可拆式板式换热器强度计算书

合集下载

换热器强度计算书

换热器强度计算书

换热器强度计算书
换热器强度计算书是一份重要的技术文件,用于评估换热器在设计条件下的结构强度和安全性。

以下是一个简要的换热器强度计算书的示例,供参考:
1. 换热器概述
对换热器的类型、设计条件、主要结构和材料进行描述。

2. 设计规范和标准
列出计算所依据的相关设计规范和标准。

3. 载荷分析
分析换热器在正常操作、停车、检修等不同工况下所承受的载荷,包括压力、温度、重量等。

4. 强度计算
根据载荷分析的结果,采用适当的计算方法(如压力容器设计规范中的计算公式)对换热器的各个部件进行强度计算,包括壳体、封头、接管、法兰等。

5. 结果评估
对强度计算的结果进行评估,判断是否满足设计规范和标准的要求。

如有不满足的情况,提出相应的改进措施。

6. 结论
总结强度计算的结果,明确换热器在设计条件下的结构强度是否满足要求。

7. 附录
包括计算所使用的主要公式、计算过程中的中间结果、材料性能数据等。

需要注意的是,这只是一个示例,实际的换热器强度计算书应根据具体的设计条件和要求进行编制,并由专业的工程师进行审核和签署。

板式换热器选型计算的方法及公式

板式换热器选型计算的方法及公式

板式换热器选型计算的方法及公式(1)求热负荷QQ=G.ρ.CP.Δt(2)求冷热流体进出口温度t2=t1+ Q /G .ρ .CP(3)冷热流体流量G= Q / ρ .CP .(t2-t1(4)求平均温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2(5)选择板型若所有的板型选择完,则进行结果分析。

(6)由K值范围,计算板片数范围Nmin,NmaxNmin = Q/ Kmax .Δtm .F P .βNmax = Q/ Kmin .Δtm .F P .β(7)取板片数N(Nmin≤N≤Nmax )若N已达Nmax,做(5)。

(8)取N的流程组合形式,若组合形式取完则做(7)。

(9)求Re,NuRe = W .de / νNu =a1.Re a2.Pr a3(10)求a,K传热面积Fa = Nu .λ / deK= 1 / 1/a h+1/a c+γc+γc+δ/λ0F= Q /K .Δtm .β(11)由传热面积F求所需板片数NNNN= F/ Fp+ 2(12)若N<NN,做(8)。

(13)求压降ΔpEu = a4.Re a5Δp = Eu .ρ.W2 .ф(14) 若Δp>Δ允,做(8);若Δp≤Δ允,记录结果,做(8)。

注: 1.(1)、(2)、(3)根据已知条件的情况进行计算。

2.当T1-t2=T2-t1时采用Δtm = (T1-t2)+(T2-t1)/2 3.修正系数β一般0.7~0.9。

板式换热器的优化选型1 平均温差△tm从公式Q=K△tmA,△tm=1/A∫A(t1-t2)dA中可知,平均温差△tm是传热的驱动力,对于各种流动形式,如能求出平均温差,即板面两侧流体间温差对面积的平均值,就能计算出换热器的传热量。

平均温差是一个较为直观的概念,也是评价板式换热器性能的一项重要指标。

1.1 对数平均温差的计算当换热器传热量为dQ,温度上升为dt时,则C=dQ/dt,将C定义为热容量,它表示单位时间通过单位面积交换的热量,即dQ=K(th-tc)dA=K△tdA,两种流体产生的温度变化分别为dth=-dQ/Ch,dtc=-dQ/Cc,d△t=d(th -tc)=dQ(1/Cc-1/Ch),则dA=[1/k(1/Cc-1/Ch)]·(d△t/△t),当从A=0积分至A=A0时,A0=[1/k(1/Cc-1/Ch)]·㏑[(tho-tci)/(thi-tco)],由于两种流体间交换的热量相等,即Q=Ch(thi-tho)=Cc (tco-tci),经简化后可知,Q=KA0{[(tho-tci)-(thi-tco)]/㏑[(tho -tci)/(thi-tco)]},若△t1=thi-tco,△t2=tho-tci,则Q=KA0[(△t1-△t2)/㏑(△t1/△t2)]=KA0△tm,式中的△tm=(△t1-△t2)/㏑(△t1/△t2)。

板式换热器设计说明书

板式换热器设计说明书
常州大学
毕业设计(论文)
(2008届)
题 目55000Nm3h烟气热量回收板式换热器
学 生王玉龙
学 院怀德学院专业班级装备081
校内指导教师张锁龙专业技术职务(宋体 四号 粗体)
校外指导老师(宋体 四号 粗体)专业技术职务(宋体 四号 粗体)
二O—二年五月
55000
摘要
板式换热器的传热性能与版面的波纹形状、尺寸及版面组合方式都有密切关系。对 于任何一种新型结构尺寸板片的传热及阻力特性,都只有通过实验计算测定。对于无相
m/s
mቤተ መጻሕፍቲ ባይዱ
质量
kg
n
板片数
p
压力
Pa
Q
传热量
J/s
r
半径
m
s
板片厚
mm
T
热力学温度
K
t2
空气温度
C
t1
烟气温度
C
Dt
对数平均温差
C
v
流速
m/s
l
导热系数
W/(m.K)
n
温差修正系数
6
板间距
mm
a
正应力
MPa
T
剪应力
MPa
P
密度
3
kg / m
1.
一、毕业设计(论文)题目
55000Nmi^h烟气热量回收板式换热器
3.10压力试验检验报告26
3.11工程造价26
4.板式换热器安装、使用、维修、保养28
5.总结30
参考文献31
致谢32
术语表
符号
名称
单位
A
面积
m2
b
板片宽
m
c

