【2018最新】仿真实验偏振光实验报告-推荐word版 (10页)

合集下载

偏振光的研究实验报告

偏振光的研究实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。

它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。

本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。

实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。

偏振片是一种能够选择性地通过特定方向偏振光的光学器件。

我们将偏振片放置在光源前方,并逐渐旋转它。

观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。

这说明偏振片能够选择性地通过特定方向的偏振光。

实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。

它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。

我们使用了两块偏振片,并将它们叠加在一起。

通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。

这一结果验证了马吕斯定律的正确性。

实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。

然后,我们将两束光重新合并在一起。

通过调节两束光的光程差,我们观察到干涉现象。

当光程差等于整数倍的波长时,干涉现象最为明显。

这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。

实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。

我们使用了一块旋光片,并将它放置在光源前方。

通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。

这一实验结果验证了偏振光的旋光性质。

结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。

偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。

例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。

在光学器件的设计中,偏振光可以用来控制光的传输和调制。

在光通信中,偏振光可以用来提高信号传输的可靠性和速率。

偏振光学实验实验报告

偏振光学实验实验报告

偏振光学实验实验报告这次实验呢,名字挺吓人的——“偏振光学实验”。

一听这个名字,不少同学可能就开始打哈欠了,觉得又是一个枯燥无味的光学理论。

但是,嘿,等一下!要是你以为这只是单纯的照光什么的,那就大错特错了。

偏振光,真的是个神奇又有趣的东西。

你想象一下,光明明是一种看不见摸不着的东西,但通过一些巧妙的小实验,我们居然能让它变得像有脉络的生物一样。

就像“透过现象看本质”一样,偏振光的实验,简直是让人眼前一亮。

先说说偏振光是什么吧,别急,先别皱眉头。

偏振光其实就是一种特定方向上的光,简单来说就是把光束中所有的“振动”方向都弄到了一起,变得特别有规律。

光是个横向波,这一点大家可能知道。

平时你看到的光就像是四处乱舞的舞者,摇摇摆摆随心所欲。

但通过一些手段(比如用偏振片),我们能把这些舞者全都拉到一个方向上,变得乖乖地整齐排列。

咋听着是不是有点高大上?但是实际上,你只需要拿个偏振片,调整一下角度,就能一手掌控光的“步伐”。

这个实验的核心其实就是利用偏振光的特性来观察不同材料如何影响光的传播。

我们用的实验工具其实并不复杂,最多就是些光源、偏振片、透明塑料板这些小玩意儿。

别看这些设备简单,但结果却能让你瞠目结舌。

举个例子,当你把一个偏振片对着光源转动时,你会发现光的强度忽然变弱了,甚至变成了几乎看不见的模样。

天哪!这是什么神奇操作?就是因为偏振片把那些无序的光线给筛选掉了,只留下了跟它方向一致的光。

所以啊,光看似消失了,实际上是被“过滤”掉了一部分。

哎呀,你看,这不就像我们生活中的“挑剔眼光”嘛,偏不喜欢那些不符合标准的东西!然后,我们再加上那块透明塑料板,做个简单的小实验,看看它对偏振光的影响。

这回,你会看到光的强度又发生了变化。

这个现象告诉我们,材料的不同确实能对光产生影响,就像穿衣服一样,不同的面料决定了你能走多远、能展示多少风采。

简单来说,塑料板就像是光的“滤镜”,它决定了光是保持原样还是发生偏折变化。

偏振光实验报告

偏振光实验报告

偏振光实验报告
本次实验是一项关于偏振光的研究。

偏振光是指在垂直于光传播方向上的电场振动方向只有一个方向的光波。

本实验主要从两个方面来研究偏振光:一是光的偏振现象,二是光的旋光现象。

一、光的偏振现象
我们首先进行的是偏振片实验。

偏振片是一种具有特殊的光学性质的物质,能将不同方向的光进行筛选,从而使得只有同一方向的光通过。

我们使用的是经典的红色偏振片,可以将水平方向上的光进行拦截,从而只留下垂直方向上的光通过。

实验中,我们将偏振片放置在无光的状态下,随后将偏振片转动,可以发现当偏振片的传播方向与光的传播方向垂直时,光线通过的亮度很低,而当二者同方向时,光线通过的亮度则很高。

