函数零点的判定定理-高中数学知识点讲解
高中数学考点12 零点定理(讲解)(解析版)知识点解析
考点12:零点定理【思维导图】【常见考法】考点一:求零点1.若幂函数()f x x α=的图象过点(,则函数()()3g x f x =-的零点是。
【答案】9【解析】∵幂函数()f x x α=的图象过点,∴2α=,解得1=2α,∴()12f x x =∴()123g x x =-由()1230g x x =-=,得9x =.2.函数()234f x x x =+-的零点是____________.【答案】1,4-【解析】令f (x )=0,即x 2+3x-4=0,解得:x=-4,x=1.3.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】要求函数()1y f x =-的零点,则令()10y f x =-=,即()1f x =,又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩,①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =.综上所以,函数()1y f x =-的零点是0.故答案为:04.函数y =11x-的图象与函数y =2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于.【答案】8【解析】函数y 1=11x-与y 2=2sinπx 的图象有公共的对称中心(1,0),作出两个函数的图象,由图象可知,两个函数在[-2,4上共有8个交点,两两关于点(1,0)对称设对称的两个点的横坐标分别为m 、n 则m+n=2×1=2,故所求的横坐标之和为8,故答案为8.考点二:零点区间1.函数()42xxf x -=-的零点所在区间是()A .(1,0)-B .1(0,4C .11(,42D .1(,1)2【答案】D【解析】易知函数()f x 为减函数,又121111(402424f -=-=->,11(1)042f =-<,根据零点存在性原理,可知函数()42xx f x -=-的零点所在的区间是1(,1)2,故选D.2.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f (0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2,故选B .3.函数()ln 3f x x x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【解析】∵f (x )=ln x +x -3在(0,+∞)上是增函数f (1)=-2<0,f (2)=ln2-1<0,f (3)=ln3>0∴f (2)•f (3)<0,根据零点存在性定理,可得函数f (x )=ln x +x -3的零点所在区间为(2,3)故选:C .4.已知()f x 是定义在()0,∞+上的单调函数,满足()()2ln 21xf f x ex e --+=-,则函数()f x 的零点所在区间为()A .210,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .()1,e 【答案】C【解析】设()2ln 2xf x e x t --+=,即()2ln 2xf x e x t =+-+,()1f t e =-,因为()f x 是定义在()0,∞+上的单调函数,所以由解析式可知,()f x 在()0,∞+上单调递增.而()12f e t =-+,()1f t e =-,故1t =,即()2ln 1xf x e x =+-.因为()110f e =->,11112ln 13ee f e e e e ⎛⎫=+-=- ⎪⎝⎭,由于11ln ln 3ln 30ee e-=-<,即有13e e <,所以1130e f e e ⎛⎫=-< ⎪⎝⎭.故()110f f e ⎛⎫< ⎪⎝⎭,即()f x 的零点所在区间为1,1e ⎛⎫ ⎪⎝⎭.故选:C .考点三:零点个数1.函数f(x)=|x-2|-lnx 在定义域内零点的个数为。
二次函数的零点知识点高一
二次函数的零点知识点高一二次函数是高中数学中的重要内容之一,也是数学课程中较为复杂的内容之一。
其中,二次函数的零点是学习二次函数的基础知识点之一。
本文将从定义、性质、求解等多个方面来探讨二次函数的零点知识点。
定义:二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数,且a≠0。
这个函数的图像是一条抛物线,开口的方向取决于a的正负。
零点(或者称为根)是指函数的值为0的点,即f(x) = 0的解。
对于二次函数f(x) = ax^2 + bx + c来说,求解零点就是要找到使得f(x) = 0的x的值。
性质:1. 零点的个数:二次函数一般有零点,但它的零点个数取决于判别式Δ = b^2 - 4ac 的值。
当Δ > 0时,有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,没有实根,但存在两个虚根。
这个性质也反映了二次函数图像与x轴的相交情况。
2. 零点的对称性:对于二次函数f(x) = ax^2 + bx + c,它的零点x1和x2满足x1 + x2 = -b/a,即两个零点的和与二次项系数a的比值为负。
这个性质称为二次函数零点的对称性,也可通过抛物线的轴对称性来解释。
求解方法:1. 因式分解法:如果二次函数能够被因式分解,即能写成f(x) = a(x - r)(x - s)的形式,其中r和s为实数,那么它的零点就是x = r和x = s。
2. 公式法:二次函数的根可以通过求解一元二次方程得出。
根据根的公式x = (-b±√Δ)/(2a),其中±表示取加减两种解,Δ = b^2 - 4ac为判别式。
通过这个公式,可以求出二次函数的零点。
3. 完全平方法:对于一些特殊的二次函数,可以利用完全平方公式将其转化为平方的形式。
例如,f(x) = (x - 3)^2 - 4的零点可以通过x - 3 = ±√4转化为求解一次方程的问题。
数学高中必修知识点必备
数学高中必修知识点必备人教版数学必修一知识点1、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。
(2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。
函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。
②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。
③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(2、函数零点的判定(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。
(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法①代数法:函数)(xfy的零点Û0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤:①确定区间[,]ab,验证()()0fafb,给定精确度e;②求区间(,)ab的中点c;③计算()fc;(ⅰ)若()0fc,则c就是函数的零点;(ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.高一数学下册必修知识点整理一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