板式换热器计算书

板式换热器计算书

终版曲树明2013-5-22巨元瀚洋板式换热器工艺计算书01 用户名称陵县供热公司编号JYR1304018G302 项目名称御府花都一期设备号03 设计人曲树明审核人享成04 设备型号TH15BW-1.6/150-91 日期2013-4-2305 设备参数06 单位回路A 回路B07 流体名称水水08 总流量m3/h 104.5 359.109 -液体m3/h 104.5 359.110 -汽体m3/h 0.0 0.011 -不凝气m3/h 0.0 0.012 单台流量m3/h 52.3 179.613 液相密度/汽相密度kg/m3966.9 / - 990.2 / -14 比热容kJ/(kg.K) 4.2 4.176515 导热系数W/(m.K) 0.677 0.6416 平均粘度cP 0.32 0.60717 潜热kJ/kg - -18 进口温度/出口温度°C 105.0 / 70.0 40.0 / 50.019 板间流速m/s 0.18 0.6220 计算压降/允许压降kPa 1.69 / 50.0 19.39 / 50.021 总热负荷kW 4125.22 富裕量% 108.123 换热面积(单台)m240.124 并联台数 225 总传热系数W /(m2.K) 2598.26 平均温差°C 41.227 结构参数28 工作压力MPa / /29 设计压力/试验压力MPa 1.6 /2.08 1.6 /2.0830 设计温度°C 150.0 150.031 流程数 1 132 板片数91 (X91)33 板片厚度mm 0.634 净重/工作重量kg 1065 / 123735 长/宽/高mm /36 板片材料316L37 垫片材料EPDM38 框架材料Q235-A39 设计标准/ 接口标准NB/T47004-2009 / JB/T81-199440 接口口径DN150 DN15041 接口材料EPDM Lining EPDM Lining .42 备注: 两台换热器并联运行,单台承担50%热负荷。

可拆式板式换热器强度计算书

可拆式板式换热器强度计算书

可拆式板式换热器强度计算书编制:审核:批准:一、夹紧螺柱(依据NB/T47004)1.计算公式中各符号的含义W a-----预紧状态下,需要的最小夹紧螺柱载荷,N;W p-----工作状态下,需要的最小夹紧螺柱载荷,N;A m-----需要的夹紧螺柱总截面积,㎜2 ;l------垫片中心线展开长度,㎜;B------垫片有效密封宽度,㎜;y------垫片比压力,橡胶y=1.4MPa;a2------被垫片槽中心线包容的板片投影面积,㎜2 ;P------设计压力,MPa;m------垫片系数,橡胶m=1;d------夹紧螺柱小径或无螺纹部分的最小直径,取较小值,㎜;n------夹紧螺柱数量;F0-----作用于a2上的流体静压力,N;F p-----工作状态下,需要的最小垫片压紧力,N;[б]b ---常温下夹紧螺柱材料的许用应力,MPa;[б] t b---设计温度下夹紧螺柱材料的许用应力,MPa;2.计算夹紧螺柱材料选用35CrMoA,调质处理设计温度:180℃[б]b =228MPa [б] t b =206MPa1)计算公式中各项取值l=6900㎜a2=1144790㎜2B=11.5㎜P选1.6MPa 2)夹紧螺柱载荷W a=l·B·y=6900×11.5×1.4=111090 NW p=F o+F p=a2P+2l·B·m·PW p1.6= a2 P1.6+2l·B·m·P1.6=1144790×1.6+2×6900×11.5×1×1.6=2085584 N3)夹紧螺柱面积a)预紧状态下,需要的最小夹紧螺柱总截面积A aA a=W a/[б]b =111090/228=487.24㎜2b)工作状态下,需要的最小夹紧螺柱总截面积A pA p1.6= W p1.6/[б]b =2085584/206=10124.19㎜2c) A m取A a与A p两者的较大值A m=A p4)夹紧螺柱最小直径取n=14根d1.6=(4A p1.6/πn)1/2=(4×10124.19/3.14×14)1/2=30.35㎜取d=42㎜n=14根二、压紧板(该件以GB150和GB151 为依据,按平盖计算)1.计算公式中各符号的含义a-----非圆形平盖的短轴长度,㎜;b-----非圆形平盖的长轴长度,㎜;L-----非圆形平盖的螺栓中心连线周长,㎜;L G-----螺栓中心至垫片压紧力作用中心线的径向距离,㎜;φ-----焊接接头系数,取φ=1;K-----系数;P c-----计算压力,MPa;Z-----非圆形平盖的形状系数,Z=3.4-2.4a/b,且Z≤2.5W-----预紧状态或操作状态时螺栓的设计载荷,N;δp----平盖计算厚度,㎜;δ-----压紧板厚度,㎜;[б]t--设计温度下材料的许用应力,MPa;2.计算压紧板材料选用:Q345-A,[б]t=157 MPa,设计温度:180℃1)公式中各项取值a=564㎜b=2094㎜L G=48㎜L=5700㎜Z=3.4-2.4a/b=2.752)计算a:预紧作用下K1.6=6WL G/P c La2=6×111090×48/1.6×5700×5642=0.011028448δp1.6=a(KP c/φ[б]t)1/2=564 (0.011028448×1.6/1×157)1/2=5.98 MPab:操作状态下K1.6=0.3Z+6WL G/PcLa2=0.3×2.75+6×2085584×48/1.6×5700×5642=1.032δp1.6=a(KP c/φ[б]t)1/2=564 (1.032×1.6/1×157)1/2=57.84㎜故取压紧板厚度δ1.6=60㎜三、上导杆(依据NB/T47004)1.计算公式中各符号的含义f-----上导杆受载所引起的跨度中点的挠度,㎜;f1-----上导杆自重所引起的跨度中点的挠度,㎜;f2-----板片及充介质所引起的上导杆跨度中点的挠度,㎜;f4-----活动压紧板自重所引起的上导杆跨度中点的挠度,㎜;L1-----导杆长度(固定压紧板内侧至支柱内侧的距离),㎜;L-----夹紧尺寸(固定压紧板内侧至活动压紧板内侧间的距离),㎜;F2-----活动压紧板自重,N;E-----设计温度下上导杆材料的弹性模量;J-----上导杆惯性距,㎜4;q1-----上导杆自重均布载荷,N/㎜;q2-----板片及所充介质所引起的均布载荷N/㎜;b2-----固定压紧板内侧至活动压紧板自重作用点的距离,㎜;c2-----活动压紧板自重作用点至支柱内侧间的距离,㎜;2.挠度计算上导杆材料选用Q235-A.F,设计温度:180℃1)公式中各项取值L1=3075㎜c2=1358㎜L=1687㎜b2=1717㎜F2= 8118NJ=35700000㎜4q1=0.36524 N/㎜E=210×103q2=23.42 N/㎜2)计算a.f1=5q1 L14/384EJ=5×0.36524×30754/384×210×103×35700000=0.0567㎜b.L>L1/2 则f2=q2(L4/2-2L3L1+9L2L12/4-LL13/2+L14/16)/24EJ=23.42(16874/2-2×16873×3075+9×16872×30752/4-1687×30753/2+30754/16)/24×210×103×35700000=2.10㎜c.c2<b2 则f4=F2c2(3L12-4c22)/48EJ=8118×1358(3×30752-4×13582)/48×210×103×35700000=0.65㎜f=f1+f2+f4=0.0567+2.10+0.65=2.81㎜<5㎜工作状态下,上导杆跨度中点的挠度f不得超过导杆长度L1的2/1000,且不大于5㎜,故满足要求。

