热力学第一定律主要公式
热力学第一定律总结
298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0
热力学第一定律
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一第二定律的数学表达式
热力学第一第二定律的数学表达式
热力学第一定律表达式为:ΔU=Q-W,其中ΔU为系统内能变化量,Q为系统吸收的热量,W为系统做功。
热力学第二定律表达式有多种,其中较常见的是卡诺循环效率公式:η = (T1 - T2) / T1,其中η为卡诺循环效率,T1和T2分别为高温热源和低温热源的温度。
另一种常见的表达式为熵变公式:ΔS = Qrev / T,其中ΔS为系统熵变,Qrev为系统在可逆过程中吸收的热量,T为热源的温度。
这些数学表达式是热力学基本原理的重要体现,对于热力学学科的深入理解具有重要意义。
- 1 -。
热力学第一定律
热力学第一定律热力学是一门研究能量转换与传递规律的学科,它主要研究热现象与其他物理现象之间的相互关系。
热力学第一定律,也称作能量守恒定律,是热力学的基本原理之一。
本文将介绍热力学第一定律的基本概念和应用。
一、热力学第一定律的概念热力学第一定律是能量守恒定律在热学领域的表述。
它指出:在一个孤立系统中,总能量的变化等于系统所接受的热量与所做的功之和。
这个定律可以用以下公式表示:ΔE = Q - W其中,ΔE表示系统内能的变化,Q表示系统所接受的热量,W表示系统所做的功。
二、热力学第一定律的应用1. 热力学循环热力学循环是指一系列经历几个步骤的热能转换过程,最后回到初始状态的过程。
根据热力学第一定律,一个理想的热力学循环的净输入输出功为零,即总输入热量等于总输出功。
这一定律被广泛应用于热能转换设备的设计和研究中。
2. 热机效率热机效率是衡量热能转化的性能指标,是指输出功与输入热量之比。
根据热力学第一定律,对于一个正循环热机,其效率可以通过以下公式计算:η = 1 - Qc / Qh其中,η表示热机效率,Qc表示效率造成的能量损失,Qh表示输入的热量。
3. 热力学过程热力学过程是一个系统经历的状态变化过程,根据热力学第一定律,对于一个孤立系统来说,其内能的变化等于系统所接受的热量和所做的功之和。
这一定律不仅适用于准静态过程,也适用于非准静态过程,为热力学过程的分析提供了基础。
4. 热力学平衡热力学平衡是指在一个封闭系统中,各部分之间没有能量的净交换,即系统内外没有能量的流动。
根据热力学第一定律,当一个系统达到热力学平衡时,系统内能的变化为零,即ΔE = 0。
热力学平衡在热力学研究中起着重要的作用。
三、总结热力学第一定律是热力学的基本原理之一,它描述了系统能量转换与传递的规律。
在热力学循环、热机效率、热力学过程和热力学平衡等方面都有广泛的应用。
热力学第一定律的核心是能量守恒定律,对于热学领域的研究具有重要意义。
热力学第一定律主要公式
热力学第一定律主要公式1.U 与H得计算对封闭系统得任何过程U=Q+W(1) 简单状态变化过程1) 理想气体等温过程任意变温过程等容变温过程 ()等压变温过程绝热过程2)实际气体van derWa als 气体等温过程222111211()H U pV n a p V pV V V ⎛⎫ ⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程(3)无其她功得化学变化过程绝热等容反应绝热等压反应等温等压反应等温等压凝聚相反应等温等压理想气体相反应或由生成焓计算反应热效应由燃烧焓计算反应热效应由键焓估算反应热效应,,()(,(i m i i m i i i H T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:为种键得个数;为种键得键焓。
不同温度下反应热效应计算2、体积功W得计算任意变化过程任意可逆过程自由膨胀与恒容过程 W=0恒外压过程等温等压相变过程(设蒸气为理想气体)等温等压化学变化 (理想气体反应)(凝聚相反应)理想气体等温可逆过程理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程van der W aal s 气体等温可逆过程3、Q 得计算(1)简单状态变化过程等压变温过程等压变温过程(2) 等温等压相变过程Joule-Thomson 系数表示节流膨胀后温度升高。
表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。
工程热力学的公式大全
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。
3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。
4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。
5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。
6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。
7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。
8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。
9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。
10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。
