高二数学数列的极限
数列极限的概念与性质
数列极限的概念与性质数列是数学中一种非常重要的数学对象,它在许多领域都有广泛的应用。
而数列的极限是数列理论中的一个基本概念,通过对数列的极限的研究,可以揭示数列的性质和规律,进一步拓展数学的应用领域。
一、数列极限的概念数列极限是数学中一个非常重要的概念,它描述了数列随着项数增加而趋近的某个确定值。
对于一个数列{an},当n趋近于无穷大时,如果存在一个实数A,使得对于任意给定的正实数ε,总存在自然数N,使得当n>N时,有|an - A|< ε成立,那么数A就是数列{an}的极限,记作lim(n→∞) an = A。
二、数列极限的性质1. 唯一性:数列的极限如果存在,则唯一。
这意味着一个数列不可能有两个不同的极限。
2. 有界性:如果一个数列存在极限,则它是有界的,即数列中的所有项都在某个范围内。
3. 保号性:如果数列{an}的极限为A,则当n足够大时,数列的每一项与A的关系与A的正负号相同。
4. 极限的四则运算:如果两个数列{an}和{bn}的极限都存在,则它们的和、差、乘积、商的极限也存在,并且有相应的运算规律。
5. 夹逼定理:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且li m(n→∞) an = lim(n→∞) cn = A,那么lim(n→∞) bn = A。
6. 收敛数列的有界性:如果数列{an}的极限存在,则数列{an}是有界的。
7. 子列的极限:如果数列{an}的极限为A,则它的任意一个子列的极限也为A。
三、数列极限的应用1. 无穷级数:通过对数列极限的研究,可以求解各种无穷级数的和,如等比级数、调和级数等。
2. 函数极限:函数极限可以看作是数列极限的推广,通过对数列的极限性质的研究,可以进一步推导函数的极限性质。
3. 微积分:微积分中的导数和积分都与数列的极限密切相关,数列极限的概念和性质对于理解微积分理论非常重要。
4. 计算机科学:数列极限的思想也可以应用到计算机科学中,通过数值计算的方法来逼近数列的极限,解决计算问题。
数列的极限-高中数学知识点讲解
数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。
求数列极限的十五种解法
求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
数列的极限知识点归纳总结
数列的极限知识点归纳总结数列的极限是高中数学中重要的概念之一,它在解析几何、微积分等数学领域中起着重要的作用。
本文将对数列的极限进行知识点归纳总结,帮助读者更好地理解和掌握这一概念。
一、定义和概念1. 数列的定义:数列是按照一定顺序排列的一组数的集合。
数列可以用公式表示,常用的表示方式为{an}或{an}∞n=1。
2. 数列的极限定义:对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|an - a| < ε,那么称数列{an}的极限为a。
3. 数列的收敛和发散:如果数列{an}存在极限,称该数列收敛;否则,称该数列发散。
二、极限的性质1. 极限唯一性:如果数列{an}收敛,那么它的极限是唯一的。
2. 有界性:对于收敛数列{an},存在一个正数M,使得对于任意的n,有|an| ≤ M。
3. 夹逼定理:如果{an} ≤ {bn} ≤ {cn},并且lim an = lim cn = a,那么lim bn = a。
4. 四则运算法则:若数列{an}和{bn}收敛,并且lim an = a,lim bn = b,则有以下运算结果:- lim(an ± bn) = a ± b- lim(an · bn) = a · b- lim(an / bn) = a / b (b ≠ 0)三、重要的数列极限1. 常数数列:对于常数c,数列{an} = c(n为正整数)的极限为c。
2. 等差数列:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,极限为lim an = a1。
3. 等比数列:对于等比数列{an} = a1 · q^(n - 1),其中a1为首项,q为公比,当|q| < 1时,极限为lim an = 0;当|q| > 1时,极限不存在。
4. 幂函数数列:对于幂函数数列{an} = n^p,其中p为实数,当p >0时,极限为正无穷大;当p < 0时,极限为0。
高考高等数学备考指南数列极限计算
高考高等数学备考指南数列极限计算在高考高等数学中,数列极限计算是一个重要且具有一定难度的考点。
掌握好数列极限的计算方法,对于在高考中取得优异的数学成绩至关重要。