这就证明了偏振片筛选的光线是具有明显的偏振性质的。

二、光的旋光现象
旋光是指光在经过某些物质之后,偏振方向发生了旋转。

本实验中,我们使用了糖水作为实验样品,这是因为糖水中的葡萄糖分子可以使得光的偏振面发生旋转。

在实验中,我们首先在相应的长度的测量管中加入糖水,然后将两块偏振片放在糖水流经的位置。

接着,我们可以发现当两块偏振片的传播方向不同时,糖水流经后的光线出现了偏振方向的旋转,从而两块偏振片之间的亮度会发生变化。

我们可以利用这种变化来计算出糖水中葡萄糖分子的旋光程度。

结论
通过本次实验,我们深入了解了光的偏振现象和旋光现象。

在实际应用中,偏振光广泛地应用于显示器、激光器等光学领域,而旋光则在食品工业、医药领域等具有重要的应用。

通过对于这些光学现象的深入研究,我们将有更多的机会深入应用到实际问题中,为人类社会的进步做出更大的贡献。

偏振光现象的研究实验报告

偏振光现象的研究实验报告

偏振光现象的研究实验报告一、实验目的本实验旨在通过观察和分析偏振光现象,深入理解光的偏振性质,掌握偏振片和检偏器的使用方法,并学会分析和解释实验数据。

二、实验原理偏振光是一种特殊的光线,其电矢量或磁矢量在某一固定方向上振动。

自然光在不受外力作用的环境中产生,其光波的振动方向是随机的,既有水平方向的振动,也有垂直方向的振动。

而偏振光则只有在一个特定方向上存在振动。

三、实验步骤1. 准备实验器材:光源、偏振片、检偏器、屏幕、测量尺、坐标纸。

2. 打开光源,使光线通过偏振片,观察光线的变化。

3. 旋转偏振片,观察光强的变化,找到使光强最弱的偏振角度。

4. 将检偏器旋转至与偏振片相同的偏振角度,观察光强的变化。

5. 记录实验数据,绘制光强与偏振角度的关系图。

6. 分析实验结果,得出结论。

四、实验结果与分析1. 实验结果通过实验,我们观察到当自然光通过偏振片后,光线变为偏振光,其电矢量或磁矢量在某一固定方向上振动。

旋转偏振片时,光强会发生变化,当偏振片的偏振方向与检偏器的偏振方向一致时,光强达到最小值。

记录实验数据并绘制了光强与偏振角度的关系图。

2. 结果分析根据实验结果,我们可以得出以下结论:(1)自然光通过偏振片后,变为偏振光,其电矢量或磁矢量在某一固定方向上振动。

这说明偏振片具有使光线偏振的作用。

(2)旋转偏振片时,光强发生变化,当偏振片的偏振方向与检偏器的偏振方向一致时,光强达到最小值。

这说明检偏器具有检测偏振光的作用,当检偏器的偏振方向与偏振光的偏振方向一致时,透射的光强最小。

(3)根据实验数据绘制的光强与偏振角度的关系图可以看出,当偏振片的偏振方向与检偏器的偏振方向一致时,光强最小,此时两者之间的夹角为90度。

这说明检偏器的偏振方向与偏振光的偏振方向垂直时,透射的光强最大。

五、结论总结本实验通过观察和分析偏振光现象,深入理解了光的偏振性质。

实验结果表明,自然光通过偏振片后变为偏振光,其电矢量或磁矢量在某一固定方向上振动;旋转偏振片时,光强发生变化,当偏振片的偏振方向与检偏器的偏振方向一致时,光强达到最小值;根据实验数据绘制的光强与偏振角度的关系图可以看出,当两者之间的夹角为90度时,透射的光强最大。

偏振光的实验报告

偏振光的实验报告

偏振光的实验报告偏振光的实验报告引言:偏振光是一种特殊的光波,它的振动方向在一个平面上,而不是在所有方向上均匀分布。

在本次实验中,我们将探索偏振光的性质,并研究如何通过实验来检测和测量偏振光。

实验一:偏振片的特性在这个实验中,我们使用了一块偏振片和一束来自光源的自然光。

我们将偏振片放在自然光的路径上,并观察光线通过偏振片后的变化。

结果显示,当自然光通过偏振片时,只有与偏振片振动方向平行的光线能够通过,而与振动方向垂直的光线则被阻挡。

这表明偏振片具有选择性地通过特定方向的光线的能力。

实验二:偏振光的产生在这个实验中,我们使用了一束来自光源的线偏振光。

我们通过将自然光通过一个偏振片,只允许一个方向的光通过,从而产生线偏振光。

我们进一步观察了线偏振光的性质。

当我们将第二个偏振片放在线偏振光的路径上,并旋转它时,我们发现光的强度会发生变化。

当两个偏振片的振动方向平行时,光的强度最大;而当两个偏振片的振动方向垂直时,光的强度最小。

这说明线偏振光的振动方向与偏振片的振动方向之间存在一定的关系。

实验三:马吕斯定律马吕斯定律是描述光的偏振性质的重要定律之一。

它表明,当一束线偏振光通过一个偏振片后,再通过另一个偏振片时,光的强度与两个偏振片之间的夹角的余弦的平方成正比。

为了验证这一定律,我们进行了一系列实验。

我们首先将一束线偏振光通过一个偏振片,然后通过一个旋转的第二个偏振片。

我们测量了不同夹角下光的强度,并计算了夹角的余弦的平方。

实验结果与马吕斯定律的预测非常吻合,验证了这一定律的准确性。

实验四:偏振光的应用偏振光在许多领域中有着广泛的应用。

例如,在液晶显示器中,偏振片被用来控制光的传播方向,从而实现图像的显示。

在摄影中,偏振滤镜可以减少反射和增强颜色饱和度。

此外,偏振光还在光学通信、医学和科学研究等领域中发挥着重要的作用。

结论:通过本次实验,我们深入了解了偏振光的性质和特点。

我们发现偏振光具有选择性地通过特定方向的能力,并且其强度与偏振片之间的夹角的余弦的平方成正比。

偏振光分析实验报告

偏振光分析实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振现象的认识。

2. 学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生与检验方法。

3. 掌握1/4波片、1/2波片等光学元件的作用及使用方法。

4. 验证马吕斯定律,加深对光的偏振理论的理解。

二、实验原理1. 光的偏振现象:光是一种电磁波,其电矢量在垂直于传播方向的平面上振动。

当光波的电矢量振动方向固定时,光称为线偏振光;当电矢量振动方向随时间作有规律的变化时,光称为圆偏振光或椭圆偏振光。

2. 偏振光的产生与检验:利用偏振片、波片等光学元件可以产生和检验偏振光。

偏振片可以使自然光变为线偏振光,波片可以改变光的偏振状态。

3. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系满足马吕斯定律。

三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 1/2波片(两块)6. 玻璃平板及刻度盘7. 白屏四、实验步骤1. 将激光器发出的光束通过偏振片P1,得到线偏振光。

