贝叶斯公式经典例题讲解

合集下载

2023年高考数学复习----件概率、全概率公式、贝叶斯公式典型例题讲解

2023年高考数学复习----件概率、全概率公式、贝叶斯公式典型例题讲解

2023年高考数学复习----件概率、全概率公式、贝叶斯公式典型例题讲解【典型例题】例1、(2022·全国·高三校联考阶段练习)2022年10月1日,女篮世界杯落幕,时隔28年,中国队再次获得亚军,追平历史最佳成绩.为考察某队员甲对球队的贡献,教练对近两年甲参加过的100场比赛进行统计:甲在前锋位置出场20次,其中球队获胜14次;中锋位置出场30次,其中球队获胜21次;后卫位置出场50次,其中球队获胜40次.用该样本的频率估计概率,则:(1)甲参加比赛时,求该球队某场比赛获胜的概率;(2)现有小组赛制如下:小组共6支球队,进行单循环比赛,即任意两支队伍均有比赛,规定至少3场获胜才可晋级.教练决定每场比赛均派甲上场,已知甲所在球队顺利晋级,记其获胜的场数为X ,求X 的分布列和数学期望.【解析】(1)设1A =“甲担任前锋”;2A =“甲担任中锋”;3A =“甲担任后卫”;B =“某场比赛中该球队获胜”; 则()1200.2100P A ==,()2300.3100P A ==,()3500.5100P A ==,()114|0.720P B A ==,()221|0.730P B A ==,()340|0.850P B A ==, 由全概率公式可得:()()()()()()()112233|||P A P B A A P B A A P B A B P P P =++0.20.70.30.70.50.80.75=⨯+⨯+⨯=.所以甲参加比赛时,该球队某场比赛获胜的概率是0.75.(2)设i C =“5场中有i 场获胜”()3,4,5i =,D =“甲所在球队顺利晋级”,()3233531270C 441024P C D ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;()4144531405C 441024P C D ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;()55553243C 41024P C D ⎛⎫== ⎪⎝⎭,则()9181024P D =,()()()()3327053|91817P C D P X P C D P D =====, 同理可得()()()()44405154|91834P C D P X P C D P D =====, ()()()()5524395|91834P C D P X P C D P D =====, 则X 的分布列为:()515913534517343434E X =⨯+⨯+⨯= 例2、(2022·全国·高三专题练习)某品牌汽车厂今年计划生产10万辆轿车,生产每辆轿车都需要安装一个配件M ,其中由本厂自主生产的配件M 可以满足20%的生产需要,其余的要向甲、乙两个配件厂家订购.已知本厂生产配件M 的成本为500元/件,从甲、乙两厂订购配件M 的成本分别为600元/件和800元/件,该汽车厂计划将每辆轿车使用配件M 的平均成本控制为640元/件.(1)分别求该汽车厂需要从甲厂和乙厂订购配件M 的数量;(2)已知甲厂、乙厂和本厂自主生产的配件M 的次品率分别为4%,2%和1%,求该厂生产的一辆轿车使用的配件M 是次品的概率;(3)现有一辆轿车由于使用了次品配件M 出现了质量问题,需要返厂维修,维修费用为14 000元,若维修费用由甲厂、乙厂和本厂按照次品配件M 来自各厂的概率的比例分担,则它们各自应该承担的维修费用分别为多少?【解析】(1)设使用甲厂生产的配件M 的比例为a ,则使用乙厂生产的配件M 的比例为0.8-a , 由已知可得()6000.88005000.2640a a +−+⨯=,解得a =0.5.所以需要从甲厂订购配件M 的数量为10⨯0.5=5万个; 从乙厂订购配件M 的数量为()100.80.5⨯−=3万个.(2)由(1)知甲厂、乙厂和本厂自主生产的配件M 的比例分别为0.5,0.3,0.2, 所以该汽车厂使用的配件M 的次品率的估计值为0.50.040.30.020.20.010.028⨯+⨯+⨯=,所以该厂生产的一辆轿车使用的配件M 是次品的概率为0.028.(3)设A =“该轿车使用了次品配件M ”,1B =“配件M 来自甲厂”,2B =“配件M 来自乙厂”,3B =“配件M 来自本厂”.由(2)可知()0.028P A = .该次品配件M 来自甲厂的概率为:()()()()()()11110.50.0450.0287P B P A B P AB P B A P A P A ⨯==== ,该次品配件M 来自乙厂的概率为:()()()()()()22220.30.0230.02814P B P A B P AB P B A P A P A ⨯==== ,该次品配件M 来自本厂的概率为:()()()()()()33330.20.0110.02814P B P A B P AB P B A P A P A ⨯==== ,所以甲厂应承担的费用为514000100007⨯=元,乙厂应承担的费用为314000300014⨯=元,本厂应承担的费用为114000100014⨯=元.例3、(2022·全国·高三专题练习)有专家指出,与新冠病毒感染者密切接触过的人,被感染的概率是9%.王某被确诊为新冠病毒感染者后,当地准备对王某的密切接触者共78人逐一进行核酸检测.(1)设X 为这78名密切接触者中被感染的人数,求X 的数学期望;(2)核酸检测并不是100%准确,有可能出现假阴性(新冠病毒感染者的检测结果为阴性,即漏诊)或假阳性(非新冠病毒感染者的检测结果为阳性,即误诊).假设当地核酸检测的灵敏度为98%(即假阴性率为2%),特异度为99%(即假阳性率为1%).已知王某的一个密切接触者赵某的核酸检测结果为阳性,求他被感染的概率(结果保留3位有效数字). 【解析】(1)X 为这78名密切接触者中被感染的人数, X 可取0,1,2,L ,78,()78,9%XB ,所以()789%7.02E X =⨯=.(2)设事件A 为“核酸检测结果为阳性”,事件B 为“密切接触者被感染”, 由题意()0.09P B =,()|0.98P A B =,()|0.01P A B =,所以()()()()()()()()||P A P AB AB P AB P AB P B P A B P B P A B ==+=+0.090.980.910.010.0973=⨯+⨯=,()()()()()()|0.090.98|0.9060.0973P AB P B P A B P B A P A P A ⨯===≈, 王某的一个密切接触者赵某的核酸检测结果为阳性,他被感染的概率为0.906.。

贝叶斯公式典型例题

贝叶斯公式典型例题

贝叶斯公式典型例题
贝叶斯公式是一种计算条件概率的公式,常用于根据已知条件更新某个事件发生的概率。

下面是一个贝叶斯公式的典型例题:
例:假设有两种类型的围棋棋手,分别是专业棋手和业余棋手。

专业棋手在比赛中获胜的概率为0.9,而业余棋手获胜的概率为0.3。

已知在所有棋手中,专业棋手占70%,业余棋手占30%。

现在有一场比赛,我们只知道其中一位棋手获胜了,那么这位棋手是专业棋手的概率是多少?
解:首先,我们定义以下事件:
•A:棋手是专业的
•B:棋手获胜
根据题意,我们知道:
•P(A) = 0.7(专业棋手占比)
•P(¬A) = 0.3(业余棋手占比)
•P(B|A) = 0.9(专业棋手获胜的概率)
•P(B|¬A) = 0.3(业余棋手获胜的概率)
我们要找的是P(A|B),即在已知棋手获胜的条件下,棋手是专业的概率。

根据贝叶斯公式,我们有:
P(A|B) = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(¬A) \times P(B|¬A)}将已知的概率值代入公式中,我们得到:
P(A|B) = \frac{0.7 \times 0.9}{0.7 \times 0.9 + 0.3 \times 0.3} = \frac{0.63}{0.63
+ 0.09} = \frac{0.63}{0.72} = 0.875
所以,在已知棋手获胜的条件下,这位棋手是专业棋手的概率为0.875。

这个例题展示了贝叶斯公式在更新条件概率方面的应用。

通过已知的概率值和贝叶斯公式,我们可以计算出在给定条件下的未知概率。

条件概率全概率与贝叶斯公式(解析版)

条件概率全概率与贝叶斯公式(解析版)