本文将为大家详细介绍数列极限计算的相关知识和备考策略。
一、数列极限的基本概念首先,我们需要明确数列极限的定义。
对于数列{aₙ},如果当 n 无限增大时,aₙ 无限趋近于一个常数 A,那么我们就说数列{aₙ}的极限是 A,记作lim(n→∞) aₙ = A。
理解数列极限的概念是进行计算的基础。
要注意,数列极限反映的是数列的变化趋势,而不是数列的某一项的值。
二、常见数列极限的类型1、常数数列如果数列{aₙ}的每一项都等于常数 C,那么lim(n→∞) aₙ = C。
2、等差数列对于等差数列{aₙ},其通项公式为 aₙ = a₁+(n 1)d,当 d = 0 时,数列是常数列,极限为 a₁;当d ≠ 0 时,数列的极限不存在。
3、等比数列对于等比数列{aₙ},其通项公式为 aₙ = a₁qⁿ⁻¹。
当|q| < 1 时,lim(n→∞) aₙ = 0;当 q = 1 时,数列是常数列,极限为 a₁;当|q| > 1 时,数列的极限不存在。
三、数列极限的计算方法1、利用定义计算直接根据数列极限的定义,通过分析数列的变化趋势来确定极限。
但这种方法往往比较复杂,在实际解题中不常用。
2、利用四则运算法则如果lim(n→∞) aₙ = A,lim(n→∞) bₙ = B,那么:(1)lim(n→∞)(aₙ ± bₙ) = A ± B(2)lim(n→∞)(aₙ × bₙ) = A × B(3)lim(n→∞)(aₙ / bₙ) = A / B (B ≠ 0)在使用四则运算法则时,要注意先判断极限是否存在。
3、利用重要极限(1)lim(n→∞)(1 +1/n)ⁿ = e(2)lim(n→∞)(1 +x/n)ⁿ =eˣ (x 为常数)这些重要极限在解题中经常会用到,需要牢记。
高中数学数列极限的概念及相关题目解析
高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。
在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。
本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。
一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。
数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。
数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。
2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。
3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。
二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。
解析:对于这道题目,我们可以通过直接代入数值的方法来求解。
当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。
当n趋于无穷大时,我们可以发现an的值趋近于0。
因此,根据数列极限的定义,lim(an)=0。
2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。
解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。
当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。
因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。
3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。
高等数学教材数列极限
高等数学教材数列极限数列极限是高等数学中重要的概念和内容之一。
在数学的发展历程中,数列极限的研究起到了重要的推动作用。
本文将从数列的定义、数列极限的概念及性质、数列的收敛与发散等方面进行详细阐述,以帮助读者更好地理解和掌握高等数学中的数列极限知识。
一、数列的定义数列是由一个自然数集合,经过某种规则排列得到的无穷序列。
数列可表示为:{a₁, a₂, a₃, ... , aₙ, ...},其中a₁, a₂, a₃, ... , aₙ, ... 表示数列的项。
每一项都有相应的下标,用n表示。
二、数列极限的概念及性质数列极限是数列中最为重要的概念之一。
当数列的每一项都趋近于一个确定的实数L时,我们称该数列的极限为L。
