5初中数学最值系列之辅助圆教案
中考数学复习讲义课件 中考考点全攻略 第六单元 圆 小专题5 辅助圆问题
2.圆内接四边形对角互补,因此遇到四边形 ABCD中的动点问题,若满足其中一组对角角度之 和等于180°,可考虑作它的外接圆解题.如图3, 在四边形ABCD中,满足∠ABC+∠ADC=180°, 可知四边形ABCD有外接圆⊙O,其圆心O为任意 一组邻边的垂直平分线的交点(点O为AB和BC垂直 平分线的交点).
【经典母题】 如图,△ABC为等边三角形,AB=2.若P为△ABC内 一动点,且满足∠PAB=∠ACP,则线段PB长度 的最小值为_______.
[解析] ∵△ABC是等边三角形, ∴∠ABC=∠BAC=60°,AC=AB=2. ∵∠PAB=∠ACP, ∴∠PAC+∠ACP=60°,∴∠APC=120°,
[思维方法] 根据线段BA与线段BQ关于线段BP所 在的直线对称可知,点Q在以点B为圆心,AB长为 半径的圆上运动,即点Q的运动轨迹是一段圆弧, 然后画出草图,再矩形的性质求出∠ABQ=120°, 再由矩形的性质和轴对称性可知,△BOQ≌△DOC, 最后根据S阴影部分=S四边形ABQD-S扇形ABQ =S四边形ABOD+S△BOQ-S扇形ABQ可求出答 案.
小专题5辅助圆问题
类型一 定点定长作圆 方法解
读 平面内,点A为定点,点B为动点,且AB长度固定, 则点B的轨迹在以点A为圆心,AB长为半径的圆上 (如图1).依据的是圆的定义:圆是所有到定点的 距离等于定长的点的集合.
推广:如图2,点E为定点,点F为线段BD上的动 点(不含点B),将△BEF沿EF折叠得到△B′EF,则点 B′的运动轨迹为以点E为圆心,以线段BE为半径的 一段圆弧.若遇到求最值问题,可利用两点间线段 最短或垂线段最短解决。
12.如图,正方形ABCD的边长为4,等边△EFG内 接于此正方形,且E,F,G分别在边AB,AD, BC上,若AE=3,求EF的长.
2017年中考专题复习—辅助圆教学设计
2017年中考专题复习—辅助圆教学设计学生情况分析:作为专题复习,初三的学生已经学习了圆的基本知识,掌握了圆的一些有关性质,并对辅助圆有了初步的认识.对于直线形中常见的几何问题形成了一些基本的解题策略,但从辅助圆这个新的视角解决问题还显得弱了很多.学生对于一些数学问题容易产生想法,但欠缺的是归纳总结提升,而本节课想要达到的目的,就是引导学生学会归纳总结,将以前学过的一些知识从一个新的视角研究,简化证明过程.初步形成构造曲线形辅助线的意识. 设计意图:对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题.但辅助线的添加就被局限在直线形,而实际上曲线形辅助线在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表,利用圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,来感受辅助圆的独特.本节课想以一种学生探究,老师引领学生作归纳总结的形式呈现,通过学生思想的碰撞,最终达成共识.教学目标:1.进一步巩固圆的定义和性质,能够正确利用圆找到符合条件的点所在的位置;2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用作圆解决分类讨论问题的方法;3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质.教学重点:利用辅助圆解决有关问题教学难点:建立用圆的观点看问题的意识,能够判断出构造圆的条件教学过程:画辅助圆即“四点共圆”这类问题一般有两形式:一是要证明某四点共圆(;二是通过某四点共圆来得到一些重要的结果,进而解决问题,下面是与画辅助圆有关的一些基本知识。
1、若干个点与某定点的距离相等,则这些点在同一圆周上(证明多个点到同一个定点的距离相等即可)2、在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆。
(共斜边的两个直角三角形顶点共圆)3、若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆4、若点C,D在线段AB的同侧,且∠ACB=∠ADB,则A,B,C,D四点共圆探究11、如图所示,在四边形ABCD中,AB=AC=AD,∠BAC=20°∠CAD=80°,则∠BDC=______度,∠DBC=______度练习:如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A、错误!未找到引用源。
探究辅助圆的基本模型教学设计及点评(获奖版)
《“圆”来如此简单—探究辅助圆的基本模型》教学设计【一、内容和内容解析】(一)内容探究辅助圆的基本模型(二)内容解析在初中数学中,圆是我们常见的一个数学问题,也是初中教材中一个重要内容,但是有些题目明明题中和图中都没有圆的出现,但是在解题的过程中却要借助圆,这样的圆就是“辅助圆”。
这类“辅助圆”的出现也是有迹可循的:第一类当出现定点和定长时,可根据圆的定义构造圆;第二类当出现定线和定角时,可根据同弧(弦)所对的圆周角构造圆,或是90o的圆周角所对的弦是直径构造圆;第三类对角互补的四边形可构造圆。
三类模型的出现都需要进行探究,而这个探究过程是从特殊到一般的过程。
通过模型的探究,便可以利用圆的性质解决问题。
基于以上的分析,确定本节课的教学重点是:探究辅助圆的基本模型。
【二、教学目标及解析】(一)目标1.利用所学的知识对辅助圆模型进行探究.并在探究的过程中培养学生从数学角度发现和提出问题的能力、分析和解决问题的能力;用数学的眼光观察世界,用数学的思维分析世界,用数学的语言表达现实世界.2.能将所探究的辅助圆模型应用到生活实际问题和数学问题中,并进一步体会数学建模思想、分类讨论思想、化归思想和数形结合思想,养成良好的数学学习习惯.(二)目标解析达成目标1的标志是:能够通过小组讨论得到辅助圆出现的条件,并通过小组合作的形式利用图像、几何语言及文字语言总结出模型的特点,以及模型出现所需要具备的条件。
达成目标2的标志是:能够利用所探究的模型应用到生活实际问题和数学问题中去,并独立找到生活实际问题和数学问题的解决办法。
【三、教学问题诊断分析】九年级的学生抽象思维趋于成熟,而且具有独立思考,合作交流,逻辑推理,归纳概括的能力。
本节课是探究辅助圆的基本模型,在已有知识的基础之上,利用条件得到辅助圆并不困难,但是根据条件确定圆心和半径,进一步画出辅助圆对于学生会有一定的困难。
因此在本节课的教学中,可以让学生从已有的知识出发,通过实践操作,自主探究、合作交流,归纳总结等数学活动中,理解和掌握数学知识技能,形成数学思想方法。
「解题策略」最值系列之辅助圆(一)
「解题策略」最值系列之辅助圆(一)姓名:__________指导:__________日期:__________最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最最值的问题就会变得简单了,比如:如下图,A为圆外一点,在圆上找一点P使得PA最小.已知圆轨迹类【2017四川德阳】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,直线l不经过点C,则AB的最小值为________.【分析】连接OP,根据△APB为直角三角形且O是斜边AB中点,可得OP是AB的一半,若AB最小,则OP最小即可.连接OC,与圆C交点即为所求点P,此时OP最小,AB也取到最小值.由定义构造辅助圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是以定点为圆心、定值为半径的圆或圆弧.【2014成都中考】如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C 长度的最小值是________.【分析】考虑△AMN沿MN所在直线翻折得到△A’MN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时A’C的值最小.构造直角△MHC,勾股定理求CM,再减去A’M即可.【2016淮安中考】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_______.【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FH⊥AB,与圆的交点即为所求P点,此时点P到AB的距离最小.由相似先求FH,再减去FP,即可得到PH.【2019扬州中考】如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【分析】考虑l是经过点P的直线,且△ABC沿直线l折叠,所以B’轨迹是以点P为圆心,PB为半径的圆弧.考虑△ACB’面积最大,因为AC是定值,只需B’到AC距离最大即可.过P 作作PH⊥AC交AC于H点,与圆的交点即为所求B’点,先求HB’,再求面积.【2018相城区一模】如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.【分析】F点轨迹是以E点为圆心,EA为半径的圆,作点D关于BC对称点D’,连接PD’,PF+PD化为P F+PD’.连接ED’,与圆的交点为所求F点,与BC交点为所求P点,勾股定理先求ED’,再减去EF即可.动态问题抓不变量,从不变量出发探寻解决问题方案!。
辅助圆公开课教案
尝试1:如图所示,在凸四边形ABCD中,AB=BC=BD, ,
则 的度数为.
问题2:若Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的外接圆半径
为_____.
什么条件让你想到可以构造圆,可以构造圆的依据是什么?
(1)∠APB=;
(2)当E从点A运动到点C时,试求点P经过的路径长;
(3)连结CP,CP长度的最小值为。
五、总结提升
1.数学方法:构造辅助圆
(1)当遇有公共端点的等线段长时,通常以公共端点为圆心,等线段长为半径,构造辅助圆.
(2)可以利用直径所对的圆周角是直角,以斜边为直径,构造辅助圆.
2.数学思想:转化思想
利用构造辅助圆解决分类讨论问题,可以很快找到符合条件的点,并可以将问题转化为圆中求线段、求角度的问题.
3.辅助线的构造可以是直线形,也可以是曲线形.