高中数学常见题型解法归纳 函数的零点个数问题的求解方法
高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
高中数学:函数零点
函数零点一、函数的零点1.零点的定义:对于函数()y f x ,使()0f x 的实数x 叫做函数()yf x 的零点.2.函数零点的等价关系函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.3.零点存在性判定定理定理:如果函数()y f x =在区间[]a b ,上的图象是连续不断的一条曲线,且()()0f a f b ⋅<,则函()y f x =在区间()a b ,内有零点,即存在()c a b ∈,,使得()0f c =,这个c 就是方程()0f x =的根.4.对函数零点存在的判断中,必须强调:1)()f x 在[]a b ,上连续; 2)()()0f a f b <; 3)在()a b ,内存在零点. 这是零点存在的一个充分条件,但不是必要条件. 注意:函数()yf x 的零点就是方程()0f x 的实数根,也就是函数()yf x 的图象与x 轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.5. 二次函数零点的判定0)的图像2ax bx c 0a )的根2a2ax bxc0)的零点2ba2ax bxc0)的解集2ax bxc0)的解集1x 或2xx }2a6.一元二次方程20axbx c根的分布(下面对0a 进行讨论)20bk a △20bk a △1212()x x k k ,,1122k x k x )k ,内有且只有一根yyyky y1220b k a△23()0()0f k f k △且(2b k a一.选择题(共12小题)1.(2018•重庆模拟)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.32.(2018•商洛模拟)函数f(x)=ln(x+1)﹣2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)3.(2017秋•镇原县校级期末)函数f(x)=2x+7的零点为()A.7B.7 2C.﹣7D.−7 24.(2017秋•平罗县校级期末)方程2x=2﹣x的根所在区间是()A.(﹣1,0)B.(2,3)C.(1,2)D.(0,1)5.(2018春•番禺区校级月考)方程x3﹣3x﹣m=0在[0,1]上有实数根,则m的最大值是()A.0B.﹣2C.﹣118D.16.(2017•奉贤区二模)若f(x)为奇函数,且x0是y=f(x)﹣e x的一个零点,则﹣x0一定是下列哪个函数的零点()A.y=f(x)e x+1B.y=f(﹣x)e﹣x﹣1C.y=f(x)e x﹣1D.y=f(﹣x)e x+17.(2016秋•仙桃期末)函数f(x)=2x2﹣3x+1的零点个数是()A.0B.1C.2D.38.(2016秋•库尔勒市校级期末)下列函数中,既是奇函数又存在零点的函数是()A.y=sinx B.y=cosxC.y=lnx D.y=x3+19.(2016秋•黄山期末)函数f(x)=log2(x﹣1)的零点是()A.(1,0)B.(2,0)C.1D.210.(2016秋•东莞市校级期末)函数f(x)=x2﹣4x+4的零点是()A.(0,2)B.(2,0)C.2D.411.(2017秋•青冈县校级期中)函数f(x)=2x2﹣3x+1的零点是()A.﹣12,﹣1B.﹣12,1C.12,﹣1D.12,112.(2017春•江津区期中)设f(x)=ax+4,若f(1)=2,则a的值()A.2B.﹣2C.3D.﹣3二.填空题(共5小题)13.(2014秋•新沂市校级月考)已知集合A={x|ax2﹣3x+2=0,x∈R,a∈R}只有一个元素,则a=.14.(2014秋•涟水县校级期中)方程4x2﹣12x+k﹣3=0没有实根,则k的取值范围是.15.(2012秋•浦东新区校级月考)2﹣x+x2=5的实根个数为.16.(2012秋•金山区校级月考)函数y=x3﹣2x的零点是.17.已知x 38=234,则x=.三.解答题(共1小题)18.解方程:x3+x2=1.。
高中数学讲义:零点存在的判定与证明
零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ×一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b Î,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ×为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间(4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A.1,02æö-ç÷èø B.10,2æöç÷èø C.1,12æöç÷èø D.31,2æöç÷èø思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -æöæö-=+×--=-<ç÷ç÷èøèø,()020f =-<11232022f æö=+×-=-<ç÷èø()12310f e e =+-=->()1102f f æö\×<ç÷èø01,12x æö\Îç÷èø,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A.31,2æöç÷èø B.3,22æöç÷èøC.()2,eD.(),e +¥思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
高中数学必修一(人教版)4.5.1函数的零点与方程的解
方法归纳
1.确定函数零点个数的方法: ①结合零点存在定理和函数单调性; ②转化为两个函数图象的交点个数. 2.已知函数零点个数求参数范围的常用方法
跟踪训练 1 (1)函数 f(x)=12x-x3-2 在区间(-1,0)内的零点个数 是( )
A.0 B.1
C.2 D.3
4.函数 f(x)=log2x-1 的零点为________.
解析:令 f(x)=log2x-1=0,得 x=2,所以函数 f(x)的零点为 2. 答案:2
方法归纳
函数零点的求法 求函数 y=f(x)的零点通常有两种方法:其一是令 f(x)=0,根据解 方程 f(x)=0 的根求得函数的零点;其二是画出函数 y=f(x)的图象,图 象与 x 轴的交点的横坐标即为函数的零点.
第1课时 函数的零点与方程的解
[教材要点]
要点一 函数的零点 1.零点的定义 对于函数 y=f(x),把_f_(x_)_=__0_的__实__数___x__,叫做函数 y=f(x)的零点. 2.方程的根与函数零点的关系
交点的横坐标
零点
状元随笔 函数的零点不是一个点,而是一个实数,当自变量取 该值时,其函数值等于零.
又函数 f(x)=log3x-8+2x 的图象是连续的. ∴函数 f(x)的零点所在区间是(3,4).
答案:C
方法归纳
判断函数零点所在区间的三个步骤 (1)代入:将区间端点值代入函数求出函数的值. (2)判断:把所得的函数值相乘,并进行符号判断. (3)结论:若符号为正且函数在该区间内是单调函数,则在该区间 内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.