2. 将线偏振光通过1/4波片B1,得到圆偏振光。

3. 将圆偏振光通过1/2波片B2,观察出射光的偏振状态。

4. 将线偏振光通过1/4波片B1,得到椭圆偏振光。

5. 将椭圆偏振光通过1/2波片B2,观察出射光的偏振状态。

6. 重复以上步骤,改变偏振片P1和波片B1、B2的相对位置,观察出射光的偏振状态。

7. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。

五、实验结果与分析1. 观察到当线偏振光通过1/4波片B1时,出射光变为圆偏振光;当圆偏振光通过1/2波片B2时,出射光变为线偏振光。

2. 观察到当线偏振光通过1/4波片B1时,出射光变为椭圆偏振光;当椭圆偏振光通过1/2波片B2时,出射光变为线偏振光。

3. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。

偏振光实验报告

偏振光实验报告

偏振光实验报告一、实验目的。

本实验旨在通过对偏振光的实验研究,探究偏振光的特性和规律,加深对光学知识的理解和应用。

二、实验原理。

偏振光是沿着特定方向振动的光波,它的振动方向与传播方向垂直。

偏振光的特性可通过偏振片来研究,偏振片可以选择性地吸收或透过特定方向的光波,从而实现对偏振光的分析和调节。

三、实验材料。

1. 偏振片。

2. 光源。

3. 偏振光检测器。

4. 旋转台。

四、实验步骤。

1. 将光源与偏振片相连,使偏振片产生偏振光。

2. 将偏振光通过旋转台调整偏振光的方向。

3. 使用偏振光检测器检测偏振光的强度和方向。

4. 记录实验数据并进行分析。

五、实验结果与分析。

通过实验我们发现,偏振光的强度和方向与偏振片和旋转台的角度有关。

当偏振片和旋转台的角度发生变化时,偏振光的强度和方向也会发生相应的变化。

这表明偏振片和旋转台可以用来调节和控制偏振光的特性。

六、实验结论。

通过本次实验,我们深入了解了偏振光的特性和规律,以及偏振片和旋转台在调节和控制偏振光中的作用。

偏振光在光学领域具有重要的应用价值,对于光学仪器和光学通信等方面具有重要意义。

七、实验意义。

本实验不仅加深了我们对光学知识的理解,还为今后的光学研究和应用奠定了基础。

同时,通过实验,我们也提高了实验操作和数据分析能力,培养了团队合作和实验报告撰写能力。

八、实验改进。

在今后的实验中,我们可以进一步扩大实验规模,提高实验精度,加深对偏振光的理解和应用。

总之,本次实验对于我们深入理解偏振光的特性和规律,提高实验操作和数据分析能力,以及培养团队合作和实验报告撰写能力具有重要意义。

希望通过本次实验,能够为我们今后的学习和科研工作提供更多的启发和帮助。

【精品】偏振光实验报告

【精品】偏振光实验报告

【精品】偏振光实验报告偏振光实验报告一、实验目的1.了解光的偏振现象和偏振光的产生方法;2.掌握偏振光的检验方法和应用;3.培养实验技能和观察、分析问题的能力。

二、实验原理光是电磁波的一种,其振动方向与传播方向垂直,称为横波。

当光的振动方向只限于某一固定方向时,称为偏振光。

偏振光是自然界中普遍存在的一种光,如反射光、折射光等。

光的偏振现象有很多应用,如3D电影、摄影镜头、液晶显示器等。

本实验通过使用偏振片和1/4波片等实验器材,产生和检验偏振光,了解光的偏振现象和偏振光的产生方法,掌握偏振光的检验方法和应用。

三、实验器材1.激光笔;2.偏振片;3.1/4波片;4.实验支架;5.实验平台。

四、实验步骤1.将激光笔固定在实验支架上,调整激光笔的高度和角度,使激光笔发出的光线能够照射到实验平台上。

2.将一片偏振片固定在实验平台上,调整偏振片的角度,使激光笔发出的光线能够通过偏振片。

此时,激光笔发出的光线成为了线偏振光。

3.将1/4波片插入到激光笔和偏振片之间,调整1/4波片的角度,观察激光笔发出的光线是否发生了改变。

此时,激光笔发出的光线成为了椭圆偏振光或圆偏振光。

4.将另一片偏振片插入到激光笔和1/4波片之间,调整偏振片的角度,观察激光笔发出的光线是否能够通过偏振片。

此时,可以通过调整偏振片的角度来控制激光的亮度。

5.记录实验数据,分析实验结果。

五、实验结果与分析1.当激光笔发出的光线通过第一片偏振片时,光线的亮度减弱,说明激光笔发出的光线是自然光,其中包含了多个方向的振动。

通过第一片偏振片后,只剩下了一个方向的振动,成为了线偏振光。

2.当将1/4波片插入到激光笔和第一片偏振片之间时,激光笔发出的光线发生了改变,亮度减弱并且出现了彩色光环。

这说明1/4波片将线偏振光转变为了椭圆偏振光或圆偏振光。

这是因为1/4波片能够将线偏振光的振动方向旋转90度,并且改变了光线的相位差。

当相位差为90度时,光线的振动方向与传播方向成45度角,形成了椭圆偏振光;当相位差为180度时,光线的振动方向与传播方向垂直或平行,形成了圆偏振光。

偏振光的研究实验报告

偏振光的研究实验报告

偏振光的研究实验报告
偏振光是一种具有特殊振动方向的光线,它的研究对于光学领域具有重要意义。

本实验旨在通过对偏振光的实验研究,深入了解其特性和应用。

在实验中,我们使用了偏振片、偏振光源和检偏器等设备,通过一系列实验操作和数据记录,得出了一些有意义的结果。

首先,我们进行了偏振光的产生实验。

通过调节偏振片的方向和角度,我们成
功地产生了一束具有特定偏振方向的偏振光。

这表明偏振片可以有效地选择光的振动方向,为后续实验奠定了基础。

接着,我们进行了偏振光的传播实验。

将偏振光通过不同材质的透明介质,我
们观察到了偏振光在传播过程中的特点。

我们发现,偏振光在经过介质后,振动方向会发生改变,这为我们理解偏振光在介质中的传播规律提供了重要线索。

然后,我们进行了偏振光的检测实验。

通过使用检偏器,我们成功地对偏振光
进行了检测和分析。

我们发现,检偏器可以有效地改变偏振光的传播方向,同时也可以用来测量偏振光的偏振方向和强度,这为我们对偏振光的测量和控制提供了重要参考。

最后,我们进行了偏振光的应用实验。

我们利用偏振光的特性,设计并制作了
偏振光传感器,并对其进行了实际应用测试。

实验结果表明,偏振光传感器在检测偏振光方面具有良好的性能,具有广泛的应用前景。

