七年级下数学统计例题及答案
人教版七年级数学下册《10.1统计调查》同步练习题-含有答案
人教版七年级数学下册《10.1统计调查》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.万州区教师进修学院为了督查国家双减政策的落实情况,现调查某校学生每日睡眠时长问题,选用下列哪种方法最恰当()A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查2.某校从800 名学生中随机抽取100 名学生进行百米测试,下列说法正确的是()A.该调查方式是普查B.800 名学生是总体C.样本是100名学生D.每名学生的百米测试成绩是个体3.王老师了解到七年级5个班学生完成课后作业的平均时间分别为(单位:分钟):30,45,40,30,35,获得这组数据的方法()A.直接观察B.测量C.实验D.调查4.以下问题,不适合普查的是()A.了解一批灯泡的使用寿命B.学校招聘教师,对应聘人员的面试C.了解全班学生每周体育锻炼时间D.上飞机前对旅客的安检5.某灯具厂从1万件同批次产品中随机抽称了100件进行质检,发现其中有6件不合格,估计该厂这1万件产品中不合格品的件数大约是()A.6件B.100件C.600件D.10000件6.合肥市农科所在相同条件下经试验发现玉米种子的发芽率为97.1%,该市某种粮大户准备了1000kg玉米种子用来育种,他可能会损失大约()kg.A.971B.129C.1D.297.从某地某一个月中随机抽取5天的中午,记录这5天12时的气温(单位:℃),结果如下:2232251318可估计该地这一个月中午12时的平均气温为()℃.A.13B.22C.25D.328.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:建议学校商店进货数量最多的品牌是()A.甲B.乙C.丙D.丁6π9π5π5π二、填空题10.为了直观地表示某店今年下半年某款电视的每月的销售额随月份的变化趋势,最适合使用的统计图是.11.在2024年义务教育质量国家监测中,对某校八年级(1)班30名学生语文成绩进行分析,80~100分数段的学生有21人,则这21人所占该班人数的百分比是.12.如图示,是某校四个年级男女生人数的条形统计图,则学生最多的年级是年级.13.某水果店老板为了解甲、乙两品种草莓的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两品种草莓各7份样品,对草莓的品质进行评分(百分制),并对数据进行收集、整理,然后绘制出如下所示的两品种草莓品质得分的调查结果统计图.根据统计图,可知品质相对较好的是______品种.(填甲或乙)、14.学校有一块校园试验田,七年级同学种植青椒、西红柿、茄子三种蔬菜,统计其数量,绘制扇形统计图如图所示,若种植西红柿苗90株,该校七年级同学一共种植蔬菜株.三、解答题15 . 某中学的“爱上阅读”小组成员,于2024年1月28日线上观看了阳城县委宣传部举办的书香润阳城共读共享:“悦读悦心”——“阅读的力量”读书活动(第17期).为了了解学校学生课外阅读情况,他们决定对本校学生每天的课外阅读情况进行调查,他们随机抽取了本校部分学生进行了问卷调查,并将结果分为A,B,C,D四个等级,表、图如下,请根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)将条形统计图补充完整;(3)表示D等级的扇形圆心角的度数是多少?(4)若该校共有1200名学生,每天课外阅读时间在2小时以内的学生有多少人?16.初三年级261位学生参加100米跑和推铅球两项体育测试,某班35位学生的100米跑成绩、推铅球成绩与两项总成绩在全年级中的排名情况如图1和图2所示,甲,乙,丙为该班三位学生.(1)计算各季度的销售量,并用一幅合适的统计图表示;(2)计算各季度的销售量在全年销售量中所占的百分比(精确到1%),并用适当的统计图表示;(3)用一幅合适的统计图表示各季度销售量的变化情况.参考答案:1.B2.D3.D4.A5.C6.D7.B8.D9.B10.折线统计图11.70%12.713.甲14.15015.(1)200名(2)(3)36°(4)1080人16.(1)甲(2)推铅球17.(1)第一季度:250件;第二季度:20件;第三季度:10件;第四季度:320件(2)各季度销售量在全年销售量中所占的百分比约为:41.7%、3.3%、1.7%、53.3%.(3)。
初一数学下册综合算式专项练习题统计与概率的计算
初一数学下册综合算式专项练习题统计与概率的计算统计与概率是数学中非常重要的内容,它既有实际应用的意义,也能够增强我们的逻辑思维能力。
在初一数学下册中,我们将会遇到一些关于统计与概率的计算题目。
让我们来看一些例子,帮助我们更好地理解和掌握这部分知识。
1. 题目一某班共有60名学生,其中30名男生和30名女生。
如果从班级中随机选取一名学生,那么他/她是女生的概率是多少?解答:我们可以利用概率的定义来求解这个问题。
在这个班级中,有60名学生,其中30名是女生。
所以,女生的概率可以表示为:女生的人数 / 总人数 = 30 / 60 = 1/2。
所以,选取一名学生是女生的概率是1/2。
2. 题目二一副扑克牌共有52张牌,其中有4个花色(♠️、♥️、♣️和♦️),每个花色下有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。
如果从扑克牌中随机选取一张牌,那么它是红心牌的概率是多少?解答:我们知道一副扑克牌共有52张牌,其中有13张红心牌。
所以,红心牌的概率可以表示为:红心牌的数量 / 总牌数 = 13 / 52 = 1/4。
所以,选取一张牌是红心牌的概率是1/4。
3. 题目三某学校有200名学生,其中150名学生会弹钢琴,50名学生会弹吉他,并且30名学生既会弹钢琴又会弹吉他。
如果从学校中随机选取一名学生,那么他/她会弹钢琴或弹吉他的概率是多少?解答:我们可以利用概率的加法原理来求解这个问题。
在这个学校中,会弹钢琴的学生有150名,会弹吉他的学生有50名,既会弹钢琴又会弹吉他的学生有30名。
所以,会弹钢琴或弹吉他的学生数目为:150 + 50 - 30 = 170。
总共有200名学生。
所以,选取一名学生会弹钢琴或弹吉他的概率是170 / 200 = 17/20。
通过以上的例子,我们可以看到,在统计与概率的计算中,我们可以利用基本的计数原理和概率的定义来解决问题。
只要我们理解了这些概念和原理,并能够灵活运用,就可以应对各种各样的统计与概率题目。
人教版七年级数学下册统计调查 典型例题(考点)讲解+练习(含答案)
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】统计调查知识讲解责编:杜少波【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3.会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.(2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3)样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.2.调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释:(1)全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.(2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.(3)调查方法的选择:①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本.【答案】C.类型二、普查和抽样调查2.(2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况【思路点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【答案】B.【解析】解:A、调查一批电视机的使用寿命情况,调查具有破坏性,适合抽样调查,故A不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.【总结升华】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列调查适合作抽样调查的是( ).A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【思路点拨】抽样调查不可能进行全面调查的现象.【答案】A.【解析】解:要了解义乌电视台“同年哥讲新闻”栏目的收视率,显然应采用抽样调查的方式.而对于B、D选项,因为漏掉每一个个体携带H1N1病毒者或者“神七”载人飞船有一个小零件不合格,都会出现意想不到的后果,因此需要采用全面调查的方式.了解某班每个学生家庭电脑的数量,范围小,工作量小,一般也采用全面调查的方式.故选A.【总结升华】①在具体的问题情境中,要根据需要选择用全面调查还是抽样调查的方式进行调查;抽样调查得到的信息的准确度受调查对象(即样本)的数量和特点影响,故抽样时必须注意调查对象是否具有代表性和广泛性.举一反三:【变式】下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.【答案】(1)采用的是全面调查方式收集数据的;(2)、(3)是采用抽样调查方式收集数据的.类型三、数据的描述4.2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.【思路点拨】依据条形图反映出来的数量作答.【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:故喜欢乒乓球的人数为:200-12-38-80-20=50(人).(2)喜欢收看羽毛球人数为:12=200(人),6%20⨯1800=180(人).200【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.5.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本110元每亩产量130千克油菜籽市场价格3元/千克种植面积500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【思路点拨】由扇形统计图反映出来的信息知:种子占生产成本的10%,根据这一点不难解答本题.【答案与解析】解:(1)种子占成本的百分数为 1-10%-35%-45%=10%,故种植油菜每亩的种子成本为:110×10%=11(元).(2)由统计表知,每亩油菜销售总价为:130×3=390(元),故农民冬种油菜每亩获利390-110=280(元).(3)因为农民种植油菜.每亩获利280元,则500000亩油菜共获利:280×500000=8140000000=1.4×10(元).【总结升华】在扇形统计图中,各部分所占的百分比之和=1,扇形对应圆心角度数=该扇形所占百分比×360°.6.某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【答案】C.【解析】解:从折线统计图,可知1日的用水量为30吨,2日的用水量为34吨,3日的用水量为32吨,4日的用水量为37吨,5日的用水量为28吨,6日的用水量为31吨,由此可计算出这6天的平均用水量为(30+34+32+37+28+31)÷6=32(吨).【总结升华】折线图的特点:易于显示数据的变化趋势.【:统计图例4】举一反三:【变式】近年来国内生产总值增长率变化情况如图,从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中,每年的国内生产总值不断增长D.这7年中,每年的国内生产总值有增有减【答案】D类型四、综合应用7.(2016•河南模拟)学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【思路点拨】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【答案与解析】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:(4)1800×=480(名).×360°=48°;答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【总结升华】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.【:统计图练习1】举一反三:【变式1】如果想表示我国从20002010年间国民生产总值的变化情况,最合适的是采用( ).A.条形统计图B.扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(2015•恩施州)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.40【答案】D.。
初一数学统计试题
初一数学统计试题1.要了解某地农户用电情况,抽查了部分农户在某地一个月中用电情况:用电15度的有3户,用电20度的有5户,用电30度的有2户,那么平均每户用电 .【答案】20.5度.【解析】平均数的计算方法是求出所有用户的总用电量,然后除以总户数即可:平均每户用电:.【考点】加权平均数.2.在选取样本时,下列说法不正确的是()A.所选样本必须足够大B.所选样本要具有普遍代表性C.所选样本可按自己的爱好抽取D.仅仅增加调查人数不一定能提高调查质量【答案】C【解析】选取样本必须足够大,且要具有普遍代表性,对于总体的估计才准确,所以不正确的是C.3.①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③【答案】A【解析】②不是对全体初中生进行的调查,④不是对全班同学作业完成情况的调查,故②④不是采用的普查方式. ①③采用的是普查方式,所以选A.4.把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A.B.C.D.【答案】D【解析】由图可知,只有封存家中等待处理的属于正确的处理方法,所以对过期药品处理不正确的家庭达到,故选D.5.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙【答案】B【解析】由题图可以得出:八年级共有学生;七年级的达标率为;九年级的达标率为;八年级的达标率为.所以九年级的达标率最高.故乙、丙的说法是正确的,故选B.6.某校为了了解初一年级名学生每天完成作业所用时间的情况,从中对名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是_______.【答案】20【解析】因为某校为了了解初一年级名学生每天完成作业所用时间的情况,从中对名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是.7.近五年来,某校图书拥有量统计表如下:_____册.【答案】【解析】2009年该校图书有册,从2008年到2012年该校图书增加了.8.为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次调查中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;(3)若该校有名学生,请估计该校参加“美术”活动项目的人数.【答案】(1)48 (2)90°(3)300【解析】解:(1)因为,所以在这次调查中,一共抽查了名学生.(2)因为.所以参加“音乐”活动项目在扇形统计图中所对扇形的圆心角为.(3)因为,所以该校参加“美术”活动项目的人数约为.9.下列调查中,适合采用全面调查方式的是()A.对宜春秀江水质情况的调查.B.对某班50名同学体重情况的调查.C.对端午节期间市场上粽子质量情况的调查.D.对万载县某类烟花爆竹燃放安全情况的调查.【答案】B【解析】普查具有资料包括的范围全面、详尽、系统的优点,但是普查的工作量大,耗资也多,一般不宜经常举行。
最新七年级下数学统计例题及答案