数列极限的概念可表示为:lim┬(n→∞) (aₙ) = L。
对于数列极限,有以下性质值得注意:1. 数列极限的唯一性:一个数列的极限是唯一的,如果存在极限,则极限是确定的。
2. 数列极限的有界性:如果一个数列有极限,那么该数列必定是有界的。
3. 数列收敛的判定准则:柯西收敛准则和单调有界准则是判定数列是否收敛的两个重要准则。
4. 数列极限的四则运算:数列之间可以进行加法、减法、乘法和除法的四则运算。
三、数列的收敛与发散1. 收敛数列:当数列的项逐渐趋近于一个确定的实数L时,该数列称为收敛数列。
记作lim┬(n→∞) (aₙ) = L。
2. 发散数列:当数列的项不趋近于任何实数时(即不存在极限),该数列称为发散数列。
对于收敛数列,有以下性质:1. 收敛数列一定有界;2. 收敛数列的极限唯一;3. 收敛数列的子数列也是收敛数列,并且极限相同。
对于发散数列,有以下情况:1. 数列发散到正无穷:当数列的项无论取多大值,总存在某一项使得后续项的值都更大。
记作lim┬(n→∞) (aₙ) = +∞。
2. 数列发散到负无穷:当数列的项无论取多小值,总存在某一项使得后续项的值都更小。
记作lim┬(n→∞) (aₙ) = -∞。
高中数学极限知识点
极限一、数列的极限:对于数列{}n x ,如果当n 无限增大时,数列的相应项n x 无限趋近一个确定的常数A ,则称当n 趋于无穷时,数列{}n x 以A 为极限,记为)(lim ∞→→=∞→n A x A x n n n 或 式子中“→”读作“趋于”,这时也称数列{}n x 是收敛的,若数列{}n x 没有极限,则称数列{}n x 是发散的二、函数的极限1.当∞→x 时函数的极限2.当+∞→x 或-∞→x 时函数的极限得到一个充要条件是:A x f x =∞→)(lim 的充要条件是A x f x f x x ==-∞→+∞→)(lim )(lim 3.当0x x →时函数的极限4.当+→0x x 或-→0x x 时函数的极限得到一个充要条件是:A x f x x =→)(lim 0的充要条件是A x f x f x x x x ==-+→→)(lim )(lim 00 三、极限的运算法则(1)极限的唯一性 如果极限)(lim 0x f x x →存在,则它只有一个极限,即若A x f x x =→)(lim 0,B x f x x =→)(lim 0,则A=B(2)极限的运算法则设B x v A x u ==)(lim ,)(lim 则有(1)[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim(2)[]B A x v x u x v x u ∙=∙=∙)(lim )(lim )()(lim(3)当0)(lim ≠=B x v 时,BA x v x u x v x u ==)(lim )(lim )()(lim推论1 如果)(lim 0x u x x →存在,c 为常数,则)(lim ))((lim 00x u c x cu x x x x →→= 推论2 如果)(lim 0x u x x →存在,N n ∈,则nx x n x x x u x u )](lim [)]([lim 00→→= 四、函数的间断点间断点的分类:1)第一类间断点(1)可去间断点:左右极限相等,但不等于该点的函数值(2)跳跃间断点:左右极限存在,但不想等2)第二类间断点左右极限至少有一个不存在Welcome To Download !!!欢迎您的下载,资料仅供参考!。
数列极限知识点总结
数列极限知识点总结一、数列的极限定义数列是一系列按照一定次序排列的数的集合,通常表示为{an},其中an表示数列的第n 个元素。
数列的极限是数列中的元素随着n的增大而逐渐接近某个值L,当n趋于无穷大时,数列的所有元素都逼近于L。
我们用极限符号lim(n→∞)an=L来表示数列{an}的极限为L。
对于一个给定的数列{an},如果它的极限存在且为L,我们称{an}收敛于L,记作lim(n→∞)an=L。
如果数列的极限不存在,我们称数列发散。
二、数列极限的性质1. 唯一性:数列的极限值是唯一的,即如果数列{an}收敛于L1和L2,那么L1=L2。
2. 有界性:收敛数列是有界的,即存在一个实数M,使得对于所有的n,有|an|<M。
3. 保号性:如果数列{an}收敛于L>0,那么存在一个正整数N,使得当n>N时,an>0;如果数列{an}收敛于L<0,那么存在一个正整数N,使得当n>N时,an<0。
三、数列极限的收敛定理1. 夹逼定理:设{an}、{bn}、{cn}是三个数列,如果存在一个正整数N,使得当n>N时,有an≤bn≤cn,并且lim(n→∞)an=lim(n→∞)cn=L,那么数列{bn}也收敛于L。