11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。
12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。
13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。
14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。
15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。
16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。
17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。
热力学第一定律 公式总结
( pV ) p(V2 V1 )
在数值上等于体积功。
(2)
H nCp,m dT , U nCv,m dT
T1 T1
T2
T2
适用条件:没有相变、没有化学变化、不作非膨胀功的 均相封闭体系
2
(3) H nCp,m dT Q p
T1
T2
H,U是状态函数,恒成立
4.反应进度与反应焓变的计算
1). d
dnB
B
2). r H m (T ) B f H m ( B, ) B c H m ( B, )
或 r H 的值与化学方程式的书写有关
3). r H m (T ) 与反应温度的关系
m
r H (T2 ) r H (T1 ) C p dT
Q不是状态函数, 非等压或非等容 条件时,热量的 变化不是Qp或Qv
U nCv,m dT Qv
T1
T2
H Q U Q
3
(4) Gay-Lussac-Joule实验(理想气体)
U =f ( T )
U 0 V T
U p 0 T
• 热力学第一定律 主要公式及使用条件
1.热力学第一定律的数学表示式
U Q W dU Q W
规定系统吸热为正,放热为负。系统得功为正,对环境作功
为负。W是体积功和非体积功之和,上式适用于封闭体系的一切 过程。
1
2.△H与△U
(1)
H U ( pV )
只有在恒压下
H=f(T)
H 0 V T
H p 0 T
内能和焓,Cv和Cp都仅是温度的函数
热力学第一定律的表达式
热力学第一定律的表达式热力学第一定律的表达式:ΔE=W+Q。
在热力学中,热力学第一定律通常表述为:热能和机械能在转化时,总能量保持不变。
其数学表达式为ΔE=W+Q,其中ΔE表示系统内能的改变,W表示系统对外所做的功,Q表示系统从外界吸收的热量。
这个定律表明,能量的转化和守恒定律是自然界的基本定律之一,它适用于任何与外界没有能量交换的孤立系统。
换句话说,在一个封闭系统中,能量的总量是恒定的,改变的只是能量的形式。
因此,热力学第一定律是能量守恒定律在热现象领域中的应用。
另外,对于一个封闭系统,如果系统内部没有发生化学反应或相变等过程,那么系统对外做的功等于系统从外界吸收的热量。
这是因为系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
值得注意的是,热力学第一定律也适用于非平衡态系统。
即使系统处于非平衡态,热力学第一定律仍然适用。
因此,它不仅是热力学的基石之一,也是整个物理学的基石之一。
为了更好地理解热力学第一定律,我们可以考虑一些具体的应用场景。
例如,在汽车发动机中,汽油燃烧产生的热能转化为汽车的动能和废气中的内能。
在这个过程中,系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
因此,根据热力学第一定律,我们可以计算出汽车发动机的效率,从而评估其能源利用效果。
此外,热力学第一定律还可以应用于电学、化学等领域。
例如,在电学中,当电流通过电阻时会产生热量,根据热力学第一定律可以计算出电阻产生的热量。
在化学中,反应热的计算也可以根据热力学第一定律来进行。
以下是一些具体例子,说明热力学第一定律的应用:1. 热电站:在热电站中,燃料燃烧产生的热能转化为蒸汽的机械能,再转化为电能。
根据热力学第一定律,热能被转化为机械能和电能,而总能量保持不变。
通过计算输入和输出的能量,我们可以评估热电站的效率。
2. 制冷机:制冷机是一种将热量从低温处转移到高温处的设备。
在制冷过程中,制冷剂在蒸发器中吸收热量并转化为气态,然后通过压缩机和冷凝器将热量释放到高温处。
热力学第一定律
P2V2
ln
V2 V1
7
又 ∵ 等温过程有
V2 P1 V1 P2
有
AT
P1V1 M
ln P1 P2 RT
ln
P2V2 P1
ln
P1 P2
M mol
P2
(3)强调QT=AT
即在等温过程中,系统的热交换不能直接计算,但可用等 温过程中的功值AT来间接计算。
8
※三种过程中气体做的功
等体过程
(1)特征:dT=0, ∴dE=0 热一律为 QT=AT
在等温过程中,理想气体所吸收 的热量全部转化为对外界做功,系 统内能保持不变。
(2)等温过程的功
PI
P1
P2
o
V1
II
V2 V
∵T=C(常数),
P RT 1
V
dAT PdV
AT
V2 RTdV RT ln V2
V V1
V1
P1V1
ln
V2 V1
T1)
M M mol R(T2 T1)
5
C p
C V
R i2R 2
──此即迈耶公式
(3)比热容比:
定义
Cp
Cv
i 2
RR iR
i2 i
2
对理想气体刚性分子有:
单原子分子:
双原子分子:
5 3 7 5
1.67 1.4
*: 经典理论的缺陷
多原子分子:
8 6
1.33
6
3、等温过程
1
符号规定
Q
吸热为正, 放热为负.
系统对外做功为正, A 外界对系统做功为负.