状元随笔 利用数形结合讨论方程的解或图象的交点.讨论方程
第15节 函数的零点
典例分析:
例 4:已知函数 f(x)的图象是连续不断的,有如下的 x,f(x)的对应表:
则函数 f(x)存在零点的区间有( )
A.区间[2,3]和[3,4]
B.区间[3,4]、[4,5]和[5,6]
C.区间[2,3]、[3,4]和[4,5] D.区间[1,2]、[2,3]和[3,4]
解:由已知条件可得:f(1)=﹣8<0,f(2)=2>0,f(3)=﹣3<0,f(4)=5
高中数学 必修一
第二章 函数 第15节 函数的零点
第二章 函数
第十五节 函数的零点
必备新知
1.函数的零点
如果函数 y=f(x)在实数 α 处的值等于零,即 f(α)=0,则 α 叫做这个函数的零点.在坐标系
中表示图象与 x 轴的公共点是(α,0).
典例分析:
例 1:求下列函数的零点: (1)f(x)=-x2-2x+3; (2)f(x)=x4-1.
3.已知函数
则方程 f(x)+1=0 的实根个数为( )
A.0 B.1 C.2 D.3
解:画出函数
和 y=﹣1 的图象,
方程 f(x)+1=0 即 f(x)=﹣1, 结合图象易知这两个函数的图象有 2 交点, 则方程 f(x)+1=0 的实根个数为 2. 故选 C.
4.已知函数 f(x)是定义在 R 上的奇函数,且在区间(0,+∞)上单调,f(2) >0>f(1),则函数 f(x)的零点个数为( ) A.0 B.1 C.2 D.3
典例分析:
例 6:(1)函数 f(x)=x2﹣2x+a 在区间(1,3)内有一个零点,则实数 a 的取值
范围是( )
A.(﹣3,0)
B.(解:﹣∵3令,f1()x)=Cx2.﹣(2x﹣+a1,,它3的)对称D轴.为(x﹣=1,1,1)
高中数学零点存在的原理和应用
高中数学零点存在的原理和应用高中数学中,函数的零点是一个重要的概念。
零点即函数图像与x轴的交点,也就是函数取值为0的点。
零点存在的原理和应用有以下几个方面。
一、零点存在的原理1.介值定理:如果函数在闭区间[a,b]上连续,且函数在区间端点处的值异号(即函数在区间的两个端点处取正值和负值),那么在(a,b)内至少有一个点x0,使得函数取零值。
这个定理也可以叫做柯西中值定理。
2.辛钦定理:如果函数在区间[a,b]上连续,且函数在区间的两个端点处取正值和负值,那么函数至少有一个零点存在于(a,b)内。
二、零点存在的应用1.方程求解:通过函数的零点,我们可以很方便地求解一些方程。
例如,给定一个函数f(x),要求解f(x)=0的解,可以通过找到f(x)的零点来解方程。
这在高中数学的方程求解中经常用到。
通过对函数图像进行观察和分析,我们可以推测方程可能的解的范围,并使用适当的方法来进一步求解方程。
2.函数性质分析:函数的零点可以揭示函数的性质。
例如,我们可以通过求解函数的零点来确定函数的增减区间,凸凹区间等。
通过求解零点,我们可以得到更多的信息,进一步深入地了解函数的性质和特点。
3.物理问题求解:零点的概念在物理问题的求解中也有应用。
例如,对于一些物理模型,我们可以通过建立正确的函数模型,并求解函数的零点,来解决相应的物理问题。
例如,抛物线运动问题中,可以通过建立物体的位移函数模型来求得物体的最高点和落地点等信息。
4.优化问题:在一些优化问题中,我们也可以应用零点的概念。
例如,通过建立其中一种函数模型来描述一个具体的优化问题,然后求解这个函数的零点,就可以找到最优解所对应的参数值。
这在实际生活中的一些决策问题中经常使用。
综上所述,高中数学中函数的零点存在的原理是基于介值定理和辛钦定理,其应用非常广泛。
除了方程求解、函数性质分析、物理问题求解和优化问题,零点的概念还有很多其他的应用,例如图像处理、金融领域的风险评估等。
高中数学-函数的零点问题及例题分析
高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。
函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。
本文将介绍函数的零点问题,并通过一些例题分析来加深理解。
2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。
函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。
函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。
函数的零点问题与方程的解问题紧密相关。
对于一元函数,函数的零点就是方程$f(x)=0$的解。
因此,解方程可以转化为求函数的零点。
函数的零点可以通过图像、图表或数值计算等方法来确定。
下面将通过几个例题来进一步分析。
3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。
解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。
我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。
3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。
解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。
为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。
因此,函数$g(x)$的零点为$x=1$。
3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。
解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。
4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。
函数的零点是函数取零值的点,可以通过解相应的方程来求得。
通过例题分析,我们进一步了解了求函数零点的具体方法。
在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。
函数的零点与方程的解(高中数学)
指数函数与对数函数
2
学习目标
核心素养
1.理解函数零点的概念以及函数零 1.借助零点的求法培养数学运算和
点与方程根的关系.(易混点) 逻辑推理的素养.
2.会求函数的零点.(重点) 2.借助函数的零点同方程根的关系,
3.掌握函数零点存在定理并会判断 培养直观想象的数学素养.
25
2.若函数g(x)=f(x知方程 f(x)-a=0有解,即a=f(x)有解. 故a的范围为y=f(x)的值域. 法二:g(x)=f(x)-a有零点,等价于函数y=a与函数y=f(x)的图象有 交点,故可在同一坐标系中分别画出两函数的图象,观察交点情况即 可.
26
【例 3】 已知 0<a<1,则函数 y=a|x|-|logax|的零点的个数为( )
A.1
B.2
C.3
D.4
[思路点拨]
构造函数fx=a|x|0<a<1 与gx=|logax|0<a<1
→
画出fx与 gx的图象
→
观察图象得 零点的个数
27
B [函数y=a|x|-|logax|(0<a<1)的零点的个 数即方程a|x|=|logax|(0<a<1)的根的个数,也就是 函数f(x)=a|x|(0<a<1)与g(x)=|logax|(0<a<1)的图象 的交点的个数.