2. 复合函数极限定理:设{an}是一个数列,f(x)是一个定义在R上的函数,如果lim(n→∞)an=a存在,f(x)在x=a周围有定义,并且lim(x→a)f(x)=L存在,那么lim(n→∞)f(an)=L。
3. 唯一性定理:如果一个数列存在极限,那么它的极限是唯一的。
四、数列极限的经典例题1. 例题一:计算数列lim(n→∞)(1+1/n)n。
解析:利用自然对数的极限定义可得lim(n→∞)(1+1/n)n=e。
2. 例题二:利用夹逼定理证明数列lim(n→∞)(1/n)=0。
解析:由于-1/n≤1/n≤1/n,且lim(n→∞)(-1/n)=lim(n→∞)(1/n)=0,根据夹逼定理可得lim(n→∞)(1/n)=0。
高考数学数列极限知识点汇总
高考数学数列极限知识点汇总在高考数学中,数列极限是一个重要的知识点,也是许多同学感到头疼的部分。
为了帮助大家更好地掌握这一知识点,下面就为大家详细汇总一下数列极限的相关内容。
一、数列极限的定义如果当项数n 无限增大时,数列的通项an 无限接近于某个常数A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A 。
这里要注意“无限接近”的含义,并不是说数列的项最终等于这个常数,而是它们之间的距离可以任意小。
二、数列极限的性质1、唯一性:如果数列{an}有极限,那么这个极限是唯一的。
2、有界性:如果数列{an}有极限,那么数列{an}一定是有界的。
3、保号性:如果lim(n→∞) an = A,且 A > 0(或 A < 0),那么存在正整数 N,当 n > N 时,an > 0(或 an < 0)。
三、常见数列的极限1、常数列:若{an}为常数列,即 an = C(C 为常数),则lim(n→∞) an = C 。
2、等差数列:若{an}为等差数列,首项为 a1,公差为 d 。
当 d =0 时,lim(n→∞) an = a1 ;当d ≠ 0 时,数列{an}没有极限。
3、等比数列:若{an}为等比数列,首项为 a1,公比为 q 。
当|q| < 1 时,lim(n→∞) an = 0 ;当 q = 1 时,lim(n→∞) an = a1 ;当|q| > 1 时,数列{an}没有极限。
四、数列极限的运算1、四则运算:如果lim(n→∞) an = A,lim(n→∞) bn = B ,那么(1)lim(n→∞)(an ± bn) = A ± B ;(2)lim(n→∞)(an · bn) = A · B ;(3)当B ≠ 0 时,lim(n→∞)(an / bn) = A / B 。
2、指数运算:若lim(n→∞) an = A ,则lim(n→∞) an^k = A^k (k 为正整数)。
数列极限的定义与性质
数列极限的定义与性质数列是数学中一个非常重要的概念,而数列的极限更是数学分析中的基础知识之一。
数列极限的定义与性质对于理解数学分析、微积分等学科具有重要意义。
本文将从数列极限的定义入手,逐步介绍数列极限的性质,帮助读者更好地理解这一概念。
1. 数列极限的定义数列极限的定义是数学分析中的基础概念之一。
对于数列${a_n}$,当$n$趋于无穷大时,如果数列的项$a_n$可以无限接近某个常数$A$,那么称常数$A$为数列${a_n}$的极限,记作$\lim\limits_{n \to\infty} a_n = A$。
换句话说,对于任意给定的正实数$\varepsilon$,总存在正整数$N$,使得当$n>N$时,数列的项$a_n$与极限$A$之间的差的绝对值$|a_n - A|$小于$\varepsilon$。
数学上也可以用$\lim\limits_{n \to \infty} a_n = A$来表示数列${a_n}$的极限。
这个定义是数列极限的基础,也是理解数列极限性质的前提。
2. 数列极限的性质数列极限具有一些重要的性质,下面将逐一介绍这些性质:(1)数列极限的唯一性:如果数列${a_n}$的极限存在,那么这个极限是唯一的。
也就是说,如果$\lim\limits_{n \to \infty} a_n = A$且$\lim\limits_{n \to \infty} a_n = B$,那么$A=B$。
(2)数列极限的有界性:如果数列${a_n}$的极限存在,那么这个数列是有界的。
即存在一个实数$M$,使得对于数列的每一项$a_n$,都有$|a_n| \leq M$。
(3)数列极限的保号性:如果数列${a_n}$的极限存在且大于(小于)零,那么从某项开始,数列的每一项都大于(小于)零。
