高等计算流体力学讲义(3)
高等流体力学的讲义课件流体力学的基本概念
D lim 1 (xx,yy,zz,tt)(x,y,z,t)
Dt t0t
lit m0t
x t
x
y t
y
z t
z
uvw
t x y z
1.2 欧拉和拉格朗日参考系
1.1 连续介质假说
当流体分子的平均自由程远远小于流场的最小宏观尺度时, 可用统计平场的方法定义场变量如下:
ur lim(vrm) V m
lim(m)
V V
在微观上充分大统计平均才有确
定的值;宏观上充分小,统计平均 才能代表一点的物理量变化。
V
vr
•
m
连续介质方法的适用条件
1.2 欧拉和拉格朗日参考系
系统和控制体
通常力学和热力学定律都是针对系统的,于是需要在拉格朗日参考 系下推导基本守恒方程,而绝大多数流体力学问题又是在欧拉参考 系下求解的,因此需要寻求联系两种参考系下场变量及其导数的关 系式
欧拉和拉格朗日参考系中的时间导数
1.2 欧拉和拉格朗日参考系
欧拉参考系: u u (x,y,z,t)
x - x0 = u ( t - t0) y - y0 = v (t - t0) z - z0 = w (t - t0)
用 x0 , y0 , z0 来区分不同的流体质点,而用 t 来确定流体质点
的不同空间位置。
1.2 欧拉和拉格朗日参考系
系统和控制体
系统 某一确定流体质点集合的总体。 随时间改变其空间位置、大小和形状;系统边界上没有质量交换; 始终由同一些流体质点组成。 在拉格朗日参考系中,通常把注意力集中在流动的系统上,应用质 量、动量和能量守恒定律于系统,即可得到拉格朗日参考系中的基 本方程组。
高等流体力学讲义
高等流体力学授课提纲第一章概论§1.1 流体力学的研究对象§1.2 流体力学发展简史§1.3 流体力学的研究方法§1.3.1 一般处理途径§1.3.2 应用数学过程§1.3.3 流体力学方法论:一般方法§1.3.4 流体力学方法论:特殊方法●Lagrange描述和Euler描述●无量纲化●线性化●分离变量法●积分变换法●保角映射法●奇点法(孤立奇点法、分布奇点法、Green函数法)●控制体积法●微元法第一章概论§1.1 流体力学的研究对象(1)物质四态:●四态:固态—液态—气态—等离子态;等离子体=电离气体●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度;●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、等离子体物理学);●液体与气体的差别:液体—有固定容积、有自由面、不易压缩、有表面张力;气体—无固定容积、无自由面、易压缩、无表面张力。
(2)流体的基本性质:易流动性:静止流体无剪切抗力;压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数;粘性:运动流体对剪切的抗力,判据:雷诺数;热传导性:温差引起的热量传递,普朗特数。
(3)流体的分类:i)按有无粘性、热传导性分:真实流体(有粘性、有热传导、与固体有粘附性无温差);理想流体(无粘性、无热传导、与固体无粘附性有温差);ii)按压缩性分:不可压缩流体,可压缩流体;iii)按本构关系分:牛顿流体(牛顿粘性定律成立),非牛顿流体(牛顿粘性定律不成立),下分纯粘性流体(拟塑性流体,涨塑性流体);粘塑性流体(非宾汉流体、宾汉流体);时间依存性流体(触变流体、振凝流体);粘弹性流体拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减小,如淀粉浆糊、玻璃溶液、高分子流体、纤维树脂;涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减小,如淀粉中加水、某些水-砂混合物;粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流动,如粘土泥浆、沥青、油漆、润滑脂等,所有粘塑性流体为非宾汉流体,宾汉流体为近似;触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高分子物质的油、粘土悬浊液;振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶胶、五氧化钒溶液等;粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒,也不像纯粘性体全部耗散。
高等流体力学第3讲
第三讲 流体静力学一、 静止流体中的应力特性静止流体中,流体质点之间没有相对运动,切应力必然为0,又由于流体分子之间的引力很小,流体质点之间几乎不能承受拉力。
因此,在静止流体中,只能存在指向作用面的法向应力。