1、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:小题1:(1)在这次问卷调查中,一共抽查了名学生;小题2:(2)请将上面两幅统计图补充完整;小题3:(3)图中,“踢毽”部分所对应的圆心角为度;小题4:(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?解答:小题1:(1)200;小题2:(2).如图所示:小题3:(3).;小题4:(4).最喜欢球类活动的学生人数是(名)2、实验中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调查各兴趣小组活动情况,为此校学生会委托小容、小易进行一次随机抽样调查.根据采集到的数据,小容绘制的统计图1,小易绘制的统计图2(不完整)如下:请你根据统计图1、2中提供的信息,解答下列问题:小题1:写出2条有价值信息(不包括下面要计算的信息);小题2:这次抽样调查的样本容量是多少?在图2中,请将小易画的统计图中的“体育”部分的图形补充完整;小题3:爱好“书画”的人数占被调查人数的百分数是多少?估计实验中学现有的学生中,有多少人爱好“书画”?解答:小题1:①电脑小组比音乐小组人数多;②音乐小组体育小组比例大;等等小题2:画图,如图所示;小题3:3、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:(1)求a、b的值.(2)(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.(3)(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?解答:解:(1)a="80" , b= 10%(2)×100%×360°="108°(3) 80+40+200×10%="140×100%×8000="56004、某校为了了解九年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下统计图,其中测试成绩在90~100分为A级,75~89分为B级,60~74分为C级,60分以下为D级。
七年级数学下册数据的收集、整理与描述(统计调查)练习题
七年级数学下册数据的收集、整理与描述(统计调查)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.为了解某校1000名九年级学生的视力情况,调查人员从中抽取了200名学生进行调查.在这个问题中,个体是______.2.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统.是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.在发射前,对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是__________.(填“普查”或“抽样调查”)3.全面调查和抽样调查是收集数据的两种方式._______收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;_______有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.4.“神十”圆满完成载人航天飞行任务后,专家将对返回舱零部件进行检查,应采取的合理的调查方式是____.5.检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.6.要从编号为1~100的总体中随机抽取10个个体组成一个样本.(1)小华选取的个体编号为1,2,3,4,5,6,7,8,9,10,你认为她选取的这个样本_____(填“具有”或“不具有”)代表性;(2)请你随机选取一个含有10个个体的样本,其中个体的编号为___________.二、单选题7.下列说法正确的是()A.为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B.“煮熟的鸭子飞了”是一个随机事件C.一组数据的中位数可能有两个D.为了解我省中学生的睡眠情况,应采用抽样调查的方式8.某校九年级学生共有600名,要了解这些学生每天上网的时间,现采用抽样调查的方式,下列抽取样本数量既可靠又省时、省力的是()A.选取10名学生作样本B.选取50名学生作样本C.选取300名学生作样本D.选取500名学生作样本9.下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量10.为了解某县2021年参加中考的14000名学生的视力情况,抽查了其中1000名学生的视力进行统计分析,下面叙述错误的是()A.14000名学生的视力情况是总体B.样本容量是14000C.1000名学生的视力情况是总体的一个样本D.本次调查是抽样调查11.某校为了了解线上教育对孩子视力的影响情况对该校1200名学生中抽取了120名学生进行了视力下降情况的抽样调查,下列说法正确的是()A.1200名学生是总体B.样本容量是120名学生的视力下降情况C.个体是每名同学的视力下降情况D.此次调查属于普查12.为了解某市5万名学生平均每天完成课后作业的时间,请你运用数学的统计知识将统计的主要步骤进行排序:①得出结论,提出建议;①分析数据;①从5万名学生中随机抽取500名学生,调查他们平均完成课后作业的时间;①利用统计图表将收集的数据整理和表示.合理的排序是()A.①①①①B.①①①①C.①①①①D.①①①①三、解答题13.要调查下面几个问题,你认为应该作全面调查还是抽样调查?(1)了解全班同学每周体育锻炼的时间.(2)调查市场上某种食品的色素含量是否符合国家标准.(3)鞋厂检测生产的鞋底能承受的弯折次数.14.为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).15.调查全班同学在家做家务活的现状.注意明确你的调查内容和目的,用适当的图表表示你的调查结果,并说明你获得数据信息的方式.参考答案:1.九年级每名学生的视力情况【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】本题考查的对象是为了解某校1000名九年级学生的视力情况,故个体是九年级每名学生的视力情况.故答案为:九年级每名学生的视力情况【点睛】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象,总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.普查【分析】根据抽样调查与普查的特点及被调查的事情的精度与难度,可行性等可得答案.【详解】解:中国自行研制的全球卫星导航系统,对各部件的要求:必须百分百符合要求,所以对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是普查.故答案为:普查.【点睛】本题考查的是抽样调查与普查的含义,掌握选择抽样调查与普查的依据是解题的关键.3.全面调查抽样调查【解析】略4.普查【分析】直接利用普查和抽样调查的特点解题即可【详解】返回舱的每个零部件都非常关键,所以必须得对零部件进行全面普查【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键5.2500件包装食品的质量所抽取的50件包装食品的质量【分析】根据总体是指考查的对象的全体,样本是总体中所抽取的一部分个体即可解答.【详解】解:检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题%=50件包装食品的质量,中,总体是2500件包装食品的质量,样本是抽取的25002故答案为:2500件包装食品的质量;所抽取的50件包装食品的质量.【点睛】本题考查了总体、样本的概念,解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.掌握总体、样本的概念是解题关键.6.不具有;2,14,39,40,43,59,79,85,92,88(答案不唯一).【分析】根据抽取的样本是否具有广泛性和代表性,即各个方面,各个层次的对象都要有所体现解答即可.【详解】因为小华选取的个体编号为1,2,3,4,5,6,7,8,9,10,不具有随机性,所以这个样本不具有代表性;如可抽取2,14,39,40,43,59,79,85,92,88(答案不唯一).故答案为不具有;2,14,39,40,43,59,79,85,92,88(答案不唯一).【点睛】本题考查了样本的选取,抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.7.D【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解.【详解】解:A. 为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;B. “煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;C. 一组数据的中位数只有1个,故该选项不正确,不符合题意;D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意;故选:D.【点睛】本题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键.必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.B【分析】根据抽样调查的样本容量要适当,可得答案.【详解】解:A样本容量太小,不具代表性,故A不可取;B样本容量适中,省时省力又具代表性,故B可取;C 样本容量太大,费时费力,故C不可取;D 样本容量太大,费时费力,故D不可取;故选:B.【点睛】本意考查了抽样调查的可靠性,注意样本容量太小不具代表性,样本容量太大费时费力.9.B【分析】根据随机事件的定义、全面调查的意义、方差的意义以及样本容量的定义进行判定即可.【详解】解:A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件,故A选项不符合题意;B.要了解小王一家三口的身体健康状况,适合采用全面调查调查,故B选项符合题意;C.一组数据的方差越小,它的波动越小,故C选项不符合题意;D.样本中个体的数目称为样本容量,故D选项不符合题意.故选:B.【点睛】本题考查统计的相关定义,掌握其定义和意义是解决问题关键.10.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 14000名学生的视力情况是总体,故该选项正确,不符合题意;B. 样本容量是1000,故该选项不正确,符合题意;C. 1000名学生的视力情况是总体的一个样本,故该选项正确,不符合题意;D. 本次调查是抽样调查,故该选项正确,不符合题意故选B【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.11.C【分析】据题意可得1200名学生的视力下降情况,从中抽取了120名学生进行视力调查,这个问题中的总体是1200名学生的视力下降情况,样本是抽取的120名学生进行视力下降情况,个体是每一个学生的视力下降情况,样本容量是120,注意样本容量不能加任何单位,此次调查属于抽样调查.【详解】解:A、总体是1200名学生的视力下降情况,此选项错误;B、样本容量是120,此选项错误;C、个体是每名同学的视力下降情况,此选项正确;D、此次调查属于抽样调查,此选项错误;故选:C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.B【分析】根据统计的一般过程是收集数据,整理数据,描述数据,分析数据,得出结论、提出建议即可求解.【详解】解:统计的一般过程是收集数据,整理数据,描述数据,分析数据,得出结论、提出建议,故顺序为①①①①.故选:B【点睛】本题考查了统计的一般过程,熟知统计的一般过程是解题关键.13.(1)全面调查;(2)抽样调查;(3)抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【详解】解:(1)人数不多适合全面调查;(2)数量较多,适合抽样调查;(3)数量较多,且抽查具有破坏性,适合抽样调查.【点睛】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.14.(1)200;(2)90,94;(3)1440名【分析】(1)用D程度人数除以对应百分比即可;(2)用A程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B等级对应百分比,乘以样本容量可得m值;(3)用样本中A、B程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,①该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.15.见解析【分析】1、阅读题目信息,确定调查的方法;2、采用问卷调查的方法调查班级里每位同学做家务活的状况;3、根据调查对象和目的的确定,结合调查的结果即可制作出适当的图表.【详解】解:调查内容为学生做家务的现状;获取数据的方式为问卷调查;制作的图表如下:【点睛】本题主要考查了数据的收集与设计调查表,解题的关键是掌握收集数据的基本方法有调查、实验和查阅资料等,而在问卷设计中最重要的一点就是必须明确调查的内容和目的.。
新人教版数学七年级下《10.1统计调查》课时练习含答案解析
新人教版数学七年级下册第十章第一节统计调查练习一、选择题:1.以下调查中适合做普查的是()A.值日老师调查各班学生的出勤情况B.调查长江水的污染情况C.调查某种钢笔的使用情况D.中央电视台调查某节目的收视率答案:A知识点:全面调查与抽样调查解析:解答:A.工作量小,没有破坏性,适合普查;B、D范围广,工作量大,不宜采取普查,只能采取抽样调查;C调查具有破坏性,适宜抽样调查.分析:有普查得到的调查结果比较准确,但所费人力、物、时间较多;一般来说,对于具有破坏性的调查,或无法进行普查时,应选择抽样调查.2.为了了解某县30~50岁成人的健康状况,采取了抽样调查方式获得结果,下面所采取的抽样合理的是( )A.抽查了该县30~50岁的男性公民B.抽查了该县城区30~50岁的成人20名C.抽查了该县所有30~50岁的工人D.随机抽查了该县所有30~50岁成人400名答案:D知识点:抽样调查的可靠性解析:解答:A、没有抽查到女性公民,不具有普遍性;B、抽查范围小,不具有普遍性;C、只抽查了工人,没有抽查其他职业的劳动者所以不具有普遍性.故选D分析:采取抽样调查时,应保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性的偏差是极小的,样本对总体的代表性是很强的。
3.想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用( ):A.条形统计图B.扇形统计图C.折线统计图D.以上都可以答案:B知识点:统计图的选择解析:解答:解:由题意得,想反映某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用扇形统计图.故选B分析:根据扇形统计图表示的是部分在总体中所占的百分比,即可进行选择.4.考察50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是2,8,15,5,则第四组的频率是()A.20B.0.4C.0.6D.30答案:B知识点:频数(率)分布表解析:解答:解:∵第一、二、三、五组的数据个数分别是2,8,15,5∴第四组的频数=50-(2+8+15+5)=20∴第四组的频率==0.4故选B分析:∵∴根据题意可得,第四组的频数=50-(2+8+15+5)=20,再带入公式即可。
初中数学七年级下统计调查练习题含答案
7.某校为了解本校 名学生的体重情况,从中抽取了 名学生测量体重,下列说法中正确的是()
A.总体是 名学生B.样本容量是
C.该调查方式是普查D.个体是 名学生的体重
8.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均数都是 分,方差分别是: ,则四个人中成绩最稳定的是()
中位数
众数
方差
甲
________
乙
________
得出结论:
包装机分装情况比较好的是________(填甲或乙)(不需要说明理由).