(4)数列极限的四则运算性质:设$\lim\limits_{n \to \infty} a_n = A$,$\lim\limits_{n \to \infty} b_n = B$,则有:- $\lim\limits_{n \to \infty} (a_n \pm b_n) = A \pm B$- $\lim\limits_{n \to \infty} (a_n \cdot b_n) = A \cdot B$- 若$B \neq 0$,$\lim\limits_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$(5)夹逼准则:如果数列${a_n}$、${b_n}$、${c_n}$满足$a_n\leq b_n \leq c_n$,且$\lim\limits_{n \to \infty} a_n =\lim\limits_{n \to \infty} c_n = A$,那么$\lim\limits_{n \to\infty} b_n = A$。
人教版高中数学课件:高二数学课件-数列的极限
收敛数列的性质
收敛数列具有唯一性,即收敛 数列只能收敛到一个唯一的极 限值。
收敛数列具有有界性,即收敛 数列的项值必须在一定范围内 波动,不会无限增大或减小。
收敛数列具有保序性,即如果 一个数列收敛到极限a,那么对 于任何正整数n,都有 an≥an+1。
03
数列极限的应用
利用极限求数列的通项公式
总结词
通过数列的极限,我们可以推导出数列的通项公式。
详细描述
在数列的极限中,如果一个数列的极限值存在,那么这个极限值就是数列的通项 公式。例如,对于等差数列,其通项公式可以通过求差分比值的极限得到。
利用极限证明数列的单调性
总结词
通过比较相邻项的极限,可以证明数 列的单调性。
极限的唯一性
极限的唯一性是数列极限的一个 重要性质,即一个数列只能有一
个极限值。
如果一个数列有两个不同的极限 值,那么这个数列就不会收敛。
极限的唯一性对于研究数列的性 质和函数的变化规律非常重要, 是数学分析中的一个基本原则。
THANK YOU
数列极限的存在性
01
02
03
单调有界定理
如果数列单调递增且有上 界或单调递减且有下界, 则该数列存在极限。
闭区间套定理
如果数列满足闭区间套的 条件,则该数列存在极限 。
柯西收敛准则
如果对于任意给定的正数 $varepsilon$,存在正整 数N,使得当$n, m > N$ 时,有$|a_n - a_m| < varepsilon$,则该数列 存在极限。
04
数列极限的求解方法
直接代入法
高中数学中的数列极限定义及其求解法则
高中数学中的数列极限定义及其求解法则数列极限是高中数学课程中的一个重要内容,也是大学数学中的基础概念之一。
在高中阶段,我们需要学习数列极限的定义、判定和求解法则,理解其本质和应用,为进一步深入学习数学打好基础。
一、数列的极限定义在数学中,数列是按照一定规律排列的数的序列,表示为{an},其中an表示数列中第n个数。
如1,2,3,4……即为一个自然数数列。
当数列中的数逐渐趋向于一个确定的数L时,我们称L为该数列的极限,也称数列的极限存在。
数学上表示为:lim(n→∞)an = L其中lim表示“当n无限趋近于正无穷时的极限值”,an表示数列中的第n个数,L为数列的极限值。
二、常用的数列极限判定法则1. 夹逼准则夹逼准则是求解数列极限的常用方法,其核心思路是通过夹逼使得数列趋近于某个范围内的值。
具体来说,对于数列{an},如果有:an ≤ bn ≤ cn,且lim(n→∞)an = lim(n→∞)cn = L,则有lim(n→∞)bn= L。
其中,an和cn是分别代表着L的下限和上限的数列。
该方法的原理是利用如果一个数列逼近L,同时另外两个数列且夹在中间,则这两个数列同样逼近L。
例如:求解数列an =(n+2)/(2n+1)的极限。
将分子分母同时除以n,得到an = 1/2+3/(4n+2)。
由于lim(n→∞)3/(4n+2)= 0,所以an的极限等于lim(n→∞)1/2=1/2。
2. 单调有界准则单调有界准则是指如果数列{an}单调递增(或递减),且有一个数M使得|an|≤ M对于所有n成立,则该数列有极限。
此时,数列的极限就是其单调递增(或递减)的极限。
例如:求解数列an =(n+1)/n²的极限。
由于当n≥1时,有an ≤(n+1)/n,所以an为单调递减的数列。
同时,1/n是单调递减的有界数列,其最小值为0,所以an也是单调有界的。
因此,数列an有极限,其极限值等于an的单调递减极限:lim(n→∞)an=lim(n→∞)(n+1)/n²=0。
49. 高中数学中的数列极限问题如何理解?