即n p =-p n (3-1)式中的p n 就是工程流体力学中的流体静压力。
上式也可以写成张量形式P ==000000p p p -⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦=-p 00000011⎡⎤⎢⎥1⎢⎥⎢⎥⎣⎦= -p I (3-2) 式中I 为单位张量。
静止流体中任意一点处的应力无论来自何方均相等,即任意一点处的静压力与作用方向无关。
二、 欧拉平衡方程惯性坐标系中,任何流体处于静止状态的必要条件是:作用在物体上的合外力为0,即0∑=F (4-3)在静止流场中任取一个流体团作为研究对象,作用在其上的质量力可表示为d ρττ⎰⎰⎰f (a ) 表面力可表示为d d AAp A p A -=-⎰⎰⎰⎰n n (b )根据第一个平衡条件(3-3)可得d d =0Aρτp A τ-⎰⎰⎰⎰⎰f n (c ) 根据高斯定理可知,若物理量p 在封闭空间τ中连续且存在连续的一阶导数,则有d =d Ap A p ττ∇⎰⎰⎰⎰⎰n (d )将(d )式代入(c )式则可得d 0ρp ττ-∇=⎰⎰⎰()f 由于流体团是任意选取的,所以要使上式成立,则被积函数在该体积内任意点上的数值必须为0,于是有=0ρp -∇f或1=p ρ∇f (3-4)这就是欧拉平衡微分方程式,其在直角坐标系中可写为111x y z p f ρx pf ρy p f ρz ⎧∂=⎪∂⎪⎪∂=⎨∂⎪⎪∂=⎪∂⎩(3-5) 同时,合力矩为0是自动满足的。
三、 静压流场的质量力条件(自学)对于所有的静止流体,(3-4)式均成立,现对其两端同时取旋度可得1111==+=p p p p ρρρρ⎛⎫⎛⎫⎛⎫∇⨯∇⨯∇∇⨯∇∇⨯∇∇⨯∇ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f上式中应用了标量函数梯度的旋度为0这一结论,现证明之p ∇⨯∇()=p p p xy z ⎛⎫∂∂∂∇⨯++ ⎪∂∂∂⎝⎭i j k=x y z p p p xy z∂∂∂∂∂∂∂∂∂∂∂∂ij k =p p p p p p y z z y x z z x x y y x ⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫---+-⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭i j k =0(矢量)将上式与(3-4)式进行点乘则有()1=p p ρρ⎡⎤⎛⎫∇∇⨯∇⨯∇⎢⎥ ⎪⎝⎭⎣⎦f f 上式右端为矢量的混合积,由混合积的定义可知由于三个矢量中有两个同名,所以其值为0,可得()=0∇⨯f f (3-6)由此可以得出结论:流体静止的必要条件是质量力必须满足()=0∇⨯ff 。
【计算流体力学】第3讲-差分方法1
a2u j
a3u j1+a4u j+2
扰动波传播方向
… j-2 j-1 j j+1 …
更多地使用上游信息
一般双曲守恒律方程
u f (u) 0 t x
f (u) f (u) f (u)
u f + f 0 t x x
df (u) 0 du
df (u) 0 du
例:
f 1 f u
u x j
时间积分,计算 出下一时刻的值
u lim u(x x) u(x) u j1 u j
x j x0
x
x
沿各自方向一维离散
➢多维方程的差分法: 维数分裂
u f1(u) f2 (u) 0 t x y
u
1. 构建差分格式
x j
已知均匀网格点上物理量的分布为uj ,
f1
x
f1
x
f2
y
f2
y
RAE2822翼型周 围的网格
问题: 原先需要计算2次导数,变换后需要计算4次,计算量增加 ✓利用坐标变换的性质,可以合并
14
坐标变换Jocabian系数的计算
已知 x x( ,)
y
y(
,)
需计算: x ,y ,x ,y
Step 1: 利用差分(或其他方法)计算出
网格间距变化要缓慢,否则会带 来较大误差
12
方法2) 在非等距网格上直接构造差分格式 (不易推广到高维)
原理: 直接进行Taylor展开,构造格式 格式系数是坐标(或网格间距)的函数
u x
j
a1u j2
a2u j1 a3u j
a4u j1 O(3 )
… j-2 j-1 j
高等流体力学:03第3讲_湍流运动方程
Dt
xi
7
NS方程(4)
运动方程 不可压缩流动的方程简化
ui t
uj
ui x j
fi
p xi
2ui x j 2
3
xi
uk xk
D
Dt
ui xi
0
ui t
uj
ui x j
fi
1
p xi
2ui x j 2
ui xi
0
8
NS方程(5)
雷诺方程 NS方程的平均化处理
9
NS方程(6)
− 连续性假设?
NS方程自身有复杂的特性吗?