通过以上一系列实验,我们对偏振光的特性和应用有了更深入的了解。

偏振光
作为一种特殊的光线,具有许多独特的物理特性和广泛的应用前景,对其进行深入研究具有重要的科学意义和实际价值。

希望通过本实验报告的分享,能够对偏振光的研究和应用提供一些有益的参考和启发。

偏振光学实验报告

偏振光学实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振理论的认识。

2. 验证马吕斯定律,了解偏振光的基本特性。

3. 掌握1/2波片和1/4波片的作用,学会使用这些光学元件。

4. 研究椭圆偏振光和圆偏振光的产生与检测。

二、实验原理1. 光的偏振性:光是一种电磁波,电磁波对物质的作用主要是电场。

在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。

2. 自然光与偏振光:自然光在垂直于传播方向的平面内,光矢量在各个方向上的振动分量相等。

偏振光在垂直于传播方向的平面内,光矢量只在一个方向上振动。

3. 偏振片:利用二向色性获得偏振光。

当自然光通过偏振片时,只有光矢量在偏振片透振方向上的分量能够通过,其他方向上的分量被吸收。

4. 1/2波片和1/4波片:1/2波片可以将线偏振光转换为圆偏振光,1/4波片可以将线偏振光转换为椭圆偏振光。

5. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光的强度、入射光与偏振片的夹角有关。

当入射光与偏振片的夹角为θ时,出射光的强度为I = I0 cos^2(θ)。

三、实验仪器与设备1. 自然光源:He-Ne激光器、白光光源。

2. 偏振片:两块。

3. 1/2波片:两块。

4. 1/4波片:两块。

5. 光具座、白屏、刻度盘、导线等。

四、实验步骤1. 观察自然光的偏振现象:将自然光源照射到白屏上,用偏振片观察,可以看到光斑的明暗变化。

2. 验证马吕斯定律:将自然光通过偏振片,使偏振片透振方向与光具座上的刻度盘平行。

调整偏振片与刻度盘的夹角,记录光斑的明暗变化,并计算出射光的强度与入射光的强度、入射光与偏振片的夹角的关系。

3. 研究椭圆偏振光和圆偏振光的产生与检测:将自然光通过1/4波片,观察光斑的明暗变化,判断光斑是否为圆偏振光或椭圆偏振光。

4. 使用1/2波片将线偏振光转换为圆偏振光:将自然光通过1/2波片,观察光斑的明暗变化,判断光斑是否为圆偏振光。

偏振光的研究 实验报告

偏振光的研究 实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是一种特殊的光波,其振动方向在一个平面内,与普通光波相比,具有更强的定向性。

在过去的几十年里,偏振光的研究得到了广泛的关注和应用。

本实验旨在通过对偏振光的实验研究,深入了解其特性和应用。

实验一:偏振片的特性在本实验中,我们首先使用了一块偏振片。

偏振片是一种能够选择性地通过或阻挡特定方向振动的光的装置。

我们将光源发出的自然光通过偏振片,观察到了光的强度发生了明显的变化。

这是因为偏振片只允许与其方向平行的光通过,而将垂直于其方向的光阻挡。

通过旋转偏振片,我们可以观察到光的强度随着角度的变化而变化。

实验二:偏振光的产生在本实验中,我们使用了一束自然光通过一个偏振片,将其转换为偏振光。

然后,我们使用另一个偏振片,将偏振光的方向进行调整。

我们观察到,当两个偏振片的方向相同时,光通过的强度最大;而当两个偏振片的方向垂直时,光通过的强度最小。

这表明,偏振光的方向可以通过调整偏振片的方向来改变。

实验三:偏振光的应用偏振光在许多领域中有着广泛的应用。

例如,在光学显微镜中,通过使用偏振光可以增强图像的对比度,使得细小结构更加清晰可见。

在液晶显示器中,偏振光的旋转可以控制光的透过与阻挡,实现像素点的开闭。

此外,偏振光还被应用于光学通信、光学传感器等领域。

实验四:偏振光的检测在本实验中,我们使用了偏振片和偏振光检测器来测量光的偏振状态。

通过旋转偏振片,我们可以调整光的偏振方向,而偏振光检测器可以测量到通过的光的强度。

通过实验数据的分析,我们可以得到光的偏振状态的信息,例如偏振方向和偏振度。

结论:通过本实验,我们深入了解了偏振光的特性和应用。

偏振光具有较强的定向性,可以通过偏振片的选择和调整来改变其方向。

在光学领域,偏振光的研究和应用已经取得了重要的进展,并在许多领域发挥着重要的作用。

通过对偏振光的深入研究,我们可以进一步拓展其应用,并为光学技术的发展做出贡献。

致谢:在此,我要感谢实验室的老师和同学们对本实验的支持和帮助。

偏振光的实验报告

偏振光的实验报告

一、实验目的1. 了解偏振光的产生原理。

2. 掌握偏振光的检测方法。

3. 验证马吕斯定律,加深对光的偏振现象的认识。

二、实验原理1. 偏振光的产生光波是一种电磁波,具有横波特性。

当光波通过某些光学元件时,其振动方向会限定在某一平面内,这种光称为偏振光。

常见的偏振光产生方法有:(1)反射:当光从一种介质射向另一种介质时,部分光会被反射,反射光会发生偏振现象。

(2)折射:当光从一种介质射向另一种介质时,部分光会被折射,折射光也会发生偏振现象。

(3)起偏器:利用光学元件(如偏振片)选择性地透过某一方向的光,从而产生偏振光。

2. 偏振光的检测检测偏振光的方法主要有以下几种:(1)干涉法:利用两束偏振光相互干涉,观察干涉条纹的变化,从而判断光是否为偏振光。

(2)马吕斯定律:利用偏振片检测偏振光的振动方向,验证马吕斯定律。

(3)光电效应:利用光电探测器检测偏振光的强度变化,验证偏振光的存在。

3. 马吕斯定律当一束偏振光通过一个偏振片时,其振动方向与偏振片的透振方向平行时,光强最大;当振动方向与透振方向垂直时,光强为零。

马吕斯定律的表达式为:I = I0 cos²θ其中,I为透过偏振片后的光强,I0为入射光强,θ为入射光的振动方向与偏振片的透振方向之间的夹角。

三、实验仪器与材料1. 实验仪器:(1)He-Ne激光器(2)偏振片(两块)(3)1/4波片(两块)(4)光具座(5)白屏(6)刻度盘2. 实验材料:(1)玻璃平板(2)反射镜四、实验步骤1. 将He-Ne激光器固定在光具座上,调整激光束的传播方向,使其垂直于白屏。