专题29条件概率全概率与贝叶斯公式目录专题29条件概率全概率与贝叶斯公式..........................................................................................1【题型一】条件概率性质.................................................................................................................1【题型二】古典概型中的条件概率:取球型................................................................................3【题型三】条件概率:“医护”分配型...........................................................................................4【题型四】条件概率列表型.............................................................................................................6【题型五】全概率公式基础型.........................................................................................................7【题型六】贝叶斯公式.....................................................................................................................9【题型七】概率综合题...................................................................................................................11培优第一阶——基础过关练...........................................................................................................14培优第二阶——能力提升练...........................................................................................................16培优第三阶——培优拔尖练.. (19)【题型一】条件概率性质【典例分析】已知()()()111,,.324P A P B A P B A ===∣∣则()P B =()A .712B .724C .512D .524【答案】C【分析】根据条件概率的定义,利用条件分别求得()P BA 和()P BA ,从而求得()P B .【详解】由题知,()2()13P A P A =-=,()()()111()()223P BA P B A P BA P A P A ==⇒=⨯=∣,()21133)3(()P A BA P B P A =-==-,又()()()111(()4412P BA P B A P BA P A P A ==⇒=⨯=∣,则()()115312()12P BA P B P BA ===++.故选:C1.设A ,B 是两个事件,()0P A >,()0P B >,则下列结论一定成立的是()A .()()1PB A P A B =B .()()()P AB P A P B =C .()()P B P B A ≤D .()()P AB P B A ≤【答案】D【分析】应用条件概率公式及独立事件的概率关系()()()P AB P A P B =,结合概率的性质判断各项的正误.【详解】A :由()()1P B A P A B =,而()()0,1P B A P A B ≤≤,则()()()()1()()P AB P AB P B A P A B P A P B ====,即()()()P AB P A P B ==时成立,否则不成立,排除;B :当A ,B 是两个相互独立的事件,有()()()P AB P A P B =,否则不成立,排除;C :由()()()()P AB P B P B A P A ≤=且()01P A <≤,故()()()P AB P A P B ≥时成立,否则不成立,排除;D :由()()()P AB P B A P A =,而()01P A <≤,则()()P AB P B A ≤,符合;故选:D2.已知随机事件A ,B 的概率分别为(),()P A P B ,且()()0≠P A P B ,则下列说法中正确的是()A .(|)()<P AB P AB B .(|)(|)P B A P A B =C .(|)()(|)()P A B P B P B A P A =D .(|)0=P B B 【答案】C【分析】由条件概率的公式对选项一一判断即可得出答案.【详解】由条件概率知:()()(|)P AB P A B P B =,因为()(]0,1P B ∈,所以()()(|)()P AB P A B P AB P B =>,故A 不正确;()()()()(|),(|)P AB P AB P B A P A B P A P B ==,()P A 与()P B 不一定相等,所以(|)(|)P B A P A B =不一定成立,故B 不正确;()()()()(|),(|)P AB P AB P B A P A B P A P B ==,所以()()(|)()(|)()P AB P A B P B P B A P A P A ==,故C 正确;()()(|)0P B P B B P B =≠,故D 不正确.故选:C.3.已知A ,B 分别为随机事件A ,B 的对立事件,()0P A >,()0P B >,则下列说法正确的是()A .()()()P B A P B A P A +=B .若()()1P A P B +=,则A ,B 对立C .若A ,B 独立,则()()P A B P A =D .若A ,B 互斥,则()()1P A B P B A +=【答案】C 【分析】利用条件概率的概率公式以及独立事件与对立事件的概率公式,对四个选项进行分析判断,即可得到答案;【详解】对A ,()()()()()1()()P AB P AB P A P B A P B A P A P A ++===,故A 错误;对B ,若A ,B 对立,则()()1P A P B +=,反之不成立,故B 错误;对C ,根据独立事件定义,故C 正确;对D ,若A ,B 互斥,则()()0P A B P B A +=,故D 错误;故选:C【题型二】古典概型中的条件概率:取球型【典例分析】袋中有4个黑球,3个白球.现掷一枚均匀的骰子,掷出几点就从袋中取出几个球.若已知取出的球全是白球,则掷出2点的概率为()A .23B .14C .521D .523【答案】C【分析】记:i A 骰子掷出的点数为i ,()1,2,3i =,事件B:取出的球全是白球,分别求出()()2P A B P B ,,利用条件概率公式即可求解.【详解】记:i A 骰子掷出的点数为i ,()1,2,3i =,事件B:取出的球全是白球,则()16i P A =,()37|ii i C P B A C =,所以()()()123333312317771111311111|666676763510i i i C C C P B P A P B A C C C ===⨯+⨯+⨯=⨯+⨯+⨯=∑所以若已知取出的球全是白球,则掷出2点的概率为:()()()2211567|12110P A B P A B P B ⨯===.1.袋中有5个球,其中红、黄、蓝、白、黑球各一个,甲、乙两人按序从袋中有放回的随机摸取一球,记事件:A 甲和乙至少一人摸到红球,事件:B 甲和乙摸到的球颜色不同,则条件概率()P B A =()A .925B .25C .45D .89【答案】D【分析】求出()P AB 和()P A 的值,利用条件概率公式可求得所求事件的概率.【详解】由题意可知,事件:AB 甲、乙只有一人摸到红球,则()1242C A 85525P AB ==⨯,()2491525P A ⎛⎫=-= ⎪⎝⎭,因此,()()()82582599P AB P B A P A ===.故选:D.2.一个袋子中有2个红球和3个白球,这些小球除颜色外没有其他差异.从中不放回地抽取2个球,每次只取1个.设事件A =“第一次抽到红球”,B =“第二次抽到红球”,则概率(|)P B A 是()A .25B .14C .15D .12【答案】B【分析】利用古典概率公式求出事件A 及事件AB 的概率,再利用条件概率公式计算得解.【详解】依题意,2()5P A =,211()5410P AB ⨯==⨯,所以1()110(|)2()45P AB P B A P A ===.故选:B 3.袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取两个球,已知第一次摸到的是红球,则第二次摸到白球的概率为()A .13B .23C .12D .15【答案】B【分析】利用条件概率求解.【详解】设“第一次摸到红球”的事件为A ,设“第二次摸到白球”的事件为B ,则()()21221,42433p A p AB ⨯====⨯,所以在第一次摸到的是红球的条件下,第二次第二次摸到白球的概率为:()()()123|132p AB p B A p A ===.故选:B【题型三】条件概率:“医护”分配型【典例分析】将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A 表示事件“医生甲派往①村庄”;B 表示事件“医生乙派往①村庄”;C 表示事件“医生乙派往②村庄”,则()A .事件A 与B 相互独立B .事件A 与C 相互独立C .5(|)12P B A =D .5(|)12P C A =【答案】D【分析】由古典概率公式求出(),(),(),(),()P A P B P C P AB P AC ,再利用相互独立事件的定义判断A ,B ;用条件概率公式计算判断C ,D 作答.【详解】将甲、乙、丙、丁4名医生派往①,②,③三个村庄义诊的试验有2343C A 36=个基本事件,它们等可能,事件A 含有的基本事件数为322332A C A 12+=,则121()363P A ==,同理1()()3P B P C ==,事件AB 含有的基本事件数为22A 2=,则21()3618P AB ==,事件AC 含有的基本事件数为211222C C C 5+=,则5()36P AC =,对于A ,1()()()9P A P B P AB =≠,即事件A 与B 相互不独立,A 不正确;对于B ,1()()()9P A P C P AC =≠,即事件A 与C 相互不独立,B 不正确;对于C ,()1(|)()6P AB P B A P A ==,C 不正确;对于D ,()5(|)()12P AC P C A P A ==,D 正确.故选:D【变式训练】1.有甲乙丙丁4名人学生志愿者参加2022年北京冬奥会志愿服务,志愿者指挥部随机派这4名志愿者参加冰壶,短道速滑、花样滑冰3个比赛项目的志愿服务,假设每个项目至少安排一名志愿者,且每位志愿者只能参与其中一个项目,求在甲被安排到了冰壶的条件下,乙也被安排到冰壶的概率()A .16B .14C .29D .136【答案】A【分析】用事件A 表示“甲被安排到了冰壶”,以A 为样本空间,利用古典概率公式求解作答.【详解】用事件A 表示“甲被安排到了冰壶”,B 表示“乙被安排到了冰壶”,在甲被安排到了冰壶的条件下,乙也被安排到冰壶就是在事件A 发生的条件下,事件B 发生,相当于以A 为样本空间,考查事件B 发生,在新的样本空间中事件B 发生就是积事件AB ,包含的样本点数22()A 2n AB ==,事件A 发生的样本点数223323()C A A 12n A =+=,所以在甲被安排到了冰壶的条件下,乙也被安排到冰壶的概率为()21(|)()126n AB P B A n A ===.故选:A2.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则()P A B =()A .29B .13C .49D .59【分析】利用条件概率公式有()()()P B A P A B P B ⋂=,结合排列组合数分别求出()P B 、()P B A ⋂即可得结果.【详解】由()()()P B A P A B P B ⋂=,而1344327()464C P B ⋅==,4443()432A PB A ⋂==,所以()29P A B =.故选:A3.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P (A |B )=()A .29B .13C .49D .59【答案】A求出()P A ()P AB =,()P B ,然后由条件概率公式计算.【详解】由题意444()4A P A =,()()P AB P A =,3443()4P B ⨯=,∴44434()24(|)43()94A P AB P A B P B ===⨯.故选:A .【题型四】条件概率列表型【典例分析】已知某家族有A 、B 两种遗传性状,该家族某位成员出现A 性状的概率为415,出现B 性状的概率为215,A 、B 两种遗传性状都不出现的概率为710.