(整理)板式换热器的计算方法[1]

(整理)板式换热器的计算方法[1]

板式换热器的计算方法板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。

在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。

目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。

以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。

以下五个参数在板式换热器的选型计算中是必须的:∙总传热量(单位:kW).∙一次侧、二次侧的进出口温度∙一次侧、二次侧的允许压力降∙最高工作温度∙最大工作压力如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。

温度T1 = 热侧进口温度T2 = 热侧出口温度t1 = 冷侧进口温度t2= 冷侧出口温度热负荷热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:(热流体放出的热流量)=(冷流体吸收的热流量)在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程式中Q----冷流体吸收或热流体放出的热流量,W;m h,m c-----热、冷流体的质量流量,kg/s;C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K);T1,t1------热、冷流体的进口温度,K;T2,t2------热、冷流体的出口温度,K。

(2)有相变化传热过程两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程式中r,r1,r2--------物流相变热,J/kg;D,D1,D2--------相变物流量,kg/s。

对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

对数平均温差(LMTD)对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。

板式换热器设计计算

板式换热器设计计算

板式换热器设计计算条件一、设计题目板式换热器-油处理能力9000公斤/小时(二)设计任务及操作条件1、处理能力见下表2、设备型式板式换热器3、操作条件(1)油:入口温度70℃,出口温度40℃(2)冷却介质:冷却塔循环水,入口温度20℃。

(3)油侧与水侧允许压强降:不大于105 Pa(4)油定性温度下的物性参数:ρ(kg/m3)C p (kJ/㎏.℃) μ(Pa.s)λ(W/m.℃)名称油850 1.8 3.2×10-40.12前言1.板式换热器简介本成套设备由板式换热器、平衡槽、离心式卫生泵、热水装置(包括蒸汽管路、热水喷入器)、支架以及仪表箱等组成。

用于牛奶或其它热敏感性液体之杀菌冷却。

欲处理的物料先进入平衡槽,经离心式卫生泵送入换热器、经过预热、杀菌、保温、冷却各段,凡未达到杀菌温度的物料,由仪表控制气动回流阀换向、再回到平衡槽重新处理。

物料杀菌温度由仪表控制箱进行自动控制和连续记录,以便对杀菌过程进行监视和检查。

此设备适用于对牛奶预杀菌、巴式杀菌。

板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。

1.1板式换热器的基本结构板式换热器主要由框架和板片两大部分组成。

板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。

板片的周边及角孔处用橡胶垫片加以密封。

框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。

板式换热器是将板片以叠加的形式装在固定压紧板、活动压紧板中间,然后用夹紧螺栓夹紧而成。

1.2板式换热器的特点(板式换热器与管壳式换热器比较)优点1.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。

2.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃.3.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/8。

板式换热器计算书

板式换热器计算书

板式换热器计算书
一、换热器设备介绍
换热器是利用液体之间的传热原理来实现的一种装置,它将热量从一种流体传递到另一种流体,且不会改变两种流体的温度。

换热器一般分为板式换热器和管式换热器两大类。

本文将介绍常见的板式换热器,它由若干铝合金或不锈钢的板片折叠而成,中间填以传热材料,形成一个相当紧凑的热交换装置。

错相式板式换热器由两个热流路相互交错而形成,板片的数量前后视流量和温度的变化而不同,一般多为10块以上。

板式换热器具有效率高、制造安装工艺简单以及结构紧凑等优点,因此应用较为广泛。

二、板式换热器的参数计算
1.热力参数计算
(1)换热器的蒸发量:
Q=m⋅h
其中:m 为蒸发量(kg/h)
h 为每公斤蒸发的热量(kJ/kg)
(2)换热器的热力传递率:
K=Q/Ae
其中:Q为换热器的蒸发量(kW)
Ae为换热面积(m^2)
2.流体参数计算
(1)流体的流量:
m=ρ⋅V⋅S
其中:ρ 为流体的密度(kg/m^3)
V为流体的流速(m/s)
S为换热器的流量(m^2)
(2)流体的压力损失:
P=ρ⋅V2/2
其中:ρ 为流体的密度(kg/m3)
V为流体的流速(m/s)。

板式换热器设计计算与校核计算

板式换热器设计计算与校核计算

板式换热器设计计算与校核计算题⽬:板式换热器设计及其选⽤⽬录⼀、说明书 (2)⼆、设计⽅案 (3)三、初步选定 (4)(1)已知两流体的⼯艺参数(2)确定两流体的物性数据(3)计算热负荷和两流体的质量流速(4)计算两流体的平均传热温差(5)初选换热器型号四、验证 (6)(1)算两流体的流速u(2)算雷诺数Re(3)计算努塞尔特数Nu(4)求两流体的传热系数α(5)求污垢热阻R(6)求总传热系数K,并核算五、核算 (7)(1)压强降△P核算(2)换热器的换热量核算六、结论 (7)七、设计结果 (8)⼋、附录 (9)表1:板式换热器的污垢热阻图1:多程流程组合的对数平均温差修正系数九、参考⽂献 (9)⼀、说明书现有⼀块建筑⽤地,建筑⾯积为12500 m2,采⽤⾼温⽔在板式换热器中加热暖⽓循环⽔。

⾼温⽔进⼊板式换热器的温度为100℃,出⼝的温度为75℃;循环⽔进⼊板式换热器的温度为65℃,出⼝的温度为90℃。

供暖⾯积热强度为293 kJ/(m2·h)。

要求⾼温⽔和循环⽔经过板式换热器的压强降均不⼤于100 kPa。

请选择⼀台型号合适的板式换热器。

(假设板壁热阻和热损失可以忽略)已知的⼯艺参数:⼆、设计⽅案(1) 根据热量平衡的关系,求出未知的换热量和质量流量,同时算出两流体的平均温度差;(2) 参考有关资料、数据,设定总传热系数K,求出换热⾯积S,根据已知数据初选换热器的型号;(3) 运⽤有关关联式验证所选换热器是否符合设计要求; (4) 参考有关资料、数据,查出流体的污垢热阻; (5) 根据式++++=2211111αλδαR R K O O 求得流体的总传热系数,该值应不⼩于初设的总传热系数,否则改换其他型号的换热器,由(3)开始重新计算;(6) 如果⼤于初设值,则再进⼀步核算两流体的压强降和换热量,是否满⾜设计要求,否则改换其他型号的换热器,由(3)开始重新计算; (7) 当所选换热器均满⾜设计要求时,该换热器才是合适的。