2. 将一块偏振片放置在激光束的路径上,调整偏振片的透振方向,使其与激光束的振动方向平行。

3. 观察白屏上的光强变化,记录光强最大时的偏振片透振方向。

4. 将1/4波片放置在偏振片之后,调整1/4波片的位置,使透过1/4波片的光强最大。

5. 改变偏振片和1/4波片之间的夹角,观察光强变化,记录光强最小时的夹角。

偏振光实验报告

偏振光实验报告

偏振光实验报告实验名称:偏振光实验报告实验目的:1. 了解偏振光的概念和特性。

2. 学习如何产生和检测偏振光。

3. 观察偏振光在不同介质中的传播特性。

实验器材:1. 光源:激光器或白光源。

2. 偏振片:线偏振片和旋转器。

3. 透射介质:包括空气、玻璃等透明材料。

实验步骤:1. 将光源打开,并将线偏振片插入光路中。

2. 调整线偏振片的方向,观察光强的变化。

当线偏振片的方向与光源偏振方向垂直时,光强最小;当二者平行时,光强最大。

3. 旋转线偏振片,观察光强的变化。

当线偏振片旋转到与光源偏振方向平行或垂直时,光强最小,其他角度下光强介于最小和最大之间。

4. 将光线通过不同介质,如玻璃、水等,观察光的偏振是否改变。

实验结果:1. 通过调整线偏振片的方向,观察到光强的变化。

光强最小时,线偏振片与光源偏振方向垂直;光强最大时,二者平行。

2. 通过旋转线偏振片,观察到光强的变化。

最小光强对应线偏振片与光源偏振方向平行或垂直,其他角度下光强介于最小和最大之间。

3. 观察到光在介质中的传播会改变偏振方向。

讨论与分析:1. 通过实验,我们验证了线偏振片可以改变光强的特性,这是由于光在穿过线偏振片时只允许某个方向的偏振光通过。

2. 实验还观察到光在不同介质中的传播会改变偏振方向,这是由于介质中的分子结构或颗粒会引起光的散射,使原先的偏振方向发生改变。

3. 偏振光在实际应用中具有重要意义,如在液晶显示器中利用偏振片控制光的透过,实现显示效果。

结论:通过偏振光实验,我们了解了偏振光的概念和特性,并观察了其在介质中的传播特性。

实验结果验证了线偏振片可以改变光强的特点,并观察到光在介质中传播时偏振方向发生改变。

偏振光在实际应用中有着广泛的应用价值。

偏振光满分实验报告

偏振光满分实验报告

一、实验目的1. 了解光的偏振现象,验证马吕斯定律。

2. 掌握偏振光的产生、检测和调节方法。

3. 熟悉偏振光在光学器件中的应用。

二、实验原理光是一种电磁波,其电场矢量在垂直于传播方向的平面内可以有不同的振动方向。

当光波的电场矢量在某一平面内振动时,这种光称为偏振光。

偏振光可以由自然光通过偏振片产生。

当一束偏振光通过另一偏振片时,根据马吕斯定律,透射光的强度与两个偏振片的夹角有关。

三、实验仪器与材料1. 激光器2. 偏振片(两块)3. 波片(1/4波片和1/2波片)4. 光具座5. 白屏6. 玻璃平板7. 检流计四、实验步骤1. 将激光器、偏振片、波片和玻璃平板依次放置在光具座上,调整好光路,使激光束垂直照射到偏振片上。

2. 将第一块偏振片(起偏器)固定在光具座上,调整其方向,使激光束通过起偏器成为偏振光。

3. 将第二块偏振片(检偏器)固定在光具座上,调整其方向,观察白屏上的光斑变化。

4. 改变检偏器的方向,观察光斑的明暗变化,验证马吕斯定律。

5. 将波片插入光路,观察光斑的变化,分析波片对偏振光的作用。

6. 改变波片的厚度,观察光斑的变化,分析波片厚度的变化对偏振光的影响。

7. 将玻璃平板插入光路,观察光斑的变化,分析玻璃平板对偏振光的作用。

8. 通过调整光路,观察圆偏振光和椭圆偏振光的形成。

五、实验数据与处理1. 在实验过程中,记录不同角度下检偏器对光斑的影响,验证马吕斯定律。

2. 分析波片厚度对偏振光的影响,得出结论。

3. 分析玻璃平板对偏振光的影响,得出结论。

4. 通过观察光斑的变化,分析圆偏振光和椭圆偏振光的形成。

六、实验结果与分析1. 实验验证了马吕斯定律,即偏振光的强度与两个偏振片的夹角有关。

2. 波片可以改变偏振光的振动方向,其厚度对偏振光的影响较大。

3. 玻璃平板可以改变偏振光的传播方向,对偏振光的作用较小。

4. 通过调整光路,成功观察到圆偏振光和椭圆偏振光的形成。

七、实验总结1. 通过本次实验,加深了对光的偏振现象的认识,验证了马吕斯定律。

偏振光实验的报告 .doc

偏振光实验的报告 .doc

偏振光实验的报告 .doc偏振光实验是一种通过光的偏振性质来研究物质的方法。

本实验主要通过探究偏振片的旋转、波片之间的相位差以及交叉偏振等现象来研究光的偏振性,并分析光的偏振性质在实际生活中的应用。

第一部分:偏振片的旋转实验首先,本实验使用一块偏振片作为偏振器,通过调整偏振片的角度,观察到光强度的变化。

结果表明,当偏振片垂直于光线传播方向时,光的强度为最小值;而当偏振片与光线传播方向平行时,光的强度为最大值。

这是由于偏振片只允许特定方向上的光通过,而垂直于偏振片方向的光无法通过,因此产生了光强度的变化。

接下来,我们将在偏振器和检偏器之间加入样品,比较在不同偏振片角度下样品对光的偏振状态的改变情况。

我们发现,当样品为无法旋转的普通透明物质时,输出光的强度与偏振片的角度无关,仍然是最小值或最大值;而当样品为旋转对称物质时,随着偏振片旋转角度的改变,输出光的强度会发生改变。