36.课堂上老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高,坐在教室最后面的小强为了争速度,立即就近向他周围的三个同学做调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.小强所选用的这种抽样调查的方式你认为合适吗?为什么?
故选 .
2.【Βιβλιοθήκη 案】C【考点】抽样调查的可靠性
【解析】
样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.
【解答】
解:根据样本的选择方法,依次分析选项可得:
、重点中学成绩较好,选择的样本不具有代表性;
、在篮球场的青少年普遍对我国篮球事业的关注程度较高,选择的样本不具有代表性;
(2)为了调查学校的男、女生比例,调查统计了各班男、女生人数;
(3)为了考察同一型号的一批炮弹的杀伤半径,从中任意抽取 枚进行调查分析.
25.小明利用周末去做社会调查,了解美的空调的质量情况.他设计的问题是:你觉得美的空调好吗?你对他设计的问题有何看法,为什么?
26.对下面的问题进行调查:
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查测试题(含答案) (42)
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次抽样调查中,共调查了名学生;(2)补全条形统计图,并求扇形统计图中表示“乒乓球”的扇形的圆心角度数;(3)若全校有1500名同学,估计全校最喜欢篮球的有多少名同学?【答案】(1)200;(2)48;126°;(3)300人.【解析】试题分析:(1)、根据羽毛球的人数和比例求出总人数;(2)、根据总人数减去其他球类的人数得出跳绳的人数,首先求出乒乓球的百分比,然后计算角度;(3)、首先求出样本中篮球的百分比,然后求出总人数.试题解析:(1)、30÷15%=200、200-70-40-30-12=48 70÷200×360°=126°(3)、1500×(40÷200)=300(名)考点:统计图.42.某校为了组织一项球类对抗赛,在本校随机检查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数.【答案】(1)50人,补图见解析;(2)240人【解析】÷=(人),解:本次被调查的学生数1326%50⨯=人,喜爱羽毛球的人数5016%8----=(人),喜爱其他的人数5013101683∴本次被调查的学生人数是50人,正确补全图形:(2)150016%240⨯=(人).故估计该校最喜欢篮球运动的学生有240人.43.某区教育局对本区教师个人的每学期绩效工资进行抽样问卷调查,并将调查结果整理后制作了如下不完整的统计图表:某区教师个人绩效工资统计表分组个人学期绩效工资x(元)频数(人)频率A x≤200018 0.15B2000<x≤4000a bC4000<x≤6000D6000<x≤800024 0.20E x>8000 12 0.10合计c 1.00根据以上图表中信息回答下列问题:(1)直接写出结果a= ;b= ;c= ;并将统计图表补充完整;(2)教师个人的每学期绩效工资的中位数出现在第组;(3)已知该区共有教师5000人,请你估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数.【答案】(1)36,0.36,120;(2)C(3)1500【解析】试题分析:(1)利用A组的频数与频率可计算出调查的总人数C的值,再利用频数分布直方图得到a的值,则用a除以c可得到b的值,然后计算出C 组的频数后补全统计图;(2)根据中位数定义求解;(3)利用样本估计总体,用5000乘以样本中D组和E组的频率和即可.试题解析:(1)c=18÷0.15=120,a=36,b=36÷120=0.30;C组的人数为120﹣18﹣36﹣24﹣12=30(人)如图,(2)教师个人的每学期绩效工资的中位数出现在第C组;(3)5000×(0.20+0.10)=1500,所以估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数为1500人.考点:1、频数(率)分布直方图;2、用样本估计总体;3、频数(率)分布表;4、中位数44.“古圣先贤孝为宗,万善之门孝为基,礼敬尊亲如活佛,成就生命大意义,父母恩德重如山,知恩报恩不忘本,做人饮水要思源,才不愧对父母恩…”.某实验中学为加强对学生的感恩教育,教学生唱《跪羊图》,并对学生的学习成果进行随机抽查,现对部分学生的成绩(x为整数,满分100分)进行了统计,绘制了如下尚不完整的统计图表.调查结果扇形统计图根据以上信息解答下列问题:(1)统计表中a=________,b=________,c=________;(2)求扇形统计图中D组所在扇形的圆心角的度数;(3)若参加《跪羊图》演唱的同学共有2000人,请估计成绩在90分及以上的学生有多少人?【答案】(1)80,400,0.15;(2)144︒;(3)300人【解析】【分析】(1)用A组的频数与A组所占扇形的百分数相除即可求出总数b,用总数b乘C组的频率即可求出a,用B组的频数除以总数即可求出c;(2)用360°乘D组所占扇形统计图中的百分数即可;(3)用90分以上的频率乘学校参加《跪羊图》演唱的总人数2000即可.【详解】解:(1)400.1400b =÷=,4000.280a =⨯=,604000.15c =÷=.(2)“D ”所对的扇形的圆心角度数为36040%144⨯︒=︒;(3)200015%300⨯=(人).答:估计成绩在90分及以上的学生有300人.【点睛】本题考查了频数频率统计表和扇形统计图,解决本题的关键是正确理解题意,熟练掌握频数频率统计表中各组量与扇形统计图中各组量的对应关系,掌握样本估计总体的方法.错因分析:本题属于中档题.失分原因如下表:45.某校为了了解今年九年级学生的数学学习情况,在中考考前适应性训练测试后,对九年级全体同学的数学成绩作了统计分析,按照成绩高低分为A 、B 、C 、D 四个等级并绘制了如图1和图2的统计图(均不完整),请结合图中所给出的信息解答问题:(1)该校九年级学生共有人.(2)补全条形统计图与扇形统计图.(要求:请将扇形统计图的空白部分按比例分成两部分.)【答案】(1)280;(2)图见解析【解析】【分析】(1)根据统计图中A等级的人数和百分比求出总人数;(2)先求出C等级所占百分比,从而得出D等级的百分比,再根据总人数得出D等级的人数,最后根据数据补全图形即可.【详解】解:(1)∵A等级的人数为42人,所占百分比为15%,则42÷15%=280(人)∴该校九年级学生共有280人.(2)∵C等级的人数为84,84÷280=0.3=30%,∴C等级在扇形统计图里的圆心角为108°,D等级所占比例为20%,在扇形统计图里的圆心角为72°,∴280×20%=56(人),∴条形统计图与扇形统计图如图所示:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.46.如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:(1)这一周访问该网站一共有万人次;(2)周日学生访问该网站有万人次;(3)周六到周日学生访问该网站的日平均增长率为.【答案】(1)10;(2)0.9;(3)44%【解析】【分析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次); 故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∵星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:330% 2.525%2.525%⨯-⨯⨯=44%;故答案为44%.考点:折线统计图;条形统计图47.2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A 非常了解.B 了解.C 了解较少.D 不了解”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:()1此次共调查了______名学生;()2扇形统计图中D所在的扇形的圆心角为______;()3将条形统计图补充完整;()4若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.【答案】(1)120;(2)54;(3)见解析;(4)200人【解析】【分析】(1)由B类别人数及其所占百分比可得;(2)用总人数乘以D类别人数占总人数的比例即可得;(3)先用总人数乘以C类别的百分比求得其人数,再根据各类别百分比之和等于总人数求得A的人数即可补全图形;(4)用总人数乘以样本中A类别的人数所占比例即可得.【详解】(1)本次调查的总人数为4840%120(÷=名),故答案为:120;(2)扇形统计图中D所在的扇形的圆心角为1836054⨯=,120故答案为:54;(3)C 类别人数为12020%24(⨯=人), 则A 类别人数为()12048241830(-++=人), 补全条形图如下:(4)估计对文明城市的了解情况为“非常了解”的学生的人数为30800200120⨯=人. 【点睛】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.48.第十一届“汉语桥”世界中学生中文比赛复赛决赛在云南师范大学开赛.比赛吸引了来自99个国家110个赛区的332名师生来华.某校为了解全校学生对比赛中几类节目的喜爱情况(A :中国歌曲、B :中国民族舞蹈、C :中国曲艺、D :武术、E :其它表演),从全校学生中随机抽取部分学生进行问卷调查,要求每个学生选择一项最喜爱的节目,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;扇形统计图中,B节目所对应的圆心角是多少度;(3)若该校有2400名学生,估计全校学生中喜欢中国民族舞蹈节目的共有多少人?【答案】(1)200人;(2)统计图见解析,90°;(3)600人.【解析】【分析】(1)用中国歌曲的人数40人除以其占总人数的百分比即可求得;(2)根据D节目所占总人数的百分比可先算得D节目人数,然后进一步即可得出B节目人数,随后补充条形统计图即可,然后用B节目人数除以总人数乘以360°即可得出其圆心角度数;(3)先算出调查中喜欢中国民族舞蹈节目占总人数得比例,然后乘以总人数2400名学生即可.【详解】÷=(人),(1)4020%200答:这次被调查的学生共有200人;(2)由题意得:D 节目的人数为20010%20⨯=(人) ∴B 节目的人数为2004030206050----=(人). 补全条形统计图如解图所示;B 节目所对扇形圆心角为5036090200︒︒⨯=; (3)502400600200⨯=(人) 答:估计全校学生中喜欢中国民族舞蹈节目的共有600人. 【点睛】本题主要考查了统计图的运用,熟练掌握相关概念是解题关键.错因分析 容易题.失分原因是:∵对“样本容量=某一项的人数÷相应的百分比”掌握不熟练;∵没掌握计算扇形圆心角的方法:“某项的扇形圆心角度数 其对应的百分比(频率)”;∵没掌握样本估计总体的方法.49.我市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,其中扇形统计图的圆心角α为36°,x 表示视力情况,根据上面提供的信息,回答下列问题:(1)此次共调查了人;(2)请将表格补充完整;(3)这组数据的中位数落在组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是.【答案】(1)200;(2)补图见解析;(3)C;(4)108°.【解析】试题分析:(1)根据圆心角α为36°,求出A组所占的百分比,的出频率,再根据频数是20,即可得出总人数;(2)根据频数、频率之间的关系,分别求出B组的频数、C组的频率、D 组的频数以及频率,填表即可;(3)根据中位数的定义即可得出这组数据的中位数落在C组内;(4)用360°乘以D组的频率即可得出答案.试题解析:(1)∵圆心角α为36°,=0.1,∵A组的频率是:36360∵总人数是20÷0.1=200(人),(2)B组的频数是200×0.35=70;C组的频率是50÷200=0.25;D组的频数是:200-20-70-50=60,频率是60÷200=0.3;填表如下:(3)∵这组数据共有200个数,∵中位数是第100,101个数的平均数,∵这组数据的中位数落在C组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是360°×0.30=108°.考点:1.统计图;2.中位数.50.据2005年5月10日《重庆晨报》报道:我市四月份空气质量优良,高居全国榜首,某校初三年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽查了今年1~4月份中30天空气综合污染指数,统计数据如下:空气综合污染指数:30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)填写频率分布表中未完成的空格:(2)写出统计数据中的中位数、众数;(3)请根据抽样数据,估计我市今年(按360天计算)空气质量是优良.(包括Ⅰ、Ⅰ级的天数)【答案】(1)见解析;(2)中位数是80,众数是45;(3)估计我市今年空气质量是优良的天数有252天.【解析】试题分析:(1)由正字可得第一行的频数为9;第三行的正字笔画=30-9-12-6=3,频数为3,频率为:3÷30=0.1.(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数.(3)应先算出前2组的频率之和,再计算360×频率即可.(1)如图:(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数.(3)∵360×(0.30+0.40)=360×0.70=252(天).∵估计我市今年空气质量是优良的天数有252天.考点:1.频数(率)分布表;2.用样本估计总体;3.中位数;4.众数.。