(4)若 f(x)在(a,b)内有且只有一个零点,则
f(a)·f(b)<0.( )
33
2.函数 f(x)=2x-3 的零点所在
B [∵f(1)=2-3=-1<0,f(2)
的区间是( )
高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案
函数与方程【知识梳理】1、函数零点的定义(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。
函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。
②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。
【③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、函数零点的判定(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ⋅<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。
(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法① 代数法:函数)(x f y =的零点⇔0)(=x f 的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0∆>⇔)(x f y =有2个零点⇔0)(=x f 有两个不等实根; {0∆=⇔)(x f y =有1个零点⇔0)(=x f 有两个相等实根;0∆<⇔)(x f y =无零点⇔0)(=x f 无实根;对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定.1、 二分法(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤:① 确定区间[,]a b ,验证()()0f a f b ⋅<,给定精确度ε;②求区间(,)a b 的中点c ; ③计算()f c ;…(ⅰ)若()0f c =,则c 就是函数的零点;(ⅱ) 若()()0f a f c ⋅<,则令b c =(此时零点0(,)x a c ∈); (ⅲ) 若()()0f c f b ⋅<,则令a c =(此时零点0(,)x c b ∈);④判断是否达到精确度ε,即a b ε-<,则得到零点近似值为a (或b );否则重复②至④步.【经典例题】1.函数3()=2+2x f x x -在区间(0,1)内的零点个数是 ( )A 、0B 、1C 、2D 、3】2.函数 f (x )=2x +3x 的零点所在的一个区间是 ( )A 、(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)3.若函数=)(x f x a x a -- (0a >且1a ≠)有两个零点,则实数a 的取值范围是 .4.设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )= |x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为 ( ) A 、5 B 、6 C 、7 D 、8 5.函数2()cos f x x x =在区间[0,4]上的零点个数为 ( )A 、4B 、5C 、6D 、76.函数()cos f x x x =-在[0,)+∞内 ( ))A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点7.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( )A 、(-∞,-2]∪⎝⎛⎭⎫-1,32B 、(-∞,-2]∪⎝⎛⎭⎫-1,-34C 、⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D 、⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 8.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .9.求下列函数的零点:(1)32()22f x x x x =--+; (2)4()f x x x=-.>10.判断函数y =x 3-x -1在区间[1,]内有无零点,如果有,求出一个近似零点(精确度./【课堂练习】1、在下列区间中,函数()43xf x e x =+-的零点所在的区间为 ( )A 、1(,0)4-B 、1(0,)4C 、11(,)42D 、13(,)242、若0x 是方程lg 2x x +=的解,则0x 属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)3、下列函数中能用二分法求零点的是 ( )?4、函数f ()x =2x+3x 的零点所在的一个区间是 ( )A .(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是 ( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4]6、函数()x f =x -cos x 在[0,∞+﹚内 ( )A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点 7、若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过,则()f x 可以是( )A 、()41f x x =-B 、2()(1)f x x =-C 、()1xf x e =- D 、1()ln()2f x x =- #8、下列函数零点不宜用二分法的是 ( )A 、3()8f x x =-B 、()ln 3f x x =+C 、2()2f x x =++D 、2()41f x x x =-++9、函数f(x)=log 2x+2x-1的零点必落在区间 ( )A 、⎪⎭⎫ ⎝⎛41,81B 、⎪⎭⎫⎝⎛21,41C 、⎪⎭⎫⎝⎛1,21D 、(1,2)10、01lg =-xx 有解的区域是 ( ) A 、(0,1] B 、(1,10]C 、(10,100]D 、(100,)+∞11、在下列区间中,函数()e 43x f x x =+-的零点所在的区间为 ( )A 、1(,0)4-B 、 1(0,)4C 、11(,)42D 、13(,)24!12、函数2()log f x x x π=+的零点所在区间为( )A 、1[0,]8B 、11[,]84C 、11[,]42D 、1[,1]213、设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )A 、(1,1.25)B 、(1.25,1.5)C 、(1.5,2)D 、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是( ) A 、[]4,2-- B 、 []2,0- C 、[]0,2 D 、[]2,415、函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩, 零点个数为( )A 、3 B 、2 C 、1 D 、016、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程32220x x x +--=的一个近似根(精确到)为 ( )A 、B 、1.3C 、D 、 ^17、方程223xx -+=的实数解的个数为 .18、已知函数22()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。