各物理量的单位统一用国际单位制。
热力学的四个基本公式推导
热力学的四个基本公式推导热力学是物理学的一个分支,研究能量转移、功、热量和温度等方面的基本规律。
在热力学中,有四个基本公式,分别是热力学第一定律、热力学第二定律、热力学第三定律和熵增加定理。
下面我们就来推导一下这四个基本公式。
一、热力学第一定律热力学第一定律是能量守恒定律,在热力学中表现为:对于一个系统,其内能的变化等于系统吸收的热量减去系统做功的量。
数学表达式为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统做的功。
二、热力学第二定律热力学第二定律是热力学中的基本定律之一,它表明热量不可能从低温物体自发地传递到高温物体,除非有外界做功或者有热力学过程进行。
热力学第二定律的数学表达式为:ΔS > 0其中,ΔS表示熵的变化量。
熵是一个系统的混乱程度,熵增加表示系统越来越不稳定,越来越混乱。
因此,热力学第二定律也被称为熵增加定理。
三、热力学第三定律热力学第三定律是热力学中的基本定律之一,它规定绝对零度是无法达到的,除非熵为零。
热力学第三定律的数学表达式为:lim S->0 S(T) = 0其中,S(T)表示在温度为T时的熵。
热力学第三定律说明,在温度接近绝对零度时,熵趋于零,系统变得越来越有序。
四、熵增加定理熵增加定理是热力学第二定律的一个推论,它表明,任何孤立系统在进行热力学过程时,其熵都不可能减少,只能增加或保持不变。
熵增加定理的数学表达式为:ΔS >= 0其中,ΔS表示熵的变化量。
熵增加定理说明,孤立系统总是趋向于更加混乱、更加不稳定的状态,这是热力学中不可逆过程的本质特征。
综上所述,热力学的四个基本定律都有其数学表达式,通过这些公式,我们可以更加深入地理解热力学的基本规律。
热力学第一定律总结
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容W ’=0:W = 0,ΔU = Q V恒压W ’=0:W =-p ΔV =-ΔpV ,ΔU = Q -ΔpV ΔH = Q p 恒容+绝热W ’=0 :ΔU = 0 恒压+绝热W ’=0 :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + ΔpV典型例题:思考题第3题,第4题;二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或或如恒容,ΔU = Q ,否则不一定相等;如恒压,ΔH = Q ,否则不一定相等;C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:思考题第2,3,4题书、三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书四、可逆相变一定温度T 和对应的p 下的相变,是恒压过程ΔU ≈ ΔH –ΔnRTΔn :气体摩尔数的变化量;如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH ;ΔU = n C V, m d T T 2T1 ∫ ΔH = n C p, md T T2 T1∫ ΔU = nC V, m T 2-T 1 ΔH = nC p, m T 2-T 1ΔU ≈ ΔH = n C p, m d TT 2T 1∫ΔU ≈ ΔH = nC p, m T 2-T 1ΔH = Q p = n Δ H m α βkPa 及其对应温度下的相变可以查表; 其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算;或典型例题:作业题第3题 五、化学反应焓的计算其他温度:状态函数法ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT Δn :气体摩尔数的变化量;典型例题:思考题第2题典型例题:见本总结“十、状态函数法;典型例题第3题” 六、体积功的计算通式:δW = -p amb ·d V恒外压:W = -p amb ·V 2-V 1Δ H m T = ΔH 1 +Δ H m T 0 + ΔH 3α ββα Δ H m TαβΔH 1ΔH 3Δ H m T 0α β可逆相变K:ΔH = nC p, m T 2-T 1ΔH = n C p, m d T T 2T1∫恒温可逆可逆说明p amb = p :W = nRT ·ln p 2/p 1 = -nRT ·ln V 2/V 1 绝热可逆:pV γ= 常数γ = C p , m /C V , m ; 利用此式求出末态温度T 2,则W =ΔU = nC V , m T 2 – T 1或:W = p 2V 2 – p 1V 1/ γ–1典型例题: 书,作业第1题 七、p -V 图斜率大小:绝热可逆线 > 恒温线 典型例题:如图,A→B 和A→C 均为理想气体变化过程,若 B 、C 在同一条绝热线上,那么U AB 与U AC 的关系是: A U AB > U AC ; B U AB < U AC ; C U AB =U AC ; D 无法比较两者大小;八、可逆过程可逆膨胀,系统对环境做最大功因为膨胀意味着p amb ≤ p ,可逆时p amb 取到最大值p ;可逆压缩,环境对系统做最小功; 典型例题:1 mol 