七年级数学下册统计调查测试(含答案)
七年级数学下册统计调查测试——抽样调查一、选择题1.为了了解某校九年级学生的视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).A.每名学生的视力B.60名学生的视力C.60名学生D.该校九年级学生的双眼视力2.为了反映某地区的天气变化趋势,最好选择( ).A.扇形统计图B.条形统计图C.折线统计图D.以上三种都不行3.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名七年级学生4.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( ).A.1万件B.19万件C.15万件D.20万件5.如图为某产品产量增长情况统计图,下列说法正确的是( ).A.产量持续增长B.产量有增有减C.开始产量不变D.条件不足,无法判断二、填空题6.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是________________,个体是________________,抽取的样本是___________,样本容量是_________.7.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果___________,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作___________.8.下列调查的样本中不缺乏代表性的有哪几个___________.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七1班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.9.为了让大家感受丢弃塑料袋对环境的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45位学生,那么根据提供的数据估计本周全班各家平均丢弃塑料袋数量约为______.10.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:甲公司乙公司从2003年到2007年,这两家公司中销售量增长较快的是____________.11.为了解09届本科生的就业情况,某网站对09届本科生的签约状况进行了网络调查,至3月底,参与网络调查的12000人中,只有4320人已与用人单位签约.在这个网络调查中,样本容量是______.三、解答题12.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集的数据,绘制成如图.(1)学校采用的调查方式是___________________________________________________.(2)选择喜欢“踢毽子”的学生有多少人,并在图中将“踢毽子”部分的图形补充完整.(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.13.某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,让若干名学生从足球、乒乓球、篮球、排球四种球类运动中选择自己最喜欢的一种,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类运动;图中用乒乓球、足球、排球、篮球代表喜欢该项目的学生人数).图1 图2请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的扇形圆心角是多少度?(3)补全折线统计图.14.某海港受潮汐的影响,某天24小时港内的水深变化大致如图所示.一艘货轮于上午7时在该港码头开始卸货,计划当天卸完后离港,已知这艘货轮卸完货后吃水深度为2.5米(吃水深度即船底到水面的距离),该港口规定:为保证航行安全,只有当船底与港内水底间的距离不小于3.5米时,才能进出该港.(1)要使该船能在当天卸完货并安全出港,则出港时水深不能少于多少米?卸货最多只能用多少小时?(2)已知该船装有1200吨货物,先由甲装卸队单独卸,每小时卸货180吨,工作5小时,再由乙装卸队接着单独卸,乙装卸队每小时最少卸多少吨货,才能使该船及时离港?15.(株洲)某学校举行一次体育测试,从所有参加测试的学生中随机抽取10名学生的成绩,制作出如下统计表:95请回答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是____;(2)求成绩是C等的人数;(3)已知该校所有参加这次测试的学生中,有60名学生的成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少.参考答案1.D . 2.C . 3.D . 4.B . 5.A .6.这批手表的防水性能;每只手表的防水性能;10只手表的防水性能;10. 7.花费少、省时;全面、准确;样本的情况;抽样调查. 8.②,③. 9.28个. 10.甲公司. 11.12000.12.(1)抽样调查;(2)25人,如图;(3)16010020800=⨯(人).13.(1)20÷20%=100(人);(2)36°;(3)喜欢篮球的有40人,喜欢排球的有10人.(图略)14.解:(1)2.5+3.5=6(米),即出港时水深不能少于6米,而下午水深6米所对应的时间为15时,上午7时到港,必须在下午15时前离港,所以最多只能用15-7=8(小时).(2)(1 200-180×5)÷(15-7-5)=100(吨).答:乙装卸队每小时最少卸100吨货,才能使该船及时离港.15.解:(1)从表格中找到A 等级的最低分为85分,故易知孔明的成绩等级为A 等. (2)C 等的人数为2.(3)10名学生的等级中A等有3个,所以A等的比例为3 10.总人数为360=20010.。
七年级数学(下)第十章《统计调查》练习题含答案
七年级数学(下)第十章《统计调查》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列统计图能够显示数据变化趋势的是A.条形图B.扇形图C.折线图D.以上都正确【答案】C【解析】易于显示数据的变化趋势和变化规律的统计图是折线统计图,故选C.2.淮安区教育局为了了解实行课改后七年级学生在家的学习时间,应采用的最佳调查方式是A.对所有学校进行全面调查B.只对城区学校进行调查C.只对一所学校进行调查D.抽取农村和城区部分学校进行调查【答案】D3.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查【答案】B【解析】A、总体是25000名学生的身高情况,故A错误;B、1200名学生的身高是总体的一个样本,故B正确;C、每名学生的身高是总体的一个个体,故C错误;D、该调查是抽样调查,故D错误,故选B.4.在调查一年内某地区降雨的情况时,下列选取的样本较为恰当的是A.春、夏、秋、冬各观察一个月B.春、夏、秋、冬各观察一天C.春天和秋天各观察一个月D.冬天和夏天各观察一个月【答案】A【解析】本题中为了调查一年内某地区降雨的情况,随机抽取春、夏、秋、冬各观察一个月作为样本较为恰当,故选A .5.某市的中考各科试卷总分为600分,其中数学为120分,若用扇形统计图画出各科分数比例,则数学所占扇形圆心角为 A .90°B .45°C .120°D .72°【答案】D【解析】根据题意得:360°×120600=72°.所以数学所占扇形圆心角为72°,故选D . 二、填空题:请将答案填在题中横线上.6.为了预防“禽流感”的传播,检疫人员对某养殖场的家禽进行检验,任意抽取了其中的100只,此种方式属于__________调查,样本容量是__________. 【答案】抽样;100【解析】任意抽取了其中的100只,此种方式属于抽样调查,样本容量是100,故答案为:抽样;100. 7.某地区推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是该地区某一天收到的厨余垃圾的统计图,则m 的值为__________.【答案】69.01【解析】1-22.39%-0.9%-7.55%-0.15%=69.01%,故答案为:69.01. 三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某实验中学为了进一步丰富学生的课余生活,拟调整兴趣活动小组,为此进行了一次调查,结果如下,请看表回答:选项美术 电脑 音乐 体育 占调查人数的百分率15%30%30%(1)喜欢体育项目的人数占总体的百分比是多少? (2)表示“电脑”部分的圆心角是多少度?(3)根据所给数据,画出表示调查结果的扇形统计图. 【解析】(1)1-15%-30%-30%=25%.(2)360°×30%=108°.(3)如图:。
初一数学统计试题答案及解析
初一数学统计试题答案及解析1.为了考察甲.乙两种小麦的长势,分别从中抽取10株麦苗,测得苗高如下(单位:cm):甲: 12 13 14 13 10 16 13 13 15 11乙: 6 9 7 12 11 16 14 16 20 19(1)将数据整理,并通过计算后把下表填全:(2)选择合适的数据代表,说明哪一种小麦长势较好【答案】(1)表格见解析;(2)甲种小麦长势较好.【解析】(1)中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);出现次数最多的这个数即为这组数据的众数;(2)方差越小,数据越稳定,小麦长势较好.试题解析:(1)将数据整理如下,苗高的中位数和平均数相同,故甲种小麦长势较好.【考点】1.方差2.算术平均数3.中位数4.众数.2.为了了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的300个产品叫做()A.总体B.个体C.总体的一个样本D.普查方式【答案】C.【解析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.根据题意:300个产品的质量叫做总体的一个样本.故选C.【考点】总体、个体、样本、样本容量.3.某路段的雷达测速器对一段时间内通过的汽车进行测速,将监测到的数据加以整理,得到不完整的图表:注:30~40为时速大于或等于30千米且小于40千米,其它类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段汽车时速达到或超过60千米即为违章,那么违章车辆共有多少辆?【答案】(1)78,56,0.28;(2);(3)76辆【解析】(1)根据频率公式,频率=即可求解;(2)根据(1)的计算结果即可解答;(3)违章车辆就是最后两组的车辆,求和即可.试题解析:(1)监测的总数是:200,50~60段的频数是:200×0.39=78,60~70段的频数是:200﹣10﹣36﹣78﹣20=56,频率是:=0.28;(2)如图所示:(3)56+20=76(辆).答:违章车辆共有76辆.【考点】1.频数(率)分布直方图;2.