板式换热器计算

板式换热器计算

根据公式q=k·f·△TM,F=Q/K.ΔtmQ—热流(W)ΔTM对数平均温差(℃)F——传热面积(m*m)板型或波纹型应根据换热场合的实际需要确定。

对于流量大、允许压降小的情况,应选用低阻力的板式,否则应选用阻力大的板式。

根据流体压力和温度,确定可移动式或钎焊式。

为了避免板数过多,板间速度慢,换热系数低,对于较大的换热器,必须更加重视这一问题。

计算方法及公式(1)求热负荷QQ=G.ρ。

CP.Δt(2)计算冷热流体的进出口温度t2=t1+Q/G。

(3)冷热流体流动G=Q/ρ。

CP.(T2-t1)(4)计算平均温差ΔTMΔTM=(T1-T2)-(T2-T1)/in(T1-T2)/(T2-T1)或ΔTM=(T1-T2)+(T2-T1)/2(5)选择线路板类型如果选择了所有电路板类型,将分析结果。

(6)从K值的范围计算板数Nmin和nmax的范围Nmin=Q/Kmax.Δtm。

F P.βNmax=Q/Kmin。

Δtm。

F P.β根据不同厂家的产品性能曲线计算传热系数和压降。

性能曲线(标准相关性)通常来自产品性能测试。

对于缺乏性能试验的板形,也可以根据板形的特征几何尺寸,通过国际上的一些软件,利用参考尺寸法得到各判据之间的相关性。

扩展数据:原则:可拆卸板式换热器是由许多波纹薄板组成,这些波纹薄板以一定的间隔用垫片密封,并由框架和压紧螺钉重叠压缩。

板和垫片的四个角孔构成配液管和集液管。

同时,冷、热流体被合理分离,在每一块板两侧的流道中流动,并通过板进行热交换。

板式换热器的最佳设计计算是在已知温差比NTUE的条件下,合理确定其型号、工艺流程和换热面积,使ntup等于NTUE。

板式换热器广泛应用于冶金、矿山、石油、化工、电力、医药、食品、化纤、造纸、纺织、船舶、供热等行业。

可用于加热、冷却、蒸发、冷凝、灭菌、余热回收等场合。

太阳能利用:参与太阳能集热器上乙二醇等防冻剂的热交换过程,达到利用太阳能的目的。

板式换热器计算书excel__概述说明以及解释

板式换热器计算书excel__概述说明以及解释

板式换热器计算书excel 概述说明以及解释1. 引言1.1 概述板式换热器是一种常见且重要的热交换设备,广泛应用于化工、电力、制药等领域。

它通过将冷却介质和加热介质分别流动在板间的通道中,实现热量的传递。

而为了准确计算板式换热器的性能指标以及设计参数,使用excel来编制计算书已成为一种常用的方法。

本文旨在概述和解释“板式换热器计算书excel”的相关内容。

首先,我们将简要介绍板式换热器计算书excel的基本信息和用途。

随后,会详细说明计算方法以及excel模板的使用说明。

1.2 文章结构文章分为五个主要部分:引言、板式换热器计算书excel、概述说明、解释和结论。

在引言部分,我们将对板式换热器计算书excel的重要性进行阐述,并指出本文具体内容安排。

1.3 目的本文旨在帮助读者更好地理解和应用板式换热器计算书excel,在实际工程中准确地预测和评估板式换热器的效果,并为优化设计提供参考。

通过对概述说明和解释的阐述,读者将能够深入了解板式换热器的工作原理、计算公式和参数,以及不同类型板式换热器的特点和应用领域。

同时,本文还将提供一些常见问题解答、流程图解析和实际应用案例分析,帮助读者更好地掌握计算方法。

通过对结论部分的总结回顾,我们将评价并展望板式换热器计算书excel的优势和局限,并探讨未来该计算方法的发展趋势以及可能应用场景。

这些内容旨在为读者提供更为全面和深入的信息,使其能够在实践中灵活运用板式换热器计算书excel,并做出准确可靠且经济高效的决策。

2. 板式换热器计算书excel:2.1 简介:板式换热器是一种常用于加热和冷却过程中的设备,它通过板与板之间的热交换来实现传热的效果。

而为了方便进行板式换热器的计算和设计,可以使用Excel 软件来创建一个计算书。

这个计算书可以包含各种计算公式和参数,并能提供快速准确的计算结果。

本节将简要介绍这种基于Excel的板式换热器计算书。

2.2 计算方法:在板式换热器的计算中,需要考虑众多参数和公式,如流体温度、流量、传热系数、压降等。

板式换热器计算

板式换热器计算

根据公式q = k·f·△TM,F = Q / K .ΔtmQ-热流(W)ΔTM-对数平均温差(℃)F-传热面积(m * m)板式或波纹式应根据换热场合的实际需要确定。

对于大流量,允许压降较小的情况,应选择阻力小的板型,否则应选择阻力大的板型。

根据流体压力和温度,确定可移动类型或钎焊类型的选择。

为了避免过多的板,板之间的低速度和低的热传递系数,对于较大的热交换器,必须更加注意这个问题。

计算方法和公式(1)求热负荷QQ = G.ρ.CP.Δt(2)求出冷热流体的进出口温度t2 = t1 + Q / G。

(3)冷热流体流量G = Q /ρ.CP。

(t2-t1)(4)计算平均温差ΔTMΔTM =(T1-T2)-(t2-t1)/ in(T1-T2)/(t2-t1)或ΔTM =(T1-T2)+(t2-t1)/ 2(5)选择板子类型如果选择了所有板类型,将对结果进行分析。

(6)从K值的范围计算板数Nmin,nmax的范围Nmin = Q / Kmax .Δtm .F P .βNmax = Q / Kmin .Δtm .F P .β传热系数和压降的计算是根据不同制造商的产品性能曲线得出的。