高中数学讲义:函数零点的个数问题
函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =Î,我们把方程()0f x =的实数根x 称为函数()()y f x x D =Î的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b Î,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <Þ在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f æö><ç÷èø即可判定其零点必在1,12æöç÷èø中2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
函数零点的判定定理-高中数学知识点讲解(含答案)
函数零点的判定定理(北京习题集)(教师版)一.选择题(共5小题)1.(2019•海淀区一模)若0x 是函数21()log f x x x=-的零点,则( ) A .010x -<<B .001x <<C .012x <<D .024x <<2.(2019秋•西城区校级期中)函数3()23f x x x =--一定存在零点的区间是( ) A .(2,)+∞B .(1,2)C .(0,1)D .(1,0)-3.(2019秋•海淀区校级期中)已知定义在R 上的函数()f x 的图象是连续不断的,具有如下对应表:那么函数()f x 一定存在零点的区间是( ) A .(,1)-∞B .(1,2)C .(2,3)D .(3,4)4.(2019秋•海淀区校级期中)若函数()()a f x x a R x=+∈在区间(1,2)上恰有一个零点,则a 的值可以是( )A .2-B .0C .1-D .35.(2019秋•海淀区校级期中)定义在R 上的奇函数()f x 满足2()2(0)f x x x x =-,则函数()f x 的零点个数为() A .0B .1C .2D .3二.填空题(共8小题)6.(2018•大兴区一模)能使函数32()32f x x a x =-+有3个零点的一个a 值为 .7.(2018•西城区二模)已知函数2,1()1,12x a x f x x a x ⎧+⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,那么a 的取值范围是 .8.(2017•东城区二模)已知函数()126f x nx x =+-的零点在区间(2k ,1)()2k k Z +∈内,那么k = .9.(2016秋•大兴区期末)函数2()2f x x x a =-+在区间(2,0)-和(2,3)内各有一个零点,则实数a 的取值范围是 . 10.(2017秋•西城区校级期中)方程4lgx x +=的根0(,1)x k k ∈+,其中k Z ∈,则k = . 11.(2017•顺义区二模)已知函数32,(),x x mf x x x m⎧=⎨>⎩,函数()()g x f x k =-.(1)当2m =时,若函数()g x 有两个零点,则k 的取值范围是 ;(2)若存在实数k 使得函数()g x 有两个零点,则m 的取值范围是 . 12.(2017秋•西城区校级期中)函数24x y =-的零点是 . 13.(2017•丰台区一模)已知函数(2)(),1()1, 1.x a a x x f x a x --⎧⎪=-> (1)若0a =,[0x ∈,4],则()f x 的值域是 ; (2)若()f x 恰有三个零点,则实数a 的取值范围是 . 三.解答题(共2小题)14.(2016秋•西城区期末)已知函数()3x f x =,()||3g x x a =+-,其中a R ∈. (Ⅰ)若函数()[()]h x f g x =的图象关于直线2x =对称,求a 的值; (Ⅱ)给出函数[()]y g f x =的零点个数,并说明理由.15.(2017秋•海淀区校级月考)已知函数()1f x xlnx =-,()(1)1g x a x =--. (Ⅰ)求证:函数()f x 有且只有一个零点;(Ⅱ)若曲线()y f x =与()y g x =有两个交点,求实数a 的取值范围.函数零点的判定定理(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2019•海淀区一模)若0x 是函数21()log f x x x=-的零点,则( ) A .010x -<<B .001x <<C .012x <<D .024x <<【分析】利用函数的连续性,结合零点判定定理推出结果即可. 【解答】解:0x 是函数21()log f x x x =-的零点,函数在0x >时,是增函数, 可得:f (1)10=-<,f (2)1102=->, 所以f (1)f (2)0<, 函数的零点在:(1,2). 故选:C .【点评】本题考查函数的零点判定定理的应用,是基本知识的考查.2.(2019秋•西城区校级期中)函数3()23f x x x =--一定存在零点的区间是( ) A .(2,)+∞B .(1,2)C .(0,1)D .(1,0)-【分析】由已知可检验f (1)40=-<,f (2)10=>,结合零点判定定理即可求解. 【解答】解:3()23f x x x =--,f ∴(1)40=-<,f (2)10=>,由函数零点判定定理可知,函数在(1,2)上一定存在零点. 故选:B .【点评】本题主要考查了函数零点判定定理的简单应用,属于基础试题.3.(2019秋•海淀区校级期中)已知定义在R 上的函数()f x 的图象是连续不断的,具有如下对应表:那么函数()f x 一定存在零点的区间是( ) A .(,1)-∞B .(1,2)C .(2,3)D .(3,4)【分析】由所给的表格可得f (2)f (3)0<,根据函数零点的判定定理可得函数()f x 一定存在零点的区间. 【解答】解:由所给的表格可得f (3) 3.5=-,f (2) 2.9=,f (2)f (3)0<, 根据函数零点的判定定理可得函数()f x 一定存在零点的区间是(2,3),故选:C .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.4.(2019秋•海淀区校级期中)若函数()()af x x a R x=+∈在区间(1,2)上恰有一个零点,则a 的值可以是( )A .2-B .0C .1-D .3【分析】由已知可转化为2a x =-在(1,2)只有一个零点,然后结合二次函数的性质可求a 的范围. 【解答】解:由()0af x x x=+=可得,2a x =-, 由函数()()af x x a R x=+∈在区间(1,2)上恰有一个零点,可知2a x =-在(1,2)只有一个零点,当(1,2)x ∈时,2(4,1)y x =-∈--,41a ∴-<<-,结合选项可知,A 符合题意.故选:A .【点评】本题主要考查了函数零点的简单应用,体现了转化思想的应用.5.(2019秋•海淀区校级期中)定义在R 上的奇函数()f x 满足2()2(0)f x x x x =-,则函数()f x 的零点个数为() A .0B .1C .2D .3【分析】先求出当0x 时,2()2f x x x =-的零点,然后根据()f x 为奇函数,图象关于原点对称即可求解. 