频数(率)分布表4.北京市2014年5月1日至5月14日这14天的最低气温情况统计如下:最低气温(℃)7891011131417则北京市2014年5月1日至5月14日这14天最低气温的众数和中位数分别是A.11,10.5B.11,11C.14,10.5D.14,11【答案】D.【解析】最低气温中14℃出现次数最多,因此众数是14℃;天数共有14天,中位数是第7天和第8天的平均数为(11+11)÷2=11.故选D.【考点】1.众数;2.中位数.5.为了解同学对体育活动的喜爱情况,某校设计了“你最喜欢的体育活动是哪一项(仅限一项)”的调查问卷.该校对本校学生进行随机抽样调查,以下是根据调查数据得到的统计图的一部分.请根据以上信息解答以下问题:(1)该校对多少名学生进行了抽样调查?(2) ①请补全图1并标上数据②图2中x =______.(3)若该校共有学生900人,请你估计该校最喜欢跳绳项目的学生约有多少人?【答案】(1)50;(2)补图见解析,30;(3)90.【解析】(1)用喜欢羽毛球运动的人数除以所占比例,即可得出总人数.(2).先用总人数减去已知人数即可求出其它的人数进行补图;然后用其它人数除以总人数即可求出x的值;(3)用样本估计总体即可求解.试题解析:(1)10÷20%=50(人)(2)其它的人数=50-10-5-20=15(人).补图如下:x%=15÷50×100%=30%,所以:x=30.(3)900×10%=90(人)因此,该校最喜欢跳绳项目的学生约有90人.【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.6.已知样本容量为30,在以下样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第2组的频数为()A.12B.10C.9D.6【答案】A.【解析】读图可知:各小长方形的高之比AE:BF:CG:DH=2:4:3:1,即各组频数之比2:4:3:1,则第2组的频数为×30=12,故选A.【考点】频数(率)分布直方图.7.下列统计中,能用全面调查的是()A.检测某城市的空气质量B.调查全国初中生的视力情况C.审查某篇文章中的错别字D.调查央视“新闻联播”的收视率【答案】C.【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.因此,A、检测某城市的空气质量,由于具有破坏性,应当使用抽样调查,故本选项错误;B、调查全国初中生的视力情况,由于人数多,进入渠道多,不易全面掌握进入的人数,应当采用抽样调查,故本选项错误;C、审查某篇文章中的错别字,精确度高,应当采用全面调查,故本选项正确;D、调查央视“新闻联播”的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项错误.故选C.【考点】调查方式的选择.8.为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这6000名学生的数学会考成绩的全体是总体;(2)每个考生的数学会考成绩是个体;(3)抽取的200名考生的数学会考成绩是总体的一个样本;(4)样本容量是6000,其中说法正确的有()A.4个B.3个C.2个D.l个【答案】B.【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.因此,本题中的总体是我市6000名学生参加的初中毕业会考数学考试的成绩情况,个体是每个考生的数学会考成绩,样本是200名考生的数学会考成绩,样本容量是200.所以(1),(2)和(4)正确;(3)错误.故选B.【考点】总体、个体、样本、样本容量.9.在条形统计图上,如果表示数据180的条形高是4.5厘米,那么表示数据160的条形高为厘米.【答案】4.【解析】根据数据180的条形高是4.5厘米,可以求得数据与条形高比为40:1,即可求出数据160的条形高:∵数据180的条形高是4.5厘米,∴数据与条形高比为180:4.5=40:1.∴表示数据160的条形高为160÷40=4厘米.【考点】条形统计图.10.近年来国内生产总值年增长率的变化情况如图.从图上看下列结论中不正确的是( ). A.1995~1999年,国内生产总值的年增长率逐年减小;B.2000年国内生产总值的年增长率开始回升;C.这7年中,每年的国内生产总值有增有减;D.这7年中,每年的国内生产总值不断增长;【答案】D.【解析】A、1995一1999年,国内生产总值的年增长率逐年减小,正确;B、2000年国内生产总值的年增长率开始回升,正确;C、这7年中,每年的国内生产总值不断增长,正确;D、这7年中,每年的国内生产总值增长率为正,故这7年中,每年的国内生产总值不断增长,错误.故选D.【考点】象形统计图.11.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是______(填序号):①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.【答案】③【解析】①100位女性老人没有男性代表,没有代表性.②公园内的老人一般是比较健康的,也没有代表性.③在城市和乡镇选10个点,每个点任选10位老人比较有代表性,故填③.12.下图是七年级二班英语成绩统计图,根据图中的数据可以算出,优秀人数占总人数的__________;根据图中的数据画出的扇形统计图中,表示成绩中等的人数的扇形所对的圆心角是__________度.【答案】24%;144°【解析】优秀人数占总人数的百分比为:12÷50=24%;成绩中等的人数的扇形所对的圆心角度数为:360°×(20÷50)=144°.13.如图所示是幸福村里种植果树的面积,则梨树种植面积是整个果树种植面积的____________.【答案】【解析】由条形统计图可以看出:梨树种植面积是整个果树种植面积的.14.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2002~2006年,这两家公司中销售量增长较快的是__________公司.【答案】甲【解析】从折线统计图中可以看出:甲公司2006年的销售量约为510辆,2002年约为100辆,则2002~2006年甲公司销售量增长了510-100=410(辆);乙公司2006年的销售量为400辆,2002年的销售量为100辆,则2002~2006年乙公司销售量增长了400-100=300(辆).故甲公司销售量增长较快.15.为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l95 180 250 270 455 170请你估算一下小亮家平均每年(每年按52周计算)的日常生活消费总费用.【答案】13000元【解析】解:由题中7周的数据,可知小亮家平均每周日常生活消费的费用为答:小亮家平均每年的日常生活消费总费用约为元.16.某班有学生50人,根据全班学生的课外活动情况绘制的统计图(如图),求参加其他活动的人数.【答案】10【解析】解:由扇形图,知参加其他活动的人数占全班总人数的百分比为,又知该班有学生50人,所以参加其他活动的人数为.17.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多【答案】D【解析】根据扇形统计图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多,故选D.18.某校在一次学生演讲比赛中,共有7个评委,某学生所得分数为:9.7,9.6,9.5,9.6,9.7,9.5,9.6,那么这组数据的众数与中位数分别是()A.9.6,9.6B.9.5,9.6C.9.6,9.58D.9.6,9.7【答案】A【解析】先把题中数据按从小到大的顺序排列,再根据众数与中位数的求法求解即可.把题中数据按从小到大的顺序排列为9.5,9.5,9.6,9.6,9.6,9.7,9.7则这组数据的众数与中位数分别是9.6,9.6故选A.【考点】众数与中位数点评:统计的应用是初中数学的重点,在中考中比较常见,熟练掌握各种统计量的计算方法是解题关键.19.在世界杯比赛中,A、B、C、D四个队分在同一个小组进行单循环赛,争夺出线权,比赛规定:胜一场得3分,平一场得1分,负一场0分,小组名次在前的两个队出线。
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案) (60)
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案)某文具店有单价10元、15元和20元的三种文具盒出售,该商店统计了2015年3月份这三种文具盒的销售情况,并绘制了如下不完整统计图:(1)这次调查中一共抽取了多少个文具盒?(2)求出扇形图中表示“15元”的扇形所占圆心角的度数;(3)求出单价为10元的文具盒的个数,并把条形图补充完整.【答案】(1)这次调查中一共抽取了600个文具盒;(2)扇形图中表示“15元”的扇形所占圆心角的度数为216°;(3)单价为10元的文具盒的个数为150个,如图.【解析】试题分析:(1)用单价为20元的个数除以它所占的百分比即可得到所抽取的文具盒的总数;(2)用360°乘以单价为15元的文具盒所占的百分比即可;(3)用总数乘以单价为10元的文具盒所占的百分比即可,然后补全条形统计图.解:(1)90÷15%=600(个),所以这次调查中一共抽取了600个文具盒;(2)360°×(1﹣15%﹣25%)=216°,所以扇形图中表示“15元”的扇形所占圆心角的度数为216°;(3)600×25%=150(个),所以单价为10元的文具盒的个数为150个,如图.92.某中学八(1)班共40名同学开展了“我为灾区献爱心”捐款活动.小明将捐款情况进行了统计,并绘制成如下的条形统计图(1)填空:该班同学捐款数额的众数是元,中位数是元;(2)该班平均每人捐款多少元?【答案】(1)50,30;(2)该班平均每人捐款41元.【解析】试题分析:(1)众数就是出现次数最多的数,确定第20个21个数,这两个数的平均数就是中位数;(2)利用加权平均数公式即可求解.解:(1)众数是50元,中位数是30元.故答案是:50,30;(2)=(9×20+12×30+16×50+3×100)=41(元).答:该班平均每人捐款41元.93.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a= %;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【答案】(1)50,30;(2)答案见解析;(3)36;(4)1800人.【解析】试题分析:(1)由赞同的人数除以赞同的人数所占的百分比,即可求出样本容量,再求出无所谓态度的人数,进而求出a的值;(2)由(1)可知无所谓态度的人数,将条形统计图补充完整即可;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分比,用样本估计总体的思想计算即可.试题解析:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=37.5%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800人.考点:条形统计图;扇形统计图;用样本估计总体.94.市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数.【答案】(1)见解析;(2)平均数是11.6吨;众数是11吨,中位数是11吨.【解析】试题分析:(1)利用总数100减去其它组的人数即可求得月用水量是11吨的人数,即可补全直方图;(2)利用加权平均数公式即可求得平均数,然后根据众数和中位数的定义确定众数和中位数.解:(1)月用水量是11吨的户数是:100﹣20﹣10﹣20﹣10=40(户);;(2)平均数是:(20×10+40×11+10×12+20×13+10×14)=11.6(吨);众数是11吨,中位数是11吨.95.为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.【答案】(1)40人;(2)8人;(3)答案见解析【解析】试题分析:(1)根据“总体=样本容量÷所占比例”即可得出结论;(2)根据“样本容量=总体×所占比例”可求出参加C舞蹈类的学生人数,再由总体减去其他各样本容量算出参加E棋类的学生人数,求出其所占总体的比例,再根据比例关系即可得出结论;(3)根据条形统计图的特点,找出一条建议即可.试题解析:(1)被调查学生的总人数为:12÷30%=40(人).(2)被调查参加C舞蹈类的学生人数为:40×10%=4(人);被调查参加E棋类的学生人数为:40﹣12﹣10﹣4﹣6=8(人);200名学生中参加棋类的学生人数为:200×=40(人).