理想气体等温313 K 膨胀过程中从热源吸热600 J,所做的功仅是变到相同终态时最大功的1/10,则气体膨胀至终态时,体积是原来的___倍;九、求火焰最高温度: Q p = 0, ΔH = 0求爆炸最高温度、最高压力:Q V = 0, W = 0 ΔU = 0 典型例题:见本总结“十、状态函数法;典型例题第3题” 十、状态函数法重要设计途径计算系统由始态到终态,状态函数的变化量; 典型例题:1、 将及Θ的水汽100 dm 3,可逆恒温压缩到10 dm 3,试计算此过程的W,Q 和ΔU ;2、 1mol 理想气体由2atm 、10L 时恒容升温,使压力到20 atm;再恒压压缩至体积为1L;求整个过程的W 、Q 、ΔU 和ΔH ;3、 298K 时,1 mol H 2g 在10 mol O 2g 中燃烧H 2g + 10O 2g = H 2Og + g恒容过程恒压过程p 恒温过程绝热可逆过程p V已知水蒸气的生成热Δr H m H2O, g = kJ·mol-1, C p,m H2 = C p,m O2 = J·K-1·mol-1,C p,m H2O = J·K-1·mol-1.a)求298 K时燃烧反应的Δc U m;b)求498 K时燃烧反应的Δc H m;c)若反应起始温度为298 K,求在一个密封氧弹中绝热爆炸的最高温度;十、了解节流膨胀的过程并了解节流膨胀是绝热、恒焓过程典型例题:1、理想气体经过节流膨胀后,热力学能____升高,降低,不变2、非理想气体的节流膨胀过程中,下列哪一种描述是正确的:A Q = 0,H = 0,p < 0 ;B Q = 0,H < 0,p < 0 ;C Q > 0,H = 0,p < 0 ;D Q < 0,H = 0,p < 0 ;十一、其他重要概念如系统与环境,状态函数,平衡态,生成焓,燃烧焓,可逆过程等,无法一一列举典型例题:1、书2、体系内热力学能变化为零的过程有:A 等温等压下的可逆相变过程B 理想气体的绝热膨胀过程C 不同理想气体在等温等压下的混合过程D 恒容绝热体系的任何过程十二、本章重要英语单词system 系统surroundings 环境state function 状态函数equilibrium 平衡态open/closed/isolated system 开放/封闭/隔离系统work 功heat 热energy 能量expansion/non-expansion work 体积功/非体积功free expansion 自由膨胀vacuum 真空thermodynamic energy/internal energy 热力学/内能perpetual motion machine 永动机The First Law of Thermodynamics热力学第一定律heat supplied at constant volume/pressure 恒容热/恒压热adiabatic 绝热的diathermic 导热的exothermic/endothermic 放热的/吸热的isothermal 等温的isobaric 等压的heat capacity 热容heat capacity at constant volume/pressure 定容热容/定压热容enthalpy 焓condensed matter 凝聚态物质phase change 相变sublimation 升华vaporization 蒸发fusion 熔化reaction/formation/combustion enthalpy反应焓/生成焓/燃烧焓extent of reaction 反应进度Kirchhoff’s Law 基希霍夫公式reversible process 可逆过程Joule-Thomson expansion 焦耳-汤姆逊膨胀/节流膨胀isenthalpic 恒焓的。
热力学第一定律公式总结
热力学第一定律公式总结热力学第一定律公式的总结热力学第一定律是能量守恒定律,它是热力学中最基本的定律之一。
它表明能量在物理系统中的转化和传递是受到一定的限制的。
根据热力学第一定律,能量在一个封闭系统中不能被创造或者消失,只能从一种形式转化为另一种形式。
这个定律可以总结为一个简单的公式:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W 表示系统对外做功。
这个公式可以理解为系统的内部能量的变化等于系统吸收的热量减去系统对外做的功。
根据这个公式,我们可以进一步理解热力学第一定律的含义和应用。
热力学第一定律表明能量的转化和传递在系统中是受到一定限制的。
能量不能从无到有地产生,也不能消失,只能从一种形式转化为另一种形式。
这意味着能量的总量是恒定的,只是在不同的形式之间进行转换。
比如,当我们吃食物时,身体会将食物中的化学能转化为机械能和热能。
这个过程中,食物中的化学能并没有消失,而是转化为了身体的内部能量。
热力学第一定律还表明了能量的转化是通过热量和功两种方式进行的。
热量是能量的一种形式,是由温度差引起的能量传递。
当系统吸收热量时,热量会增加系统的内部能量。
而功是由力对物体的位移所做的功,是能量的另一种形式。
当系统对外做功时,系统的内部能量会减少。
热力学第一定律指出了热量和功之间的关系,通过这个关系可以计算出系统的内部能量的变化。
热力学第一定律广泛应用于各个领域。