则该成员在出现A 性状的条件下,出现B 性状的概率为()A .14B .38C .12D .34【答案】B【分析】记事件:E 该家族某位成员出现A 性状,事件:F 该家族某位成员出现B 性状,求出()P EF ,利用条件概率公式可求得所求事件的概率.【详解】记事件:E 该家族某位成员出现A 性状,事件:F 该家族某位成员出现B 性状,则()415P E =,()215P F =,()710P E F =,则()()3110P E F P E F =-=,又因为()()()()P E F P E P F P EF =+-,则()()()()110P EF P E P F P E F =+-=,故所求概率为()()()11531048P EF P F E P E ==⨯=.故选:B.【变式训练】1.某射击选手射击一次击中10环的概率是45,连续两次均击中10环的概率是12,已知该选手某次击中10环,则随后一次击中10环的概率是()A .25B .58C .12D .45【分析】设该选手第一次射击击中10环为事件A ,第二次射击击中10环为事件B ,则P (A )45=,1()2P AB =,某次击中10环,则随后一次击中10环的概率是:()(|)()P AB P B A P A =.【详解】解:某选手射击一次击中10环的概率是45,连续两次均击中10环的概率是12,设该选手第一次射击击中10环为事件A ,第二次射击击中10环为事件B ,则()45P A =,1()2P AB =,∴某次击中10环,则随后一次击中10环的概率是:1()52(|)4()85P AB P B A P A ===.故选:B .2.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为()A .2144B .1223C .1225D .1121【答案】B【分析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案.【详解】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,则()()0.6,0.8P A P B ==,所以,()()()()()1110.610.80.92P C P A P B =-=--⨯-=,()()()0.60.80.48P AB P A P B ==⨯=,则在目标被击中的情况下,甲、乙同时击中目标的概率为0.60.80.921223P ⨯==.故选:B.3..某人连续两次对同一目标进行射击,若第一次击中目标,则第二次也击中目标的概率为0.7,若第一次未击中目标,则第二次击中目标的概率为0.5,已知第一次击中目标的概率为0.8,则在第二次击中目标的条件下,第一次也击中目标的概率为()A .1425B .1433C .2833D .2539【答案】C【分析】设出事件,利用全概率公式计算出()()()()()0.66P B P A P B A P A P B A =⋅+⋅=,再利用条件概率公式计算出答案.【详解】设第一次击中目标为事件A ,第二次击中目标为事件B ,则()0.7P B A =,()0.5P B A =,()0.8P A =,所以()0.2P A =,故()()()()()()()0.80.70.20.50.66P B P AB P AB P A P B A P A P B A =+=⋅+⋅=⨯+⨯=,则()()()()()0.70.8280.660.6633P A P B A P AB P A B P B ⋅⨯====故选:C 【题型五】全概率公式基础型【典例分析】长时间玩手机可能影响视力,据调查,某校学生大约30%的人近视,而该校大约有40%的学生每天玩手机超过2h ,这些人的近视率约为60%.现从每天玩手机不超过2h 的学生中任意调查一名学生,则他近视的概率为()A .110B .38C .25D .2225【答案】A【分析】令1A =“玩手机时间超过2h 的学生”,2A =“玩手机时间不超过2h 的学生”,B =“任意调查一人,利用全概率公式计算即可.【详解】令1A =“玩手机时间超过2h 的学生”,2A =“玩手机时间不超过2h 的学生”,B =“任意调查一人,此人近视”,则12A A Ω=,且1A ,2A 互斥,()10.4P A =,()20.6P A =,()1|0.6P B A =,()0.3P B =,依题意,()()()()()()11222||0.40.60.6|0.3P B P A P B A P A P B A PB A =+=⨯+⨯=,解得()21|10P B A =,所以所求近视的概率为110.故选:A1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第一,二车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,则该产品合格的概率为()A .0.132B .0.112C .0.868D .0.888【答案】C【分析】记事件B 表示从仓库中随机提出的一台是合格品,i A 表示提出的一台是第i 车间生产的,i 1,2=,分别求出()()()()1212,,|,|P A P A P B A P B A ,再由全概率公式即可求解.【详解】设从仓库中随机提出的一台是合格品为事件B ,事件i A 表示提出的一台是第i 车间生产的,i 1,2=,由题意可得()120.45P A ==,()20.6P A =,()1|0.85P B A =,()2|0.88P B A =由全概率公式得()()()()()1122||0.40.850.60.880.868P B P A P B A P A P B A =+=⨯+⨯=所以该产品合格的概率为0.868故选:C.2.有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%;加工出来的零件混放在一起,且第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.现从加工出来的零件中任取一个零件,则取到的零件是次品的概率为()A .0.0415B .0.0515C .0.0425D .0.0525【答案】D【分析】设B =“任取一个零件为次品”,Ai =“零件为第i 台车床加工”(i =1,2,3),利用全概率的公式求解.【详解】解:设B =“任取一个零件为次品”,Ai =“零件为第i 台车床加工”(i =1,2,3),则Ω=A 1∪A 2∪A 3,A 1,A 2,A 3两两互斥.根据题意得P (A 1)=0.25,P (A 2)=0.3,P (A 3)=0.45,P (B |A 1)=0.06,P (B |A 2)=P (B |A 3)=0.05.由全概率公式,得P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=0.25×0.06+0.3×0.05+0.45×0.05=0.0525.故选:D3.设某医院仓库中有10盒同样规格的X 光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的,且甲、乙、丙三厂生产该种X 光片的次品率依次为110,115,120,现从这10盒中任取一盒,再从这盒中任取一张X 光片,则取得的X 光片是次品的概率为()A .0.08B .0.1C .0.15D .0.2【答案】A【分析】以1A ,2A ,3A 分别表示取得的这盒X 光片是由甲厂、乙厂、丙厂生产的,B 表示取得的X 光片为次品,求得()1P A ,()2P A ,()3P A ,由条件概率和全概率公式可得答案.【详解】以1A ,2A ,3A 分别表示取得的这盒X 光片是由甲厂、乙厂、丙厂生产的,B 表示取得的X 光片为次品,()1510P A =,()2310P A =,()3210P A =,()11|10P B A =,()21|15P B A =,()31|20P B A =,则由全概率公式,所求概率为()()()()()()112233()|||P B P A P B A P A P B A P A P B A =++5131210.08101010151020=⨯+⨯+⨯=,故选:A.【题型六】贝叶斯公式【典例分析】一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为13,在乱猜时,4个答案都有机会被他选择,若他答对了,则他确实知道正确答案的概率是()A .13B .23C .34D .14【答案】B【分析】利用全概率公式以及贝叶斯公式即可求解.【详解】设A 表示“考生答对”,B 表示“考生知道正确答案”,由全概率公式得()()()()()121113342P A P B P A B P B P A B =+=⨯+⨯=.又由贝叶斯公式得()()()()1123132P B P A B P B A P A ⨯===.故选:B1.通信渠道中可传输的字符为AAAA ,BBBB ,CCCC 三者之一,传输三者的概率分别为0.3,0.4,0.3.由于通道噪声的干扰,正确地收到被传输字符的概率为0.6,收到其他字符的概率为0.2,假定字符前后是否被歪曲互不影响.若收到的字符为ABCA ,则传输的字符是AAAA 的概率为________.【答案】0.5625【分析】以B 表示事件“收到的字符是ABCA ”,123,,A A A 分别表示传输的字符为AAAA ,BBBB ,CCCC ,根据已知得到()1P B A ,()2P B A ,()3P B A ,利用贝叶斯公式可计算求得()1P A B .【详解】以B 表示事件“收到的字符是ABCA ”,1A 表示事件“传输的字符为AAAA ”,2A 表示事件“传输的字符为BBBB ”,3A 表示事件“传输的字符为CCCC ”,根据题意有:()10.3P A =,()20.4P A =,()30.3P A =,()10.60.20.20.60.0144P B A =⨯⨯⨯=,()20.20.60.20.20.0048P B A =⨯⨯⨯=,()30.20.20.60.20.0048P B A =⨯⨯⨯=;根据贝叶斯公式可得:()()()()()111310.01440.30.56250.01440.30.00480.40.00480.3i ii P B A P A P A B P B A P A =⨯===⨯+⨯+⨯∑.故答案为:0.5625.2.设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01.今有一辆汽车中途停车修理,该汽车是货车的概率为________.【答案】0.80【分析】设“中途停车修理”为事件B ,“经过的是货车”为事件1A ,“经过的是客车”为事件2A ,则12B A B A B =+,然后代入贝叶斯公式计算.【详解】设“中途停车修理”为事件B ,“经过的是货车”为事件1A ,“经过的是客车”为事件2A ,则12B A B A B =+,12()3P A =,21()3P A =,1(|)0.02P B A =,2(|)0.01P B A =,由贝叶斯公式有1111122()(|)(|)()(|)()(|)P A P B A P A B P A P B A P A P B A +=20.023210.020.0133⨯=⨯+⨯0.80=.故答案为:0.803.已知在自然人群中,男性色盲患者出现的概率为7%,女性色盲患者出现的概率为0.5%.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,则此人是男性的概率是______.【答案】1415【分析】以事件A 表示“选出的是男性”,则事件A 表示“选出的是女性”,以事件H 表示“选出的人是色盲患者”.由已知得()()12P A P A ==,()7%P H A =,()0.5%P H A =.根据贝叶斯公式可求得答案.【详解】解:以事件A 表示“选出的是男性”,则事件A 表示“选出的是女性”,以事件H 表示“选出的人是色盲患者”.由题意,知()()12P A P A ==,()7%P H A =,()0.5%P H A =.由贝叶斯公式,可知此色盲患者是男性的概率为()()()()()()()()()17%14211157%0.5%22P H A P A P AH P A H P H P H A P A P H A P A ⨯====+⨯+⨯.故答案为:1415.【题型七】概率综合题【典例分析】2021年高考结束后小明与小华两位同学计划去老年公寓参加志愿者活动.小明在如图的街道E 处,小华在如图的街道F 处,老年公寓位于如图的G 处,则下列说法正确的个数是()①小华到老年公寓选择的最短路径条数为4条②小明到老年公寓选择的最短路径条数为35条③小明到老年公寓在选择的最短路径中,与到F 处和小华会合一起到老年公寓的概率为1835④小明与小华到老年公寓在选择的最短路径中,两人并约定在老年公寓门口汇合,事件A :小明经过F 事件B ;从F 到老年公寓两人的路径没有重叠部分(路口除外),则2()15P B A =A .1个B .2个C .3个D .4个【答案】B【分析】根据起点走向终点所需要向上、向右走的总步数m ,并确定向上或向右各走的步数n ,则最短路径的走法有nm C ,再利用古典概率及条件概率求法,求小明到F 处和小华会合一起到老年公寓的概率、小明经过F 且从F 到老年公寓两人的路径没有重叠的概率即可.