(3)因为参加A球类的学生人数最多,故建议学校增加球类课时量,希望学校多开展拓展性课程等.考点:(1)条形统计图;(2)总体、个体、样本、样本容量;(3)用样本估计总体;(4)扇形统计图.96.为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【答案】(1)答案见解析;(2)360;(3)答案不唯一.【解析】【分析】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案;(3)无确切答案,结合自身情况或条形统计图,言之有理即可.【详解】(1)乙组关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)46100×3600=360(人). 答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.考点:条形统计图;用样本估计总体.97.某街道决定从备选的五种树种选购一种进行栽种,为了更好地了解社情民意,工作人员在街道辖区范围内随机抽去了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图所示的两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为 ;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知街道辖区内现有居民8万人,请估计这8万人中最喜欢玉兰树的有多少人?【答案】(1)1000;(2)补图见解析;(3)36°;(4)20000人【解析】【分析】(1)根据喜欢“银杏树”的人数除以其占的百分比即可得总人数;(2)用总人数减去选择其它4种树的人数可得喜欢“樟树”的人数,补全条形图即可;(3)用样本中喜欢“枫树”占总人数的比例乘以360°即可得答案;(4)用样本中最喜欢“玉兰树”的比例乘以总人数可得答案.【详解】(1)这次参与调查的居民人数为375÷37.5%=1000(人);(2)选择“樟树”的有1000﹣250﹣375﹣125﹣100=150(人),补全条形图如图:=36°,(3)360°×1001000答:扇形统计图中“枫树”所在扇形的圆心角度数为36°;(4)8×250=2(万人),1000答:估计这8万人中最喜欢玉兰树的约有2万人.98.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【答案】(1)200;(2)108°;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.试题解析:(1)80÷40%=200(人).∴此次共调查200人.(2)60×360°=108°.200∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.99.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.(1)a= ;(2)补全条形统计图;(3)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.【答案】(1)35;(2)见解析;(3)估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.【解析】试题分析:(1)用样本总数100减去A 、B 、D 、E 类的人数即可求出a 的值;(2)由(1)中所求a 的值得到C 类别的人数,即可补全条形统计图; (3)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.解:(1)a=100﹣5﹣20﹣30﹣10=35;(2)补全条形统计图如图所示:(3)30×=22.5(万人).答:估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.100.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【答案】(1)图见解析;(2)0.221万元.【解析】试题分析:(1)将销售总额减去2012、2014、2015年的销售总额,即可求得2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.试题解析:解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.考点:条形统计图;折线统计图.。
七年级数学下册《统计调查》同步练习题及答案(人教版)
七年级数学下册《统计调查》同步练习题及答案(人教版)一、单选题1.对下面问题的调查,适合用普查方式的是().A.了解我国七年级学生的视力情况B.了解一批圆珠笔芯的使用寿命C.对“天舟五号”货运飞船零部件的检查D.中央电视台春节联欢晚会的收视率2.某养殖专业户为了估计其皖鱼养殖池中鲩鱼的数量,第一次随机捕捞了36条鲩鱼,将这些鱼一一做好标记后放回池塘中.一周后,从池塘中捕捞了750条鱼,其中有标记的鲩鱼共2条,估计该池塘中鲩鱼的数目为()A.54000B.27000C.13500D.67503.为了解某校学生家庭的收入情况,从中抽取了100个学生的家庭进行调查.下面说法正确的是()A.全校学生家庭是总体B.抽取的这100个学生是样本C.样本容量是100D.样本容量是100个学生家庭的收入4.某校九年级教师对第一轮复习进行评价调查,评价组随机抽取了若干名学生的参与情况,制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息计算,在这次评价中,一共抽取的学生人数为()A.480B.520C.420D.5605.学校对八年级某班针对上学的交通工具选用情况进行调查(单选题),其中A(骑车),B(私家车),C (步行),D(乘公交车),结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C.选C的有28人D.该班共有40人参加调查6.下列调查活动,适合使用全面调查的是()A.考查人们保护海洋的意识B.了解某班学生50米跑的成绩C.调查某种品牌照明灯的使用寿命D.调查抗美援朝纪录片《为了和平》在线收视率7.下列调查中,适宜采用抽样调查的是()A.调查九年级一班全体50名学生的视力情况B.调查奥运会马拉松比赛运动员兴奋剂的使用情况C.调查某批中性笔的使用寿命D.调查神舟十五号载人飞船各零部件的质量8.某校九年级学生的视力情况统计如图所示,若中度近视的学生有80人,则轻度近视的学生有()A.40人B.108人C.120人D.160人9.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如图所示的统计图.若该校有2000名学生,估计喜欢木工的人数为()A.64B.380C.640D.72010.“学习强国”平台,立足全体党员,面向全社会.某省有532.9万名党员注册学习,为了解党员学习积分情况,随机抽取了10000名党员学习积分进行调查,下列说法错误..的是()A.总体是该省532.9万名党员的“学习强国”积分B.个体是每一个党员C.样本是抽取的10000名党员的“学习强国”积分D.样本容量是10000二、填空题11.某校有3600名学生,随机抽取了200名学生进行体重调查.在这个问题中,样本容量是______.12.为了解某区九年级3600名学生中观看2022北京冬奥会开幕式的情况,随机调查了其中200名学生,结果有160名学生全程观看了开幕式,请估计该区全程观看冬奥会开幕式的九年级学生人数约为________人.13.实施“双减政策”之后,为了解新乡市一中学生平均每天完成各科家庭作业所用的时间,根据以下4个步骤进行调查活动:①整理数据;①得出结论,提出建议;①收集数据;①分析数据.对这4个步骤进行合理的排序应为:________.14.为了解某市八年级学生的身高情况,在该市8200名八年级学生中随机抽取1500名学生进行身高情况调查,则本次抽样调查的样本容量是__________.15.某地区八年级共有学生50000名,为了解该地区八年级学生平均每天完成课外作业的时间情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序:①分析数据;①用直方图或扇形统计图将200个数据进行整理:①得出结论;①从50000名学生中随机抽取200名学生,调查他们平均每天完成课外作业的时间.合理的排序是______.(只填序号)三、解答题16.无论是雪域高原、塞上江南,还是大漠戈壁、茫茫草原、其生态状况都与国家生态环境安全和可持续发展息息相关.中国各地“绿水青山”转化为“金山银山”的路径正在日益清晰,“城市国际化、产业现代化、全域景区化”的“三化”模式被更多的地方所接受.为贯彻实施绿色发展理念,节约资源,保护环境,我区某校组织九年级若干名学生进行了“环保”知识竟答活动,赛后对全体参赛选手的竞赛成绩进行了整理与统计.并将调查结果绘制为下图,请根据统计图中的信息解答下列问题:(1)本次共调查了______名学生;扇形统计网中B类所占的网心角度数为______;(2)补全条形统计图;(3)已知该校初、高中共有学生2800名,小颖想根据九年级的凋查结果,估计全校学生中“环保”知识掌握情况达到A类等级的人数.请你判断她这样估计是否合理并说明理由.17.今年是毛泽东等老一辈革命家为雷锋同志题词60周年,为深入贯彻落实党的二十大精神,大力弘扬宣传雷锋精神,某学校举行了以“传承雷锋精神,争当追锋少年”为主题的知识竞赛活动,竞赛满分为10分,学生成绩平均在7分以上,将成绩10分、9分、8分、7分,分别定为A,B,C,D四个等级.学校随机抽取部分学生的竞赛成绩绘制统计图,请回答下列问题:(1)学校随机抽取的学生人数为;(2)补全条形统计图;(3)在扇形统计图中,“C”部分所对应的圆心角的度数为度;(4)如果该校共有学生4800人,且规定等级为A、B的为优秀,请估计该校学生在此次知识竞赛活动中成绩为优秀的有多少人?18.目前我市“校园手机”现象越来越受到社会的关注,针对这种现象,某校初三()3班数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:.A无所谓;.B基本赞成;.C赞成;.D反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)求出图2中扇形C所对的圆心角的度数为______ 度,并将图1补充完整;(2)根据抽样调查结果,请你估计该校11000名中学生家长中持反对态度的人数.19.2022年3月23日“天宫课堂”第二课在中国空间站开讲并直播,神舟十三号三位航天员相互配合,生动演示了微重力环境下的四个实验:A.太空“冰雪”实验B.液桥演示实验C.水油分离实验D.太空抛物实验.某校九年级数学兴趣小组成员“对这四个实验中最感兴趣的是哪一个”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图.请根据图中的信息回答下列问题:(1)在这次调查活动中,兴趣小组采取的调查方式是______;(填写“普查”或”抽样调查“)男生平均每周体育活动时间统计图100名女生平均每周体育活动时间统计图参考答案:1.C2.C3.C4.D5.D6.B7.C8.C9.C10.B11.20012.288013.①①①①14.150015.①①①①16.(1)80,162︒(2)5 (3)不合理17.(1)40(2)86 (3)108(4)估计该校学生在此次知识竞赛活动中成绩为优秀的有2400人18.(1)18︒(2)6600名19.(1)抽样调查(2)50,10 (3)195人20.(1)150人,15人(2)444人。
人教版七年级数学下册 统计调查(解析版)