在工程领域中,热力学第一定律被用于热机和制冷系统的分析和设计。
热力学第一定律也被用于分析化学反应中的能量变化。
在生物学中,热力学第一定律被用于研究生物体内能量转化的原理。
总之,热力学第一定律是热力学研究中不可或缺的基本定律。
热力学第一定律公式ΔU = Q - W总结了能量在物理系统中的转化和传递是受到一定限制的。
根据这个公式,能量的转化和传递遵循能量守恒的原则,能量不能被创造或者消失,只能从一种形式转化为另一种形式。
热力学第一定律的应用广泛,涉及到工程、化学、生物等多个领域。
热力学第一定理公式
热力学第一定理公式
热力学第一定理公式是:△U=Q+W。
表述为:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。
即热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
其推广和本质就是著名的能量守恒定律。
热力学第一定律本质上与能量守恒定律是的等同的,是一个普适的定律,适用于宏观世界和微观世界的所有体系,适用于一切形式的能量。
自1850年起,科学界公认能量守恒定律是自然界普遍规律之一。
能量守恒与转化定律可表述为:自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,但在转化过程中,能量的总值不变。
最新热力学第一定律主要公式
热力学第一定律主要公式1.∆U 和∆H 的计算 对封闭系统的任何过程 ∆U=Q+W2111()H U p V pV ∆=∆--(1) 简单状态变化过程 1) 理想气体 等温过程0T U ∆= 0T H ∆=任意变温过程,21()V m U nC T T ∆=-,21()p m H nC T T ∆=-等容变温过程 H U V p ∆=∆+∆ (V U Q ∆=) 等压变温过程 p U Q p V ∆=-∆ ()p H Q ∆=绝热过程,21()V m U W nC T T ∆==- ,21()p m H nC T T ∆=-2)实际气体van derWaals 气体等温过程 21211U na V V ⎛⎫⎪ ⎪⎝⎭∆=-222111211()H U pV na p V pV V V ⎛⎫⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程 p tra H Q ∆= (pQ 为相变潜热)p tra tra U Q p V ∆=-∆(3)无其他功的化学变化过程绝热等容反应 0r U ∆=绝热等压反应 0r H ∆=等温等压反应r p H Q ∆= r r U H p V ∆=∆-∆等温等压凝聚相反应r r U H ∆≈∆等温等压理想气体相反应()r r U H n RT ∆=∆-∆或 r r B BH U RT ν∆=∆-∑由生成焓计算反应热效应 f ()(,)r m m B BH T H T B θθν∆=∆∑由燃烧焓计算反应热效应 c ()(,)r m m B BH T H T B θν∆=-∆∑由键焓估算反应热效应,,()(,(i m i i m i iiH T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:i n 为i 种键的个数;n i为i 种键的键焓。
不同温度下反应热效应计算 2121()()d T r m r m r p T H T H T C T ∆=∆+∆⎰2.体积功W 的计算 任意变化过程 W= d e p V -∑任意可逆过程21W= d VV p V -⎰自由膨胀和恒容过程 W=0 恒外压过程 21()e Wp V V =--等温等压→l g 相变过程(设蒸气为理想气体)1()g g g W p V V pV n RT =--≈-=-等温等压化学变化 ()W p Vn RT =-∆=∆ (理想气体反应)0W ≈ (凝聚相反应)理想气体等温可逆过程2112ln ln V p W nRT nRT V p =-=-理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程2122111()()11nR W T T p V pV δδ=-=---van der Waals 气体等温可逆过程2212112ln()V nb W nRT n a V nb V V -=----3.Q 的计算(1)简单状态变化过程 等压变温过程 等压变温过程(2) 等温等压相变过程 Joule-Thomson 系数-J Tμ-J T HT p μ∂⎛⎫= ⎪∂⎝⎭-11J T p p p T H V T V p T C C μ⎡⎤∂∂⎛⎫⎛⎫=-=- ⎪⎢⎥ ⎪∂∂⎝⎭⎝⎭⎣⎦表示节流膨胀后温度升高。
热力学第一定律
i
i 为分子的自由度.
单原子气体: i = 3 氦、氖等 双原子气体: i = 5 氢、氧、氮等 多原子气体: i = 6 水蒸汽、甲烷等
➢ 准静态过程中的内能变化
内能: 热力学系统的能量, 它包括了分子热运动的平动 、 转动和振动动能、化学能、原子能、核能... 以及分子 间相 互作用的势能. (不包括系统整体运动的机械能)
F S
p,V dV
p
(p1,V1,T1)
dl dW pS d l p d V
(p2,V2,T2)
W V2 pdV V1
O V1
dV
V2 V
结论: 系统所做的功在数值上等于p-V 图上过程曲线以 下的面积.