49. 高中数学中的数列极限问题如何理解?一、关键信息1、数列极限的定义精确定义:____________________________通俗解释:____________________________2、数列极限的性质唯一性:____________________________有界性:____________________________保号性:____________________________3、数列极限的计算方法四则运算法则:____________________________重要极限:____________________________夹逼准则:____________________________单调有界定理:____________________________4、数列极限与函数极限的关系联系:____________________________区别:____________________________5、数列极限在实际问题中的应用近似计算:____________________________物理模型:____________________________二、协议内容11 数列极限的定义数列极限是高中数学中的一个重要概念,它描述了数列在无限趋近某个值时的趋势。
111 精确定义数列{an}的极限为 A,当且仅当对于任意给定的正数ε,存在正整数 N,使得当 n > N 时,都有|an A| <ε 成立。
112 通俗解释从直观上理解,就是当数列的项数越来越大时,数列的项越来越接近一个固定的值 A,这个值 A 就是数列的极限。
12 数列极限的性质数列极限具有一些重要的性质,这些性质有助于我们更好地理解和处理数列极限问题。
121 唯一性如果数列{an}存在极限,那么这个极限是唯一的。
122 有界性如果数列{an}存在极限,那么数列{an}是有界的。
123 保号性如果数列{an}的极限为 A,且 A > 0(或 A < 0),那么存在正整数 N,当 n > N 时,都有 an > 0(或 an < 0)。
高中数学中的数列极限
高中数学中的数列极限数列是高中数学中的重要概念之一,而数列的极限也是数学教学中的重要内容。
数列极限是数列中的一个重要属性,它描述了数列随着项数无限增加时所趋近的值。
本文将介绍数列的概念,解释数列极限的定义并探讨数列极限的性质和计算方法。
一、数列的概念数列是由一系列实数按照一定规律排列而成的序列。
数列可以用公式或递归关系式表示,其中公式表示数列的通项公式,递归关系式表示每一项与前一项之间的关系。
二、数列极限的定义数列极限是指当数列的项数趋近无穷大时,数列中的数值趋近的一个值。
设数列{an}表示一个数列,当对于任意给定的正数ε(epsilon),存在一个正整数N,当n>N时,对应的数列项an满足|an - A|< ε,其中A为数列的极限。
三、数列极限的性质1. 数列极限的唯一性:若数列{an}的极限存在,那么它的极限是唯一的。
2. 有界性:如果数列{an}是有界的,那么它一定存在极限。
3. 数列极限的保号性:如果数列{an}的极限为A,且A>0(或A<0),那么从某一项开始,数列的项都大于0(或小于0)。
4. 数列极限的四则运算法则:设{an}和{bn}分别是两个数列,且它们的极限分别为A和B,那么以下四个极限成立:- {an + bn}的极限为A + B;- {an - bn}的极限为A - B;- {an * bn}的极限为A * B;- {an / bn}的极限为A / B(当B≠0时)。
四、数列极限的计算方法1. 常见数列的极限:- 等差数列的极限为首项与末项的平均值;- 等比数列(公比小于1)的极限为0;- 等比数列(公比大于1)的极限为正无穷大或负无穷大。
2. 利用数列极限的性质进行计算:- 利用极限的保号性可以确定极限的正负性;- 利用数列极限的四则运算法则进行极限的计算。
3. 利用数列的局部性质进行计算:- 极限运算与局部性质:如果数列的部分项与极限的差异可以忽略不计,那么这两个数值可以互相替代。
高中数学选修本(文科)数列的极限
数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a 〔即n a a -无限趋近于0〕,那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞=,读作“当n 趋向于无穷大时,n a 的极限等于a 〞 “n →∞〞表示“n 趋向于无穷大〞,即n 无限增大的意思n a a →∞=有时也记作:当n →∞时,n a →a .2.几个重要极限:〔1〕01lim =∞→nn 〔2〕C C n =∞→lim 〔C 是常数〕 〔3〕无穷等比数列}{n q 〔1<q 〕的极限是0,即 )1(0lim <=∞→q q n n 3、数列极限的运算法那么如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim∞→n (a n ±b n )=A ±B(2)lim ∞→n (a n ·b n )=A ·B(3)lim ∞→n n n b a =B A (B ≠0)4。
特别注意:数列极限运算法那么运用的前提:(1)参与运算的各个数列均有极限;(2)运用法那么,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 例1:求以下极限2227(1)57lim n n n n →∞+++(2))lim n n →∞222242.....)(3)lim(n n n n n →∞++ 11(1)(1)(1)(1)(1)(4)lim n n n n n a a a a a a a +-→∞-+-≠-+-解析:(1)原式=25 (2)原式=21 (3)1 4.当|a|>1时,原式=a aa a a n n n 21)1(2)1(121lim -+-+--∞→=a 当a=-1时极限不存在 例2:)413(22limn bnan cn n n -+++∞→=5,求常数a 、b 、c 的值。