10.1 统计调查一、选择题1.小夏为了了解她所在小区(约有3000人)市民的运动健身情况,她应采用的收集数据的方式是()A. 对小区所有成年人发问卷调查B. 对小区内所有中小学生发问卷调查C. 在小区出入居民随机发问卷进行调查D. 挨家挨户发问卷调查【答案】C2.精准扶贫是全面建成小康社会的重要保障,某乡为了解果农的年收入情况,从全乡果农中随机抽取50户果农进行调查,这50户果农的年收入是()A. 样本B. 样本容量C. 个体D. 总体【答案】A【解析】解:某乡为了解果农的年收入情况,从全乡果农中随机抽取50户果农进行调查,这50户果农的年收入是样本,故选:A.3.下列采用的调查方式中,不合适的是()A. 了解澧水河的水质,采用抽样调查B. 了解一批灯泡的使用寿命,采用全面调查C. 了解张家界市中学生睡眠时间,采用抽样调查D. 了解某班同学的数学成绩,采用全面调查【答案】B4.中学生骑共享单车上学给交通安全带来隐患.为了了解某中学2500名学生家长对“中学生骑共享单车上学”的态度,从中随机调查了400名家长,结果有360名家长持反对态度,则下列说法正确的是()A. 调查方式是普查B. 该校只有360名家长持反对态度C. 样本是360名家长D. 该校约有90%的家长持反对态度【答案】D解:A.调查方式是抽样调查,故A错误;B.抽取的样本中有360个家长持反对态度,故B错误;C.样本容量是400,故C错误;D.该校约有90%的家长持反对态度,故D正确.故选D.5.下列说法正确的是().A. 抽样调查比全面调查更科学B. 全面调查比抽样调查更科学C. 抽样调查的样本可以随意选取D. 抽样调查是根据样本来估计总体的一种调查【答案】DA、全面调查与抽样调查无所谓科学不可数,故不正确;B、由A知,不正确;C、抽样调查的样本选取有代表性,故不正确;D、抽样调查是根据样本来估计总体的一种调查,故正确.二、填空题6.为了估计一个鱼塘里鱼的数量,第一次打捞上来80条,做上记号放入水中,第二次打捞上来50条,其中2条有记号,鱼塘大约有鱼条.【答案】2000解:设鱼塘中估计有鱼x条,50:2=x:80,∴x=2000.∴鱼塘中估计有鱼2000条.7.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了______调查方式.(选填“普查”或“抽样调查”)【答案】抽样8.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为______人.【答案】3150=3150(名).【解析】解:8400×150400答:估计该区会游泳的六年级学生人数约为3150名.9.已知10个数据;0,1,2,36,1,2,3,0,3,其中2出现的频数为______.【答案】2【解析】解:10个数据;0,1,2,36,1,2,3,0,3,其中2出现的频数为:2.三、解答题10.为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校100名学生进行调查,要求每名学生只选出一类自己最喜爱的节目,根据调查结果绘制了不完整的条形图和扇形统计图(如图),根据图中提供的信息,解答下列问题:(1)这次抽样调查的女生人数是______人;(2)扇形统计图中,“A”组对应的圆心角度数为______.,并将条形图中补充完整;(3)若该校有1800名学生,试估计全校最喜欢新闻和戏曲的学生一共有多少人?=40(人).【解析】解:(1)这次抽样调查的女生人数是1435%=18°.(2)扇形统计图中,“A”组对应的圆心角度数为360°×240B组女生人数为40−(2+14+16+4)=4(人),D组男生人数为(100−40)−(6+12+18+4)=20(人).条形图补充如下:=288(人).(3)1800×6+2+4+4100故估计全校最喜欢新闻和戏曲的学生一共有288人.11.由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了______名学生;(2)在扇形统计图中,m的值是______,D对应的扇形圆心角的度数是______;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.【答案】50 10 72°【解析】解:(1)20÷40%=50人;×360°=72°;(2)(50−20−15−10)÷50×100%=10%,即m=10;1050(3)50−20−15−10=5(人);=400(人).(4)2000×1050答:该校最喜欢方式D的学生约有400人.。
人教版数学七年级下册 10.1 统计调查 练习(含答案)
10.1 统计调查练习一、选择题1.下列调查中,适合普查方法的是()A. 了解一批灯泡的使用寿命B. 了解某班学生对“社会主义核心价值观”的知晓率C. 了解全国中学生体重情况D. 了解北京电视台《红绿灯》栏目的收视率2.为了了解2019年我市七年级学生期末考试的数学成绩,从中随机抽取了1000名学生的数学成绩进行分析,下列说法正确的是()A. 2019年我市七年级学生是总体B. 样本容量是1000C. 1000名七年级学生是总体的一个样本D. 每一名七年级学生是个体3.下列调查方式,你认为最合适的是()A. 了解北京市每天的流动人口数,采用抽样调查方式B. 旅客上飞机前的安检,采用抽样调查方式C. 了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式4.下列调查中,最适合采用全面调查(普查)方式的是()A. 对重庆市辖区内长江流域水质情况的调查B. 对乘坐飞机的旅客是否携带违禁物品的调查C. 对一个社区每天丢弃塑料袋数量的调查D. 对重庆电视台“天天630”栏目收视率的调查5.下列调查中,最适宜用普查方式的是()A. 对一批节能灯使用寿命的调查B. 对我国初中学生视力状况的调查C. 对最强大脑节目收视率的调查D. 对量子科卫星上某种零部件的调查6.下列调查中,最适合采用抽样调查的是()A. 对某地区现有的16名百岁以上老人睡眠时间的调查B. 对“神舟十一号”运载火箭发射前零部件质量情况的调查C. 对某校九年级三班学生视力情况的调查D. 对某市场上某一品牌电脑使用寿命的调查7.下列调查中,最适合采用全面调查(普查)方式的是()A. 对重庆市初中学生每天阅读时间的调查B. 对端午节期间市场上粽子质量情况的调查C. 对某批次手机的防水功能的调查D. 对某校九年级3班学生肺活量情况的调查8.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A. 调查方式是全面调查B. 样本容量是360C. 该校只有360个家长持反对态度D. 该校约有90%的家长持反对态度二、填空题9.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是______ ,样本容量是______ .10.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有______人.11.为了解我校八年级同学的视力情况,从中随机抽查了30名学生的视力.在这个问题中,样本是______ .12.为了调查滨湖区八年级学生期末考试数学试卷答题情况,从全区的数学试卷中随机抽取了10本没拆封的试卷作为样本,每本含试卷30份,这次抽样调查的样本容量是______.13.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有______只青蛙.14.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊______只.15.为调查某校七年级学生每周用于做课外作业的时间,从该校七年级中抽取80名学生进行调查,在这个问题中,样本容量是_______.16.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是_______,样本容量是______.17.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是___________,样本是_________.18.下列调查:①调查人们在使用Iphone7中容易出现的问题;②调査潍坊中学生对“高铁门”事件的看法;③调查某班学生的视力情况;④调查乘坐飞机的旅客是否携带了危禁物品,其中,适宜采用抽样调查方式的有______.三、解答题19.为了解七年级学生完成课外作业所需的时间,小明访问了本班所有30名学生;小王访问了不同班级的18名男生;小芳访问了不同班级的18名女生.你认为以上三名同学的抽样方法合理吗?如果不合理,你认为应怎样设计?20.质检部门要对某厂生产的一批铅笔进行质量检查.这批铅笔共有100箱,每箱50盒,每盒10支.设定抽取的铅笔数是100支,请你为该部门制订一个抽样方案.21.下列调查中,分别采用了哪种调查方法(是全面调查还是抽样调查)?(1)买葡萄时,先随意摘一颗尝一尝,然后决定买还是不买.(2)某人到超市买苹果时,对所买的每个苹果逐一进行检查,最后买到了自己满意的苹果.(3)某市有16000名九年级学生参加毕业考试.为了解这些学生毕业考试的数学成绩,从16000份答卷中随机抽取300份进行统计分析.22.要调查下列问题,你觉得应采用全面调查还是抽样调查⋅说说理由.(1)检测某城市的空气质量;(2)了解全国中学生的视力和用眼卫生情况;(3)企业招聘,对应聘人员进行面试;(4)调查某池塘中现有鱼的数量.参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】D6.【答案】D7.【答案】D8.【答案】D9.【答案】七年级540名学生的视力情况;8010.【答案】68011.【答案】30名学生的视力12.【答案】30013.【答案】20014.【答案】60015.【答案】8016.【答案】七年级540名学生的视力情况,80.17.【答案】某中学初二学生视力情况的全体;25名初二年级学生的视力情况18.【答案】①②19.【答案】答:以上三名同学的抽样方法都不合理,小明只访问本班的学生,样本来源不够随机;小王和小芳的样本具有性别的限制,引入其他因素会影响调查结果,且样本数量太少.正确的设计方法是:随机抽取本年级不同班级中若干名同学进行调查,样本的数量视总人数的大小而定,尽量在10%以上.20.【答案】解:方案:随机抽取10箱,每箱随机抽取5盒,每盒抽取2支铅笔.(答案不唯一)21.【答案】解:(1)买葡萄时,先随意摘一颗尝一尝,然后决定买还是不买.采用了抽样调查;(2)某人到超市买苹果时,对所买的每个苹果逐一进行检查,最后买到了自己满意的苹果.采用了全面调查;(3)某市有16000名九年级学生参加毕业考试.为了解这些学生毕业考试的数学成绩,从16000份答卷中随机抽取300份进行统计分析.采用了抽样调查.22.【答案】解:(3)应采取全面调查,人数不多,因而适合全面调查;(1)(2)(4)应采取抽样调查,数量大,涉及面广,因而适合抽样调查.。
(典型题)浙教版七年级下册数学第六章 数据与统计图表含答案
浙教版七年级下册数学第六章数据与统计图表含答案一、单选题(共15题,共计45分)1、今年某市有30000名考生参加中考,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.30000名考生是总体C.这100名考生是总体的一个样本 D.1000名学生是样本容量2、为了了解我市城区某一天的气温变化情况,应选择()A.条形统计图B.折线统计图C.扇形统计图D.以上图形均可3、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组 D.教职工年龄的众数一定在38≤x<40这一组4、下列调查中,适合普查的事件是()A.调查华为手机的使用寿命B.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场》的节目收视率5、为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量高于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.该小区按第二档电价交费的居民有17户C.估计该小区按第一档电价交费的居民户数最多D.该小区按第三档电价交费的居民比例约为6%6、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A.32000名学生是总体B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体 D.以上调査是普查7、下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查 D.对重庆市初中学生课外阅读量的调查8、某校为开展第二课堂,组织调查了本校300名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,根据统计图判断下列说法,其中正确的一项是()A.在调查的学生中最喜爱篮球的人数是50人B.喜欢羽毛球在统计图中所对应的圆心角是144°C.其他所占的百分比是20%D.喜欢球类运动的占50%9、甲乙两家公司在去年1-8月份期间的赢利情况,统计图如图所示,下列结论不正确的是( )A.甲公司的赢利正在下跌B.乙公司的赢利在1-4月间上升C.在8月,两家公司获得相同的赢利D.