− 一般情况下,N-S方程初边值问题解的存在和唯一性尚未 完全 得到证明。只有在苛刻条件下,方程解的存在和唯一才有证明。
− 定常方程:存在解;但只有小雷诺数解才是唯一的
− 非定常二维方程:解是存在的,也是唯一的
− 非定常三维方程:小雷诺数时有唯一解;大雷诺数时情况比较 复杂,如只在一定时间内存在唯一解,雷诺数越大,存在唯一 解的时间区间越小。
13
雷诺应力方程(4)
雷诺应力方程 雷诺应力方程的各项
生成项
再分配项
扩散项
耗散项
14
雷诺应力方程(5)
湍动能方程
湍动能方程的各项
生成项
湍动能Βιβλιοθήκη 扩散项耗散项15
湍流标量的输运方程
标量方程 温度标量输运方程
被动性
16
高等流体力学
第3讲 湍流运动方程
内容
NS方程
− 湍流问题 − 连续性方程、运动方程 − 雷诺方程 − 脉动运动方程
雷诺应力方程
− 雷诺应力 − 雷诺应力输运方程 − 湍动能输运方程
高等流体力学 讲义
0.01775
式中水温t /s计 式中水温t以°C计,ν以cm2/s计
前进
牛顿流体与非牛顿流 (3)牛顿流体与非牛顿流体 一般把符合牛顿内摩擦定律的流体称为牛顿流 一般把符合牛顿内摩擦定律的流体称为牛顿流体(属于水力学 研究的范畴),反之称为非牛顿流体(属于流变学研究的范畴)。 研究的范畴),反之称为非牛顿流体(属于流变学研究的范畴)。 ),反之称为非牛顿流体 A线为牛顿流体,当流体种类一定、温 线为牛顿流体,当流体种类一定、
前进
Hale Waihona Puke 绪 论主要内容: 主要内容:
气体、 气体、液体和固体 连续介质 作用于流体上的力 流体的传递特性 液体的表面特性 边界条件
前进 结束
固体、液体、 固体、液体、气体
固体:具有固定的形状和体积。 ◆宏观状态的不同 固体:具有固定的形状和体积。 液体:具有固定的体积,没有固定的形状。 液体:具有固定的体积,没有固定的形状。 气体:没有固定的形状和体积。 气体:没有固定的形状和体积。 凝聚态
根据理论力学( 根据理论力学(Shamed,1966)得 )
M z = I z a z + ω xω y ( I y − I x )
式中:Mz为各作用力对 轴的力矩;Ix、Iy、Iz为隔离体对 为各作用力对z轴的力矩 为隔离体对x,y,z 式中 为各作用力对 轴的力矩; 为隔离体对 轴的惯性矩; 为隔离体的角加速度在 方向分量; 和 为隔离体的角加速度在z方向分量 轴的惯性矩;az为隔离体的角加速度在 方向分量;ωx和ωy 为隔离体角速度在x和 轴的分量 轴的分量。 为隔离体角速度在 和y轴的分量。
以δxδyδz 除之,上式可简化成 除之 上式可简化成
(δx) 2 + (δy ) 2 (δx) 2 + (δy ) 2 τ xy − τ yx = ρ az + ρω xω y 12 12
高等流体力学课件 高等流体力学(3)
r(x, y, z) 改变, t 不变,表示同一时刻不同空间点上场变量的变化; t 改变, r (x, y, z) 不变,表示同一空间点上的场变量随时间的变化。
当采用欧拉参考系时,就定义了物理量的空间分布,称为该物理量场,例如速度场、压强
场等。因此欧拉观点是场的观点,可运用数学上“场论”知识作为理论分析工具。欧拉法
令
J
r x0
r y0
r z0
x y0
y y0
z x, y, z y0 x0 , y0 , z0
x y z
z0 z0 z0
J 0
质量守恒,
00 J 0
0
雅克比行列式 J 表示一流体微团或流体质点在 t 时刻和初始时刻 t0 的体
积之比,也表示初始时刻 t0和时刻 t 的密度比。
t)3
4z0e2tt (1 t)3
2z0e2t (1 t)3
6z0e2tt (1 t)4
2z0e2t[2t(1 t) (1 (1 t)4
t)
3t]
2z0e2t (2t2 1) (1 t)4
2z(2t2 1) (1 t)2
2020/11/14
26
2.2 迹线、流线和脉线
迹线 迹线是同一流体质点在空间运动过程中描绘出来的曲线,即轨迹。
积分求得
r r x0, y0, z0,t
或
x x x0, y0, z0,t, y y x0, y0, z0,t, z z x0, y0, z0,t
在以上方程组中 t 是自变量。 x, y, z 是流体质点的空间坐标,因此 都是 t 的函数。
求迹线是在拉格朗日参考系中进行的。
2020/11/14
对于非定常流动,空间给定点的速度大小和方向随时间而变 化,因此谈到流线总是指某一给定时刻的流线。
高等流体力学第3讲
第三讲 流体静力学一、 静止流体中的应力特性静止流体中,流体质点之间没有相对运动,切应力必然为0,又由于流体分子之间的引力很小,流体质点之间几乎不能承受拉力。
因此,在静止流体中,只能存在指向作用面的法向应力。
即n p =-p n (3-1)式中的p n 就是工程流体力学中的流体静压力。