【详解】由图知,要使小华、小明到老年公寓的路径最短,则只能向上、向右移动,而不能向下、向左移动,对于①,小华到老年公寓需要向上1格,向右2格,即小华共走3步其中1步向上,所以最短路径条数为133C =条,错误;对于②,小明到老年公寓需要向上3格,向右4格,即小明共走7步其中3步向上,最短路径条数为3735C =条,正确;对于③,小明到F 的最短路径走法有246C =条,再从F 处和小华一起到老年公寓的路径最短有3条,而小明到老年公寓共有35条,所以到F 处和小华会合一起到老年公寓的概率为63183535⨯=,正确;对于④,由题意知:事件A 的走法有18条即18()35P A =,事件A B ⋂的概率()62435335P A B ⨯⋂==⨯,所以()()()2|9P A B P B A P A ⋂==,错误.故说法正确的个数是2.故选:B.【变式训练】1..甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲罐中随机取出一球放入乙罐,分别以12,A A 和3A 表示由甲罐中取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐中取出的球是红球的事件.下列结论正确的个数是()①事件1A 与2A 相互独立;②1A ,2A ,3A 是两两互斥的事件;③24(|)11P B A =;④()922P B =;⑤14(|)9P A B =A .5B .4C .3D .2【答案】C【分析】先判断出1A ,2A ,3A 是两两互斥的事件,且不满足()()()1212P A A P A P A =⋅,①错误,②正确,用条件概率求解③⑤,用全概率概率求解④,得出结论.【详解】显然,1A ,2A ,3A 是两两互斥的事件,且()1515232P A ==++,()2215235P A ==++,而()()()12120P A A P A P A =≠⋅,①错误,②正确;()2215235P A ==++,()214451155P A B =⨯=,所以24(|)11P B A =,③正确;()()()()()()()1122331541349211115101122P B P B A P A P B A P A P B A P A =⋅+⋅+⋅=⨯+⨯+⨯=④正确;()()()111552119922P A B P A B P B ⨯===,⑤错误,综上:结论正确个数为3.故选:C2.抛掷三枚质地均匀的硬币一次,在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是()A .18B .78C .17D .67【答案】C【分析】由题可知,抛掷三枚硬币,则基本事件共有8个,其中有一枚正面朝上的基本事件有7个,分别求出“有一枚正面朝上”和“三枚都正面朝上”的概率,最后根据条件概率的计算公式,即可求出结果.【详解】解:根据题意,可知抛掷三枚硬币,则基本事件共有8个,其中有一枚正面朝上的基本事件有7个,记事件A 为“有一枚正面朝上”,则()78P A =,记事件B 为“另外两枚也正面朝上”,则AB 为“三枚都正面朝上”,故()18P AB =,故()()()118778P AB P B A P A ===.即在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是17.故选:C.【点睛】本题考查条件概率的计算公式的应用,考查分析和计算能力.3.如果{}n a 不是等差数列,但若k N *∃∈,使得212k k k a a a +++=,那么称{}n a 为“局部等差”数列.已知数列{}n x 的项数为4,记事件A :集合{}{}1234,,,1,2,3,4,5x x x x ⊆,事件B :{}n x 为“局部等差”数列,则条件概率()|P B A =A .415B .730C .15D .16【答案】C【分析】分别求出事件A 与事件B 的基本事件的个数,用()|P B A =()AB P P A ()计算结果.【详解】由题意知,事件A 共有4454C A =120个基本事件,事件B :“局部等差”数列共有以下24个基本事件,(1)其中含1,2,3的局部等差的分别为1,2,3,5和5,1,2,3和4,1,2,3共3个,含3,2,1的局部等差数列的同理也有3个,共6个.含3,4,5的和含5,4,3的与上述(1)相同,也有6个.含2,3,4的有5,2,3,4和2,3,4,1共2个,含4,3,2的同理也有2个.含1,3,5的有1,3,5,2和2,1,3,5和4,1,3,5和1,3,5,4共4个,含5,3,1的也有上述4个,共24个,()24|120P B A ∴==15.故选C.培优第一阶——基础过关练1.已知7(3|)P A B =,7()9P B =,则()P AB =()A .37B .47C .13D .2749【答案】C【分析】根据给定条件,利用条件概率公式计算作答.【详解】因为7(3|)P A B =,7()9P B =,所以(7(31()))73|9P AB P A B P B ==⨯=.故选:C2.某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为()A .0.34B .0.37C .0.42D .0.43【答案】C【分析】根据排列组合以及概率的乘法公式即可求解.【详解】设事件A 表示“两道题全做对”,若两个题目都有思路,则223124C 0.80.32C P =⨯=,若两个题目中一个有思路一个没有思路,则1113224C C 0.80.250.1C P =⨯⨯=,故12()0.320.10.42P A P P =+=+=,故选:C3.某地摊集中点在销售旺季的某天接纳顾客量超过1万人次的概率是920,连续两天顾客量超过1万人次的概率是720,在该地摊集中点在销售旺季的某天接纳顾客量超过1万人次的条件下,随后一天的接纳顾客量超过1万人次概率是().A .710B .910C .45D .79【答案】D【分析】利用条件概率的定义及其概率计算公式求解即可.【详解】设“某天接纳顾客量超过1万人次”为事件A ,“随后一天的接纳顾客量超过1万人次”为事件B ,则9()20P A =,7()20P AB =,所以7()720()9()920P AB P B A P A ===,故选:D .4.已知某地市场上供应的一种电子产品中,甲厂产品占60%,乙厂产品占40%,甲厂产品的合格率是95%,乙厂产品的合格率是90%,则从该地市场上买到一个合格产品的概率是()A .0.92B .0.93C .0.94D .0.95【答案】B【分析】利用全概率公式可求得所求事件的概率.【详解】从某地市场上购买一个灯泡,设买到的灯泡是甲厂产品为事件A ,买到的灯泡是乙厂产品为事件B ,则()0.6P A =,()0.4P B =,记事件:C 从该地市场上买到一个合格灯泡,则()0.95P C A =,()0.9P C B =,所以,()()()()()()()0.60.950.40.9P C P AC P BC P A P C A P B P C B =+=+=⨯+⨯0.93=.故选:B.5.将甲、乙、丙、丁4名志愿者随机派往①,②,③三个社区进行核酸信息采集,每个社区至少派1名志愿者,A 表示事件“志愿者甲派往①社区”;B 表示事件“志愿者乙派往①社区”;C 表示事件“志愿者乙派往②社区”,则()A .事件A 、B 同时发生的概率为19B .事件A 发生的条件下B 发生的概率为16C .事件A 与B 相互独立D .事件A 与C 为互斥事件【答案】B【分析】根据互斥独立的概率公式乘法公式和判定方法,可判定A 、C 不正确;利用条件概率的计算公式,可判定B 正确,结合互斥事件的概念与判定,举例可判定D 错误.【详解】由题意,每个社区至少派1名志愿者的所有可能情况有1123243122C C C A 36A ⨯=种分法,事件A 表示志愿者甲派往①社区的分法有322332A C A 12+=,所以1()3P A =,同理可得1()3P B =,1()3P C =,则22A 1()()()3618P AB P A P B ==≠,所以A 、B 不相互独立,所以A 、C 不正确;又由1()118(|)1()63P AB P B A P A ===,所以B 正确;例如:事件D :甲、乙派到①,丙派到②,丁派到③和事件E :甲派到①,乙、丙派到②,丁派到③,此时事件A 与事件C 同时发生,所以A 与C 不互斥,所以D 错误.故选:B.6.目前,国际上常用身体质量指数()()22:kg :m BMI =身高体重单位单位来衡量成人人体胖瘦程度以及是否健康.某公司对员工的BMI 值调查结果显示,男员工中,肥胖者的占比为15;女员工中,肥胖者的占比为110.已知该公司男、女员工的人数比例为3:2,为了解员工肥胖原因,现从该公司中任选一名肥胖的员工,则该员工为男性的概率为()A .34B .35C .45D .910【答案】A【分析】记事件A 为“选到的员工为肥胖者”,事件B 为“选到的员工为男性”,求出()P AB 、()P A 的值,利用条件概率公式可求得所求事件的概率.【详解】记事件A 为“选到的员工为肥胖者”,事件B 为“选到的员工为男性”.则()3135525P AB =⨯=,()312145551025P A =⨯+⨯=,则()()()32532544P AB P B A P A ==⨯=.故选:A.7.从分别标有1,2,3,9,的9张卡片中不放回地随机抽取2次,每次抽取1张,则在抽取第1张为偶数的前提条件下,抽到第2张卡片上的数也为偶数的概率为()A .38B .16C .112D .124【答案】A【分析】设事件A 为第1张为偶数,事件B 为第2张为偶数,则()49P A =,()16P AB =,根据条件概率公式得到答案.【详解】设事件A 为第1张为偶数,事件B 为第2张为偶数,则()49P A =,()2429C 1C 6P AB ==,故()()()38P AB P B A P A ==.故选:A培优第二阶——能力提升练1.2022年6月,某学校为宣传我国第三艘航空母舰“中国人民解放军海军福建舰”下水试航,增强学生的国防意识,组织了一次“逐梦深蓝,山河荣耀”国防知识竞赛,对100名学生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[50,60),[60,70),[70,80),[80,90),[90,100],为进一步了解学生的答题情况,通过分层抽样,从成绩在区间[70,90)内的学生中抽取6人,再从这6人中先后抽取2人的成绩作分析,下列结论正确的是()A .频率分布直方图中的0.030x =B .估计100名学生成绩的中位数是85C .估计100名学生成绩的80%分位数是95D .从6人中先后抽取2人作分析时,若先抽取的学生成绩位于[)70,80,则后抽取的学生成绩在[)80,90的概率是415【答案】AC【分析】根据频率之和为1可判断A,根据中位数为面积在0.5的位置可判断B,根据百位数的计算可判断C ,根据条件概率的计算公式可判断D.【详解】对于A :根据学生的成绩都在50分到100分之间的频率和为1,可得10(0.0050.010.0150.040)1x ⨯++++=,解得0.030x =,故A 正确;对于B :全校学生成绩的中位数为()()00050010001510=030500050010001510=0605........x ..++´<+++´>,,故中位数位于[]8090,之间,故中位数为()2260809080=33+´-,故B 错误,对于C :全校学生成绩的样本数据的80%分位数约为0.29010950.4+⨯=分,故C 正确.对于D :在被抽取的学生中,成绩在区间[70,80)和[)80,90的学生人数之比为100.0151100.0302⨯=⨯,故[)70,80抽取了2人,[)80,90中抽取了4人,先抽取的学生成绩位于[)70,80,则第二次抽取时,是在5个人中抽取,而此时学生成绩在[)80,90的个数有4个,故概率为45,故D不正确,故选:AC2.甲盒中有3个红球,2个白球;乙盒中有2个红球,3个白球.先从甲盒中随机取出一球放入乙盒,用事件A 表示“从甲盒中取出的是红球”,用事件B 表示“从甲盒中取出的是白球”;再从乙盒中随机取出一球,用事件C 表示“从乙盒中取出的是红球”,则下列结论正确的是()A .事件B 与事件C 是互斥事件B .事件A 与事件C 是独立事件C .()330P C 1=D .()12P C A =【答案】CD【分析】根据互斥的概念及独立事件概率公式可判断A 、B ;根据古典概型的计算公式及条件概率的计算公式即可判断C 、D.【详解】解:当从甲中取出白球时,乙中取出的可能是红球,也可能是白球,所以选项A 错误;因为甲盒中有3个红球,2个互斥白球,所以()35P A =,()25P B =,若甲中拿出的是红球,则乙中有3个红球,3个白球,若甲中拿出的是白球,则乙中有2个红球,4个白球,所以()3395630P AC =⨯=,()2245630P BC =⨯=,()332213565630P C =⨯+⨯=,因为()()()P AC P A P C ≠⨯,所以事件A 与事件C 不是独立事件,故选项B 错误;选项C 正确;因为()()()9130325P AC P C A P A ===,故选项D 正确.故选:CD3.已知事件,A B 满足()()0.5,0.2P A P B ==,则()A .若B A ⊆,则()0.5P AB =B .若A 与B 互斥,则()0.7P A B +=C .若()0.2P BA =∣,则A 与B 相互独立D .若A 与B 相互独立,则()0.9P AB =【答案】BC【分析】根据事件的关系以及运算,互斥事件的概率加法公式,独立事件的概率公式,条件概率的概率公式等即可求出.【详解】对A ,因为B A ⊆,所以()()0.2P AB P B ==,错误;对B ,因为A 与B 互斥,所以()()()0.7P A B P A P B +=+=,正确;对C ,因为()()()0.2P AB P BA P A ==∣,所以()0.1P AB =,而()()0.5,0.2P A P B ==,。