性能曲线(标准相关性)通常来自产品性能测试。

对于缺乏性能测试的板形,还可以通过参考尺寸方法根据板形的特征几何尺寸,通过一些国际通用软件采用来获得准则相关性。

扩展数据:原理:可拆卸的板式换热器由许多波纹状的薄板组成,这些薄板由垫片以一定的间隔密封,并由框架和压缩螺钉重叠并压缩。

板和垫圈的四个角孔形成了流体的分配管和收集管。

同时,冷,热流体被合理地分离以在每个板的两侧的流动通道中流动,并且通过板进行热交换。

板式换热器的最佳设计和计算是在已知温差比NTUE的条件下合理确定其型号,工艺流量和传热面积,使ntup等于NTUE。

板式换热器已广泛应用于冶金,矿山,石油,化工,电力,医药,食品,化纤,造纸,轻纺,船舶,供热等部门。

板式换热器 承压件强度计算书

板式换热器 承压件强度计算书

B100L板式换热器承压件强度计算书本计算书主要校核板式换热器型号B100L主要承压件强度计算,校核所选用零配件是否符合标准。

参考标准:GB16409-1996《板式换热器》GB699-88《优质碳素结构钢技术条件》GB700-88《碳素结构钢》GB/T983-1995《不锈钢焊条》GB1173-86《铸造铝合金技术条件》GB1220-92《不锈钢棒》GB3077-88《合金结构钢技术条件》GB3274-88《碳素结构钢和低合金结构钢热轧厚钢板和钢带》GB3280-92《不锈钢冷轧钢板》GB3624-83《钛及钛合金板材》GB3624-83《钛及钛合金无缝管》GB3625-83《热交换器及冷凝器用无缝钛管》GB4237-92《不锈钢热轧钢板》GB/T5117-1995《碳钢焊条》GB6654-1995《压力容器用碳素钢和低合金钢厚钢板》GB8163-87《输送流体用无缝钢管》GB13296-91《锅炉、热交换器用不锈钢无缝钢管》JB4276-94《压力容器用碳素钢和低合金钢锻件》JB4727-94《低温压力容器用碳素钢和低合金钢锻件》JB4278-94《压力容器用不锈钢锻件》JB4730-94《压力容器无损检测》根据上述标准规定,对各个承压部件进行强度校核,以确定板式换热器是否可安全使用。

1.1螺柱许用应力:螺柱在不同温度下许用应力按照表1选取,对表1以外的材料,其许用应力按钢材设计温度下的屈服点ta除以表2中安全系数an来确定。

表1表21.2:材料板式换热器材料应考虑设计温度,设计压力、介质特性等,同时,应符合相应的标准。

板式换热器的板片、压紧板、螺柱、法兰、接管、垫片等所用的材料及焊接材料,也应符合相关的产品标准,或者提供产品质量证明书或其复印件。

1.3:计算符号:A——预紧状态下,需要的最小夹紧螺柱总截面积,以螺纹小径计算或以a无螺纹部分的最小直径计算,取较小值,mm²;A——实际使用的夹紧螺柱总截面积,以螺纹小径计算或以无螺纹部分的b最小直径计算,取较小值,mm²;A——需要夹紧螺柱总截面积,mm²;mA——工作状态下,需要的最小夹紧螺柱总截面积,以螺纹小径计算或以P无螺纹部分的最下直径计算,取较小值,mm²。

板式换热器的设计与计算

板式换热器的设计与计算

10.GB9787《角钢》11.GB/T12236《通用阀门钢制旋启式止回阀》3.1板式换热机组:Plate Heat Exchanger Unit 由板式换热器、水泵、变频器、过滤器、阀门、配电箱、仪表及控制系统等组成的智能型换热设备。

3.2一次侧 Primary Circuit Side 指热量或冷量的提供侧。

3.3二次侧 Secondary Circuit Side 指热量或冷量的接收侧。

3.4汽一水换热机组 Steam-Water Heat Exchanger Unit一次侧介质为蒸汽的板式换热机组。

3.5水一水换热机组 Water-Water Heat Exchanger Unit一次侧介质为水的板式换热机组。

4型号编制4.1型号组成及含义4.1.1型号中第1、2位表示板式换热机组:用“板式换热器”和“机组”的头两个字“板机”的汉语拼音大写字头BJ表示。

4.1.2第3位表示二次侧使用范围:生活热水系统一一“ S ”:空调系统一一“ K ”;一般采暖系统一一“ C ”;地板辐射采暖系统4.1.3第4位表示热负荷;4.1.4第5位表示一次热媒的介质:高温热水一一“ R ”;蒸汽4.1.5第6位表示一、二次侧设计压力;4.1.6第7位表示控制等级,按[表1]分为两级。

[表1]板式换热机组的控制等级示例:4.2型号编制示例: 热负荷4.0MW,用于热水采暖系统,一次侧设计压力1.6Mpa,二次侧设计压力0.6Mpa,一次热媒的介质为高温热水,具有温度控制、水泵变频、热量计量、通讯功能的板式换热机组表示为:BJC-4.0R1.6/0.6 II5基本参数5.1板式换热机组的额定热负荷应符合[表2]的规定。

[表2 ]板式换热机组的额定热负荷5.2板式换热机组的设计温度和压力应符合[表3 ]的规定[表3 ]板式换热机组的设计温度和压力6 一般要求6.1板式换热器的设计、制造检验与验收应符合条例GB/T16409的规定。

板式换热器热力计算及分析(整合)

板式换热器热力计算及分析(整合)

第一章概论1.1综述目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中。

它的发展已有一百多年的历史。

德国在1878年发明了板式换热器,并获得专利,到1886年,由法国M.Malvazin首次设计出沟道板板式换热器,并在葡萄酒生产中用于灭菌。

APV公司的R.Seligman在1923年成功地设计了可以成批生产的板式换热器,开始时是运用很多铸造青铜板片组合在一起,很像板框式压滤机。

1930年以后,才有不锈钢或铜薄板压制的波纹板片板式换热器,板片四周用垫片密封,从此板式换热器的板片,由沟道板的形式跨入了现代用薄板压制的波纹板形式,为板式换热器的发展奠定了基础。

与此同时,流体力学与传热学的发展对板式换热器的发展做出了重要的贡献,也是板式换热器设计开发最重要的技术理论依据。

如:19世纪末到20世纪初,雷诺(Reynolds)用实验证实了层流和紊流的客观存在,提出了雷诺数——为流动阻力和损失奠定了基础。

此外,在流体、传热方面有杰出贡献的学者还有瑞利(Reyleigh)、普朗特(Prandtl)、库塔(Kutta)、儒可夫斯基(жуковскиǔ)、钱学森、周培源、吴仲华等。