上式也可以写成张量形式P ==000000p p p -⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦=p 00000011⎡⎤⎢⎥1⎢⎥⎢⎥⎣⎦= p I (3-2) 式中I 为单位张量。
静止流体中任意一点处的应力无论来自何方均相等,即任意一点处的静压力与作用方向无关。
二、 欧拉平衡方程惯性坐标系中,任何流体处于静止状态的必要条件是:作用在物体上的合外力为0,即0∑=F (4-3)在静止流场中任取一个流体团作为研究对象,作用在其上的质量力可表示为d ρττ⎰⎰⎰f (a ) 表面力可表示为d d AAp A p A -=-⎰⎰⎰⎰n n (b )根据第一个平衡条件(3-3)可得d d =0Aρτp A τ-⎰⎰⎰⎰⎰f n (c ) 根据高斯定理可知,若物理量p 在封闭空间τ中连续且存在连续的一阶导数,则有d =d Ap A p ττ∇⎰⎰⎰⎰⎰n (d )将(d)式代入(c)式则可得d 0ρp ττ-∇=⎰⎰⎰()f 由于流体团是任意选取的,所以要使上式成立,则被积函数在该体积内任意点上的数值必须为0,于是有=0ρp -∇f或1=p ρ∇f (3-4)这就是欧拉平衡微分方程式,其在直角坐标系中可写为111x yzp f ρx pf ρy p f ρz ⎧∂=⎪∂⎪⎪∂=⎨∂⎪⎪∂=⎪∂⎩(3-5) 同时,合力矩为0是自动满足的。
三、 静压流场的质量力条件(自学)对于所有的静止流体,(3-4)式均成立,现对其两端同时取旋度可得1111==+=p p p p ρρρρ⎛⎫⎛⎫⎛⎫∇⨯∇⨯∇∇⨯∇∇⨯∇∇⨯∇ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f上式中应用了标量函数梯度的旋度为0这一结论,现证明之p ∇⨯∇()=p p p xy z ⎛⎫∂∂∂∇⨯++ ⎪∂∂∂⎝⎭i j k=x y z p p p xy z∂∂∂∂∂∂∂∂∂∂∂∂ij k =p p p p p p y z z y x z z x x y y x ⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫---+-⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭i j k =0(矢量) 将上式与(3-4)式进行点乘则有()1=p p ρρ⎡⎤⎛⎫∇∇⨯∇⨯∇⎢⎥ ⎪⎝⎭⎣⎦f f 上式右端为矢量的混合积,由混合积的定义可知由于三个矢量中有两个同名,所以其值为0,可得()=0∇⨯f f (3-6)由此可以得出结论:流体静止的必要条件是质量力必须满足()=0∇⨯ff 。
计算流体力学课件概述
2018/12/24
13
能源工业:图a是CFD模拟的500 [Mwe]电站煤粉锅炉炉内
燃烧。结果显示了在燃烧器喷流交叉形成的高温、高氧区, NOX生成速率大。
图b显示的是管壳换热器的流线及温度分布。同时考虑管外 流体、管内流体、以及管壁部分的耦合传热。
图c是模拟燃料电池中氧浓度的分布。用户开发了专门的电 化学反应模型,通过催化层的电化学反应速率模拟当地的电 流密度。
2018/12/24 8
CFD拥有包括流体流动、传热、辐射、多相流 、化学反应、燃烧等问题丰富的通用物理模 型;还拥有诸如气蚀、凝固、沸腾、多孔介 质、相间传质、非牛顿流、喷雾干燥、动静 干涉、真实气体等大批复杂
现象的实用模型。
2018/12/24
9
航空航天:图a为模拟美国F22战斗机的结果,图中 显示的是对称面上的马赫数分布。计算共采用了 260万个网格单元。模拟的升力、阻力及力矩系数 都与实验值吻合的很好。 图b是某飞机多段翼周围的压力分布 图c是美国J-31型涡轮喷气发动机的整机模拟。包 括进气道、压缩机、燃烧室、尾喷管四个部分。
图c 模拟出添加剂的浓度分布。改变添加剂的投放位置,用 CFD模拟来优化添加剂浓度分布,以达到最好的防腐效果
2018/12/24
15
冶金工业:图a 模拟的钢水铸造过程,图中显示的是铸造
模具内的流线及表面温度分布 图b是模拟连续加热炉,该炉采用直接加热方式,从图中温度 分布可以看出,钢带有一角的温度过高,这会影响钢产品的 质量。 图c是模拟优化铸造炉内烧嘴的类型和位置。很好地模拟出了 融池内因浮力驱动产生的二次流现象,及诸如回流区、涡、 表面波的发展、温度分布的不均匀性等设计缺陷。
2018/12/24
10
高等流体力学第三章
1 de dq pd ( )dq
无热传导条件下 , dq 0 于是
de 0
f g g k G
即流体质点内能不变。 设外力只有重力,当Z轴垂直向上时
G gz
1 p ( uu ) g z C 2
3.3 克罗柯方程
热力学关系式
u ( r , t ) 因为 u 为单值函数,
D u D D u i d r d x i D t C D t D t () t C () t
2 u ud u d( ) 0 2 C (t) C (t)
沿一条确定的流体质点组成的物质周线的速度环量的随体导数等于该周线上 的加速度的环量.