贝叶斯准则例题

贝叶斯准则例题

一、贝叶斯准则:例题1:设二元假设检验的观测信号模型为: H 0: x = -1+nH 1: x = 1+n其中n 是均值为0,方差为212nσ=的高斯观测噪声。

若两种假设是等先验概率的,而代价因子为000110111,8,4,2,c c c c ==== 试求贝叶斯(最佳)表达式和平均代价C : 解:因为两种假设是等先验概率的所以 011()()2P H P H ==,这样,贝叶斯准备的似然比函数()x λ为: ① 122110221(1)exp 1122(|)22()exp(4)(|)(1)1exp 112222x p x H x x p x H x πλπ⎛⎫⎡⎤⎪⎢⎥-- ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦==•=⎡⎤⎛⎫⎢⎥+ ⎪-⎢⎥⎪⨯⎢⎥⨯ ⎪⎣⎦⎝⎭ 而似然比检测门限η为:010********(41)()()21()()(82)2P H c c P H c c η--=•=-- =1/2于是贝叶斯判决表达式为11exp(4)2H x H ><,两边取自然对数,并整理的最简判决表达式为10.1733H x H >-<②现在计算判决概率01(|)P H H 和00(|)P H H ,由于本例中检验统计量()l x x =,所以在两个假设下检验统计量的概率密度函数分别为:122012211(1)(|)exp 1122221(1)(|)exp 112222l p l H l p l H ππ⎛⎫⎡⎤⎪⎢⎥+=- ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦⎛⎫⎡⎤⎪⎢⎥-=- ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦这样,0.17330111220.1733(|)(|)1(1)exp 0.0486112222P H H p l H dll dl π--∞--∞=⎛⎫⎡⎤⎪⎢⎥-=-= ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦⎰⎰0.17330001220.1733(|)(|)1(1)exp 0.8790112222P H H p l H dll dl π--∞--∞=⎛⎫⎡⎤⎪⎢⎥+=-= ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦⎰⎰ 最后,利用贝叶斯平均代价表达式,01011110111010100000()()()()(|)()()(|)C P H c P H c P H c c P H H P H c c P H H =++---代入0000110(),(|),(|),P H P H H P H H c 等各数据,计算得: 1.8269C=总结:如果我们把判决表达式中的检测门限-0。