六、布置作业
课题:《构造辅助圆》(简案)
教学目标:1.进一步巩固圆的定义和性质,能够正确利用圆找到符合条件的点所在的位置;2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用
作圆解决分类讨论问题的方法;
3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质.
教学重点:利用辅助圆解决有关问题
三、学以致用
问题3:如图,锐角△ABC中,BD、CE是高线,DG⊥CE于G, EF⊥BD于F。
四、拓展提升
问题4:如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值等于
“辅助圆”求线段最值问题(叶红)
“辅助圆”求线段最值问题
富平中学 叶红
学习目标:
1、理解圆外一点到圆上的最小距离 和最大距离;
2、准确寻找隐藏的辅助圆; 3、“定边(弦)定角圆上找”
重难点:
1、准确寻找隐藏的辅助圆; 2、理解变化过程中线段的大小关系。
模型分析“一箭穿心”
1、平面内有一个定点M和⊙O上一动点P
的连线中,当连线过圆心O时,线段PM有最 大值和最小值
2、理解“定边定角”问题中的线段最值, “定边(弦)定角圆上找” ;
3、准确寻找隐藏的辅助圆。
问题1 平面内一点P和⊙O上动点A的连线PA
的最大值和最小值分别是多少?
A
r
P
d
O
当O、P、A三点共线时,对应有最值, 其和d+r为最大值,其差d-r为最小值.
A
P
d O
辅助圆问题
方法突破精 讲练
1. 如图,已知⊙O及其外一点C,请在⊙O上找一点P,
使其到点C的距离最近.
解:如图,连接OC交圆O于点P,则点P 即为所求.在圆O上任取异于P点的点P′, ∵OP′+P′C>OP+PC 又∵OP′=OP ∴CP′>CP
第1题图
第1题解图
辅助圆问题
方法突破精 讲练
2. 如图,已知正方形ABCD的边长为4.点M和N分别从B、
C同时出发,以相同的速度沿BC、CD方向向终点C和D
运动.连接AM和BN,交于点P,则PC长的最小值为
___2_5__-2__.(请在图中画出点P的运动路径)
第2题图
【解析】如图连接AC、BD交于点E
依题意,易得BM=CN,∠ABM=∠BCN,AB=BC,
∴PC=O3C-OP= 4 3
初数-构造辅助圆解题教法解析
■七 口工 思路: .1 ADCB^AFCB ADAB^ADAF InllSlll FD=BD=FB zDBF=60° zCBD=30° izUlE^ Example
在平面直角坐标系中,已知A (-3, 0) , B (1, 0),点P
在y轴上,且4ABP为直角三角形,NAPB=90° .请问满
足条件的点P有几个?并求出它们的坐标.
思路:作以AB为直径的圆,P在圆 与y轴的交点上,根据圆的定义和 勾股定理即可求P坐标
例题 Example
二、作三角形的外接 园
总结:直角三角形斜边即为直角三 角形外接圆半径
求证:ZCPO=ZDPO.
思路:切线长定理可知,OA^AP,
AM±OP,可得AM2=OM・MP,由
相交弦定理可知CM.MD=AM. MB, 因此可得CM.MD=OM.MP,所以C、
圆,由CO=BO即
Example
三、运用四点共圆的判定方法构造辅助 国 (不在11月月考范围内)
总结:若四边形A5CD的一组对边A3、DC的延长线相交于居
LilI心角关系定理:同B0或等国中, “知一推二”
周角定理及推论
1 .圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
2 .推论1:同弧或等弧所对的圆周角相等.
3 .推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4 .推论3:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角
思路:连DF, EF,寻找PD、PE、PF之间的
・关系,证明△PDF-Z\PFE,而发现P、D、B、
初三辅助圆教学设计
构造辅助圆教学设计一、教学内容分析:对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题,但辅助线的添加就被局限在直线形,而实际上曲线形辅助线在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表,利用圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,通过对构造辅助圆方法的分类,典型题的讲解.二、学情分析:1. 教学对象:初三学生;2. 已具备知识和技能:掌握了圆的相关性质和应用,并对辅助圆有了初步认识.三、教学目标:1. 知识目标:(1)进一步巩固圆的定义和性质;(2)体会利用圆解决点的轨迹问题;(3)初步形成从圆的观点看问题的意识,能够多角度认识事物.2. 能力目标:(1)提升转化能力,分类讨论能力;(2)同类型题目的总结归纳能力.3. 情感目标:(1)学生通过观察,发现构造辅助圆的条件,并且选择适合的方法做出辅助圆;(2)注重学生参与,联系实际,丰富学生的感性认识.四、教学重难点:1.教学重点:利用辅助圆解决有关问题.2.教学难点:初步形成用圆的观点看问题的意识,能够判断出构造圆的条件.五、教学策略:教学内容在公校少有涉及,但在很多时候是个实用工具和方法,所以本堂课采用讲练结合进行教学,注重与学生已有知识的联系,引导学生与原有的知识联系、比较,经历对知识拓展、归纳、更新的过程.六、课时安排:2小时七、教学过程:类型一:有公共端点的等线段(如下图)例1.如图,在四边形ABCD中,AB=AC=AD,若∠BAC=25°,∠CAD=75°,求∠BDC的度数.变式练习:1.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将∠AMN沿MN所在的直线翻折得到∠A′MN,连结A′C,求A′C长度的最小值.2.问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使∠APD为等腰三角形,那么请画出满足条件的一个等腰三角形∠APD,并求出此时BP的长;(2)如图②,在∠ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M 安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由。
巧解初中几何问题——以构造辅助圆为例
2023年12月下半月㊀解法探究㊀㊀㊀㊀巧解初中几何问题以构造辅助圆为例◉江苏省靖江市外国语龙馨园学校㊀徐㊀乐㊀㊀圆是初中数学平面几何中非常重要的一个知识点,与初中数学中其他几何问题有着紧密的联系.所以在解决几何问题时,一些无法利用常规思路求解的综合问题可以尝试通过构造辅助圆的方式来解决.因此,在初中数学几何问题解题教学中,教会学生如何正确使用辅助圆来巧解几何问题是教师需要重点研究的问题.下面将通过例题对辅助圆的应用进行说明.1角的问题例1㊀在әA B C 中,A B =A C ,øA B C 的平分线交A C 于点D ,已知B C =B D +A D ,求øA 的度数.分析:根据题中所给已知条件,可以判定әA B C为等腰三角形,但是想要根据已知条件通过常规方式求øA 的度数存在一定困难.结合题中所给的角平分线,可以联想圆中共顶点的角的问题,作әA B D 的外图1接圆,与әA B C 的B C 边交于点E ,连接D E ,如图1.根据B D 是øA B C 的角平分线,可以知道A D =D E ,同时还能得到这个辅助圆为四边形A B E D 的外接圆.根据圆内接四边形的对角互补的性质可得øA B C =øE D C ,根据әA B C 为等腰三角形可知øA B C =øE D C =øC ,于是可得øB E D =2øC ,且әE D C 为等腰三角形.所以D E =C E ,则A D =D E =C E ,然后结合B C =B E +A D 得到B D =B E ,所以øB D E =øB E D =2øC .这样就可以在әB D E 中计算øC 的度数,即12øC +2øC +2øC =180ʎ,所以øC =40ʎ,最后计算得出øA =100ʎ.在初中数学几何问题中构造辅助线需要充分结合试题的情况来进行.本题中辅助圆的构造就是结合了本题所给定的角平分线的关系,根据相等的圆周角所对应的弧和弦长相等的性质来实现;然后通过辅助圆及相关线段关系来与相关角取得联系;最后利用三角形的性质求解.教师要对学生进行相应的引导,让学生掌握通过角的关系来构造辅助圆,进而借助辅助圆解决问题.2线段长度的问题图2例2㊀如图2所示,在R t әA B C中,A B ʅB C ,A B =6,B C =4,P 是R t әA B C 内部的一个动点,且满足øP A B =øP B C ,则线段C P 的最小值为(㊀㊀).A.32㊀㊀㊀㊀㊀㊀B .2C .81313D.121313图3分析:根据A B ʅB C 可以知道øA B C =90ʎ,结合øP A B =øP B C 可得到øA P B =90ʎ,所以әA B P 是直角三角形.根据直角三角形中斜边的中线等于斜边的一半以及圆的直径所对的圆周角是90ʎ,可知点P 在以A B 为直径的圆上.以A B 的中点O 为圆心,A B 为直径作圆,如图3所示.这样就可得到当P C 的值最小时,点P 正好在线段O C 上.因为A B =6,所以O B =3.在R t әO B C 中,B C =4,根据勾股定理得到O C =5,于是可求出P C 的最小值为2.所以正确答案是选项B .