以上结论是纯运动学性质的,因此对任何流体都成立
正压流体
设流体的密度仅是压强的函数 场论公式
§3.1 开尓文定理
(p ) d r ( d x i d y j d z k ) ( ) i ( )j ( ) k x y z
p
d p r
因为δr是任选的,所以对正压流体流场中任一点有
p dp
开尓文定理
D D u d r D t C(t) D t
§3.1 开尓文定理
设理想流体,质量力有势且为单值函数,
D u p G D t
设正压流体
D p G d r D t Ct ( )
第 三 章 特殊方程
3.1 开尓文定理
欧拉方程
u 理想流体, ( u ) u p f t f G 设质量力有势且为单值函数, u p ( u ) u G 代入欧拉方程得 t
流体力学教学资料 3
V2 V1
V3
V4
设 ds =dxi+dyj+dzk 为流线上 A 点的一微元弧长
V = ui+vj+wk 为流体质点在 A 点的流速。
V A ds
速度矢量 V 与微元弧长 ds 相平行,所以
dx dy dz u(x, y, z,t) v(x, y, z,t) w(x, y, z,t)
对应分量成比例
相续通过流场同一空间点的流体质点所连成的曲线又 称为脉线。
在实验中经常通过在水流中的一些特定点连续注入染 色液体或者在气流中的特定点连续施放烟气的方式来演示 流场,染色液体或者烟气所形成的曲线是脉线。
在定常流动中,通过同一空间点的所有流体质点具有 相同的运动轨迹,而且它们沿着流线行进,所以染色线或 者烟线同时也是流线和迹线。在非定常流动中,脉线与流 线和迹线都不重合,所以此时不能把染色线或烟线当成流 线和迹线。
(8,6)
x
解: u=Vcos=3 x2 y2
=3x
x2 y2
x
v=3y
ax=u/t+uu/x+vu/y=0+3x·3+3y·0=9x=72m/s2 ay= v/t+uv/x+vv/y=0+3y·0+3y·3=9y=54m/s2
a ax2 ay2 722 542 90m / s2
例
rr
3.积分形式的连续性方程
对控制体内的质量变化和通过控制面的质量流量用积分表 达,这样就得到积分形式的连续性方程:
ρ t
dτ
dx dy xt yt
dz 0
积分后得到:
ln x t ln y t ln C1
z C2
计算流体力学简明讲义讲解
第一章绪论第一节计算流体力学:概念与意义一、计算流体力学概述任何流体运动的规律都是由以下3个基本定律为基础的:1)质量守恒定律;2)牛顿第二定律(力=质量×加速度),或者与之等价的动量定理;3)能量守恒定律。
这些基本定律可由积分或者微分形式的数学方程(组)来描述。
把这些方程中的积分或者(偏)微分用离散的代数形式代替,使得积分或微分形式的方程变为代数方程(组);然后,通过电子计算机求解这些代数方程,从而得到流场在离散的时间/空间点上的数值解。
这样的学科称为计算流体(动)力学(Computational Fluid Dynamics,以下简称CFD)。
CFD有时也称流场的数值模拟,数值计算,或数值仿真。
在流体力学基本方程中的微分和积分项中包括时间/空间变量以及物理变量。
要把这些积分或者微分项用离散的代数形式代替,必须把时空变量和物理变量离散化。
空间变量的离散对应着把求解域划分为一系列的格子,称为单元体或控制体(mesh,cell,control volume)。
格子边界对应的曲线称为网格(grid),网格的交叉点称为网格点(grid point)。
对于微分型方程,离散的物理变量经常定义在网格点上。
某一个网格点上的微分运算可以近似表示为这个网格点和相邻的几个网格点上物理量和网格点坐标的代数关系(这时的数值方法称为有限差分方法)。
对于积分型方程,离散物理量可以定义在单元体的中心、边或者顶点上。
单元体上的积分运算通常表示为单元体的几何参数、物理变量以及相邻单元体中物理变量的代数关系(这时的数值方法称为有限体积方法和有限元方法)。
所谓数值解就是在这些离散点或控制体中流动物理变量的某种分布,他们对应着的流体力学方程的用数值表示的近似解。
由此可见,CFD得到的不是传统意义上的解析解,而是大量的离散数据。
这些数据对应着流体力学基本方程的近似的数值解。
对于给定的问题,CFD 研究的目的在于通过对这些数据的分析,得到问题的定量描述。
计算流体力学讲义
0.