【解答】解:当0x 时,2()20f x x x =-=可得,0x =或2x =, ()f x 为奇函数,(2)f f ∴-=-(2)0=,从而函数()f x 有3个零点:0,2,2-.故选:D .【点评】本题主要考查了奇函数的对称性及函数零点的求解,属于基础试题. 二.填空题(共8小题)6.(2018•大兴区一模)能使函数32()32f x x a x =-+有3个零点的一个a 值为 2 . 【分析】求出()f x 的单调性和极值,令极大值大于0,极小值小于0求出a 的范围即可. 【解答】解:2222()333()f x x a x a '=-=-, 令()0f x '=可得x a =±,若0a =,则()0f x ',()f x 单调递增, ()f x ∴只有1个零点,不符合题意;若0a >,则()f x 的极大值3()22f a a -=+,()f x 的极小值为f (a )322a =-+,若()f x 有3个零点,则33220220a a ⎧+>⎨-+<⎩,解得1a >. 若0a <,则()f x 的极大值为f (a )322a =-+,极小值为3()22f a a -=+, 若()f x 有3个零点,则33220220a a ⎧-+>⎨+<⎩,解得1a <-.故a 的取值范围是(-∞,1)(1-⋃,)+∞. 故答案为:2(不唯一).【点评】本题考查了函数零点个数与函数单调性、极值的关系,属于中档题.7.(2018•西城区二模)已知函数2,1()1,12x a x f x x a x ⎧+⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,那么a 的取值范围是 1[2,)2-- .【分析】通过分段函数,利用指数函数以及一次函数,利用函数的值域,转化求解即可. 【解答】解:1x 时,2(x y a a =+∈,2]a +, 1x >时,11(22y x a a =+∈+,)+∞, 两个函数都是增函数, 函数()f x 恰有两个零点, 可得:1220a a ⎧+<⎪⎨⎪+⎩,解得[2a ∈-,1)2-.故答案为:[2-,1)2-.【点评】本题考查函数与方程的应用,函数的单调性以及函数的值域,分段函数的应用,考查计算能力. 8.(2017•东城区二模)已知函数()126f x nx x =+-的零点在区间(2k ,1)()2k k Z +∈内,那么k = 5 .【分析】函数()26f x lnx x =+-在其定义域上连续单调递增,从而利用函数的零点的判定定理求解即可. 【解答】解:函数()26f x lnx x =+-在其定义域(0,)+∞上连续单调递增, f (1)12640ln =+-=-< f (2)246220ln ln =+-=-<, f (3)36630ln ln =+-=>;∴根据零点存在定理,0(2,3)x ∃∈,使得0()0f x =.555()10222f ln ln lne =-=-< 05(2x ∴∈,3)∴522k =即5k = 故答案为:5.【点评】本题考查了函数的零点的判定定理的应用.注意函数的单调性以及函数的连续性的判断.9.(2016秋•大兴区期末)函数2()2f x x x a =-+在区间(2,0)-和(2,3)内各有一个零点,则实数a 的取值范围是 30a -<< .【分析】函数2()2f x x x a =-+在区间(2,0)-和(2,3)内各有一个零点,由二次函数的性质知(2)0(0)0(2)0(3)0f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩,解此不等式求出实数a 的取值范围【解答】解:函数2()2f x x x a =-+在区间(2,0)-和(2,3)内各有一个零点, ∴由二次函数的性质知(2)0(0)0(2)0(3)0f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩,即400030a a a a +>⎧⎪<⎪⎨<⎪⎪+>⎩30a ∴-<<故答案为30a -<<【点评】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.10.(2017秋•西城区校级期中)方程4lgx x +=的根0(,1)x k k ∈+,其中k Z ∈,则k = 3 . 【分析】构造函数,利用函数的单调性以及函数的连续性,通过零点判断定理求解即可. 【解答】解:令()4f x lgx x =+-,则由题意0()0f x =,且()f x 在(0,)+∞上单调递增.f (1)11430lg =+-=-<,f (2)220lg =-<,f (3)310lg =-<,f (4)40lg =>,由零点存在定理可知0(3,4)x ∈,故3k =. 故答案为:3.【点评】本题考查函数的零点判断定理的应用,是基本知识的考查. 11.(2017•顺义区二模)已知函数32,(),x x mf x x x m ⎧=⎨>⎩,函数()()g x f x k =-.(1)当2m =时,若函数()g x 有两个零点,则k 的取值范围是 (4,8] ; (2)若存在实数k 使得函数()g x 有两个零点,则m 的取值范围是 .【分析】(1)分别画出()y f x =与y k =的图象,如图所示,若函数()g x 有两个零点,由图象可得48k <, (2)分类讨论,当0m 时,只要32m m >即可,当0m <都存在【解答】解:(1)当2m =时,分别画出()y f x =与y k =的图象,如图所示, 若函数()g x 有两个零点,由图象可得48k <, 故k 的取值范围是(4,8](2)当0m 时,3y x =在(-∞,]m 为增函数,最大值为3m ,2y x =在(,)m +∞为增函数,最小值为2m ,若存在实数k 使得函数()g x 有两个零点,则32m m >,解得1m >, 当0m <时,2y x =在(,0)m 上为减函数,在(0,)+∞为增函数, 故若存在实数k 使得函数()g x 有两个零点, 综上所述m 的取值范围为(-∞,0)(1⋃,)+∞, 故答案为:(1):(4,8],(2):(-∞,0)(1⋃,)+∞【点评】本题考查了分度函数以及函数零点的问题,常采用数形结合法,属于中档题 12.(2017秋•西城区校级期中)函数24x y =-的零点是 2 .【分析】根据题意,由函数的解析式可得240x -=,解可得x 的值,即可得函数的零点,即可得答案. 【解答】解:根据题意,函数24x y =-, 令240x -=, 解可得:2x =,即函数24x y =-的零点是2;故答案为:2.【点评】本题考查函数的零点,注意函数的零点与方程的根的关系. 13.(2017•丰台区一模)已知函数(2)(),1()1, 1.x a a x x f x a x --⎧⎪=->(1)若0a =,[0x ∈,4],则()f x 的值域是 [1-,1] ; (2)若()f x 恰有三个零点,则实数a 的取值范围是 .【分析】(1)求出()f x 在[4-,4]上的单调性,利用单调性求出最值即可得出值域; (2)对x 讨论,分别求出()f x 的零点,令其零点分别在对应的定义域上即可.【解答】解:(1)0a =时,2,1()1,1x x f x x ⎧-⎪=>,()f x ∴在[0,1]上单调递减,在(1,4]上单调递增, (0)0f =,f (1)1=-,f (4)1=,()f x ∴在[0,1]上的值域是[1-,0],在(1,4]上的值域是(0,1], ()f x ∴在[0,4]上的值域是[1-,1].