通过广泛的应用与实践,人们加深了对板式换热器优越性的认识,随着应用领域的扩大和制造技术的进步,使板式换热器的发展加快,目前已成为很重要的换热设备。

近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。

1:研究高效的波纹板片。

初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。

同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片。

2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层。

3:研究提高使用压力和使用温度。

4:发展大型板式换热器。

5:研究板式换热器的传热和流体阻力。

6:研究板式换热器提高换热综合效率的可能途径。

板式换热器选型计算的方法和公式

板式换热器选型计算的方法和公式

板式换热器选型计算的方法及公式(1)求热负荷QQ=G.ρ.CP.Δt(2)求冷热流体进出口温度t2=t1+ Q /G .ρ .CP(3)冷热流体流量G= Q / ρ .CP .(t2-t1(4)求平均温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2(5)选择板型假设所有的板型选择完,那么进展结果分析。

(6)由K值围,计算板片数围Nmin,NmaxNmin = Q/ Kmax .Δtm .F P .βNmax = Q/ Kmin .Δtm .F P .β(7)取板片数N〔Nmin≤N≤Nmax 〕假设N已达Nmax,做〔5〕。

(8)取N的流程组合形式,假设组合形式取完那么做〔7〕。

(9)求Re,NuRe = W .de / νNu =a1.Re a2.Pr a3(10)求a,K传热面积Fa = Nu .λ / deK= 1 / 1/a h+1/a c+γc+γc+δ/λ0F= Q /K .Δtm .β(11)由传热面积F求所需板片数NNNN= F/ Fp+ 2(12)假设N<NN,做〔8〕。

(13)求压降ΔpEu = a4.Re a5Δp = Eu .ρ.W2 .ф(14) 假设Δp>Δ允,做〔8〕;假设Δp≤Δ允,记录结果,做〔8〕。

注: 1.〔1〕、〔2〕、〔3〕根据条件的情况进展计算。

2.当T1-t2=T2-t1时采用Δtm = (T1-t2)+(T2-t1)/2 3.修正系数β一般0.7~0.9。

板式换热器的优化选型1 平均温差△tm从公式Q=K△tmA,△tm=1/A∫A〔t1-t2〕dA中可知,平均温差△tm 是传热的驱动力,对于各种流动形式,如能求出平均温差,即板面两侧流体间温差对面积的平均值,就能计算出换热器的传热量。

平均温差是一个较为直观的概念,也是评价板式换热器性能的一项重要指标。

1.1 对数平均温差的计算当换热器传热量为dQ,温度上升为dt时,那么C=dQ/dt,将C定义为热容量,它表示单位时间通过单位面积交换的热量,即dQ=K〔th-tc〕dA=K△tdA,两种流体产生的温度变化分别为dth=-dQ/Ch,dtc=-dQ/Cc,d△t=d〔th -tc〕=dQ〔1/Cc-1/Ch〕,那么dA=[1/k〔1/Cc-1/Ch〕]·〔d△t/△t〕,当从A=0积分至A=A0时,A0=[1/k〔1/Cc-1/Ch〕]·㏑[〔tho-tci〕/〔thi-tco〕],由于两种流体间交换的热量相等,即Q=Ch〔thi-tho〕=Cc〔tco -tci〕,经简化后可知,Q=KA0{[〔tho-tci〕-〔thi-tco〕]/㏑[〔tho-tci〕/〔thi-tco〕]},假设△t1=thi-tco,△t2=tho-tci,那么Q=KA0[〔△t1-△t2〕/㏑〔△t1/△t2〕]=KA0△tm,式中的△tm=〔△t1-△t2〕/㏑〔△t1/△t2〕。