前言
目前在航空、航天、汽车等工业领域,利用 CFD 进行 的反复设计、分析、优化已成为标准的必经步骤和手 段。 当前 CFD 问题的规模为:机理研究方面如湍流直接模
拟,网格数达到了109(十亿)量级,在工业应用方面, 网格数最多达到了107(千万)量级。
1.计算流体力学的发展及应用
一、计算流体力学的发展
o 研究计算方法,包括并行算法和各种新型算法;
o 研究涡运动和湍流,包括可压和不可压湍流的直接数值模拟、
大涡模拟和湍流机理;
o 研究网格生成技术及计算机优化设计; o 研究CFD用于解决实际流动问题,包括计算生物动的数值模拟等。
1.计算流体力学的发展及应用
0.
前言
自上世纪六十年代以来 CFD技术得到飞速发展,其原动力是不断 增长的工业需求,而航空航天工业自始至终是最强大的推动力。 传统飞行器设计方法试验昂贵、费时,所获信息有限,迫使人们 需要用先进的计算机仿真手段指导设计,大量减少原型机试验, 缩短研发周期,节约研究经费。四十年来, CFD在湍流模型、网 格技术、数值算法、可视化、并行计算等方面取得飞速发展,并 给工业界带来了革命性的变化。如在汽车工业中,CFD和其它计 算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样 车减少为目前的十几辆车;国外飞机厂商用 CFD取代大量实物试 验,如美国战斗机 YF-23采用CFD进行气动设计后比前一代 YF-17 减少了60%的风洞试验量。
计算流体力学应用研究中的关键问题包括:对应用于各种具体情 况的数学模型、对复杂外形的描述以及对计算网格的划分做进一 步研究;探索更有效的算法来提高计算精度,并降低计算费用; 进一步开展计算流体力学在各方面的应用等。
2. 计算流体力学常用数值方法简介
高等流体力学讲义课件_第 三 章 特殊方程
D u u 1 p (h G) Dt 2 t
从能量方程出发推导的伯努利方程
设定常流,
D u u (h G) 0 Dt 2
上式表示一个流体质点在它的运动轨迹的所有点上总能量保持不变,
u u h G C 2
u u e G C 2 p
均能流动
在理想流体、绝热定常流动条件下,忽略质量力作用时,由伯努利方程知 滞止焓沿流线不变, u u h G C (沿流线) 2 h0 const. 在无穷远均匀来流条件下,及其他一些条件下,滞止焓沿每一条流线相 同,滞止焓在流场中处处为常数,是为均能流动。克罗柯方程简化为
u T s
C (t )
A(t )
式中A(t)是涡管截面,根据开尔文定理,
D D u dr Dt C (t ) Dt
A( t )
ndA 0
涡管在随流体运动过程中通过其任一横截面的涡通量, 即涡管强度, 不随时 间改变. 在运动过程中, 涡管会发生变形:当涡管被拉伸时, 涡量增大, 涡管 被压缩时, 涡量减小, 以保持通过横截面的总的涡通量不变。
设在封闭的物质线C(t) 上张一曲面A(t),则由STOKES 定理,
A(t )
ndA
D Dt
A( t )
ndA 0
对于正压 , 体积力单值有势的理想流体流动 , 沿任意封闭的物质周线上的速度 环量和通过任一物质面的涡通量在运动过程中守恒.