概率统计贝叶斯公式在体育比赛的应用例题

概率统计贝叶斯公式在体育比赛的应用例题

概率统计贝叶斯公式在体育比赛的应用例题概率统计贝叶斯公式在体育比赛的应用例题1. 引言体育比赛一直是人们热衷的话题,而要对比赛结果进行预测,概率统计和贝叶斯公式就起到了至关重要的作用。

在本文中,我们将探讨概率统计贝叶斯公式在体育比赛中的应用,并给出一些例题加深理解。

2. 概率统计和贝叶斯公式简介概率统计是研究随机现象的规律性和数量关系的数学分支,而贝叶斯公式是概率统计中的重要工具之一,用于计算在已知事件B发生的条件下事件A发生的概率。

在体育比赛中,我们可以利用贝叶斯公式来对比赛结果进行概率预测。

3. 应用例题分析我们以足球比赛为例,假设在一场欧洲足球比赛中,球队A与球队B 进行比赛,我们已经知道球队A在过去的几次比赛中的得分情况,并且知道球队B的进攻和防守能力。

现在我们希望利用概率统计和贝叶斯公式来预测球队A能够在该场比赛中取得胜利的概率。

4. 数据收集和整理我们需要收集和整理球队A在过去比赛中的得分情况,包括进球数、失球数以及比赛结果。

我们也需要收集球队B的进攻和防守数据,包括进攻时的得分能力和防守时的失球情况。

5. 建立模型建立模型是预测的关键步骤,我们可以将球队A在过去得分情况建立成一个概率分布,同时根据球队B的进攻和防守能力建立相应的概率分布。

6. 计算预测结果利用贝叶斯公式,我们可以结合球队A的历史得分情况和球队B的进攻和防守能力,计算出球队A在该场比赛中取得胜利的概率。

7. 结果分析根据计算结果,我们可以得出球队A在该场比赛中获胜的概率为X%,进一步分析得出比赛结果的不确定性以及其他可能的结果。

8. 总结与回顾通过这个例题,我们深入了解了概率统计和贝叶斯公式在体育比赛中的应用。

我们也意识到了预测结果的不确定性,以及需要对数据进行更加深入的分析和建模。

9. 个人观点和理解在实际应用中,概率统计和贝叶斯公式可以帮助我们对体育比赛结果进行更加科学的预测,同时也提醒我们要注意数据的真实性和准确性。

十大经典算法朴素贝叶斯讲解PPT

十大经典算法朴素贝叶斯讲解PPT


在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:

P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:

购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007

因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:


该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:

Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。

贝叶斯公式应用举例

贝叶斯公式应用举例

贝叶斯公式应用举例1.医学诊断假设有一个疾病A,已知有其中一种症状B。

现在我们想要求解在有症状B的情况下,患病为A的概率,即P(A,B)。

假设我们知道患病A的人口患病率为P(A),患病A的人群中有症状B的比例为P(B,A),非患病的人群中有症状B的比例为P(B,非A)。

根据贝叶斯公式,我们可以计算P(A,B):P(A,B)=P(B,A)*P(A)/P(B)这样,我们就可以根据已知的数据计算出在有症状B的情况下患病A的概率。

2.垃圾邮件过滤垃圾邮件过滤是一个重要的应用场景。

假设我们有一封新收到的邮件,我们希望判断这封邮件是垃圾邮件的概率。

我们可以根据已经收到的邮件数据,统计在垃圾邮件中出现一些词的概率P(词,垃圾邮件),以及在非垃圾邮件中出现一些词的概率P(词,非垃圾邮件)。

根据贝叶斯公式,我们可以计算出判断这封邮件是垃圾邮件的概率P(垃圾邮件,词):P(垃圾邮件,词)=P(词,垃圾邮件)*P(垃圾邮件)/P(词)这样,我们就可以根据已知的数据计算出这封邮件是垃圾邮件的概率。

3.自然语言处理贝叶斯公式在自然语言处理中也有广泛的应用,例如文本分类和情感分析。

在文本分类中,我们希望根据一段文本来判断它所属的类别。

我们可以统计在一些类别下出现一些词的概率P(词,类别)。

根据贝叶斯公式,我们可以计算出这段文本属于一些类别的概率P(类别,词):P(类别,词)=P(词,类别)*P(类别)/P(词)这样,我们就可以根据已知的数据计算出这段文本属于一些类别的概率。

4.信息检索在引擎中,我们希望根据用户的查询来返回相关的结果。

其中一个重要的问题是如何计算一个文档与查询的相关程度。

我们可以通过统计在相关文档中出现一些词的概率P(词,相关文档),以及在非相关文档中出现一些词的概率P(词,非相关文档)。

根据贝叶斯公式,我们可以计算出一些文档与查询相关的概率P(相关文档,词):P(相关文档,词)=P(词,相关文档)*P(相关文档)/P(词)这样,我们就可以根据已知的数据计算出一些文档与查询相关的概率。

贝叶斯公式和全概率公式的讲解

贝叶斯公式和全概率公式的讲解

贝叶斯公式和全概率公式的讲解1. 什么是贝叶斯公式?首先,咱们得聊聊贝叶斯公式。

这玩意儿一听名字就感觉高大上,但其实说白了,就是一种用来更新概率的方法。

想象一下,你在一个晴天出门,突然发现天边乌云密布。

这个时候,你原本以为今天没雨,但贝叶斯公式就可以帮助你重新评估这个“今天会不会下雨”的概率。

简单点说,就是当你获取到新信息后,如何调整你之前的看法。

1.1 贝叶斯公式的基本形式贝叶斯公式可以用一个看似复杂但其实很简单的公式来表示:。

P(A|B) = P(B|A) * P(A) / P(B)。

听起来像是外星人语言?别担心,我们一步一步来。

这里的P(A|B)表示在B发生的情况下,A发生的概率;P(B|A)是如果A发生,B发生的概率;P(A)和P(B)则分别是A和B各自发生的概率。

想象一下,你在喝咖啡,突然发现有块巧克力。

你可能会思考“我有多大概率再吃一块巧克力呢?”这时候贝叶斯公式就派上用场了。

1.2 贝叶斯公式的应用场景这公式的应用场景真的是五花八门,简直是无所不能。

比如说,医生在给病人诊断时,往往要根据症状和检测结果来判断病人可能得了什么病。

又比如,在互联网时代,贝叶斯公式也可以帮助你过滤垃圾邮件。

没错,想知道你的邮件有没有被丢进垃圾箱,贝叶斯公式也能给你提供很好的参考。

2. 全概率公式的魅力接下来咱们聊聊全概率公式。

听这个名字就知道,它与“全”字有关系,没错!全概率公式是用来计算一个事件的总概率,尤其是在这个事件可能由多个原因造成时。

可以这么理解,全概率就是把所有可能性都考虑进去,像是在拼图,把每一块都放到合适的位置。

2.1 全概率公式的基本概念全概率公式可以用公式表示为:P(B) = Σ P(B|A_i) * P(A_i)。

这里的意思是,B发生的概率可以通过它与每个可能的A事件的关系来计算。

想象你在一场派对上,派对上有三种饮料:可乐、果汁和啤酒。

你想知道有人喝果汁的概率。

这里的A就是这三种饮料,而B则是“喝果汁”这个事件。

贝叶斯公式生活小例子

贝叶斯公式生活小例子

贝叶斯公式生活小例子
假设有一个神秘疾病,每100个人中就有1个人患有该疾病。

现在假设你去进行该疾病的测试,测试结果呈阳性。

但是,该测试的准确性只有80%,也就意味着5个人中有4个测试结果是正确的,1个测试结果是错误的。

现在,应用贝叶斯公式来计算,在这种情况下你患病的概率是多少。

首先,我们需要了解一些术语:
P(A):疾病真正发生的概率(在此情况下为1%)
P(B):测试结果呈阳性的概率(在此情况下为预测的80%)
P(A|B):当测试结果呈阳性时,你真正患病的概率(需要计算)
那么根据贝叶斯公式,我们可以得出:
P(A|B) = (P(B|A) x P(A)) / P(B)
其中,P(B|A) 表示在疾病确实存在的情况下,测试结果呈阳
性的概率。