例2的解题关键是需要判断点P 的轨迹,首先根据试题中所给定的关系得到øA P B =90ʎ,结合直角三角形的性质和圆的性质很容易判断出点P 在以直线A B 为直径的圆上,然后就能够求解最小值.因此,在解题的过程中,只有认真分析题目条件,才能顺利找到解题思路.教师在进行解题教学时需要教会学生如何根据题目中所给定的已知条件来进行分析,从而找到解题思路.很多几何问题都是需要在解题的过程中才能够找到相应的解题思路,并不是通过对试题的观察就能得到解题思路的.因此结合已知条件来对试97解法探究2023年12月下半月㊀㊀㊀题中存在的关系进行分析,在解题的过程中发现解题思路,是解决问题最好的方式.教师需要引导学生先根据已知条件尝试找到解题的思路,进而解决问题.3三角形相似的问题例3㊀әA B C 中,A D 是øB A C 的外角平分线,交B C 的延长线于点D ,求证:B D D C =A BA C.分析:A B ,A C 是әA B C 的两条边,而B D ,D C则是线段B D 上的两条线段,根据所学的知识,要证明B D D C =A BA C ,线段成比例关系可以通过证明三角形相似来解决.因此需要将线段B A 延长至点F ,连接D F ,构建出әB A C ʐәB D F ,得到A B A C =B DD F,然后证明C D =D F 就可以了,从而将证明的关键转化为证明C D =D F .结合题意,øB A C 的外角平分线交B C的图4延长线于点D ,如图4,根据例题1中的方式构造әA C D 的外接圆,B A 的延长线与圆交于点F ,连接D F .根据圆的性质可以得到C D =D F ,通过相似三角形的证明就可以解决问题.几何问题中需要求证的结论存在线段比例关系或者线段等积关系时,都会涉及三角形相似或者全等的证明,通过构造圆为三角形相似或者全等提供条件,实现对问题的求解.在这个过程中,需要充分结合例题1和例题2中辅助圆构造的方式来找到相应的关系.4动点的问题图5例4㊀如图5所示,边长为3的等边三角形A B C ,D ,E 分别是B C ,A C 边上的两个动点,且B D =C E ,A D ,B E 交于点P ,求点P 的运动路径长和C P 的最小值.分析:首先需要对点P 的运动路径进行判定.根据等边三角形的相关性质和B D =C E 可以得到әA B D ɸәB C E ,这样就得到øC B E =øB A D ,然后通过øC B E +øA B P =60ʎ得到øB A P +øA B P =øA P E =60ʎ,于是øA P B =120ʎ.可以发现在点D 和点E 移动的过程中,øA P B =120ʎ是恒成立的,所以可以认为点P 在A B 为弦的圆上.假设弦A B 所在圆的圆心为O ,连接O P ,O A ,O B ,根据圆的性质㊁әA B C 的边长为3可计算出圆O 的半径O A =3,然后计算出点P 的运动路径长度为233π,C P 的最小值为3.解:由A B =B C ,øA B D =øB C E ,B D =C E 得әA B D ɸәB C E .由øC B E +øA B P =60ʎ,得øB A P +øA B P =øA P E =60ʎ.所以øA P B =120ʎ.故点P 的运动轨迹是以A B 为弦的圆上的一段弧.图6如图6所示,作әA B P 的外接圆,圆心为O ,连接O A ,O B ,O P ,O C .由O A =O B ,A C =B C ,得әA O C ɸәB O C .所以øO A C =øO B C ,øA C O =øB C O =12øA C B =30ʎ,øA O C =øB O C =12øA P B =60ʎ.故øO A C =90ʎ.根据勾股定理,可得O A =3,O C =23.所以,弦A B 所对的弧长为3ˑ23π=233π;当O ,P ,C 三点共线时,C P 最小,且最小值为3.在三角形的动点问题中,如果动点与一条线段所构成的角度固定,则说明这个动点的轨迹是以这个线段为弦的圆上的一段弧,通过这个关系可以构造辅助圆,然后利用圆的性质来求解问题.本题给定的是正三角形,当然不同的三角形中所呈现的关系可能会存在差别,但是本质没有变化.例如,在例题2中通过计算所得到的角度为90ʎ的特殊角,这个辅助圆的圆心就在直角三角形的斜边上.例4中这个角度为120ʎ,圆心在三角形的外部,通过辅助圆来充分利用圆的相关性质,能够更好地对问题进行求解,实现问题的解决.本文中对辅助圆在初中数学平面几何中的应用进行了总结,并通过相关例题对其用法进行了说明.在初中数学平面几何问题中巧用辅助圆能够优化试题解法,实现快速求解.因此,教师在解题教学的过程中需要对学生进行有效地引导,让学生掌握辅助圆的应用,从而提升解题能力;提升数学素养.Z08。
2023年中考数学专项复习课件:辅助圆在解题中的应用
模型分析
(2)当∠C=90°时,点C在⊙O上运动(如图②,不与点A,B重合).其中 AB为⊙O的直径;(3)当∠C>90°时,点C在如图③所示的 上运动( 不与点A,B重合).其中 ∠AOB+∠ACBA=B 180°
1 2
模型应用
12. 如图,在矩形 ABCD中,AB=4,BC=6,E是矩形内部的一个动点 ,且AE⊥BE,则线段CE的最小值为2__1_0__2___.
r-d
0
d-r
连接OD并延长交
连接OD交⊙O于
此时点E的位置
点E与点D重合
⊙O于点E
点E
模型应用 1. 如图,在平面直角坐标系中,⊙M的半径为2,圆心M的坐标为(3,4) ,P是⊙M上的任意一点,PA⊥PB,且PA,PB分别与x轴交于点A,B. 若点A,B关于原点O对称,则AB的最小值为_6_______.
对的劣弧BD上运动,连接OA,OP,则AP≤OA+OP,
∴当O,A,P三点共线时,AP取得最大值,最大值即为OA+OP的值.
过点O作OQ⊥AB于点Q,
∵∠DPB=120°,∴∠BAD=60°,
∵AD=BD=6,∴∠OAQ=30°,AQ= 1 AB=3,
2
∴OA=2 3 ,∴OA+OP=4 3,
∴AP的最大值为4 3 .
15 4
过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为______.
第8题图
第9题图
10. 如图,在四边形ABCD中,BD=4,∠BAD=∠BCD=90°,则四边
形ABCD面积的最大值为___8_____.
11. 如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB=90°,
CE
第1题图
中考数学复习指导:利用辅助圆求解动点最值问题
利用辅助圆求解动点最值问题许多几何问题虽然与圆无关,但是如果能结合条件补作辅助圆,就能利用圆的有关性质、结论,将某些最值问题通过圆中的几何模型求解.笔者经过研究,归纳为以下情况可考虑作辅助圆:一、同一端点出发的等长线段例1 如图1,在直角梯形ABCD 中,90,3,4,6DAB ABC AD AB BC ∠=∠=°===,点E 是线段AB 上一动点,将EBC ?沿CE 翻折到EB C ′?,连结,B D B A ′′.当点E 在AB 上运动时,分别求,,B D B A B D B A ′′′′+的最小值.解析如图1,当点E 在点B 时,B ′与B 重合;当点E 在点A 时,设点B ′在点F 处,由翻折可知BC B C FC ′==.所以,点B ′在以C 为圆心,BC 为半径的圆上,运动轨迹为弧BF . 如图2,点D 在⊙C 内,延长CD 交⊙C 于点1B .当点B ′在点1B 时B D ′最小,最小值为11B C DC -=.点A 在⊙C 外,设AC 交⊙C 于点2B ,当点B ′在点2B 时B A ′最小,最小值为22136AC B C -=-.设AD 与⊙C 交点为3B ,当点B ′在点3B 时B D B A ′′+最小,最小值为3AD =.点评当条件中有同一端点出发的等长线段时,根据圆的定义,以该端点为圆心,等长为半径构造圆,将原问题转化为定点与圆上点的距离问题.模型1 如图3,点A 在⊙O 外,A 到⊙O 上各点连线段中AB 最短;如图4,点A 在⊙O 内,A 到⊙O 上各点连线段中AB 最短.证明在⊙O 上任取一点C ,不与点B 重合,连结,CA CO ,如图 3.,,OC CA OA OC OB CA AB +>=∴>∵,得证.如图4, ,,OC OA CA OC OB AB CA -<=∴<∵,得证.二、动点对定线段所张的角为定值模型2 如图 5 , AB 为定线段,点C 为AB 外一动点,ACB ∠为定值,则点C 形成的轨迹是弧ACB 、弧AmB (不含点,A B ). 证明设⊙O 为ABC ?的外接圆,在AB 上方任取三点,点,,D E F 分别在⊙O 外、⊙O 上、⊙O 内.,,D AGB C E C AFB H C ∠<∠=∠∠=∠∠>∠=∠∵,∴当ACB ∠为定值时,点C 形成的轨迹是弧ACB 、弧ADB (不含点,A B ).1.动点时定线段所张的角为直角例2 如图6,正方形ABCD 边长为2,点E 是正方形ABCD 内一动点,90AEB ∠=°,连结DE ,求DE 的最小值.解析90,AEB AB ∠=°∵为定线段,由模型2可知,点E 在以AB 为直径的圆上.连OD 交⊙O 于点F ,由模型1,当E 在点F 处时DE 最短,最小值是51-.点评当动点对定线段所张的角为直角时,根据直径所对圆周角为直角,以定线段为直径构造圆.2.动点时定线段所张的角为锐角例 3 如图7, 45XOY ∠=°,一把直角三角形尺ABC 的两个顶点,A B 分别在,OX OY 上移动,10AB =,求点O 到AB 距离的最大值.解析如图8,⊙D 为ABO ?的外接圆,由模型2知,点O 的运动轨迹是弧AOB (,A B 两点除外).