讨论1
§3.1 开尓文定理
第 三 章 特殊方程
3.1 开尓文定理
欧拉方程
u 理想流体, (u )u p f t f G 设质量力有势且为单值函数, u p (u )u G 代入欧拉方程得 t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等计算流体力学讲义(3)§2 Riemann 问题1.预备知识:Euler 方程解的结构我们讨论Euler 方程解的结构。
在上一节,我们已经得到,在均熵流动条件下,有const R =±,沿au dt dx±= (1) 其中 a u R 12-±=±γ。
且全场 S const =。
(2)在这种情况下,Euler 方程的光滑解有如下几种可能。
1)在求解域中,Riemann 不变量a u R 12-±=±γ均不为常数。
这是最一般的情况,Euler 方程的解比较复杂,通常无解析解。
2)均匀流:Riemann 不变量a u R 12-±=±γ均为常数。
此时,令R R ±±=, 有:0000()/21()4u R R a R R γ+-+-=+-=-,可见,此时流动是均匀的。
3)简单波:有一个Riemann 不变量在某区域内为常数(00R R or R R ++--==)。
以0R R ++=的情况为例。
此时021R u a R γ++=+=-。
(3) 且沿dxu a dt=-,有 21u a const γ-=-。
这个常数具体的数值与特征线的起点有关。
由此我们知道,沿dxu a dt=-,有00()/21()4u R const a R const γ++=+-=-。
这说明,沿dxu a dt=-,u 和a 均为常数,即特征线是直线。
由均熵条件,密度ρ和压力p 沿特征线dx u a dt =-也为常数。
参见上图,由于u a u -<,所以流线dx u dt=(或流体质点)从左侧穿过特征线dxu a dt=-,这种简单波称为左简单波或向后简单波。
简单波可以分为压缩波和稀疏波(膨胀波)两类。
设流线与dxu a dt=-交点处,流线的切线方向为ξ 。
把(3)式沿ξ求方向导数,得:201u a ξγξ∂∂+=∂-∂ 当0uξ∂>∂,有()0,0,0,0a p u c ρξξξξ∂∂∂∂-<<<>∂∂∂∂。
此时,压力密度沿流线减小,且特征线dxu a dt=-是发散的。
这种简单波称为稀疏波。
当0uξ∂<∂,有 ()0,0,0,0a p u c ρξξξξ∂∂∂∂->>><∂∂∂∂。
txu此时,压力密度沿流线增加,且特征线dxu a dt=-是收敛的的。
这种简单波称为压缩波。
对于0R R --=的情况可类似讨论。
4)中心稀疏波中心稀疏波是一种特殊的简单波。
以向左中心稀疏波为例R -对应的特征线dxu a dt=-是通过某一点的中心直线族。
设这一点的坐标为(0,0), 则特征线的方程为:xu a t=- (4) 设左中心稀疏波的左边界(波头)的特征线为11xu a t=-, 右边界(波尾)特征线为22xu a t=-。
另外,由简单波定义,还有 021R u a R γ++=+=-。
(5) 显然,011222211R u a u a γγ+=+=+--, (6) 这就是波头波尾状态之间的关系。
此外波头波尾之间还满足等熵关系12S S =。
(7)由(4)、(5)式可得左中心稀疏波的状态分布00112212[]111[],1xu R tx x a R u a u a t tγγγγγ++-=+++-=-+≤≤++压力和密度可由等熵条件得出。
右中心稀疏波的讨论类似。
txudxdt=u a - u =5)激波和接触间断当流场中存在间断时,Rankine-Hogoniot 关系为:[][]2(,,)(,,)TTF D U U u E F u u p uH ρρρρρρ===+。
(8)假定间断两侧速度是连续的,则必有D u u +-==。
这种间断称为接触间断。
由Rankine-Hogoniot 关系易知,接触间断两侧压力也是连续的,发生间断的只有密度。
不是接触间断的间断称为激波。
对于激波而言,必有()()0u D u D ρρ++---=->。
通过上面的讨论,我们可以得到一个重要的结论:与均匀流区相邻的区域,一定是简单波区或者间断线。
间断显然可以和均匀流区相邻。
如不存在间断,必有一族特征线从均匀流区进入这一区域。
这样,相应的Riemann 不变量不仅沿特征线是常数,而且在这个区域内保持常数,因此这一区域必然是简单波区。
2.Riemann 问题所谓Riemann 问题就是求解Euler 方程0=∂∂+∂∂xFt U (9) 在初值⎩⎨⎧>≤=00)0,(x U x U x U RL(10)下的解。
Riemann 问题存在解析解。
那么它的解是什么结构呢?在一般情况下,,L R U U 之间不满足Rankine-Hogoniot 关系,所以,随着时间的变化,初始间断会分解为一些特定的流动结构,而且这些结构均发源于初始间断处;而在远离这些结构的地方,流动仍保持为初始值,L R U U 。
因此,我们可以预期, Riemann 问题解的结构是两侧的均匀流区和中部的间断影响区。
见下图。
与均匀流区相邻的只能是简单波区或者间断。
如果是简单波区,容易知道,其必为中心稀疏波。