这是由于旋转对称物质能够改变光的偏振状态,并影响通过偏振片的光线强度。

第二部分:波片之间的相位差实验在本实验中,我们使用两个相同的波片,将波片放置在偏振器和检偏器之间,并旋转其位置,观察其在不同的相位差下的光强度变化。

结果表明,当两个波片的光轴方向平行且相位差为整数倍波长时,输出光的强度为最大值;而当两个波片的光轴方向垂直且相位差为奇数倍波长时,输出光的强度为最小值。

这是由于两个波片对光的振动方向和速度均产生了影响,造成了光的强度变化,同时也证明了光的波动性质。

交叉偏振实验是一种测量光强度的方法,可以用于研究光的性质以及物质对光的偏振性质的影响。

我们在实验室中搭建了一个交叉偏振仪,通过调整偏振片和检偏器的位置来观察光的偏振状态和强度变化。

结果表明,当偏振片和检偏器的方向相同时,输出光的强度最大;而当两者的方向垂直时,输出光的强度最小。

这是由于交叉偏振仪中的偏振片和检偏器能够对光的偏振状态进行控制,同时也能够对光的强度进行测量。

总结通过本次实验,我们了解了偏振光的基本概念和原理,并掌握了偏振片旋转、波片之间的相位差以及交叉偏振等实验方法。

(精编资料推荐)偏振光实验报告

(精编资料推荐)偏振光实验报告

(精编资料推荐)偏振光实验报告
Introducton
偏振光是光的一种特殊性质,可用来测量,分析和控制电磁场。

它可以帮助我们更加
深入地理解光,从而用于光通信和光传感技术的开发。

本次实验的目的是了解偏振光的性质,如极化方向、衰减率和色散现象,以及利用偏振光传输信号的原理。

Experiment
实验中主要使用的仪器包括光纤、偏振调制器(PEM)、偏振消隐器(PBS)、偏振分
离器(POL)、探头、显示器等。

首先,在偏振分离器后面设置偏振调制器,使其正偏振
和反偏振八倍。

接着,将光纤放置在偏振分离器后,将其分开形成8条路线,每条路线对
应一种偏振方向。

最后,在每一条路线上放置一个探头,并以此监测每一种偏振方向受到
增益后的信号强度,这些信号强度随着增益的减弱而衰减,并显示到屏幕上。

Results
实验结果显示,当增益值达到30 dB时,8种偏振方向的接收信号与发射信号的增益
曲线都非常接近,证明了偏振特性对增益的受影响极小,表明偏振特性具有很高的稳定性。

此外,曲线上每个偏振方向衰减的最大值也非常接近,这说明了偏振分离器的色散现象很小。

Conclusion
通过本次实验,我们可以得出,偏振特性在光传输中具有高稳定性,极性变化的影响
很小,同时色散现象也很小,建议在无线传输中使用偏振光。

偏振光研究的仿真实验报告

偏振光研究的仿真实验报告

偏振光研究的仿真实验报告
《偏振光研究的仿真实验报告》
偏振光是一种具有特定方向振动的光线,它在许多领域都有着重要的应用,如
通信、光学和生物医学。

为了更深入地了解偏振光的特性和行为,我们进行了
一系列的仿真实验,以探索偏振光在不同条件下的表现和性质。

首先,我们使用了光学仿真软件对偏振光的传播进行了模拟。

通过改变偏振光
的入射角度和介质折射率,我们观察到偏振光在不同介质中的传播路径和偏振
状态发生了变化。

这为我们提供了关于偏振光在不同介质中的行为的深入理解。

接下来,我们对偏振光的干涉和衍射现象进行了仿真实验。

我们发现偏振光在
通过狭缝或衍射光栅时会产生特定的干涉图样和衍射图样,这些图样与普通光
的干涉和衍射现象有着明显的区别。

这些发现为我们提供了对偏振光干涉和衍
射行为的全新认识。

最后,我们还对偏振光的各向异性材料中的传播进行了仿真研究。

我们观察到
偏振光在各向异性材料中的传播路径和偏振状态与普通材料有着显著的不同,
这为我们提供了对偏振光在各向异性材料中的应用潜力的新认识。

通过这些仿真实验,我们深入了解了偏振光的特性和行为,为偏振光的应用提
供了更多的可能性。

我们相信,随着对偏振光的研究不断深入,偏振光将在更
多领域展现出其重要的应用价值。

偏振光学实验实验报告

偏振光学实验实验报告

一、实验目的1. 观察光的偏振现象,验证马吕斯定律。

2. 了解1/2波片和1/4波片的作用。

3. 掌握椭圆偏振光和圆偏振光的产生与检测。

二、实验原理光是一种电磁波,具有横波特性。

当光波通过某些介质时,其振动方向会被限制在某一特定方向上,这种现象称为光的偏振。

偏振光可分为线偏振光、椭圆偏振光和圆偏振光。

马吕斯定律描述了线偏振光通过偏振片时的光强变化。

当线偏振光的振动方向与偏振片的透振方向一致时,光强最大;当两者垂直时,光强为零。

1/2波片和1/4波片是常用的偏振元件。

1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,而1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。

三、实验仪器1. 自然光源2. 偏振片3. 1/2波片4. 1/4波片5. 硅光电池6. 检偏器7. 光具座8. 透镜9. 光屏10. 毫米刻度尺四、实验步骤1. 将自然光源放置在光具座上,调整光路使其成为平行光。