高二数学经典讲义之数列的极限-教师-
数列的极限知识精要1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限地接近于0),那么就说数列}{n a 以a 为极限.记作lim n n a a →∞=.2.几个重要极限:1lim0n n α→∞=(0α>,α为常数);C C n =∞→lim (C 是常数);)1(0lim <=∞→q q n n ;1,lim 0,1,nnn nn a ba b a b a b a b →∞⎧>-⎪==⎨+⎪-<⎩3.极限问题的基本类型:分式型,主要看分子和分母的首项系数;指数型(00和∞∞型),通过变形(如通分,约分)使得各式有极限; 根式型(∞-∞型),通过有理化变形使得各式有极限;4.数列极限的运算法则:与函数极限的运算法则类似, 如果lim n n a A →∞=,lim n n b B →∞=,那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(l i mlim()n n n a b A B →∞⋅=⋅ )0(l i m ≠=∞→B B Ab a nn n . 特别地,如果c 是常数,那么,()lim lim n n n n c a c a ca →∞→∞⋅=⋅=3 .无穷等比数列的各项和:公比的绝对值小于1的无穷等比数列前n 项的和当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=;.1lim 1n n a S S q→∞==-(0||1)q << 热身练习1.计算()()1123lim 23nn n n n ++→∞-+=-+ ; 解:1/3 2.计算213(21)lim 21n n n n →∞+++-=-+ ; 解:1/23.计算1132lim 32n nnn n ++→∞-=+ ; 解:3 4.计算()11111lim 139273n n n -→∞⎡⎤-++⋅⋅⋅+-⎢⎥⎣⎦= ; 解:1/45.计算∞→n lim (132++-n nn n )=( );A .0B .2C .-2D .不存在 解:C6. 计算∞→n lim .2323nn nn +-=( );A .1B .2C .3D .0 解:A7.计算∞→n lim 112322+++n n n ;解:3 8.计算∞→n lim1122++n n ; 解:0 9.计算nnn )1(lim-∞→;解:0精解名题1.无穷等比数列21121sin ,sin ,,sin 222222nn πππ的和为____________;解:2/52.已知{}n a 是无穷等比数列,且122lim()3n na a a →∞+++=,则其首项的取值范围是____________;解:0<a 1<2/3或2/3<a 1<4/33.在等比数列}{n a 中,n S 是数列前n 项和,公比0>q ,11=a ,求∞→n limnnS a . 解:1)当1=q 时,01lim lim==∞→∞→n S a n nn n ;2)当1≠q 时,nnn n nn n q q q S a --=-∞→∞→1limlim 1 当1>q 时,q q S a nn n 1lim-=∞→ 当10<<q 时,0lim=∞→nnn S a4.已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围.解:当1=q 时,∞→n lim (q a +11-q n )=21⇔111+a -1=21,得31=a 当1≠q 时,∞→n lim (q a +11-q n )=q a +11-∞→n lim q n =21,得1||0<<q ,q a +11=21)1,21()21,0()1(211⋃∈+=q a 综上所述,{}3)1,21()21,0(1⋃⋃∈a5.已知各项均为正数的等比数列}{n a 的首项11=a ,公比为q ,前n 项和为n S ,若1lim1=+∞→nn n S S ,求q 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的极限
一、知识要点
(1)数列极限的概念:一般地,在n 无限增大的变换过程中,如果无穷数列{}n a 中的n a 无限趋近于一个常数A ,那么A 叫做数列{}n a 的极限,记作lim n n a A →∞
=。
(2)数列的极限运算:如果B b A a n n n n ==∞
→∞
→lim ,lim ,那么
B A b a n n n ±=±∞
→)(lim ;B A b a n n n ⋅=⋅∞
→)(lim ;)0(lim
≠=∞→B B A
b a n
n n
注:在使用数列极限的运算法则时,必须注意以下两点:
(a)参与运算的每一个数列的极限都是存在的; (b)参与运算的数列的个数必须是有限个。
(3)几个重要的极限
1
lim 0(1),lim
0,lim (n n n n q q C C C n →∞
→∞→∞
=<==为常数)
(4)无穷等比数列各项的和
在无穷等比数列{}n a 中,如果01q <<,n s 表示其前n 项和,那么我们称n
n s s ∞
→=lim 为这个无穷等比数列各项的和,且q
a s -=
11。