过点D 作AB 的垂线,垂足为点E ,交弧AOB 于点F ,当点O 在点F 处时,O 到AB 的距离最大,即为FE 长.45,90XOY ADB ∠=°∴∠=°∵.10,52,5AB FD AD DB DE =∴====∵,525FE ∴=+.故O 到AB 距离的最大值为525+. 点评本题AB 是定长,XOY ∠为定值,利用模型2,找到点O 的运动轨迹是一段弧,这段弧所在的圆是一个定圆,于是原问题转化为圆上一点到弦的距离问题. 模型3 如图9,AB 是⊙O 的一条弦,点C 是⊙O 上一动点(不与,A B 重合),过点O 作DE AB ⊥,垂足为D ,交⊙O 于点(,E E D 在O 两侧).当点C 在点E 处时,点C 到AB 的距离最大,即为DE 长. 证明如图9,作CF AB ⊥垂足为点F ,CF CD OC OD ED <<+=,得证.3.动点对定线段所张的角为钝角例4 如图10,正三角形ABC ?边长为2,射线//AD BC ,点E 是射线AD 上一动点(不与点A 重合),AEC ?外接圆交EB 于点F ,求AF 的最小值.解析如图10 ,60,120EFC EAC BFC ∠=∠=°∴∠=°∵.BC ∵为定长,∴点F 的运动轨迹是弧BC (不与,B C 重合).过点A 作AG BC ⊥垂足为G ,交弧BC 于点H ,当点F 在点H 时AF 最小,最小值为323333AG HG -=-=. 点评本题将动点E 转化到动点F ,且因为120BFC ∠=°,BC 为定长,由模型2可知,点F 的运动轨迹是弧,这段弧所在的圆是一个定圆.于是,AF 的最小值问题转化为圆外一点到圆上一点的最小值问题,由模型1即可求解. 三、动点对定线段所张的角的最值例5 如图11,四边形ABCD 中,均有//,,60,8,AD BC CD BC ABC AD ⊥∠=°=12BC =.在边AD 上,是否存在一点E ,使得cos BEC ∠的值最小?若存在,求出此时cos BEC ∠的值;若不存在,请说明理由.解析当BEC ∠为锐角时,cos BEC ∠随BEC ∠的增大而减小,求cos BEC ∠的值最小值,只要求BEC ∠最大值.于是,作BC 中垂线交,BC AD 于点,F G .设三点,,B C G 确定⊙O ,则⊙O 切AD 于点G .此时AD 上的点(除点G )都在⊙O 外,BEC BGC ∠<∠,所以当点E 在点G 处时BEC ∠最大.由题意,可知43,6GF BF ==.设⊙O 半径为r , 则2226(43)r r +-=,解得733,22r OF ==,1cos cos 7BGC BOF ∠=∠=,所以cos BEC ∠最小值为17. 点评求动点对定线段所张角的最大值时,以定线段为弦所作的圆与动点所在的直线相切,由同弧所对的圆周角大于圆外角知,动点运动至切点处时所张角最大.。
初中数学-构造辅助圆解题教法解析
教法解析
内容简介
Contents
教学内容分析 学生情况分析 教学设计思想 知识点回顾 典例分析
教学内容分析
【教学内容分析】
本节课的授课内容是学完《圆》后, 作为对学生能力提升的一个引申和补充的 内容,也属于构造辅助线的一种。
直线形 直线型辅助线
曲线形
圆 辅助圆
学生情况分析
教学设计思想
例题 Example
一、利用圆的定义添补辅助圆 1.直接用定义 2.间接用定义:共斜边的等腰直角三角形
例题 Example
一、利用圆的定义构造辅助圆 总结:需要多条共端点等线段时,
可以利用圆定义构造辅助圆
在平面直角坐标系中,一次函数y=-2x的图象与反比例函数
y
k x
的图象的一个交点为A(-1,n).
如图,在△ABC中,高BE、CF相交于H,且
∠BHC=135°,G为△ABC内的一点,且GB=GC,
∠BGC=3∠A,连结HG,求证:HG平分∠BHF.
思路:经计算可得∠A=45°,△ABE, △BFH皆为等腰直角三角形,只需证 ∠GHB=∠GHF=22.5°.
由∠BGC=3∠A=135°=∠BHC,得B、G、 H、C四点共圆,由∠ sin∠B
二、作三角形的外接圆
总结:三角形中涉及到倒角的题目, 可以考虑构造三角形外接圆
在△ABC中,AD是BC边的中线,且∠B+∠CAD=90°.
试判断△ABC的形状,并加以证明.
思路:由需要倒角而想到构造外接 圆,根据90°进而确定直径,结合 垂径定理推论,分类讨论后即可得 到答案
BC
(3) 在图 2 中,固定 △AOB ,将△COD 绕点O 旋转,直接写出 PM 的最大值.
3.最值问题之辅助圆(轨迹)
几何最值问题之辅助圆(轨迹)最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P 就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P 点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最最值的问题就会变得简单了,比如:如下图,A 为圆外一点,在圆上找一点P 使得P A 最小.当然,也存在耿直的题目直接告诉动点轨迹是个圆的 确定共圆的方法有几种,①到定点的距离等于定长②共斜边的直角三角形,定角对定弦③对角互补的四边形 ④同侧内角相等的八字形1.如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,∠APB =90°,l 不经过点C ,则AB 的最小值为________.【分析】连接OP ,根据△APB 为直角三角形且O 是斜边AB 中点,可得OP 是AB 的一半,若AB 最小,则OP 最小即可.连接OC ,与圆C 交点即为所求点P ,此时OP 最小,AB 也取到最小值.Alll一、从圆的定义构造圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.2.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ’MN ,连接A ’C ,则A ’C 长度的最小值是__________.【分析】考虑△AMN 沿MN 所在直线翻折得到△A ’MN ,可得MA ’=MA =1,所以A ’轨迹是以M 点为圆心,MA 为半径的圆弧.连接CM ,与圆的交点即为所求的A ’,此时A ’C 的值最小.构造直角△MHC ,勾股定理求CM ,再减去A ’M 即可.A'NMABCDA'NMABCDDCBA MN A'H A'N MA BCD3.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是__________.【分析】考虑到将△FCE 沿EF 翻折得到△FPE ,可得P 点轨迹是以F 点为圆心,FC 为半径的圆弧.过F 点作FH ⊥AB ,与圆的交点即为所求P 点,此时点P 到AB 的距离最小.由相似先求FH ,再减去FP ,即可得到PH .ABCEFPABCEFPB4.如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【分析】考虑l是经过点P的直线,且△ABC沿直线l折叠,所以B’轨迹是以点P为圆心,PB为半径的圆弧.考虑△ACB’面积最大,因为AC是定值,只需B’到AC距离最大即可.过P作作PH⊥AC交AC于H点,与圆的交点即为所求B’点,先求HB’,再求面积.5.如图,矩形ABCD 中,AB =4,BC =8,P 、Q 分别是直线BC 、AB 上的两个动点,AE =2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF 、PD ,则PF +PD 的最小值是_________.【分析】F 点轨迹是以E 点为圆心,EA 为半径的圆,作点D 关于BC 对称点D ’,连接PD ’,PF +PD 化为PF +PD ’.连接ED ’,与圆的交点为所求F 点,与BC 交点为所求P 点,勾股定理先求ED ‘,再减去EF 即可.Q ABC DEFPD'PFE DCBAQ二、定边对直角知识回顾:直径所对的圆周角是直角.构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧. 图形释义:若AB 是一条定线段,且∠APB =90°,则P 点轨迹是以AB 为直径的圆.6.已知正方形ABCD 边长为2,E 、F 分别是BC 、CD 上的动点,且满足BE =CF ,连接AE 、BF ,交点为P 点,则PD 的最小值为_________.【分析】由于E 、F 是动点,故P 点也是动点,因而存在PD 最小值这样的问题,那P 点轨迹如何确定?考虑BE =CF ,易证AE ⊥BF ,即在运动过程中,∠APB =90°,故P 点轨迹是以AB 为直径的圆.连接OC ,与圆的交点即为P 点,再通过勾股定理即可求出PC 长度.思路概述:分析动点形成原理,通常“非直即圆”(不是直线就是圆),接下来可以寻找与动点相关有无定直线与定角.ABEFABCDPF7.如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形边长为2,则线段DH 长度的最小值是________.【分析】根据条件可知:∠DAG =∠DCG =∠ABE ,易证AG ⊥BE ,即∠AHB =90°,所以H 点轨迹是以AB 为直径的圆弧当D 、H 、O 共线时,DH 取到最小值,勾股定理可求.HGAB CDEFαααHGABCDE F8.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值是_________.【分析】∵∠PBC +∠PBA =90°,∠PBC =∠P AB , ∴∠P AB +∠PBA =90°, ∴∠APB =90°,∴P 点轨迹是以AB 为直径的圆弧.