在此情况下,由于测试准确率只有80%,因此该
概率是80%。

将其代入公式中得:
P(A|B) = (0.8 x 0.01) / 0.05 = 0.16(约16%)
也就是说,即使测试结果呈阳性,你真的患有该疾病的概率仅
为16%。

因此,在此情况下,需要进行进一步的检查和诊断,而不是仅依赖于测试结果。

贝叶斯公式应用举例

贝叶斯公式应用举例

【例1】【二进信道】在数字通信中,由于随机干扰,因此接收到的信号与发出的信号可能不同,为了确定发出的信号,通常需要计算各种概率。

若发报机以0.7和0.3的概率发出信号0和1;当发出信号0时,以概率0.8和0.2收到信号0和1;同样地,当发出信号1时,接收机以概率0.9和0.1收到信号1和0。

计算:当接收机收到信号0时,发报机是发出信号0的概率?
解:记:A 0=“发报机发出信号0”, A 1=“发报机发出信号1”, B =“接收机收到信号0”。

.0易知:1.0)|(,
8.0)|(3.0)(,7.0)(1010====A B p A B p A p A p
949.059
.056.01.03.08.07.08.07.0)
|()()|()()|()()|(1100000≈=⨯+⨯⨯=+=⇒A B p A p A B p A p A B p A p B A p
【例2】【疾病确诊率问题】假定用血清甲胎蛋白法诊断肝癌。

其中, C :表示被检测者患有肝癌,A :表示判断被检测者患有肝癌;又设人群中p(C)=0.0004。

现在若有一人被此检验诊断为患有肝癌,求此人确实患有肝癌的概率p(C|A)?
解:
0038.01.09996.095.00004.095.00004.0)
|()()|()()|()()|(≈⨯+⨯⨯=+=C A p C p C A p C p C A p C p A C p。

贝叶斯公式应用案例-戴

贝叶斯公式应用案例-戴
如此低的可信度导致小孩第三次真的遇到了狼求救时, 村民没人去救他的恶果。
点评:该案例通过一个寓言故事前因后果的科学分析, 用到了概率计算中的重要公式贝叶斯公式,对增进学 生学习的兴趣有一定的帮助
贝叶斯公式的应用案例(2) 爱滋病普查中的应用
爱滋病普查:使用一种血液试验来检测人体内是否携 带爱滋病病毒.设这种试验的假阴性比例为5%(即在 携带病毒的人中,有5%的试验结果为阴性),假阳 性比例为1%(即在不携带病毒的人中,有1%的试验 结果为阳性).据统计人群中携带病毒者约占1‰,若 某人的血液检验结果呈阳性,试问该人携带爱滋病毒 的概率.
参考解答:“携带病毒”为A,“实验呈阳性”为B,则
P ( A) 0题即为求 P( A B)
贝叶斯公式 应用案例
贝叶斯公式的应用案例(1)
用贝叶斯公式分析“孩子与狼”寓言故事中,村 民对这个小孩可信度是如何下降的
还是用贝叶斯公式来求
P(B
A)
P(B)P(A B) P(B)P(A B) P(B)P(A B)
0.444* 0.1 0.444* 0.1 0.556* 0.5
0.138
此时村民对该小孩的信任度已降到了0.138

贝叶斯精炼纳什均衡解经典例题和解答

贝叶斯精炼纳什均衡解经典例题和解答

贝叶斯精炼纳什均衡解经典例题和解答贝叶斯精炼纳什均衡(Bayesian refinement of Nash equilibrium)是博弈论中的一个概念,它结合了贝叶斯理论和纳什均衡的概念,用于描述在不完全信息博弈中玩家对其他玩家类型的不确定性。

这里我将为你提供一个经典的例题,并给出相应的解答。

考虑一个简化的拍卖场景,有两个潜在的买家:买家A和买家B。

拍卖的物品是一幅画,卖家想以尽可能高的价格卖出这幅画。

买家A和买家B对这幅画的估值分别服从正态分布,其均值和标准差如下:买家A的估值:均值为100,标准差为20买家B的估值:均值为120,标准差为15拍卖的规则如下:卖家首先设定一个底价p(reserve price),然后买家A和买家B分别出价。

如果买家A的出价高于底价p,并且买家B的出价也高于底价p,那么拍卖的赢家是出价最高的买家,并且他们需要支付自己的出价。

如果只有一个买家的出价高于底价p,那么这个买家获胜,并以底价p购买这幅画。

如果两个买家都没有出价高于底价p,那么拍卖失败,画作不会被卖出。

现在我们来解答这个问题:1. 假设卖家设定底价p为90,请计算在这个底价下,买家A和买家B的最优出价以及对应的期望收益。

为了计算买家A和买家B的最优出价,我们可以使用贝叶斯精炼纳什均衡的概念。

在这个场景中,买家A和买家B都面临不完全信息,即对方的估值是未知的。

我们需要通过贝叶斯理论来计算每个买家对对方估值的后验概率分布,然后根据这些概率分布来确定最优出价。

买家A的后验概率分布可以通过贝叶斯定理计算得到:P(v_A|p) = P(p|v_A) * P(v_A) / P(p)其中,v_A表示买家A对画作的估值,P(v_A)表示买家A对估值的先验概率分布(正态分布),P(p|v_A)表示在买家A估值为v_A的情况下,底价p被设定的概率,P(p)表示底价被设定为p的概率。

根据题目中给出的信息,买家A的估值服从均值为100,标准差为20的正态分布,我们可以计算P(v_A)。

贝叶斯公式应用案例

贝叶斯公式应用案例

贝叶斯公式应用案例贝叶斯公式的定义是:若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n )其中, P(A)可由全概率公式得到.即nP(A)=∑P(B i)P(A|B i)i =1在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。

假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。

此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。

对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。

现在让我们用贝叶斯公式分析一下该情况。

假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A)则实际次品的概率P(B)=0.1%,已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%,P(B)=1-0.001=0.999所以,P(A)=0.001X0.95+0.999X0.01=0.01094P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。

这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。

仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。

所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。

贝叶斯定理的趣题及其应用

贝叶斯定理的趣题及其应用

贝叶斯定理的趣题及其应用My Works, by Wei.今天看到某两人的对话,大概是这样的:现在得甲流的80%都发烧~楼上说得不对吧,应该是现在80%发烧的得的都是甲流~仔细想想,这个问题其实很有趣。

设想:如果以上两条都成立,也就是得甲流80%发烧、发烧的80%是甲流,我们能推出什么结论呢,其实这是一个典型的条件概率问题。

一般的,在B发生的情况下A发生的概率可以表示为P(A|B)。

那么“得甲流80%发烧”可以表示为P(发烧|甲流)=0.8。

不妨用P(甲流)来表示得甲流的概率(得甲流人数与总人数的比值,下似),那么P(甲流)×P(发烧|甲流)就是既得甲流又发烧的概率,既P(甲流)×P(发烧|甲甲流?发烧)。

同样的,“发烧的80%是甲流”可以表示为 P(甲流|发流)=P( 烧)=0.8、P(发烧)表示发烧的概率,那么P(甲流?发烧)又可以表示为P(发烧)×P甲流|发烧)。

于是,我们得到了一个这样的推论:P(甲流)×P(发烧|甲流)=P(发烧)×P(甲流|发烧)。

由于P(发烧|甲流)=P(甲流|发烧)=0.8,所以P(甲流)=P(发烧)而刚才我们得到的推论,也就是贝叶斯定理,其一般形式为:请设想下面一个情景:某种酒精检测仪在对吸烟的人使用时99%报阳性、1%报阴性,而在对不吸烟的人使用的时候99%报阴性、1%报阳性。