➢ 准静态过程中的热量 热容量 热量是系统之间由于热相互作用而传递的能量.
热容量: 物体温度升高一度所需要吸收的热量.
T1 )
等体过程中, 热力学第一定律为 (dQ )V,m dE
等体摩尔热容可表示为 同理可得等压摩尔热容为
C V,m
dQ dT
V,mol
dE dT
C p,m
dQ dT
p,mol
dE dT
p dV dT
1 mol 理想气体的状态方程
为 C p,m CV,m R
pV RT pdV RdT 称为迈耶公式
➢ 热力学第一定律 包括热现象在内的能量守恒和转换定律. Q = (E 2 - E 1 ) +W
其中: Q 表示系统吸收的热量; W 表示系统对外所做的功; E (=E2-E1) 表示系统内能的增量.
热力学第一定律微分形式: dQ = dE + dW
热量和功是过程量. 内能是状态量.
➢ 准静态过程中的功
第二章 热力学第一定律
第二章热力学第一定律基本公式功: δW = -P外dV热力学第一定律: dU =δQ + δW ΔU = Q + W焓的定义: H ≡ U + PV热容的定义: C=limΔT→0δQ/ ΔT等压热容的定义: C P =δQ P /dT =(∂H/∂T)P等容热容的定义: C V =δQ V /dT =(∂U/∂T)V任意体系的等压热容与等容热容之差: C P - C V = [P + (∂U/∂V)T] (∂V/∂T)P 理想气体的等压热容与等容热容之差: C P - C V = nR理想气体绝热可逆过程方程: γ = C P / C VPVγ-1 =常数T Vγ-1 =常数P1-γTγ=常数理想气体绝热功: W =C V(T1 – T2 ) W = P1V1 – P2V2 /γ-1热机效率: η = W/Q2可逆热机效率: η = T2 – T1 / T2冷冻系数: β= Q1′/W可逆制冷机冷冻系数: β = T1 / T2 – T1焦汤系数: μ = ( ∂T/ ∂P)H = - (∂H/∂P)/C P反应进度: ξ= n B – n B0 / νB化学反应的等压热效应与等容热效应的关系: Q P = Q V + ΔnRT当反应进度ξ= 1 mol 时Δr H m= Δr U m +ΣBνB RT化学反应等压热效应的几种计算方法:Δr H m⊖=ΣBνBΔf H m⊖(B)Δr H m⊖=ΣB (єB )反应物 - ΣB(єB )产物Δr H m⊖= -ΣBνBΔC H m⊖(B)反应热与温度的关系: Δr H m(T2) =Δr H m(T1) + ∫21T TΔr C P dT表 1-1 一些基本过程的W 、Q、△U 、△H 的运算过程W Q △U △H 理想气体自由膨胀0 0 0 0 理想气体等温可逆 -nRTLnV2/V1 -nRTLnV2/V10 0任意物质等容可逆理想气体0∫C V dT∫C V dTQ v∫C V dT△U + V△P∫C P dT任意物质等压可逆理想气体-P外△V-P外△V∫C P dT∫C p dTQ P - P△V∫C V dTQ P∫C P dT理想气体绝热过程C V(T2 – T1)1/γ-1(P2V2-P1V1) 0 ∫C V dT ∫C P dT理想气体多方可逆过程PVδ=常数n R/1-δ(T2-T1) △U + W ∫C V dT ∫C P dT 可逆相变(等温等压) -P外△V Q P Q P -W Q P化学反应(等温等压) -P外△VQ PQ P – WΔr H m=Δr U m+ΣBνB RTQ PΔr H m⊖=ΣBνBΔf H m⊖(B) 例题例1 0.02Kg 乙醇在其沸点时蒸发为气体。
热力学第一定律主要公式
热力学第一定律主要公式1.∆U 和∆H 的计算 对封闭系统的任何过程 ∆U=Q+W2111()H U p V pV ∆=∆--(1) 简单状态变化过程 1) 理想气体 等温过程0T U ∆= 0T H ∆=任意变温过程,21()V m U nC T T ∆=-,21()p m H nC T T ∆=-等容变温过程 H U V p ∆=∆+∆ (V U Q ∆=) 等压变温过程 p U Q p V ∆=-∆ ()p H Q ∆=绝热过程,21()V m U W nC T T ∆==- ,21()p m H nC T T ∆=-2)实际气体van derWaals 气体等温过程 21211U na V V ⎛⎫⎪ ⎪⎝⎭∆=-222111211()H U pV na p V pV V V ⎛⎫⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程 p tra H Q ∆=(p Q 为相变潜热)p tra tra U Q p V ∆=-∆(3)无其他功的化学变化过程绝热等容反应 0r U ∆=绝热等压反应 0r H ∆=等温等压反应r p H Q ∆= r r U H p V ∆=∆-∆等温等压凝聚相反应r r U H ∆≈∆等温等压理想气体相反应()r r U H n RT ∆=∆-∆或 r r B BH U RT ν∆=∆-∑由生成焓计算反应热效应 f ()(,)r m m B BH T H T B θθν∆=∆∑由燃烧焓计算反应热效应 c ()(,)r m m B BH T H T B θν∆=-∆∑由键焓估算反应热效应,,()(,(i m i i m i iiH T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:i n 为i 种键的个数;n i为i 种键的键焓。