当O 、P 、C 共线时,CP 取到最小值,勾股定理先求OC ,再减去OP 即可.9.如图, AB 是半圆O 的直径,点C 在半圆O 上,AB =5,AC =4.D 是弧BC 上的一个动点,连接AD ,过点C 作CE ⊥AD 于E ,连接BE .在点D 移动的过程中,BE 的最小值为 .【分析】E 是动点,E 点由点C 向AD 作垂线得来,∠AEC =90°,且AC 是一条定线段,所以E 点轨迹是以AC 为直径的圆弧.PABCCCB当B 、E 、M 共线时,BE 取到最小值.连接BC ,勾股定理求BM ,再减去EM 即可.10.如图,在Rt △ABC 中,∠ACB =90°,BC =4,AC =10,点D 是AC 上的一个动点,以CD 为直径作圆O ,连接BD 交圆O 于点E ,则AE 的最小值为_________.【分析】连接CE ,由于CD 为直径,故∠CED =90°,考虑到CD 是动线段,故可以将此题看成定线段CB 对直角∠CEB .BB取CB 中点M ,所以E 点轨迹是以M 为圆心、CB 为直径的圆弧.连接AM ,与圆弧交点即为所求E 点,此时AE值最小,22AE AM EM =−==.11.如图,正方形ABCD 的边长为4,动点E 、F 分别从点A 、C 同时出发,以相同的速度分别沿AB 、CD 向终点B 、D 移动,当点E 到达点B 时,运动停止,过点B 作直线EF 的垂线BG ,垂足为点G ,连接AG ,则AG 长的最小值为 .【分析】首先考虑整个问题中的不变量,仅有AE =CF ,BG ⊥EF ,但∠BGE 所对的BE 边是不确定的.GF EDCB A重点放在AE =CF ,可得EF 必过正方形中心O 点,连接BD ,与EF 交点即为O 点.∠BGO 为直角且BO 边为定直线,故G 点轨迹是以BO 为直径的圆.记BO 中点为M 点,当A 、G 、M 共线时,AG 取到最小值,利用Rt △AOM 勾股定理先求AM ,再减去GM 即可.12.如图,正方形ABCD 的边长是4,点E 是AD 边上一动点,连接BE ,过点A 作AF ⊥BE 于点F ,点P 是AD 边上另一动点,则PC +PF 的最小值为________.【分析】∠AFB =90°且AB 是定线段,故F 点轨迹是以AB 中点O 为圆心、AB 为直径的圆.AB C DE F GABCDE FP考虑PC +PF 是折线段,作点C 关于AD 的对称点C ’,化PC +PF 为PC ’+PF ,当C ’、P 、F 、O 共线时,取到最小值.13.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,D 是BC 上一动点,CE ⊥AD 于E ,EF ⊥AB 交BC 于点F ,则CF 的最大值是_________.【分析】∠AEC =90°且AC 为定值,故E 点轨迹是以AC 为直径的圆弧.考虑EF ⊥AB ,且E 点在圆上,故当EF 与圆相切的时候,CF 取到最大值.F EDCBAB连接OF ,易证△OCF ≌△OEF ,∠COF =30°,故CF 可求.三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A 点轨迹是一个圆.当然,∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆. 若∠P =30°,以AB 为边,同侧构造等边三角形AOB ,O 即为圆心.若∠P =45°,以AB 为斜边,同侧构造等腰直角三角形AOB ,O 即为圆心.BB若∠P =60°,以AB 为底,同侧构造顶角为120°的等腰三角形AOB ,O 即为圆心.若∠P =120°,以AB 为底,异侧为边构造顶角为120°的等腰三角形AOB ,O 即为圆心.14.如图,等边△ABC 边长为2,E 、F 分别是BC 、CA 上两个动点,且BE =CF ,连接AE 、BF ,交点为P 点,则CP 的最小值为________.【分析】由BE =CF 可推得△ABE ≌△BCF ,所以∠APF =60°,但∠APF 所对的边AF 是变化的.EFCBAP60°EF CBAP所以考虑∠APB =120°,其对边AB 是定值.所以如图所示,P 点轨迹是以点O 为圆心的圆弧.(构造OA =OB 且∠AOB =120°)当O 、P 、C 共线时,可得CP 的最小值,利用Rt △OBC 勾股定理求得OC ,再减去OP 即可.15.如图,△ABC 为等边三角形,AB =2,若P 为△ABC 内一动点,且满足∠P AB =∠ACP ,则线段PB 长度的最小值为_________.120°EF CBAP 120°MOP ABCF E120°ABCP【分析】由∠P AB =∠ACP ,可得∠APC =120°,后同上例题.16.在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是________. 【分析】先作图,如下条件不多,但已经很明显,AB 是定值,∠C =60°,即定边对定角.故点C 的轨迹是以点O 为圆心的圆弧.(作AO =BO 且∠AOB =120°)题意要求∠A >∠B ,即BC >AC ,故点C 的轨迹如下图.当BC 为直径时,BC 取到最大值,考虑∠A 为△ABC 中最大角,故BC 为最长边,BC >AB =4.无最小值.4ABC 60°17.如图,AB 是圆O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交圆O 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是_______.【分析】分别考虑C 、E 两点的轨迹,C 点轨迹上是弧MCN ,其对应圆心角为∠MON ,半径为OM (或ON ).再考虑E 点轨迹,考虑到CE 、AE 都是角平分线,所以连接BE ,BE 平分∠ABC ,可得:∠AEB =135°.考虑到∠AEB 是定角,其对边AB 是定线段,根据定边对定角,所以E 点轨迹是个圆,考虑到∠ADB =90°,所以D 点即为圆心,DA 为半径.E 点轨迹所对的圆心角为∠MDN ,是∠MON 的一半,所以C 、E 两点轨迹圆半径之比为1:根号2,圆心角之比为2:1,所以弧长比值为根号2.ABAA。
5初中数学最值系列之辅助圆教案
第5讲最值系列之辅助圆最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最最值的问题就会变得简单了,比如:如下图,A为圆外一点,在圆上找一点P使得PA最小.当然,也存在耿直的题目直接告诉动点轨迹是个圆的,比如:【例题1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为________.【分析】连接OP,根据△APB为直角三角形且O是斜边AB中点,可得OP是AB的一半,若AB最小,则OP最小即可.连接OC,与圆C交点即为所求点P,此时OP最小,AB也取到最小值.一、从圆的定义构造圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.【例题2】如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C长度的最小值是__________.【分析】考虑△AMN沿MN所在直线翻折得到△A’MN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时A’C的值最小.构造直角△MHC,勾股定理求CM,再减去A’M即可.【练习3】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FH⊥AB,与圆的交点即为所求P点,此时点P到AB的距离最小.由相似先求FH,再减去FP,即可得到PH.【练习4】如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ 沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.【分析】F点轨迹是以E点为圆心,EA为半径的圆,作点D关于BC对称点D’,连接PD’,PF+PD化为PF+PD’.连接ED’,与圆的交点为所求F点,与BC交点为所求P点,勾股定理先求ED‘,再减去EF即可.二、定边对直角知识回顾:直径所对的圆周角是直角.构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:若AB是一条定线段,且∠APB=90°,则P点轨迹是以AB为直径的圆.【例题5】已知正方形ABCD边长为2,E、F分别是BC、CD上的动点,且满足BE=CF,连接AE、BF,交点为P点,则PD的最小值为_________.【分析】由于E、F是动点,故P点也是动点,因而存在PD最小值这样的问题,那P点轨迹如何确定?考虑BE=CF,易证AE⊥BF,即在运动过程中,∠APB=90°,故P点轨迹是以AB为直径的圆.连接OC,与圆的交点即为P点,再通过勾股定理即可求出PC长度.思路概述:分析动点形成原理,通常“非直即圆”(不是直线就是圆),接下来可以寻找与动点相关有无定直线与定角.【练习6】如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是________.【分析】根据条件可知:∠DAG=∠DCG=∠ABE,易证AG⊥BE,即∠AHB=90°,所以H点轨迹是以AB为直径的圆弧当D、H、O共线时,DH取到最小值,勾股定理可求.【2016安徽中考】【练习7】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.