所以,我们知道,中心的初始间断影响区和均匀流区通过左波(激波或中心稀疏波)和右波(激波或中心稀疏波)分开。
但是,是不是只有这两个波,或者说,Riemann 问题的解是所谓“双波结构”呢?容易证明,双波结构是超定的,所以,初始间断影响区必然包含其他流动结构。
这个结构就是上文所说的接触间断。
它处于左波和右波之间。
此时,未知量的个数和所能提供的独立方程数相同,我们可以唯一确定Riemann 问题的解。
4波或4波以上的解都不可能是稳定的物理解。
因此,Riemann 问题的解是一种“三波结构”:左波和右波可以是激波或膨胀波,中间的波为接触间断(接触间断两侧速度、压力是连续的,但密度有间断)。
根据上述分析,Riemann 问题解的结构如下图所示:在求解Riemann 问题过程中,比较方便的是采用原始变量Tp u W ),,(ρ=所以Riemann 问题的初始条件也可写为x⎩⎨⎧>≤=00)0,(x W x Wx W RL(11)各个区域内Riemann 问题的解可以记为如下图的形式:注意L W *和L W *对应的压力和速度相同,密度不一定相同。
即:R L R L R L p p p u u u ********,,ρρ≠====3.Riemann 问题的求解具体的求解过程可参见Toro 的书。
压力*P 的计算压力*P 是下述方程的解:*** ( , , )( , ) ( , ) 0 L R L L R R f P W W f P W f P W u =++∆= (12)其中u ∆≡R u -L u ,()()()12***1*2**,211L L LL L L L LL A P P if P P P B f P W a P if P P P γγγ-⎧⎡⎤⎪->⎢⎥⎪+⎣⎦⎪=⎨⎡⎤⎪⎛⎫⎢⎥-≤⎪ ⎪⎢⎥-⎝⎭⎪⎢⎥⎣⎦⎩()()()12***1*2**,211R R RR R R R RR A P P if P P P B f P W a P if P P P γγγ-⎧⎡⎤⎪->⎢⎥⎪+⎣⎦⎪=⎨⎡⎤⎪⎛⎫⎢⎥-≤⎪ ⎪⎢⎥-⎝⎭⎪⎢⎥⎣⎦⎩且L A =()L ργ12+L B =L P 11+-γγR A =()Rργ12+R B =R P 11+-γγ 速度*u 的计算:*u =21()R L u u ++21()()[]**P f P f L R - (13) (12)式不能得到显式的解析解,一般要通过迭代法求解。
在计算出*P , *u 后,就可以得到Riemann 问题的完整解。
以左波附近的解为例,简述如下:如果已知*P ,则:①当*P >L P 时,*P 和L P 之间有一道激波。
由R-H 关系,()L L L L L U U D F F -=-** (14)由于F 是U 的函数,所以上式中有四个未知量,三个方程。
在得到*P 后,(14)式封闭,我们可以通过(14)式求出*u (已算出),L *ρ,L D 。
则其解如下图所示即x()**,L x u t L W W x t W <⎧=⎨⎩ *L L x Dt x D u t<<< (15)②当*L P P <时,*P 和L P 之间是中心膨胀波。
此时左波附近解的结构如下图所示:其中,HL TL D D 分别是膨胀波波头和波尾的速度:**,HL L L TL L D u a D u a =-=- (16)*L a 的计算方法为,利用等熵条件1/**()L L Lp p γρρ= 可得(1)/(2)**()L L Lp a a p γγ-= (17)此时,左波附近的解为()**/,//L HLx Lfan HL TL u t LTLW if x t D W x t W if D x t D W if x t D <⎧<⎪=≤<⎨⎪≥⎩ (18) 其中,Lfan W 为中心稀疏波内的解,根据特征关系,可得:2/(1)2/(1)2(1)[(/)](1)(1)2(1)[/](1)22(1)[(/)](1)(1)L L L LfanL L L L L u x t a W u a u x t p p u x t a γγγγρργγγγγγγ--⎧-=+-⎪++⎪⎪-==++⎨+⎪⎪-=+-⎪++⎪⎩(19)/x t D =x右波附近的解可以用类似方法确定。
根据上面的分析,我们可以看出, Riemann 问题的解有相似性,即(,)(/)W x t W x t =§3 Godunov 格式考虑Euler 方程0U Ft x∂∂+=∂∂ (1) 我们采用有限体积方法离散上述方程。
在任意控制体1/21/21[,][,]i i n n x x t t -++⨯上积分上式,有:1/211/211/21/2[(,)(,)][((,))((,))]0i n i nx t n n i i x t U x t U x t dx F U x t F U x t dt ++-++--+-=⎰⎰ (2)令()ix x n n i x dx t x U U i i ∆=⎰+-2121, (3)其中121-+-=∆i i i x x x ,则(2)式可以写为:()()()()0,,11121211=⎥⎦⎤⎢⎣⎡-∆∆+∆-⎰⎰++-++n n n n t t t t i i n i n i dt t x U F dt t x U F t x t U U (4) 到目前为止整个过程是精确的。