(2)当1x 时,令()0f x =得2x a =或x a =,当1x >时,令()0f x =1a =-,2(1)(11)x a a ∴=-->, ()f x 恰好有三个解, ∴22112(1)111a a a a a a ⎧⎪⎪⎪≠⎨⎪->⎪->⎪⎩,解得0a <. 故答案为:[1-,1];(,0)-∞.【点评】本题考查了基本初等函数的单调性,函数零点的计算,属于中档题. 三.解答题(共2小题)14.(2016秋•西城区期末)已知函数()3x f x =,()||3g x x a =+-,其中a R ∈. (Ⅰ)若函数()[()]h x f g x =的图象关于直线2x =对称,求a 的值; (Ⅱ)给出函数[()]y g f x =的零点个数,并说明理由.【分析】(Ⅰ)函数||3()[()]3x a h x f g x +-== 的图象关于直线2x =对称,则(4)()|||4|h x h x x a x a -=⇒+=-+恒成立2a ⇒=-;(Ⅱ)函数[()]|3|3x y g f x a ==+-的零点个数,就是函数()|3|x G x a =+与3y =的交点,分①当03a <时;②当3a 时;③30a -<时;④当3a <-时,画出图象判断个数.【解答】解:(Ⅰ)函数||3()[()]3x a h x f g x +-== 的图象关于直线2x =对称,则(4)()|||4|h x h x x a x a -=⇒+=-+恒成立2a ⇒=-;(Ⅱ)函数[()]|3|3x y g f x a ==+-的零点个数,就是函数()|3|x G x a =+与3y =的交点,①当03a <时,()|3|3x x G x a a =+=+与3y =的交点只有一个,即函数[()]y g f x =的零点个数为1个(如图1); ②当3a 时,()|3|3x x G x a a =+=+与3y =没有交点,即函数[()]y g f x =的零点个数为0个(如图1); ③30a -<时,()|3|x G x a =+与3y =的交点只有1个(如图2); ④当3a <-时,()|3|x G x a =+与3y =的交点有2个(如图2);【点评】本题考查了函数的零点,把零点个数转化为两函数交点个数是常用方法,属于中档题. 15.(2017秋•海淀区校级月考)已知函数()1f x xlnx =-,()(1)1g x a x =--. (Ⅰ)求证:函数()f x 有且只有一个零点;(Ⅱ)若曲线()y f x =与()y g x =有两个交点,求实数a 的取值范围.【分析】(Ⅰ)根据函数零点与方程之间的关系转化为两个函数图象交点个数进行判断即可.(Ⅱ)将函数交点个数转化为方程根的个数,构造函数,求出函数的导数求函数的切线,利用数形结合进行求解即可.【解答】解:(Ⅰ)()f x 的定义域为(0,)+∞, 由()0f x =得10xlnx -=,即1xlnx =, 即1lnx x=,作出两个函数y lnx =和1y x=的图象如图: 则两个图象在(0,)+∞上只有一个交点, 即()f x 有且只有一个零点.(Ⅱ)若曲线()y f x =与()y g x =有两个交点, 即方程()()f x g x =有两个交点, 即1(1)1xlnx a x -=--, 得(1)xlnx a x =-,有两个根, 当1x =时,方程成立, 即当1x ≠时,方程还有一个根, 设()h x xlnx =, 1()1h x lnx xlnx x'=+=+, 由()0h x '>得10lnx +>,得1lnx >-,得1x e>,此时单调递增, ()0h x '<得10lnx +<,得1lnx <-,得10x e<<,此时单调递减,作出函数()h x 的图象如图: 则在(1,0)处h '(1)111ln =+=, 则过(1,0)且的切线斜率1k =,要使(1)y a x =-与()h x 在1x ≠时,还有一个交点, 则0a >且1a ≠即可,即实数a 的取值范围是0a >且1a ≠.【点评】本题主要考查函数与方程的应用,利用条件转化为两个函数图象交点个数问题以及构造函数求出函数的切线,利用数形结合是解决本题的关键.综合性较强,有一定的难度.第11页(共11页)。
高中数学基础之函数零点
高中数学基础之函数零点函数零点的考查往往以选择题或填空题的形式出现,在解答题中,特别是有关导数的解答题中也经常考查零点问题.根据高考试题的考查特点,建议掌握好函数零点的求法、含参数问题的解决办法以及常用的二次函数零点问题的求法.函数的零点(1)零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.注:函数的零点不是函数y=f(x)的图象与x轴的交点,而是y=f(x)的图象与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数.(2)零点的几个等价关系:方程f(x)=0有实数解⇔函数y=f(x)的图象与x轴有公共点⇔函数y=f(x)有零点.零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条□01连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.注:函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.一、函数零点及其所在区间的判断例1 函数f(x)=log3x+x-2的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案B解析解法一(定理法):函数f(x)=log3x+x-2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续的曲线.由题意知f(1)=-1<0,f(2)=log32>0,根据零点存在定理可知,函数f (x )=log 3x +x -2有唯一零点,且零点在区间(1,2)内.故选B.解法二(图象法):将函数f (x )的零点所在的区间转化为函数g (x )=log 3x 和h (x )=-x +2图象交点的横坐标所在的范围.作出两函数的图象如图所示,可知f (x )的零点所在的区间为(1,2).故选B.例2 已知函数f (x )=ln x +2x -6的零点在⎝ ⎛⎭⎪⎫k 2,k +12(k ∈Z )内,那么k = . 答案 5解析 因为x ∈(0,+∞),f ′(x )=1x +2>0,所以f (x )在(0,+∞)上单调递增,f ⎝ ⎛⎭⎪⎫52=ln52-1<0,f (3)=ln 3>0,所以f (x )的零点在⎝ ⎛⎭⎪⎫52,3内,则整数k =5. 总结:判断函数零点所在区间的方法(1)解方程法,当对应方程易解时,可直接解方程. (2)利用零点存在定理求解.(3)数形结合法,画出相应函数图象,观察与x 轴交点来判断,或转化为两个函数的图象在所给区间上是否有交点来判断.二、函数零点个数的判断例3 已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( ) A .0 B .1 C .2 D .3 答案 C解析 令f (x )+3x =0,则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.例4 若函数y =f (x )(x ∈R )满足f (x +4)=f (x ),且x ∈(-2,2]时,f (x )=12|x |,则函数y =f (x )的图象与函数y =lg |x |的图象的交点个数为( )A .4B .6C .8D .10 答案 C解析 因为f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数.