【分析】∵∠PBC+∠PBA=90°,∠PBC=∠PAB,∴∠PAB+∠PBA=90°,∴∠APB=90°,∴P点轨迹是以AB为直径的圆弧.当O、P、C共线时,CP取到最小值,勾股定理先求OC,再减去OP即可.【寻找定边】【练习8】如图,AB是半圆O的直径,点C在半圆O上,AB=5,AC=4.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.【分析】E是动点,E点由点C向AD作垂线得来,∠AEC=90°,且AC是一条定线段,所以E点轨迹是以AC为直径的圆弧.当B、E、M共线时,BE取到最小值.连接BC,勾股定理求BM,再减去EM即可.三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相等.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则A点轨迹是一个圆.当然,∠P度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心.若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心.若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心.若∠P=120°,以AB为底,异侧为边构造顶角为120°的等腰三角形AOB,O即为圆心.【例题9】如图,等边△ABC边长为2,E、F分别是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为________.【分析】由BE=CF可推得△ABE≌△BCF,所以∠APF=60°,但∠APF所对的边AF是变化的.所以考虑∠APB=120°,其对边AB是定值.所以如图所示,P点轨迹是以点O为圆心的圆弧.(构造OA=OB且∠AOB=120°)当O、P、C共线时,可得CP的最小值,利用Rt△OBC勾股定理求得OC,再减去OP即可.【2019南京中考】【练习10】在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是________.【分析】先作图,如下条件不多,但已经很明显,AB是定值,∠C=60°,即定边对定角.故点C的轨迹是以点O为圆心的圆弧.(作AO=BO且∠AOB=120°)题意要求∠A>∠B,即BC>AC,故点C的轨迹如下图.当BC为直径时,BC取到最大值,考虑∠A为△ABC中最大角,故BC为最长边,BC>AB=4.无最小值.【2019武汉中考】【练习11】如图,AB是圆O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB 的角平分线交圆O于点D,∠BAC的平分线交CD于点E,当点C从点M运动到点N时,则C、E两点的运动路径长的比是_______.【分析】分别考虑C、E两点的轨迹,C点轨迹上是弧MCN,其对应圆心角为∠MON,半径为OM(或ON).再考虑E点轨迹,考虑到CE、AE都是角平分线,所以连接BE,BE平分∠ABC,可得:∠AEB=135°.考虑到∠AEB是定角,其对边AB是定线段,根据定边对定角,所以E点轨迹是个圆,考虑到∠ADB=90°,所以D点即为圆心,DA为半径.E点轨迹所对的圆心角为∠MDN,是∠MON的一半,所以C、E两点轨迹圆半径之比为1:根号2,圆心角之比为2:1,所以弧长比值为根号2.。
初中辅助圆模型教案
初中辅助圆模型教案教学目标:1. 理解辅助圆的概念和作用;2. 学会运用辅助圆模型解决初中数学问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 辅助圆的概念和作用;2. 辅助圆模型的运用方法和技巧。
教学难点:1. 辅助圆模型的运用方法和技巧;2. 解决实际问题时,如何正确选择辅助圆模型。
教学准备:1. 教师准备相关例题和练习题;2. 学生准备笔记本和文具。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的相关知识,如圆的性质、圆的周长和面积等;2. 提问:同学们,你们知道什么是辅助圆吗?辅助圆在解题中有何作用?二、新课讲解(15分钟)1. 讲解辅助圆的概念:辅助圆是指在解题过程中,为了方便分析和解决问题而构造的圆;2. 讲解辅助圆的作用:辅助圆可以帮助我们发现题目中的隐含条件,从而解决问题;3. 讲解辅助圆模型的运用方法和技巧:a. 当题目中出现四点共圆的情况时,可以考虑使用辅助圆模型;b. 当题目中出现动点到定点等于定长的情况时,可以考虑使用辅助圆模型;c. 当题目中出现直角所对的是直径的情况时,可以考虑使用辅助圆模型;d. 当题目中出现定弦对定角的情况时,可以考虑使用辅助圆模型。
三、例题讲解(15分钟)1. 讲解例题1:四点共圆的问题;2. 讲解例题2:动点到定点等于定长的问题;3. 讲解例题3:直角所对的是直径的问题;4. 讲解例题4:定弦对定角的问题。
四、课堂练习(15分钟)1. 布置练习题1:四点共圆的问题;2. 布置练习题2:动点到定点等于定长的问题;3. 布置练习题3:直角所对的是直径的问题;4. 布置练习题4:定弦对定角的问题。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结辅助圆的概念和作用;2. 让学生分享自己在解题中运用辅助圆模型的经验和感受;3. 教师进行课堂小结,强调辅助圆模型在解题中的应用价值和技巧。
教学延伸:1. 引导学生进一步学习辅助圆模型的拓展应用;2. 鼓励学生参加数学竞赛和相关活动,提高解题能力。
二次函数辅助圆求最值问题
二次函数辅助圆求最值问题在学习二次函数时,我们经常会遇到求二次函数的最值问题。
这个问题对于很多学生来说是比较难的,特别是涉及到辅助圆的时候,更是让很多人感到头疼。
本文将讲解什么是二次函数辅助圆、如何利用二次函数辅助圆求最值以及一些需要注意的细节问题。
一、什么是二次函数辅助圆二次函数辅助圆,指的是二次函数图像与以函数自变量为横坐标,因变量为纵坐标的圆的交点。
在求最值问题中,通过分析二次函数与辅助圆的位置关系,我们可以方便地得到二次函数的最值。
因此,二次函数辅助圆也被称为“最值辅助圆”。
通常情况下,对于一般的二次函数y=ax2+bx+c,我们可以将其标准化为y=a(x-h)2+k的形式,其中h=-b/2a,k=c-ah2。
利用这个标准形式,我们可以将二次函数的最值问题转化为求解辅助圆与坐标轴和直线x=h的交点,从而求解得到最值。
二、如何利用二次函数辅助圆求最值下面以一个具体的例子来说明如何利用二次函数辅助圆求最值:求函数y=2x2-4x+1的最小值。
1.标准化二次函数首先将二次函数y=2x2-4x+1标准化为y=2(x-1)2-1的形式,这里h=1,k=-1。
2.画出辅助圆以点(h,k)为圆心,k的绝对值为半径,画出辅助圆。
3.求解交点将辅助圆与x轴、y轴和直线x=1求交点:与x轴交点为(0,1),(2,1);与y轴交点为(1,0);与直线x=1交点为(1,-1)。
4.分析位置关系将二次函数图像与辅助圆的位置关系分为以下两种情况:情况一:二次函数与辅助圆的交点在y轴上,即h=0。
情况二:二次函数与辅助圆的交点在x轴上,即k=0。
对于这个例子,由于h=1不等于0且k=-1小于0,因此属于情况一。
在这种情况下,二次函数的最小值为辅助圆和二次函数的交点中y 值最小的点的纵坐标。
根据上面求出的交点,得到交点(2,1)和(0,1)处的函数值分别为5和1。
因此,二次函数y=2x2-4x+1的最小值为1,此时x=0。
省时省力的辅助圆
2022年7月下半月㊀解法探究㊀㊀㊀㊀省时省力的辅助圆◉山东省滕州市滕南中学㊀郭效萍1引言圆是初中阶段学习的重要图形,它的一些性质,例如,同弧所对的圆周角相等,半圆所对的圆周角是直角,直径是圆中最长的弦等,给解决问题带来极大的方便.在解答有关几何问题时,并不是图形中出现圆才利用圆的性质,有时需要构造一个辅助圆,然后利用圆的性质解答,这是解决几何问题的基本方法之一.2利用圆的集合定义构造辅助圆从集合的角度定义:圆是平面内到定点距离等于定长的点的集合.根据这个定义可以得到,当几个点到同一点的距离相等时,则这几点一定在同一个圆上.这样构造辅助圆,解答时不仅能利用题中的已知条件,而且可以利用圆的一些性质.例1㊀如图1,在四边形A B C D 中,A B =A C =A D ,若øB AC =25ʎ,øC AD =75ʎ,分别求øB D C 和øD B C 的度数.图1㊀㊀㊀图2解法1:(普通方法)ȵA B =A C =A D ,ʑøA D B =øA B D ,㊀øA C B =øA B C ,㊀øA D C =øA C D .ȵøB A C =25ʎ,øC A D =75ʎ,ʑøA C B =(180ʎ-25ʎ)ː2=77.5ʎ,㊀øD A B =øD A C +øC A B =100ʎ,㊀øA D C =øA C D =(180ʎ-75ʎ)ː2=52.5ʎ.ʑøA D B =(180ʎ-100ʎ)ː2=40ʎ.ʑøB D C =øA D C -øA D B=52.5ʎ-40ʎ=12.5ʎ,㊀øD C B =øD C A +øA C B=52.5ʎ+77.5ʎ=130ʎ.ʑøD B C =180ʎ-øD C B -øB D C=180ʎ-130ʎ-12.5ʎ=37.5ʎ.解法2:(构造辅助圆的方法)由A B =A C =A D ,得点B ,C ,D 在以A 为圆心,以A D 为半径的圆上,如图2.由øB A C =25ʎ,得øB D C =12øB A C =12.5ʎ.