不同温度下反应热效应计算 2121()()d T r m r m r p T H T H T C T ∆=∆+∆⎰2.体积功W 的计算 任意变化过程 W= d e p V -∑任意可逆过程21W= d VV p V -⎰自由膨胀和恒容过程 W=0 恒外压过程21()e W p V V =--等温等压→l g 相变过程(设蒸气为理想气体)1()g g g W p V V pV n RT =--≈-=-等温等压化学变化 ()W p Vn RT =-∆=∆ (理想气体反应)0W ≈ (凝聚相反应)理想气体等温可逆过程2112ln ln V p W nRT nRT V p =-=-理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程2122111()()11nR W T T p V pV δδ=-=---van der Waals 气体等温可逆过程2212112ln()V nb W nRT n a V nb V V -=----的计算(1)简单状态变化过程 等压变温过程 等压变温过程(2) 等温等压相变过程 Joule-Thomson 系数-J Tμ-J T HT p μ∂⎛⎫= ⎪∂⎝⎭-11J T p p p T H V T V p T C C μ⎡⎤∂∂⎛⎫⎛⎫=-=- ⎪⎢⎥ ⎪∂∂⎝⎭⎝⎭⎣⎦表示节流膨胀后温度升高。
第二章 热力学第一定律 主要公式及使用条件
第二章 热力学第一定律主要公式及使用条件1. 1. 热力学第一定律的数学表示式W Q U +=Δ或'amb δδδd δdU Q W Q p V W =+=−+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 2. 焓的定义式pVU H +=3. 3. 焓变(1) )(pV U H Δ+Δ=Δ式中为乘积的增量,只有在恒压下)(pV ΔpV )()(12V V p pV −=Δ在数值上等于体积功。
(2) 2,m 1d p H nC Δ=∫T 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
2,m 1d V U nC Δ=∫T5. 5. 恒容热和恒压热(d V Q U =Δ0,'0)V W ==p Q H =Δ(d 0,'0)p W ==6. 6. 热容的定义式(1)定压热容和定容热容δ/d (/)p p C Q T H T p ==∂∂δ/d (/)V V C Q T U T ==∂∂V p V R 3(2)摩尔定压热容和摩尔定容热容,m m /(/)p p C C n H T ==∂∂,m m /(/)V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容),m //p p p c C m C M==式中m 和M 分别为物质的质量和摩尔质量。
(4),m ,m p V C C −=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系2,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()T p p T C T T T C =−∫7. 7. 摩尔蒸发焓与温度的关系21v ap m 2vap m 1v ap ,m ()()d T p T H T H T C T Δ=Δ+Δ∫或 vap m vap ,m (/)p p H T ∂Δ∂=ΔC d amb ∑−=−−=−−=式中 = C (g) —C (l),上式适用于恒压蒸发过程。
热力学四个基本公式
热力学四个基本公式热力学是研究物质能量和能量转换规律的科学,它是物理学的一个重要分支,涉及到许多基本公式。
下面将介绍热力学的四个基本公式。
1.热力学第一定律热力学第一定律,也被称为能量守恒定律,它表明能量是守恒的。
根据能量守恒定律,一个系统的能量改变等于系统所接收的热能和做功的和。
这个定律可以用以下公式表示:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所接收的热能,W表示系统所做的功。
正负号的选择取决于能量的流向,当热能从系统流出或者系统做功时,取负号,反之则取正号。
2.热力学第二定律热力学第二定律描述了能量转换的方向,它基于熵的概念,熵反映了系统的无序程度。