2. 将偏振片放置在光具座上,使入射光通过偏振片。

3. 将检偏器放置在光具座上,调整其位置,使透过偏振片的光能够照射到检偏器上。

4. 观察检偏器上的光强变化,记录光强最大和最小时的偏振片角度。

5. 将1/2波片放置在光具座上,调整其位置,使透过偏振片的光能够照射到1/2波片上。

6. 观察1/2波片后的光强变化,记录光强最大和最小时的1/2波片角度。

7. 将1/4波片放置在光具座上,调整其位置,使透过1/2波片的光能够照射到1/4波片上。

8. 观察1/4波片后的光强变化,记录光强最大和最小时的1/4波片角度。

9. 利用马吕斯定律,计算偏振片、1/2波片和1/4波片的透振方向与光矢量振动方向的夹角。

五、实验结果与分析1. 观察到当偏振片的透振方向与光矢量振动方向一致时,光强最大;当两者垂直时,光强为零,验证了马吕斯定律。

2. 观察到1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。

偏振光实验报告

偏振光实验报告

偏振光实验报告偏振光实验报告引言:光是一种电磁波,具有波动性和粒子性。

在日常生活中,我们常常遇到自然光,而自然光是无偏振的。

然而,在某些特定的情况下,光可以被偏振,即振动方向被限制在特定的方向上。

本实验旨在通过使用偏振片和光学仪器,研究偏振光的性质和特点。

实验材料与方法:我们使用了以下材料和仪器进行实验:1. 偏振片:包括线偏振片和圆偏振片。

2. 光源:我们选择了一台激光器作为光源,因为激光器产生的光是单色、相干且方向一致的。

3. 光学仪器:包括偏振片夹持器、偏振片旋转器、偏振片分析器等。

实验步骤:1. 将激光器打开,调整其位置和方向,使得激光束直接射到实验台上。

2. 在激光束路径上放置一个线偏振片,通过旋转线偏振片,观察激光束的强度变化。

3. 将线偏振片夹持在一个特定的角度上,然后再放置一个线偏振片,通过旋转第二个线偏振片,观察激光束的强度变化。

4. 使用圆偏振片替换线偏振片,重复步骤2和步骤3,观察激光束的强度变化。

5. 使用偏振片分析器,将其放置在激光束路径上,观察激光束的强度变化。

实验结果与讨论:通过实验,我们观察到以下现象:1. 当线偏振片的振动方向与激光束的振动方向垂直时,激光束的强度最小;当两者平行时,激光束的强度最大。

这表明线偏振片可以选择性地通过或阻挡特定方向上的光。

2. 当两个线偏振片的振动方向相互垂直时,激光束的强度最小;当两个线偏振片的振动方向平行时,激光束的强度最大。

这说明当两个线偏振片的振动方向相同或相反时,光能够通过。

3. 使用圆偏振片时,无论旋转多少度,激光束的强度都保持不变。

这是因为圆偏振片可以将振动方向旋转成任意方向,不会改变光的强度。

根据以上观察结果,我们可以得出以下结论:1. 偏振片可以选择性地通过或阻挡特定方向上的光,这是因为偏振片只允许特定方向上的电场振动通过。

2. 当两个偏振片的振动方向相同或相反时,光能够通过;当两个偏振片的振动方向垂直时,光被完全阻挡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==仿真实验偏振光实验报告篇一:偏振光实验报告仿真课程:系别:专业班级:大学物理仿真实验电信学院实验报告------ 物理仿真实验实验名称:偏振光实验实验报告日期: 201X 年 11 月 28 日学号:*******************姓名: *******教师审批签字1.实验原理:偏振光原理:按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.实际中最常见的光的偏振态大体为五种,即自然光、线偏振光、部分偏振光、圆偏娠光和椭圆偏振光.1. 自然光是各方向的振幅相同的光。

对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等。

2.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个方向振动。

起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件。

常见的起偏或检偏的元件构成有两种:偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光.光学棱镜:如尼科耳棱镜、格兰棱镜等,它是利用光学双折射的原理制成的;3.部分偏振光:除了自然光和线偏振光外,还有一种偏振状态介于两者之间的光.如果用偏振片去检验这种光的时候,随着检偏器透光方向的转动,透射光的强度既不象自然光那样不变,又不象线偏振光那样每转90o。

交替出现强度极大和消光.其强度每转90o也交替出现极大和极小,但强度的极小不是0(即不消光)。

从内部结构看,这种光的振动虽然也是各方向都有,但不同方向的振幅大小不同,具有这种特点的光,叫做部分偏损光我们假定波是沿z轴传播的,在图中它垂直纸面迎面而系.这时若电矢量按逆时针方向旋转,我们称为左旋圆偏振光。

若顺时针旋转,称为右旋圆偏振光。

5.椭圆偏振光电矢量的端点在波面内描绘的轨迹为一椭圆的光,叫椭圆偏振光。

椭圆运动也可看成是两个相互垂直的线偏振光的合成,只是它们的振幅不等,或位相差不等于±π/2。

椭圆长、短轴的大小和取向,与振幅Ax, Ay和位相差都有关系。

可以看出线偏振光和圆偏振光都是椭圆偏振光的特例,常用波晶片把椭圆偏振光转换为线偏振光。

椭圆偏振光退化为圆偏振光的条件是:Ax = Ay 和=±π/2。

椭圆偏振光退化为线偏振光的条件是:Ax = 0,或Ay = 0,或=0,±π。

椭圆偏振光也有左、右旋之分,其定义与前面圆偏振光的定义相同。

波晶片:又称位相延迟片,是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度vo,ve不同,所以造成o光和e光通过波晶片的光程也不同.当两光束通过波晶片后o光的位相相对于e光多延迟了Δ=2π(n0-n1)d/λ,若满足(ne-no)d=±λ/4,即Δ=±π/2我们称之为λ/4片,若满足(ne-no)d=±λ/2,即Δ=±π,我们称之为λ/2片,若满足(ne-no)d=±λ,即Δ=2π我们称之为全波片。

布儒斯特定律:自然光以任意入射角i入射于两种各向同性的透明介质的分界面商。

一般情况下,反射光和入射光分别是部分偏振光,垂直于入射面振荡的电矢量在反射光中占主要地位。

在入射面上振荡的电矢量在折射光中占主要地位。

有一特殊入射角b,当i =b 时,反射光线垂直于折射光线(i +b = π/2),反射光变成完全偏振光。

该现象最早在1815年为布儒斯特所发现,我们称之为布儒斯特定律,b叫做布儒斯特角,满足下列方程:其中n1,n2是相邻两种媒质的折射率。

改变射向晶体的入射光线的方向,可以找到一个确定的方向,沿着这一方向,o 光和e光传播速度相等,折射率相同,不产生双折射现象,这个方向叫做光轴。

只有一个光轴的晶体叫做单轴晶体(如方解石、石英等),有两个光轴的晶体称为双轴晶体(如云母、硫磺等)。

包含光轴和任一光线的平面,称做对应于该光线的主平面。

O光的电矢量的振动方向垂直于主平面。

e光电矢量的振动方向在它的主平面内。

本实验用来获得偏振光的仪器叫做格兰棱镜。

格兰棱镜是由两面三块方解石棱镜构成的,二棱镜间的空气隙,方解石的光轴平行于棱镜的棱。

自然光垂直于界面射入棱镜后分为o光和e光,o光在空气隙上全反射,只有e光透过棱镜射出马吕斯定律:马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为I1 = I0 cos2α,其中的a是检偏器的偏振方向和入射线偏振光的光矢量振动方向的夹角:2.实验仪器:半导体激光器,起偏器,检偏器,1/4波片,光电探测器,光电探测器台,光电流放大器,光屏,光具座。

