD的解析式为y=2x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;(2)先确定B(0,3),再求出直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,然后求出直线y=2x+3与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【解答】解:(1)把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式为y=2x﹣4;(2)当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,2x﹣4=0,解得x=2,则直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,当y=0时,2x+3=0,解得x=﹣,则直线y=2x+3与x轴的交点坐标为(﹣,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为﹣≤x≤2.七、解答题(本题满分12分)22.(12分)预防新型冠状病毒期间,某种消毒液甲城需要7吨,乙城需要8吨,正好A地储备有10吨,B地储备有5吨,市预防新型冠状病毒领导小组决定将A、B两地储备的这15吨消毒液全部调往甲城和乙城,消毒液的运费价格如下表(单位:元/吨),设从A 地调运x吨消毒液给甲城.终点甲城乙城起点A地100120B地11095(1)根据题意,应从B地调运(7﹣x)吨消毒液给甲城,从B地调运(x﹣2)吨消毒液给乙城;(结果请用含x的代数式表示)(2)求调运这15吨消毒液的总运费y关于x的函数关系式,并直接写出x的取值范围;(3)求出总运费最低的调运方案,并算出最低运费.【分析】(1)根据题意和表格中的数据,可以解答本题;(2)根据题意,可以得到y与x的函数关系式,并写出x的取值范围;(3)根据题意,可以得到x的取值范围,再根据一次函数的性质,即可得到总运费最低的调运方案,然后计算出最低运费.【解答】解:(1)由题意可得,从A地调运x吨消毒液给甲城,则调运(10﹣x)吨消毒液给乙城,从B地调运(7﹣x)吨消毒液给甲城,调运8﹣(10﹣x)=(x﹣2)吨消毒液给乙城,故答案为:(7﹣x),(x﹣2);(2)由题意可得,y=100x+120(10﹣x)+110(7﹣x)+95(x﹣2)=﹣35x+1780,∵,∴2≤x≤7,即总运费y关于x的函数关系式是y=﹣35x+1780(2≤x≤7);(3)∵y=﹣35x+1780,∴y随x的增大而减小,∵2≤x≤7,∴当x=7时,y取得最小值,此时y=1535,即从A地调运7吨消毒液给甲城时,总运费最低,运费最低为1535元.八、解答题(本题满分14分)23.(14分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.【分析】(1)先利用前0.5小时的路程除以时间求出一辆车的速度,再利用相遇问题根据2.7小时列式求解即可得到另一辆车的速度,从而得解;(2)点D为快车到达乙地,然后求出快车行驶完全程的时间从而求出点D的横坐标,再求出相遇后两辆车行驶的路程得到点D的纵坐标,从而得解;(3)分相遇前相距300km和相遇后相遇300km两种情况列出方程求解即可.【解答】解:(1)(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;故答案为:80;120.(2)快车到达乙地(出发了4小时快车慢车相距360KM时甲车到达乙地);∵快车走完全程所需时间为480÷120=4(h),∴点D的横坐标为4.5,纵坐标为(80+120)×(4.5﹣2.7)=360,即点D(4.5,360);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),故x=1.2 h或4.2 h,两车之间的距离为300km.。

相关文档
最新文档