板式换热器计算书分析

板式换热器计算书分析

板式换热器计算书分析计算书分析首先需要确定板式换热器的工作参数。

这包括热源和冷源的进出口温度、流量以及换热介质的物理性质等。

通过这些参数可以计算出换热器的热负荷和换热面积。

然后需要进行传热面积的计算。

传热面积的大小直接影响着换热器的效率和性能。

一般情况下,传热面积的计算可以根据所需热负荷和换热系数来确定。

例如,根据热负荷和传热系数可以计算出所需传热面积,进而选择合适的板式换热器型号。

接下来需要进行板片通道的设计和计算。

板式换热器的换热效果与板片的结构和布置有关。

通过计算板片数目、板片厚度、板片间距和流道截面积等可以确定板片通道的设计参数。

这些参数的选择要根据换热介质的性质和流量大小来确定,以保证换热效果和流体的正常流动。

计算书分析还需要进行换热器的压力损失计算。

在换热过程中,流体在管道和通道中会产生一定的阻力和压力损失。

通过计算压力损失可以分析换热器的流动特性和流体的动力学参数。

这有助于确保流体的正常运行和系统的稳定性。

最后,计算书分析还需要考虑换热器的材料和耐久性。

板式换热器通常由金属材料制成,要求具有一定的耐高温、耐腐蚀和耐压能力。

通过对材料的选择和板片的密封性能的计算,可以确保换热器的长期使用和可靠性。

综上所述,板式换热器的计算书分析是一个复杂而重要的过程。

通过合理的参数选择和详细的计算,可以确保换热器的性能稳定和运行可靠。

这对于工业生产和能源利用具有重要意义,应该得到充分重视和有效实施。

换热器结构设计及强度计算 说明书

换热器结构设计及强度计算   说明书

摘要本次设计的题目为汽提塔冷凝器。

汽提塔冷凝器是换热器的一种应用,这里我设计成浮头式换热器。

浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。

浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。

在化工工业中应用非常广泛。

本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了1-2型,即壳侧一程,管侧两程。

首先,通过换热计算确定换热面积与管子的根数初步选定结构。

然后按照设计的要求以及一系列国际标准进行结构设计,之后对各部分进行校核。

本次毕业设计任务是流量为3500kg/h,浮头式换热器的机械设计,工作压力管程为0.43MPa、壳程为0.042MPa,工作温度管程为61℃、壳程为80℃。

通过本次毕业设计,我熟悉了浮头式换热器的工艺流程,掌握了浮头式换热器的结构及计算方法,了解了浮头式化热器的制造要求及安装过程。

但是,限于经验不足和水平有限,一定存在缺点甚至错误之处,敬请老师批评指正。

关键词:换热器;浮头式;管程;壳程AbstractThe topic of my study is the design of stripper condenser. stripper condenser is one of applications heat exchanger.In here, my design is the floating head heat exchanger. The floating head heat exchanger is a special type of tube and shell heat exchanger. It is special for its floating head. One of its tube sheet is fixed,while another can float in the shell,so called floating head. As the tubes can expand without the restriction of the shell,it can avoid thermal stress. Another advantage is that it can be dismantled and clean easily . It is widely used in chemical industry. In this study an overall design of the floating head heat exchanger is carried out .According to the demand the type 1-2 is chosen to be the basic type,which has one segment in shell and two segment in tubes. First,heat transfer is calculated to determine the heat exchange surface area and the number of tubes that needed. Then,according to the request and standards,structural of system is well designed. After that,the finite element analysis of the shell is completed.The graduation design task is 3500kg/h flow of the floating head heat exchanger, the mechanical design, working pressure tube 0.4 3MP, shell, work process of 0.042MP for 61 ℃, the temperature tube for 80 ℃shell cheng. Through the graduation design, I am familiar with the floating head heat exchanger process, mastered the structure of floating head heat exchanger and calculation method of floating head, learned the heat exchanger is manufacturing requirements and installation process. But, due to lack of experience and limited ability, certain shortcomings and even mistakes, please the teacher criticism and corrections.KEY WORDS:HEAT EXCHANGER;FLOATING HEAD;TUBE-SIDE;SHELL-SIDE目录第一章 换热器概述 (1)1.1 换热器的应用 (1)1.2 换热器的主要分类 (1)1.2.1 换热器的分类及特点 (1)1.2.2 管壳式换热器的分类及特点 (2)1.3 管壳式换热器特殊结构 (5)1.4 换热管简介 (5)第二章 工艺计算 (7)2.1 设计条件 (7)2.2换热器传热面积与换热器规格: (8)2.2.1 流动空间的确定 (8)2.2.2 初算换热器传热面积'A .......................................................................................... 8 2.2.3 传热管数及管程的确定 ........................................................................................... 9 2.2.4管心距的计算 (9)2.2.5换热器型号、参数的确定 (9)2.2.6壳体内径计算 (9)2.2.7折流板的计算 (10)2.3换热器核算 (10)2.3.1传热系数核算 (11)2.3.2换热器的流体阻力 (13)2.3.3换热器的选型 (14)第三章 换热器的结构计算和强度计算 (15)3.1换热器的壳体设计 (15)3.2筒体材料及壁厚 (15)3.3封头的材料及壁厚 (16)3.4管箱材料的选择及壁厚的计算 (16)3.5开孔补强计算 (17)3.6水压试验及壳体强度的校核 (19)3.7 换热管 (20)3.7.1 换热管的排列方式 (20)3.7.2 布管限定圆L D (20)3.7.3 排管 (21)3.7.4 换热管束的分程 (21)3.8 管板设计 (22)3.8.1 管板与壳体的连接 (22)3.8.2 管板计算 (22)3.8.3 管板重量计算 (26)3.9折流板 (26)3.9.1 折流板的型式和尺寸 (27)3.9.2 折流板排列 (27)3.9.3 折流板的布置 (27)3.10拉杆与定距管 (27)3.10.1 拉杆的结构形式 (27)3.10.2 拉杆的直径、数量及布置 (28)3.10.3 定距管 (28)3.11法兰和垫片 (28)3.11.1固定端的壳体法兰、管箱法兰与管箱垫片 (28)3.11.2外头盖侧法兰、外头盖法兰与外头盖垫片、浮头垫片 (30)3.11.3 接管法兰型式与尺寸 (31)3.12钩圈式浮头 (32)3.12.1 浮头盖的设计计算 (33)3.13分程隔板 (38)3.14鞍座 (38)3.14.1 支反力计算如下 (38)3.14.2 鞍座的型号及尺寸 (40)3.15接管的最小位置 (40)3.15.1壳程接管位置的最小尺寸 (40)3.15.2 管箱接管位置的最小尺寸 (41)附录外文翻译 (45)参考文献 (55)第一章换热器概述过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。

(整理)板式换热器选型计算的方法及公式

(整理)板式换热器选型计算的方法及公式

板式换热器选型计算的方法及公式(1)求热负荷QQ=G.ρ.CP.Δt(2)求冷热流体进出口温度t2=t1+ Q /G .ρ .CP(3)冷热流体流量G= Q / ρ .CP .(t2-t1(4)求平均温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2(5)选择板型若所有的板型选择完,则进行结果分析。

(6)由K值范围,计算板片数范围Nmin,NmaxNmin = Q/ Kmax .Δtm .F P .βNmax = Q/ Kmin .Δtm .F P .β(7)取板片数N(Nmin≤N≤Nmax )若N已达Nmax,做(5)。

(8)取N的流程组合形式,若组合形式取完则做(7)。

(9)求Re,NuRe = W .de / νNu =a1.Re a2.Pr a3(10)求a,K传热面积Fa = Nu .λ / deK= 1 / 1/a h+1/a c+γc+γc+δ/λ0F= Q /K .Δtm .β(11)由传热面积F求所需板片数NNNN= F/ Fp+ 2(12)若N<NN,做(8)。

(13)求压降ΔpEu = a4.Re a 5Δp = Eu .ρ.W 2.ф(14) 若Δp>Δ允,做(8);若Δp≤Δ允,记录结果,做(8)。

注: 1.(1)、(2)、(3)根据已知条件的情况进行计算。

2.当T1-t2=T2-t1时采用Δtm = (T1-t2)+(T2-t1)/2 3.修正系数β一般0.7~0.9。

板式换热器的优化选型1 平均温差△tm从公式Q=K△tmA,△tm=1/A∫A(t1-t2)dA中可知,平均温差△tm是传热的驱动力,对于各种流动形式,如能求出平均温差,即板面两侧流体间温差对面积的平均值,就能计算出换热器的传热量。