乙公司在9月份的赢利定比甲的多10、在数字1001000100010000中,0出现的频率是( )A.0.75B.0.8C.0.5D.1211、为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调查中的样本容量是( )A.1500B.300C.150D.5012、如图,是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42人,则参加球类活动的学生人数有( )A.145B.149C.147D.15113、嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率为( ) B.12 C. D.0.1214、下列调查中,适合用全面调查的是( )组号 ①② ③ ④ ⑤ ⑥ ⑦ ⑧ 频数 3 8 15 22 18 14 9A.调查某批次汽车的抗撞击能力B.对端午节期间市场上粽子质量情况的调查C.“神七”飞船发射前对重要零部件的检查D.鞋厂检测生产的鞋底能承受的弯折次数15、下列问题不适合用全面调查的是()A.旅客上飞机前的安检:B.调查春节联欢晚会的收视率:C.了解某班学生的身高情况:D.企业招聘,对应试人员进行面试.二、填空题(共10题,共计30分)16、调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用________ (填“普查”或“抽样调查”).17、一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有________.18、某校九年级(1)班所有学生参加初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有________ 人;(2)将条形统计图补充完整________ ;(3)在扇形统计图中,等级B部分所占的百分比是________ ,等级C对应的圆心角的度数为________ ;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有________ 人.19、某同学为了解某火车站今年“春运”期间每天乘车人数,随机抽查了其中5天的乘车人数.所抽查的这5天中每天的乘车人数是这个问题的________.20、在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是________.21、某校为了举办“庆祝建党90周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息这所学校一共有________人.22、小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是________ 人.23、聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是________24、在扇形统计图中,其中一个扇形的圆心角是216°,则这部分扇形所表示的部分占总体的百分数是________.25、春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为________.三、解答题(共6题,共计25分)26、如图所示,把一个圆分成四个扇形甲、乙、丙、丁,请求出这四个扇形圆心角的度数.27、为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是?女生收看“两会”新闻次数的中位数是?(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3 3 4 2 …根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.28、某中学举行了一次“奥运会”知识竞赛,赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:分数段频数频率第一组:60≤x<70 30 0.15第二组:70≤x<80 m 0.45第三组:80≤x<90 60 n第四组:90≤x<100 20 0.1请根据以图表提供的信息,解答下列问题:(1)写出表格中m和n所表示的数:m等于多少,n等于多少;(2)补全频数分布直方图;(3)抽取部分参赛同学的成绩的中位数落在第几组;(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?29、中秋节是我国民间的一个传统节日,在中秋节吃月饼就成为了千古流传的习俗.在今年中秋节前夕,我校某班学生在班主任的带领下组织了一次制作“爱心月饼”活动,每个学生将自己制作的月饼全部送给敬老院的老人们.现统计全班学生制作月饼的个数,将制作月饼数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的月饼个数分别为4、5、6、7.根据图中提供的信息,请补全两个不完整的统计图并求出该班学生制作月饼个数的平均数.30、两名同学在调查时使用下面的两种提问方式,(1)难道你不认为科幻片比武打片更有意思吗?(2)你更喜欢哪一类电影,科幻片还是武打片?你认为哪个更好些?原因是什么?参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、C5、B6、B7、C8、B10、A11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共6题,共计25分)26、27、29、。
初一数学统计试题及答案
初一数学统计试题及答案一、选择题1. 统计中,数据的收集、整理、描述和分析的过程称为()A. 数据处理B. 统计分析C. 数据整理D. 数据分析2. 以下哪个选项不是统计图的类型?()A. 条形统计图B. 折线统计图C. 饼状统计图D. 树状统计图3. 在统计中,中位数是指将数据从小到大排列后,位于中间位置的数。
如果数据个数是奇数,则中位数是()A. 最大值B. 最小值C. 中间值D. 平均值二、填空题4. 某班有40名学生,其中男生23人,女生17人。
男生人数占全班人数的百分比是_________。
5. 如果一组数据的平均数是20,中位数是18,那么这组数据的众数可能是()。
三、简答题6. 请简述统计图在数据分析中的作用。
四、计算题7. 某班级有50名学生,其中语文成绩优秀的有15人,良好的有20人,及格的有10人,不及格的有5人。
请计算这组数据的平均数、中位数和众数。
五、应用题8. 某学校进行了一次数学竞赛,共有100名学生参加。
根据成绩,将学生分为三个等级:优秀、良好、及格。
成绩分布如下:优秀等级的学生有30人,良好等级的学生有40人,及格等级的学生有30人。
请绘制一个条形统计图,并计算这100名学生的平均成绩。
答案:一、选择题1. B2. D3. C二、填空题4. 57.5%5. 20或18三、简答题6. 统计图在数据分析中的作用是直观地展示数据的分布情况,帮助人们快速理解数据的特征和趋势,便于比较和分析。
四、计算题7. 平均数:(15*90 + 20*80 + 10*70 + 5*60) / 50 = 73中位数:第25和第26名学生的成绩都是70,所以中位数是(70 +70) / 2 = 70众数:良好的人数最多,所以众数是80五、应用题8. 条形统计图绘制方法:将三个等级分别用不同高度的条形表示,优秀等级的条形高度为30,良好等级的条形高度为40,及格等级的条形高度为30。
平均成绩计算:由于没有具体的成绩数据,无法计算具体数值,但可以假设每个等级的学生成绩均匀分布,然后根据分布情况估算平均成绩。
初一数学数据统计练习题及答案20题
初一数学数据统计练习题及答案20题在初一数学学习中,数据统计是一个重要的内容。
通过练习题,我们可以巩固对数据统计的理解,并提高解题的能力。
本文将提供20道初一数学数据统计的练习题及答案,帮助同学们更好地掌握这一知识点。
第一题:某班级30名同学参加数学竞赛,得分如下:78、85、92、80、70、88、90、92、85、79、82、90、95、77、85、83、89、90、86、83、79、88、90、82、85、78、92、83、80、88,请计算这个班级的平均得分。
解答:首先将所有得分相加得到总分:78+85+92+80+70+88+90+92+85+79+82+90+95+77+85+83+89+90+86+83+79+88+90+82+85+78+92+83+80+88=2588。
然后将总分除以总人数30,即2588/30=86.27。
所以,这个班级的平均得分是86.27。
第二题:某学校初一年级所有学生身高如下(单位:厘米):165、167、160、170、175、158、162、170、173、168、163、165、160,请计算这些学生身高的中位数。
解答:为了计算中位数,首先将身高从小到大进行排序:158、160、160、162、163、165、165、 167、168、170、170、173、175。
由于共有13个数据,所以中位数是第(13+1)/2=7 个数据,即165厘米。
接下来,我们继续解答其他的练习题:第三题:某班级40名同学参加一次数学测验,得分如下:90、85、70、95、88、92、78、83、85、90、75、80、95、90、85、80、82、78、87、92、85、88、95、90、85、80、82、85、88、90、75、80、85、92、78、83、85、90、75、80,请计算这次测验中得分在80分以上的同学所占的比例。
解答:首先统计得分在80分以上的同学数量,得分大于或等于80分的有28名同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
小题1:(1)在这次问卷调查中,一共抽查了名学生;
小题2:(2)请将上面两幅统计图补充完整;
小题3:(3)图中,“踢毽”部分所对应的圆心角为度;
小题4:(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?
解答:
小题1:(1)200;
小题2:(2).如图所示:
小题3:(3).;
小题4:(4).最喜欢球类活动的学生人数是
(名)
2、实验中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调查各兴趣小组活动情况,为此校学生会委托小容、小易进行一次随机抽样调查.根据采集到的数据,小容绘制的统计图1,小易绘制的统计图2(不完整)如下:
请你根据统计图1、2中提供的信息,解答下列问题:
小题1:写出2条有价值信息(不包括下面要计算的信息);
小题2:这次抽样调查的样本容量是多少?在图2中,请将小易画的统计图中的“体育”部分的图形补充完整;
小题3:爱好“书画”的人数占被调查人数的百分数是多少?估计实验中学现有的学生中,
有多少人爱好“书画”?
解答:
小题1:①电脑小组比音乐小组人数多;②音乐小组体育小组比例大;等等
小题2:画图,如图所示;
小题3:
3、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:
(1)求a、b的值.
(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.
(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?
解答:
解:(1)a="80" , b= 10%
(2)×100%×360°="108°
(3) 80+40+200×10%="140
×100%×8000="5600
4、
某校为了了解九年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下统计图,其中测试成绩在90~100分为A级,75~89分为B级,60~74分为C级,60分以下为D级。
甲同学计算出成绩为C的频率是0.2,乙同学计算出成绩为A、B、C的频率之和为0.96,丙同学计算出成绩为A的频数与成绩为B的频数之比
为7:12.结合统计图回答下列问题:
小题1:这次抽查了多少人?
小题2:所抽查学生体育测试成绩的中位数在哪个等级内?
小题3:若该校九年级学生共有500人,请你估计这次体育测试成绩为A级和B级的学生共有多少人?
解答:
解:(1)由题意知,C级人数为10人,∴(人)答:这次共抽查了50人
(2)D级的频率是1-0.96=0.04.
∴D等级的人数为:0.04×50=2,
B级的人数是:×(50-10-2)=24,
A级的人为是:50-2-10-24=14,
因此,所抽查学生体育测试成绩的中位数在B等级内. (3)500×(人).
答:该校九年级育测试成绩为A级和B级的学生约为380人.。