由øC A D =75ʎ,得øD B C =12øC A D =37.5ʎ.点评:比较上面两种方法可以发现,构造辅助圆后,解决过程明显简洁.这里主要利用了圆周角定理及其推论:同弧所对的圆周角相等,等弧所对的圆周角也相等.这是因为这些圆周角都等于它所对的圆心角的一半.3利用圆周角定理的推论构造辅助圆因为90ʎ的圆周角所对的弦是直径,所以当直角三角形的斜边一定时,直角顶点一定在以斜边为直径的圆上运动.此时构造辅助圆,可以确定直角顶点的运动轨迹.例2㊀如图3所示,矩形A B C G (A B <B C )与矩形C D E F 全等,点B ,C ,D 在一条直线上,øA P E 的顶点P 在线段B D 上移动,使得øA P E 为直角的点P 的个数是.图3㊀㊀㊀图4解析:如图4所示,根据90ʎ的圆周角所对的弦是直径,当øA P E 为直角时,点P 应在以A E 为直径的☉O 上.又因为点B ,C ,D 在同一条直线上,øA P E的顶点P 在线段B D 上移动,所以点P 就是☉O 与B D 的交点.由图4可知,B D 与☉O 有2个交点.故答案为:2.点评:本题确定点的方法使用的是交轨法,即从每一个条件出发确定一个点的轨迹,两个点的轨迹的交点就是符合题意的点.本题两个点的轨迹分别是一条直线和一个圆.4利用一个角对定线段所张的角度为定值构造辅助圆㊀㊀当一个角对固定长度的线段所张开的角度为定值时,角的顶点的运动轨迹为一个圆,此时可以作辅助圆,这条定线段为辅助圆的弦,这个角为圆周角.此时可以利用圆的相关性质解答问题.例3㊀如图5,点A 与点B 的坐标分别是(1,0),(5,0),点P 是该直角坐标系内的一个动点.(1)使øA P B =30ʎ的点P 有个.(2)若点P 在y 轴上,且øA P B =30ʎ,求满足条件的点P 的坐标.57Copyright ©博看网. All Rights Reserved.解法探究2022年7月下半月㊀㊀㊀(3)当点P 在y 轴上移动时,øA P B 是否有最大值?若有,求点P 的坐标,并说明此时øA P B 最大的理由;若没有,请说明理由.图5㊀㊀㊀图6解析:(1)如图6,以A B 为边,在第一象限内作等边三角形A B C ,以点C 为圆心,A C 为半径作☉C ,交y 轴于点P 1,P 2.在优弧A P 1B 上任取一点P ,则øA P B =12øA C B =12ˑ60ʎ=30ʎ.所以使øA P B =30ʎ的点P 有无数个.(2)①当点P 在y 轴的正半轴上时,过点C 作C G ʅA B ,垂足为点G ,如图6.由点A (1,0),B (5,0),得O A =1,O B =5,则A B =4.由点C 为圆心,C G ʅA B ,得A G =B G =12A B =2.则O G =O A +A G =3.由әA B C 是等边三角形,得A C =B C =A B =4.则C G =A C 2-A G 2=42-22=23.于是点C 的坐标为(3,23).过点C 作C D 垂直于y 轴,垂足为点D ,连接C P 2,如图6.由点C (3,23),得C D =3,O D =23.由点P 1,P 2是☉C 与y 轴的交点,得øA P 1B =øA P 2B =30ʎ.由C P 2=C A =4,C D =3,得D P 2=42-32=7.由点C 为圆心,C D ʅP 1P 2,得P 1D =P 2D =7,从而P 2(0,23-7),P 1(0,23+7).②当点P 在y 轴的负半轴上时,同理可得:点P 3(0,-23-7),P 4(0,-23+7).综上所述,满足条件的点P 的坐标为(0,23-7),(0,23+7),(0,-23-7),(0,-23+7).图7(3)如图7,当过点A ,B 的☉E 与y 轴相切于点P 时,øA P B 最大.理由:可证øA P B =øA E H ,当øA P B 最大时,øA E H 最大.由s i n øA E H =2A E知,当A E最小即P E 最小时,øA E H 最大.所以当圆与y 轴相切时,øA P B 最大.①当点P 在y 轴的正半轴上时,连接E A ,作E H ʅx 轴,垂足为点H ,如图7.由☉E 与y 轴相切于点P ,得P E ʅO P .由E H ʅA B ,O P ʅO H ,得øE P O =øP O H =øE H O =90ʎ.则四边形O P E H 是矩形,O P =E H ,P E =O H =3,得E A =3.由øE HA =90ʎ,AH =2,E A =3,得E H =E A 2-AH 2=32-22=5,则O P =5,则点P (0,5).②当点P 在y 轴的负半轴上时也符合题意,此时点P (0,-5).综上所述,存在满足条件的点P ,其坐标为(0,5),(0,-5).点评:解答第(3)小题时,体现了转化的思想,即由øA P B 转化为øA E H ,由øA E H 转化为2A E,由2A E转化为A E ,再由A E 转化为P E ,由P E 转化为直线与圆相切.5利用作辅助圆求最值圆外一定点与圆上各点连接而成的所有线段中,有一条最短线段和最长线段,这两条线段都在过圆心与圆外一点的直线上,如图8所示,最长线段是P A ,最短线段是P B .利用这一点,可以求与圆有关的线段的最值.图8㊀图9㊀图10例4㊀如图9,R t әA B C 中,A B ʅB C ,A B =6,B C =4,P 是әA B C 内部的一个动点,且满足øP A B =øP B C ,则线段C P 长的最小值为.解析:如图10,由øA B C =90ʎ,得øA B P +øP B C =90ʎ.又øP A B =øP B C ,则øB A P +øA B P =90ʎ,即øA P B =90ʎ,则点P 在以A B 为直径的☉O 上.连接O C 交☉O 于点P ,此时P C 最小.在R t әB C O 中,øO B C =90ʎ,B C =4,O B =3,则O C =O B 2+B C 2=5,P C =O C -O P =5-3=2.因此P C 的最小值为2.点评:几何中求最值的情况包括:(1)利用轴对称求线段和的最小值;(2)利用勾股定理求曲面上或不同平面上两点之间的最短距离;(3)利用三角形相似解决系数不为1的线段和最小值问题;(4)利用直径是圆中最长的弦解决与圆有关的线段的最值.几何问题中作辅助线的方法比较多,如作垂线㊁平行线㊁连接㊁延长㊁倍长中线㊁旋转三角形等,但作辅助圆这种作铺助线的方法容易被忽略.上述四个实例分别从四个不同的角度阐释了在什么情况下需要作辅助圆,如何作辅助圆,作辅助圆后如何利用辅助圆,以期对学生突破几何学习有所帮助.W67Copyright ©博看网. All Rights Reserved.。
第8课时 辅助圆
(例3)第8课时 辅助圆【知识概述】1. 在处理平面几何中的许多问题时,常需要借助于圆的性质,使得问题可以更快更简洁地解决.而当我们需要的圆并没有出现在图形中,这就需要我们利用已知条件,把需要的实际存在的隐形的圆找出来,这个圆我们通常叫做” 辅助圆” .2. 构造辅助圆常见的基本图形如下:(1)一些点和一定点等距,则这些点共圆,定点为圆心; (2)同底同侧张角相等的两个三角形顶点共圆;(3)对角互补或其一个外角等于其内对角的四边形内接于圆;(4)两条线段被同一点内分(外分)成的两段乘积相等,则这两条线段的四个顶点共圆; (5)对边乘积的和等于对角线的积的四边形内接于圆;(6)到平面上两定点距离之比为不等于1的定值的点轨迹是一个圆(阿氏圆);(7)同底同侧的两个三角形张角存在2倍关系,且张角较大的三角形是以该张角为顶角的等腰三角形,则较小张角的顶点在是以较大张角的顶点为圆心腰长为半径的圆上. 【例题求解】例1 如图,四边形ABCD ,AB ∥CD ,且AB =AC =AD =a ,BC =b ,则sin ∠DBA 的值为 .思路点拨:作出以点A 为圆心、半径为a 的圆例2 平面内有四个点A ,O ,B ,C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足题意的OC 长度为整数的值可以是 .例3 如图,在中,90BAC ∠=︒,ACn AB=,AD BC ⊥于点,点是边上的中点,连结BO 交于,OE OB ⊥交BC 边于点E ,则OFOE的值为 . 思路点拨:连结DO ,EF ,证明△EOF ∽△CAB , 进一步可发现 E ,D ,F ,O 四点共圆.Rt ABC △D O AC ADF (例1)例4 如图,在△ABC 中,AB =AC ,任意延长CA 到P ,再延长AB 到Q ,使AP =BQ ,求证:△ABC 的外心O 与A ,P ,Q 四点共圆.思路点拨:先作出△ABC 的外心O ,连结PO 、OQ ,将问题转化为证明角相等.例5 如图,P 是⊙O 外一点,P A 切⊙O 于A ,PBC 是⊙O 的割线,AD ⊥PO 于点D .求证:PB PCBD CD=.思路点拨:因所证比例线段不能通过判定△PBD 与△PCD 相似证明.由P A 2=PD ·PO =PB ·PC 得B 、C 、O 、D 四点共圆,这样连OB ,OC ,就得多对相似三角形,以此达到证明的目的.例6 如图,在等腰直角三角形ABC 中,∠BAC =90°,AB =AC,BC =,点D 是AC 边上一动点,连结BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 .思路点拨:寻找点E 运动的轨迹是解决问题的关键(例4)(例5)(例6)【配套练习】1.如图,锐角△ABC 三边上的高线分别为AD ,BE ,CF , H 为垂心,则由点A 、B 、C 、D 、E 、F 、H 中某四点可以确定的圆共有 个.2.