热力学第二定律可以用以下两个常见的公式表示:第一种是克劳修斯不等式:ΔS≥Q/T其中,ΔS表示系统和环境熵的改变,Q表示系统所接收的热能,T表示系统的温度。
根据不等式,当系统吸收热量时,系统和环境的总熵会增加,只有当系统处于绝对零度时(T=0K),熵不会改变。
第二种是熵增原理:ΔS≥0熵增原理表明,孤立系统的熵(无序程度)不会减少,即系统总是倾向于变得更加无序。
3.卡诺循环效率公式卡诺循环是一种理想化的热机循环,它表明了热机的最高效率。
卡诺循环效率公式可以用以下公式表示:η=1-(Tc/Th)其中,η表示卡诺循环的效率,Tc表示冷源的温度,Th表示热源的温度。
根据公式,卡诺循环的效率取决于热源和冷源的温度差,温差越大,效率越高。
4.熵变公式熵变是指系统的熵发生的变化,可以用以下公式表示:ΔS=Sf-Si其中,ΔS表示熵变,Sf表示系统的最终熵,Si表示系统的初始熵。
根据公式,如果ΔS大于零,表示系统的无序程度增加,反之,如果ΔS小于零,则表示系统的无序程度减少。
除了上述的四个基本公式,热力学还有许多重要的公式和定律,例如理想气体状态方程、介导平衡等等。
这些公式和定律是热力学研究的基石,通过它们可以更好地理解物质能量和能量转换的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律主要公式
1.∆U 和∆H 的计算 对封闭系统的任何过程 ∆U=Q+W
2111()H U p V pV ∆=∆--
(1) 简单状态变化过程 1) 理想气体 等温过程
0T U ∆= 0T H ∆=
任意变温过程
,21()V m U nC T T ∆=-
,21()p m H nC T T ∆=-
等容变温过程 H U V p ∆=∆+∆ (V U Q ∆=) 等压变温过程 p U Q p V ∆=-∆ ()p H Q ∆=
绝热过程
,21()V m U W nC T T ∆==- ,21()p m H nC T T ∆=-
2)实际气体van derWaals 气体等温过程 2
1
211U n
a V V ⎛⎫
⎪ ⎪⎝⎭
∆=-
2
22111
211()H U pV n
a p V pV V V ⎛⎫
⎪ ⎪⎝⎭
∆=∆+∆=-+-
(2) 相变过程
等温等压相变过程 p tra H Q ∆= (p
Q 为相变潜热)
p tra tra U Q p V ∆=-∆
(3)无其他功的化学变化过程
绝热等容反应 0r U ∆=
绝热等压反应 0r H ∆=
等温等压反应
r p H Q ∆= r r U H p V ∆=∆-∆
等温等压凝聚相反应
r r U H ∆≈∆
等温等压理想气体相反应
()r r U H n RT ∆=∆-∆
或 r r B B
H U RT ν∆=∆-∑
由生成焓计算反应热效应 f ()(,)r m m B B
H T H T B θθν∆=∆∑
由燃烧焓计算反应热效应 c ()(,)r m m B B
H T H T B θν∆=-∆∑
由键焓估算反应热效应
,,()(,(i m i i m i i
i
H T n H T n H ∆=∆∆∑∑反应物)-生成物)
式中:i n 为i 种键的个数;n i
为i 种键的键焓。
不同温度下反应热效应计算 2
1
21()()d T r m r m r p T H T H T C T ∆=∆+∆⎰
2.体积功W 的计算 任意变化过程 W= d e p V -∑
任意可逆过程
2
1
W= d V
V p V -⎰
自由膨胀和恒容过程 W=0 恒外压过程 21()e W
p V V =--
等温等压→l g 相变过程(设蒸气为理想气体)
1()g g g W p V V pV n RT =--≈-=-
等温等压化学变化 ()W p V
n RT =-∆=∆ (理想气体反应)
0W ≈ (凝聚相反应)
理想气体等温可逆过程
21
12
ln ln V p W nRT nRT V p =-=-
理想气体绝热过程
,212122111
()()()11
V m nR W U nC T T T T p V pV γγ=∆=-=
-=--- 理想气体多方可逆过程
212211
1
()()11
nR W T T p V pV δδ=
-=---
van der Waals 气体等温可逆过程
22121
12
ln
()V nb W nRT n a V nb V V -=----
3.Q 的计算
(1)简单状态变化过程 等压变温过程 等压变温过程
(2) 等温等压相变过程 Joule-Thomson 系数-J T
μ
-J T H
T p μ∂⎛⎫
= ⎪∂⎝⎭
-11J T p p p T H V T V p T C C μ⎡⎤∂∂⎛⎫⎛⎫
=-=- ⎪⎢⎥ ⎪∂∂⎝⎭⎝⎭⎣⎦
表示节流膨胀后温度升高。
-0J T μ=表示节流膨胀后温度不变(理
想气体的-0J T
μ=),-0J T μ=时的温度成为倒转温度;-0J T μ> 表
示节流膨胀后温度降低(常用于气体的液化);
-0
J T
μ<表示节流膨胀后温度升高。