又x ∈(-2,2]时,f (x )=12|x |,所以作出函数f (x )的图象如图所示.因为x =±10时,y =lg |±10|=1,所以由数形结合可得函数y =f (x )的图象与函数y =lg |x |的图象的交点个数为8.例5 已知函数f (x )=⎩⎨⎧ln (x -1),x >1,2x -1-1,x ≤1,则f (x )的零点个数为( )A .0B .1C .2D .3 答案 C解析 当x >1时,令f (x )=ln (x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1,故f (x )的零点个数为2.例6 若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个答案 B解析 分别作出y =f (x )与y =log 3|x |的图象如图所示,由图可知y =f (x )与y =log 3|x |的图象有4个交点,故函数y =f (x )-log 3|x |有4个零点.总结:函数零点个数的判断方法(1)直接求零点.令f (x )=0,有几个解就有几个零点.(2)零点存在定理.要求函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,且f (a )f (b )<0,再结合函数的图象与性质确定函数零点个数.(3)利用图象交点个数判断.作出两函数图象,观察其交点个数即得零点个数. 三、函数零点的应用例7 已知方程x 2+(m -2)x +5-m =0的一根在区间(2,3)内,另一根在区间(3,4)内,则m 的取值范围是( )A .(-5,-4)B .⎝ ⎛⎭⎪⎫-133,-2C .⎝ ⎛⎭⎪⎫-133,-4D .(-5,-2) 答案 C解析 令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质,若一根在区间(2,3)内,另一根在区间(3,4)内,只需⎩⎪⎨⎪⎧f (2)>0,f (3)<0,f (4)>0,即⎩⎪⎨⎪⎧4+2(m -2)+5-m >0,9+3(m -2)+5-m <0,16+4(m -2)+5-m >0,解不等式组可得-133<m <-4,即m 的取值范围为⎝ ⎛⎭⎪⎫-133,-4.故选C. 例8 设函数f (x )=⎩⎨⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞)B .⎝ ⎛⎭⎪⎫-1e 2,0C .{0}∪(1,+∞)D .(0,1]答案 D解析 函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得x <-2,此时f (x )为减函数,由f ′(x )>0得-2<x ≤0,此时f (x )为增函数,即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1.故选D.例9 若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是 . 答案 ⎣⎢⎡⎦⎥⎤-14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎫2x -122-14,令2x=t ,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤12,2,a =⎝ ⎛⎭⎪⎫t -122-14,0≤t -12≤32,0≤⎝ ⎛⎭⎪⎫t -122≤94,-14≤⎝ ⎛⎭⎪⎫t -122-14≤2,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,2.总结:已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.。
人教版高中数学必修一第三章知识点总结
第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k y k x=≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。
高中新教材数学必修件第章函数的零点
05
思想
对称性在函数零点中体现
函数零点的对称性
对于某些函数,其零点在坐标系上呈现出对称性,如二次函数的两个零点关于对 称轴对称。
对称性的美学价值
对称性在数学中是一种重要的美学特征,它体现了数学中的平衡和和谐,使得函 数图像更加美观。
简洁性在函数零点中体现
函数零点的简洁性
函数零点作为函数与x轴交点的横坐标,具有简洁明了的数学 表达形式,如一次函数的零点即为其斜率和截距的比值。
对于函数$y = f(x)$,若存在$x_0 in D$(D为函数定义域),使得 $f(x_0) = 0$,则称$x_0$为函数 $y = f(x)$的零点。
零点与图像的关系
函数$y = f(x)$的零点即为函数图 像与x轴交点的横坐标。
函数零点存在性定理
零点存在性定理
若函数$y = f(x)$在闭区间[a, b]上连 续,且$f(a) cdot f(b) < 0$,则函数 $y = f(x)$在区间(a, b)内至少存在一 个零点。
分段函数和复合函数零点问题
分段函数零点求解
针对每一段分别求解,注意端点处的取值情况,以及各段之间的 连续性。
复合函数零点分析
将复合函数分解为若干个基本函数,分别研究各基本函数的零点, 再综合得出复合函数的零点。
零点存在性定理的应用
在求解分段函数和复合函数零点时,可以运用零点存在性定理来判 断零点的存在性。
零点存在性定理的推论
若函数$y = f(x)$在区间(a, b)内单调 ,且$f(a) cdot f(b) < 0$,则函数$y = f(x)$在区间(a, b)内有且仅有一个零 点。
函数零点与方程根关系
01
函数零点与方程根的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数零点的判定定理
1.函数零点的判定定理
【知识点的知识】
1、函数零点存在性定理:
一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函
数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c 也就是f(x)=0 的根.
特别提醒:
(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.
(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没
有零点,例如,函数f(x)=x2﹣3x+2 有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.
(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯
一的零点.
2、函数零点个数的判断方法:
(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出
零点.
特别提醒:
①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0 在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1 在[0,2]上只有一个零点;
②函数的零点是实数而不是数轴上的点.
(2)代数法:求方程f(x)=0 的实数根.
1/ 1。