平均温差是一个较为直观的概念,也是评价板式换热器性能的一项重要指标。

1.1 对数平均温差的计算当换热器传热量为dQ,温度上升为dt时,则C=dQ/dt,将C定义为热容量,它表示单位时间通过单位面积交换的热量,即dQ=K(th-tc)dA=K△tdA,两种流体产生的温度变化分别为dth=-dQ/Ch,dtc=-dQ/Cc,d△t=d(th -tc)=dQ(1/Cc-1/Ch),则dA=[1/k(1/Cc-1/Ch)]·(d△t/△t),当从A=0积分至A=A0时,A0=[1/k(1/Cc-1/Ch)]·㏑[(tho-tci)/(thi-tco)],由于两种流体间交换的热量相等,即Q=Ch(thi-tho)=Cc (tco-tci),经简化后可知,Q=KA0{[(tho-tci)-(thi-tco)]/㏑[(tho -tci)/(thi-tco)]},若△t1=thi-tco,△t2=tho-tci,则Q=KA0[(△t1-△t2)/㏑(△t1/△t2)]=KA0△tm,式中的△tm=(△t1-△t2)/㏑(△t1/△t2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可拆式板式换热器强度计算书
编制:
审核:
批准:
一、夹紧螺柱(依据NB/T47004)
1.计算公式中各符号的含义
W a-----预紧状态下,需要的最小夹紧螺柱载荷,N;
W p-----工作状态下,需要的最小夹紧螺柱载荷,N;
A m-----需要的夹紧螺柱总截面积,㎜2 ;
l------垫片中心线展开长度,㎜;
B------垫片有效密封宽度,㎜;
y------垫片比压力,橡胶y=1.4MPa;
a2------被垫片槽中心线包容的板片投影面积,㎜2 ;
P------设计压力,MPa;
m------垫片系数,橡胶m=1;
d------夹紧螺柱小径或无螺纹部分的最小直径,取较小值,㎜;
n------夹紧螺柱数量;
F0-----作用于a2上的流体静压力,N;
F p-----工作状态下,需要的最小垫片压紧力,N;
[б]b ---常温下夹紧螺柱材料的许用应力,MPa;
[б] t b---设计温度下夹紧螺柱材料的许用应力,MPa;
2.计算
夹紧螺柱材料选用35CrMoA,调质处理设计温度:180℃
[б]b =228MPa [б] t b =206MPa
1)计算公式中各项取值
l=6900㎜a2=1144790㎜2
B=11.5㎜P选1.6MPa 2)夹紧螺柱载荷
W a=l·B·y=6900×11.5×1.4=111090 N
W p=F o+F p=a2P+2l·B·m·P
W p1.6= a2 P1.6+2l·B·m·P1.6
=1144790×1.6+2×6900×11.5×1×1.6
=2085584 N
3)夹紧螺柱面积
a)预紧状态下,需要的最小夹紧螺柱总截面积A a
A a=W a/[б]b =111090/228=487.24㎜2
b)工作状态下,需要的最小夹紧螺柱总截面积A p
A p1.6= W p1.6/[б]b =2085584/206=10124.19㎜2
c) A m取A a与A p两者的较大值A m=A p
4)夹紧螺柱最小直径取n=14根
d1.6=(4A p1.6/πn)1/2
=(4×10124.19/3.14×14)1/2
=30.35㎜
取d=42㎜n=14根
二、压紧板(该件以GB150和GB151 为依据,按平盖计算)1.计算公式中各符号的含义
a-----非圆形平盖的短轴长度,㎜;
b-----非圆形平盖的长轴长度,㎜;
L-----非圆形平盖的螺栓中心连线周长,㎜;
L G-----螺栓中心至垫片压紧力作用中心线的径向距离,㎜;
φ-----焊接接头系数,取φ=1;
K-----系数;
P c-----计算压力,MPa;
Z-----非圆形平盖的形状系数,Z=3.4-2.4a/b,且Z≤2.5
W-----预紧状态或操作状态时螺栓的设计载荷,N;
δp----平盖计算厚度,㎜;
δ-----压紧板厚度,㎜;
[б]t--设计温度下材料的许用应力,MPa;
2.计算
压紧板材料选用:Q345-A,[б]t=157 MPa,设计温度:180℃1)公式中各项取值
a=564㎜b=2094㎜L G=48㎜L=5700㎜
Z=3.4-2.4a/b=2.75
2)计算
a:预紧作用下
K1.6=6WL G/P c La2=6×111090×48/1.6×5700×5642
=0.011028448
δp1.6=a(KP c/φ[б]t)1/2
=564 (0.011028448×1.6/1×157)1/2
=5.98 MPa
b:操作状态下
K1.6=0.3Z+6WL G/PcLa2
=0.3×2.75+6×2085584×48/1.6×5700×5642
=1.032
δp1.6=a(KP c/φ[б]t)1/2
=564 (1.032×1.6/1×157)1/2
=57.84㎜
故取压紧板厚度δ1.6=60㎜
三、上导杆(依据NB/T47004)
1.计算公式中各符号的含义
f-----上导杆受载所引起的跨度中点的挠度,㎜;
f1-----上导杆自重所引起的跨度中点的挠度,㎜;
f2-----板片及充介质所引起的上导杆跨度中点的挠度,㎜;
f4-----活动压紧板自重所引起的上导杆跨度中点的挠度,㎜;
L1-----导杆长度(固定压紧板内侧至支柱内侧的距离),㎜;
L-----夹紧尺寸(固定压紧板内侧至活动压紧板内侧间的距离),㎜;
F2-----活动压紧板自重,N;
E-----设计温度下上导杆材料的弹性模量;
J-----上导杆惯性距,㎜4;
q1-----上导杆自重均布载荷,N/㎜;
q2-----板片及所充介质所引起的均布载荷N/㎜;
b2-----固定压紧板内侧至活动压紧板自重作用点的距离,㎜;
c2-----活动压紧板自重作用点至支柱内侧间的距离,㎜;
2.挠度计算
上导杆材料选用Q235-A.F,设计温度:180℃
1)公式中各项取值
L1=3075㎜c2=1358㎜
L=1687㎜b2=1717㎜
F2= 8118N
J=35700000㎜4q1=0.36524 N/㎜
E=210×103q2=23.42 N/㎜2)计算
a.f1=5q1 L14/384EJ
=5×0.36524×30754/384×210×103×35700000
=0.0567㎜
b.L>L1/2 则
f2=q2(L4/2-2L3L1+9L2L12/4-LL13/2+L14/16)/24EJ
=23.42(16874/2-2×16873×3075+9×16872×30752/4
-1687×30753/2+30754/16)/24×210×103×35700000
=2.10㎜
c.c2<b2 则
f4=F2c2(3L12-4c22)/48EJ
=8118×1358(3×30752-4×13582)/48×210×103×35700000
=0.65㎜
f=f1+f2+f4
=0.0567+2.10+0.65=2.81㎜<5㎜
工作状态下,上导杆跨度中点的挠度f不得超过导杆长度L1的2/1000,且不大于5㎜,故满足要求。

相关文档
最新文档