注:若一个等比数列的各项的和存在,则蕴含着其公比q 满足01q <<。
二、例题选讲
例1 求下列极限:
(1)lim n →∞; (2)12009lim (0)12010n
n n a a a →∞->+ (3)2421222lim
4n
n
n →∞+++
+; (4)2222123
2lim(
)111
1
n n
n n n n →∞
++++
++++;
例2 (1)若21
lim(
)01
n n an b n →∞+--=+,求实数a b 、的值; (2)已知,133lim =+-∞→n
n
n
n n a a 求实数a 的取值范围。
例3 计算: (1)111
lim[
]1223
(1)
n n n →∞++
+
⨯⨯+;
(2)2421111
lim[(1)(1)(1)(1)]2222
n n →∞++++; (3)1111
lim[(1)(1)(1)(1)]3452
n n n →∞----+
例4 求数列{}n a 的极限:
(1)1(),()321,()1n n n a n n n ⎧⎪⎪=⎨-⎪⎪+⎩为奇数为偶数; (2)1(),()3
21,()1
n n n a n n n ≤⎧⎪⎪=⎨-⎪>⎪+⎩661010
例 5 已知等比数列{}n a 的首项为a ,公比为(01)q q <≤,前n 项和记为n S ,令
n G =2222123()n a a a a n N +++
+∈,求lim
n
n n
S G →∞。
例6 已知{}n a 是无穷等比数列,且所有项的和存在, (1)若1231
,2
n a a a a +++++
=求1a 的范围; (2)若2312n a a a a ++++>,求公比q 的范围。
例7 已知数列{}n a 的前n 项和为n S ,且1(,10)n n S ra r R r =+∈≠和,若lim 1n n S →∞
=,求
r 的取值范围。
例8 如图所示,设正方形111OA B C 的面积为1,正方形1222A A B C 的面积为
1
2
,正方形2333A A B C 的面积为
14,它们的面积都比前者缩小1
2
,无限地作这种正方形。
(1) 求所有这种正方形面积的和; (2) 点123,,,
,,
n A A A A 当n 无限增大时,求点n A 无限地趋近哪一个点?
(3) 确定点123,,,,,
n B B B B
例9 已知数列{}n a 的首项为b ,它的前n 项和为n S ,且12,,,,
n S S S 是一个等比数列,
其公比为(01)q q <<。
(1) 求证:数列23,,,,
n a a a 是一个等比数列;
(2) 求1122lim()n n n a S a S a S →∞
++
+的值(用b q 、表示)。
例10 已知无穷等比数列2
111
1
1,,
,,
,22
2n - (1) 在其中取值,作一个首项为1
2
m 的无穷等比数列,求这个数列各项和的取值范围;
(2) 在其中取值,作一个无穷等比数列,其各项和S 满足41
6113
S <<,求S 。
三、课后练习
1、若lim(34)5,lim(6)1n n n n n n a b a b →∞
→∞
+=-=,则lim(3)n n n a b →∞
+=
2、一个无穷等比数列所有项的和为52且16931=⋅a a ,则它的公比为
3、若223,(1000)1000,(1000)n n n a n n
⎧+<⎪
=⎨≥⎪⎩,则lim n n a →∞
=
4、设无穷递缩等比数列{}n a 的前n 项和为n S ,n n S S ∞
→=lim 且n n n a S a S 431+=++,则数列{}n a 的公比q = 5、无穷等比数列{}n a 的各项和为7,若数列{}n b 满足n n n n a a a b 31323++=--,则数列{}
n b 的各项和为
6、等差数列{}n a ,{}n b 的前n 项和分别为n n T S ,且132+=n n T S n n ,则=∞→n
n n b a lim
7、如果0)21(
lim =-∞
→n
n a
a ,则实数a 的取值范围是 8、对任意N n ∈,有1
1
2212221--⋅-++++=n n n t a ,其中t 是与n 无关的实常数,若
53lim -=∞
→t a n n ,求t 的值。
9、已知1)(+=ax x f 为x 的一次函数,⎩⎨⎧≥-==)
1()],1([)
0(,1)(n n g f n n g
(1)若))(1()(N n n g n g a n ∈--=,求证:{}n a 是等比数列;
(2)设n S 是{}n a 的前n 项和,求n n S ∞
→lim 。
10、已知数列{}n a ,284=a 且满足
111
1
n n n n a a n a a +++-=-+
(1)求321,,a a a 及{}n a 的通项公式; (2)设{}n b 为等差数列且c
n a b n
n +=,其中c 为不等于零的常数,若n n b b b T +++= 21,求)111(
lim 21n
n T T T +++∞
→ 。
11、已知数列{}n a 有12,()a a a p p ==为常数,对任意的n N ∈,有1()
2
n n n a a S -=。
(1)求a 的值; (2)判断数列{}n a 是否为等差数列;
(3)对于数列{}n b ,假如存在一个常数b 使得对任意的n N ∈都有n b b <且lim n n b b →∞
=,
则称b 为数列{}n b 的“上渐近值”。
令21
12
n n n n n S S p S S ++++=+,求数列{}122n p p p n +++-的
“上渐近值”。