3.实验内容:根据马吕斯定律测定光电池的线性响应:P1:起偏器,方位不变P2:检偏器,改变其方位以得到不同强度的偏振光,用来测定硅光电池的线性响应 B:分束板,使激光器的光束部分投射(I0),部分反射(I1)D1:光源光强监视器,包括硅光电池及光电流检测装置,用以I0的变化。

D2:当P2方位变化时,偏振光强I2依照马吕斯定律改变,I2的变化将由D2测定。

测量数据:ψθ I1 I2I1 ,I2 :D1,D2的光电流读数,为起偏器P1后平面偏振光方位与检偏器P2后平面偏振光方位的夹角。

:P2盘读数根据测量结果,绘出与关系曲线,是否呈线性关系。

根据布儒斯特定律测定介质的折射率:利用布儒斯特定律时,只能在入射光为P分量(电矢量平行入射面)时,才能得到反射率为零的布儒斯特角。

故实验分为两步进行:A. 确定起偏器的方位,在此方位使入射到样品表面的入射光(即起偏后的偏振光)的偏振方向恰好为P分量。

实验方法如下:1. P1在某一方位时,转动样品面使反射光的反射角在50o~60o之间,移动光屏使得反射光点落于其上,仔细观察光屏上反射光的强弱变化。

选定出射光点最暗的某一位置做下一步调整。

2.然后旋转P1的角度,观察光屏上反射光点的亮暗变化。

找到一个光点最暗的P1方位角。

3.再依次重复1,2的步骤,知道反射光强近于零。

此时P1的方位角恰好使出射平面偏振光与入射平面相重合,即为P分量。

B. 根据布儒斯特定律确定介质材料的折射率。

篇二:偏振光实验报告实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。

具有二向色性的晶体叫做偏振片。

偏振片可作为起偏器。

自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。

如图1、P图2所示:P1 P2 A0 θ图1 图图1中靠近光源的偏振片P1为起偏器,设经过P1后线偏振光振幅为A0(图2所示),光强为I0。

P2与P1夹角为?,因此经P2后2的线偏振光振幅为A?A0cos?,光强为I?A0cos2??I0cos2?,此式为马吕斯定律。

实验数据及图形:从图形中可以看出符合余弦定理,数据正确。

实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o光)和非常光(e光)。

它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。

分振动面的干涉装置如图3所示,M和N是两个偏振片,C是波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分解为o光和e光,最后投影在N上,形成干涉。

偏振片波片偏振片图3 分振动面干涉装置考虑特殊情况,当M⊥N时,即两个偏振片的透振方向垂直时,I0(sin22?)(1?cos?);当M∥N时,即两个偏振4出射光强为:I?? 片的透振方向平行时,出射光强为:I//?I0(1?2sin2?cos2??2sin2?cos2?cos?)。

其中θ为波片光轴2与M透振方向的夹角,δ为o光和e光的总相位差(同波晶片的厚度成正比)。

改变θ、δ中的任何一个都可以改变屏幕上的光强。

当δ=(2k+1)π(1/2波片)时,cosδ=-1,I??出射光强最大,I//?02sin22?,I0(1?sin2?)2,出射光强最小;当δ=[(2k+1)π]/2(1/4I??波片)时,cosδ=0,I0I(sin22?),I//?0(2?sin22?)。

44特别地,利用1/4波片我们还可以得到圆偏振光和椭圆偏振光。

当θ=45度时,得到圆偏振光,此时让偏振片N旋转一周,屏幕上光强不变。

一般情况下,得到的是椭圆偏振光,让偏振片N旋转一周,屏幕上的光斑“两明两暗”。

实验结果:半波片实验数据表:1/4波片实验数据:结论:(来自: 在点网)线偏振光通过1/4波片后可能变成圆偏振光,椭圆偏振光也有可能仍是线偏振光。

实验3. 旋光效应实验原理:线偏振光通过某些物质的溶液后,偏振光的振动面将旋转一定的角度,这种现象称为旋光现象。

旋转的角度称为该物质的旋光度。

通常用旋光仪来测量物质的旋光度。

溶液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、溶液浓度、样品管长度、温度及光的波长等有关。

当其它条件均固定时,旋光度与溶液浓度C呈线性关系即???C(5-1)比例常数与物质旋光能力、溶剂性质、样品管长度、温度及光的波长等有关,C为溶液的浓度。

物质的旋光能力用比旋光度即旋光率来度量,旋光率用下式表示:???t???l?C(5-2)(5-2)式中,右上角的t表示实验时温度(单位:℃),是指旋光仪采用的单色光源的波长(单位:nm),θg/100mL)。

由(5-2)式可知:偏振光的振动面是随着光在旋光物质中向前进行而逐渐旋转的,因而振动面转过角度θ透过的长度l成正比。

振动面转过的角度θ不仅与透过的长度l成正比,而且还与溶液浓度C成正比[14]。

如果已知待测溶液浓度C和液柱长度l,只要测出旋光度θ就可以计算出旋光率。

如果已知液柱长度为l固定值,可依次改变溶液的浓度C,就可以测得相应旋光度θ。

并作旋光度与浓度的关系直线θ~C,从直线斜率、液桩长度l及溶液浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性为测得的旋光度(0),l为样品管的长度(单位:dm),C为溶液浓度(单位:溶液的旋光度θ,确定溶液的浓度C。

旋光性物质还有右旋和左旋之分。

当面对光射来方向观察,如果振动面按顺时针方向旋转,则称右旋物质;如果振动面向逆时针方向旋转,称左旋物质。

测量葡萄糖水溶液的浓度将已经配置好的装有不同的容积克浓度(单位:g/100mL)的葡萄糖。

相关文档
最新文档