已知学校中吸烟的学生大概占1%,请问如果对某学生的检验程阳性,那么该学生吸烟的概率是多少, 肯能你会很果断得从直觉判断99%,但是有时候人的直觉却是错的。

其实如果检验程阳性学生吸烟的概率就是P(吸烟|阳性)。

根据贝叶斯公式:P(吸烟|阳性)=P(阳性|吸烟)P(吸烟)/P(阳性)。

P(阳性|吸烟)和P(吸烟)都是已知条件,而P(阳性)其实就是P(吸烟)×P(阳性|吸烟)+P(不吸烟)×P(阳性|不吸烟)。

化简整理,P(阳性|吸烟)P(吸烟)/[P(吸烟)×P(阳性|吸烟)+P(不吸烟)×P(阳性|不吸烟)]=(0.99×0.01)/(0.99*0.01+0.01*0.99)=50%~远远低于99%~而如果把原数据中的“学校中吸烟的学生占1%”改成“0.5%”,所求概率将进一步降低到33.22%~另外,贝叶斯定理还在中文分词、机器翻译、垃圾邮件过滤和人工智能方面有着很多的应用。

贝叶斯概率公式例题

贝叶斯概率公式例题

贝叶斯概率公式例题
(实用版)
目录
1.贝叶斯概率公式概述
2.贝叶斯概率公式的例题
3.例题的解答过程
正文
【1.贝叶斯概率公式概述】
贝叶斯概率公式是一种用于描述概率推理的数学公式,它是概率论中的一个基本工具。

贝叶斯公式描述了在已知某条件概率的情况下,求解相关联的逆条件概率。

贝叶斯公式的形式为:P(A|B)=(P(B|A)P(A))/P(B)。

【2.贝叶斯概率公式的例题】
假设有一个箱子,里面有 3 个红球和 2 个绿球。

现在从箱子中随机抽取一个球,求抽到红球的概率。

【3.例题的解答过程】
根据贝叶斯概率公式,我们可以将题目中的条件转化为公式:
P(红球)=P(红球 | 已知抽到的是红球)P(已知抽到的是红球)/P(已
知抽到的是红球或绿球)
根据题目,P(已知抽到的是红球)=3/5,P(已知抽到的是红球或绿球)=1。

将这些数值代入公式,我们可以得到:
P(红球)=(3/5)P(已知抽到的是红球)/1=(3/5)P(已知抽到的是红球) 因此,我们可以看到,抽到红球的概率取决于已知抽到的是红球的概率。

第1页共1页。

第9讲 贝叶斯公式

第9讲 贝叶斯公式

例3如图,从任一箱中任意摸出一球,发现是红球,求该球取自1号箱的概率.解设A i =“球取自i 号箱”,i = 1,2,3. B =“取到红球”,123求P (A 1|B )例3如图,解设Ai=“球取自i 号箱”,i = 1,2,3. B =“取到红球”,则所求概率为12311()(|)=()P A B P A B P B 1123()=()()()++P A B P A B P A B P A B 运用全概率公式计算P (B )1131()(|)=()()k k k P A P B A P A P BA =∑|例3如图,解设Ai=“球取自i 号箱”,i B =“取到红球”,则所求概率为12311131()(|)(|)=()()k kk P A P B A P A B P A P B A =∑|1/31/210=.1/3(1/23/51/4)27⋅=++1A 2A 3A B定理设A 1,A 2,…,A n 是两两互斥的事件,且P (A i )>0,(i =1,2,…,n )若对任一事件B , 有(A 1+A 2+… +A n )B ,且P (B ) > 0, 则⊃=1,,i n ()1()(|)(|)=,()()i i i n j j j P A P B A P A B P A P B A =∑|4A 5A 6A A 2A 3A 1BS 1()()(|)=()()i i i n j j P A B P A B P A B P B P A B ==∑定理设A 1,A 2,…,A n 是两两互斥的事件,且P (A i )>0,(i =1,2,…,n )若对任一事件B , 有(A 1+A 2+… +A n )B ,且P (B ) > 0, 则⊃=1,,i n ()贝叶斯公式是英国数学家Bayes 于1763首先提出的. 由此思想形成了后来的“Bayes 方法”.1()(|)(|)=,()()i i i nj jj P A P B A P A B P A P B A =∑|例4 对以往试验数据表明,当机器调整良好时,产品的合格率为90%;而当机器发生故障时,其合格率为30%. 每天早晨开工时,机器调整良好的概率为75%,求某日早晨第一件产品是合格品时,机器调整良好的概率.解设A=“机器调整良好”, B=“产品是合格品”,所求概率为P(A|B).例4 对以往试验数据表明,当机器调整良好时,产品的合格率为90%;而当机器发生故障时,其合格率为30%. 每天早晨开工时,机器调整良好的概率为75%,求某日早晨第一件产品是合格品时,机器调整良好的概率.解设A=“机器调整良好”, B =“产品是合格品”,()(|)()P AB P A B P B =()=()()P AB P AB P AB +()(|)=()(|)()(|)P A P B A P A P B A P A P B A +例4 对以往试验数据表明,当机器调整良好时,产品的合格率为90%;而当机器发生故障时,其合格率为30%. 每天早晨开工时,机器调整良好的概率为75%,求某日早晨第一件产品是合格品时,机器调整良好的概率.解设A=“机器调整良好”, B =“产品是合格品”,()0.75,P A =(|)0.3,P B A =(|)0.9,P B A =()(|)(|)=()(|)()(|)P A P B A P A B P A P B A P A P B A +0.750.90.9.0.750.90.250.3⨯==⨯+⨯.)()()()()|(1∑==n j j j i i i A B P A P A B P A P B A P ||P (A i )和P (A i |B )分别称为原因的验前概率和验后概率.谢谢!。

概率论与数理统计贝叶斯公式

概率论与数理统计贝叶斯公式

概率论与数理统计贝叶斯公式
若为试验E的一个完备事件组,B为E的任一事件,且,则:。

这个公式也被称为贝叶斯公式。

•根据乘法公式有:
•根据全概率公式有:
•其中称为先验概率,称为后验概率•例题:设一地区居民的某种疾病的发病率为0.0004,现用一种有效的检验方法进行普查。

医学研究表明,化验结果是存在错误的,已知该患病的人其化验结果99%呈阳性(有病),而没患病的人其化验结果99.9%呈阴性(无病)。

现有一人用这种方法检验出患有该病,求此人患病的概率。

贝叶斯公式与全概率公式的运用

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例一、全概率公式是一个完备事件组并且PP(B)=全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下:①找出条件事件里的某一个完备事件组,分别命名为②命名目标的概率事件为事件B③带入全概率公式求解下面是具体实例对全概率公式的运用1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。

解:①完备事件组命名②目标事件B=“从乙里面取出红球”③全概率公式求解P(B)=P()P(B|+ P()P(B|=2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率.解:①完备事件组命名②目标事件B=“从袋子里面取出白球”③全概率公式求解P(B)=P()P(B|+ P()P(B|=3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率.解:①完备事件组命名②目标事件B=“射手通过选拔赛”③全概率公式求解P(B)=P()P(B|+ P()P(B|+ P()P(B|+ P()P(B|==二、贝叶斯公式是一个完备事件组并且PP(|B)=贝叶斯公式针对的是某一个过程中已知结果发生求出事件过程的某个条件成立的概率,解题步骤如下:①找出目标条件所在的完备事件组,并命名②命名已知会发生的结果事件③带入贝叶斯公式求解下面是具体实例对全概率公式的运用4、某学生接连参加同一课程的考试两次,两次相互独立,第一次及格的概率是P,如果第一次及格,那么第二次及格的概率也是P,如果第一次不及格,那么第二次几个的概率就是,如果他第二次考试及格了,求第一次考试及格的概率解:①完备事件组命名②目标事件B=“第二次考试及格”③贝叶斯公式求解==5、设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贝叶斯公式经典例题讲解
《贝叶斯公式经典例题讲解》
贝叶斯公式是一种概率公式,它可以在条件概率中派上用场。

贝叶斯公式可以用来计算在已知事实的情况下,某个事件发生的可能性。

一、贝叶斯公式
贝叶斯公式可以表示为:P(A|B)= P(B|A)* P(A)/ P(B)其中,P(A|B)是条件概率,即事件A在B已发生的情况下发生的概率;P(B|A)是反条件概率,表示事件B在A已发生的情况下发生的概率;P(A)表示事件A发生的概率;P(B)表示事件B发生的概率。

二、经典例题讲解
以下是贝叶斯公式的一个典型例题:
假设在一个学校中,有1000名学生,其中90%的学生爱看书,80%的学生爱看电视,另外有30%的学生同时喜欢看书和看电视。

现在随机抽取一名学生,问这位学生是否同时喜欢看书和看电视?
解:P(同时喜欢看书和看电视|随机抽取一名学生)= P(随机
抽取一名学生|同时喜欢看书和看电视)* P(同时喜欢看书和看电视)/ P(随机抽取一名学生)
= 0.3*0.3/1
=0.09
因此,这位学生同时喜欢看书和看电视的概率为0.09。

- 1 -。

相关文档
最新文档