如图,OA =OB =OC ,且∠AOB =k ∠BOC ,则∠ACB 是∠BAC 的 倍.3.如图,AD 、BE 是锐角三角形的两条高线,S △ABC = 18,S △DEC =2,则cos C = .4. 如图,若P A =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =5,PD =3,则AD ·DC = .5.如图,正方形ABCD 的中心为O ,边长为26,P 为正方形内一点,且∠OPB =45°,若P A :PB =5:12,则PB 的长为 . 6. 在Rt △ABC 中,∠C =90°,AC =10,BC =12,点D 为线段BC 上一动点,以CD 为直径画⊙O ,连结AD 交⊙O 于点E ,连结BE ,则BE 的最小值为 .7. 如图,等边△ABC 边长为2,E 、F 分别是BC 、CA 上两个动点,且BE =CF ,连结AE 、BF ,交点为P 点,则CP 的最小值为________;当∠C PE =∠PBC 时,则CP 的值为________.8. 如图,直线AB 和AC 与⊙O 分别相切于B 、C ,P 为圆上一点,PD ⊥AB ,PE ⊥AC ,PF ⊥BC ,垂足分别为D ,E ,F ,若PD =4cm ,PE =6cm ,则PF = cm .(第8题)(第7题)(第1题)(第2题)C(第3题)(第5题)(第4题)(第6题)9. 如图,△ABC 中,∠ABC =60°,BD 平分∠ABC ,且∠ADC =120°. 求证:AD =DC .10. 如图,AD 、BC 为过圆的直径AB 两端点的弦,且BD 与AC 相交于E .求证:2AC AE BD BE AB ⋅+⋅=.11. 如图,在△ABC 中,AB =8,AC =10,D 为△ABC 内一点,满足∠ADC =90°,∠ABD =∠ACD .设E 是BC 的中点,求DE 的长.(第9题)(第10题)(第11题)12. 如图,在△ABC 中,高线BE 、CF 相交于点H ,且∠BHC =135°,G 为△ABC 内的一点,且GB =GC ,∠BGC =3∠A ,连结HG ,求证:HG 平分∠BHF .13. 已知,如图,AD 是是△ABC 的角平分线,2AD BD CD =⋅. 求ACCD的值14. 如图,AB ,CD 是⊙O 中两条互相垂直的直径,点F 为OA 中点,连结CF 并延长交⊙O 于点E ,连结BE 、AD 交于点H . 求证:HA=HD(第12题)CBD(第13题)AB(第14题)第8课时 辅助圆参考答案例12ba=. 例2 如图1,∵∠AOB =120°,∠ACB =60°,∴∠ACB =12∠AOB,∵OA =OB =2,∴点C 在半径为2的⊙O 上,且在优弧AB上.∴OC =OA =OB =2;如图2,∵∠AOB =120°,∠ACB =60°,∴∠AOB +∠ACB =180°,∴四个点A ,O ,B ,C 共圆.设这四点都在⊙M 上. 点C 在优弧AB 上运动.连结OM 、AM 、AB 、MB .∵∠ACB =60°,∴∠AMB =2∠ACB =120°.∵AO =BO =2, ∴∠AMO =∠BMO =60°.又∵MA =MO ,∴△AMO 是等边三角形,∴MA =AO =2,∴MA <OC ≤2MA ,即2<OC ≤4, ∴OC 可以取整数3和4.综上所述,OC 可以取整数2,3,4.例3 连结DO ,EF ,∵∠FDE +∠FOE =180°,∴E ,D ,F ,O 四点共圆,∴∠OFE =∠ODC ,∵OE OB ⊥ ,OD =OC ,∴∠ODC =∠C ,∴∠OFE =∠C ,又∵90BAC FOE ∠=∠=︒,∴△EOF ∽△CAB ,∴OF OE =ACAB =n .例4例5例6 【练习】 1.6 2.k 1 3. 31 4. 16 5.24 6.8 7. 1 8.9.∵∠ABC +∠ADC =60°+120°=180°,∴A ,B ,C ,D 四点共圆,∴∠ABD =∠ACD ,∠DBC =∠DAC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC .∴∠ACD =∠DAC . ∴AD =DC ,10.如图,过点E 作EF ⊥AB 于点F ,∴∠EFB =90º, 又∵AB 为直径,∴∠C =90º,∴E ,F ,B ,C 四点共圆,∴ AE ·AC =AF ·AB ① ,同理可证BE ·BD =BF ·AB ②,+②得,AE ·AC +BE ·BD =AF ·AB +BF ·AB =AB(AF +BF)=AB 2. 11.如图,延长CD 至点F ,使得DF =CD ,连结BF ,∵E 是BC 的中点,∴DE 是△BCF 的中位线. ∴DE =12BF .∵DF =CD ,且AD ⊥CF ,∴AD 垂直平分CF ,∴AC =AF =10.∴∠ACD =∠AFD . 又∵∠ABD =∠ACD ,∴∠ABD =∠AFD .∴A ,D ,B ,F 四点共圆,∴∠ABF =∠ADF =90°.∴在Rt △ABF 中,BF 6. ∴DE =12BF =3.12.∵BE 、CF 为高线,∠BHC =135°,∴∠A =45°,∴∠BGC =3∠A =135°,∴∠BGC =∠BHC ,∴B ,G ,H ,C 四点共圆,∴∠BCG =∠GHB ,而GB =GC ,∠BHC =135°,得∠BCG =22.5°,∴∠GHB =22.5°,而∠BHF =45°,∴HG 平分∠BHF .例4例2图1例2图2 练10练11练14 练13 C13.作△ABC 的外接圆⊙O ,延长AD 交⊙O 于点E ,连结CE ,则AD DE BD CD ⋅=⋅,又2AD BD CD =⋅,∴=AD DE ,∵∠BCE =∠BAE =∠EAC ,又∠E =∠E ,∴AC AECD EC == 14.连结AE ,HF ,∵AG ,CD 是⊙O 的两条直径,弦AB ⊥CD 于点P ,∴ BD ︵=AD ︵=CG ︵ ,∴DG ︵=BC ︵,∴∠GAD =∠CEB ,∴A ,E ,H ,F 四点共圆.∴∠EFH =∠EAH =∠ECD .∴FH ∥CD ,∴AH HD =AFFO=1 ,∴A.H=HD .。
初中数学:辅助圆
辅助圆知识回顾:1,圆的定义:在同一平面内,到定点的距离等于的所有点构成的图形叫做圆。
2,圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的 .推论:①同圆或等圆中,相等的圆周角所对的弧一定 .②半圆(或直径)所对圆周角是,90°的圆周角所对的弦是 .注意:同圆或等圆中,相等的弦所对的圆周角有什么关系?是否一定相等?3,圆的内接四边形:①定义:如果一个四边形的所有顶点都在同一圆上,这个四边形叫做圆的内接四边形,这个圆叫做这个四边形的 .②圆内接四边形的性质:圆内接四边形的对角 .思维发散:当题目中出现圆的定义或相关性质时,那么意味着什么?一、定点定长例1、(1)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C. 求A′C长度的最小值。
(2)如图,在Rt△ABC中,∠B=60°,BC=3,D为BC边上的三等分点,BD=2CD,E为AB边上一动点,将△DBE沿DE折叠到△DB′E的位置,连接AB′,则线段AB′的最小值为.例2、(1)如下图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是。
(2)如图,在矩形ABCD中,AB=6,AD=3,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.在MN上存在一动点P.连接A′P、CP,则△A′PC周长的最小值是_____________.例3、如右上图,在Rt△ABC中,∠C=90∘,∠A=60∘,AC=6,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是。
例4、已知:如图,在四边形ABCD中,AB∥DC,BC=b,AB=AC=AD=a,求BD的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5初中数学最值系列之辅助圆教案
教学目标:
1.熟练掌握辅助圆在数学中的概念和性质;
2.能够运用辅助圆解决初中数学中的最值问题;
3.培养学生观察问题、提出问题和解决问题的能力。
教学重难点:
1.学习掌握辅助圆在求解最值问题中的应用方法;
2.培养学生运用辅助圆解决问题的思维能力。
教学准备:
1.教师准备好黑板、彩色粉笔和辅助圆的相关课件;
2.提前准备好一些与辅助圆相关的练习题。
教学过程:
一、引入新知
1.教师简单介绍辅助圆的概念和作用,提出辅助圆在数学中的应用意义。
2.教师通过示意图向学生展示辅助圆的基本构造,帮助学生理解辅助圆的含义和作用。
二、辅助圆的性质
1.教师向学生介绍辅助圆的性质,如辅助圆的半径等于问题中的其中
一边的一半,辅助圆上的弦等于问题中的其中一边等等。
2.教师通过具体例子向学生展示辅助圆的性质,在黑板上进行解释和
分析。
三、辅助圆在求解最值问题中的应用
1.教师给学生出几个最值问题,如一张长方形纸片的四个角各剪去一
块正方形纸片,求剩下的纸片所能构成的最大面积。
2.教师引导学生观察问题,提出问题,并运用辅助圆解决问题。
3.学生们根据教师的引导,利用辅助圆来求解最值问题。
四、练习巩固
1.教师提供一些与辅助圆相关的练习题,让学生独立解答并进行讨论。
2.学生们互相交流,共同解决练习题,教师及时给予指导和帮助。
3.教师对学生的答题情况进行点评和总结,对错误的解答进行纠正和
解释。
五、拓展思考
1.教师鼓励学生进一步思考,提出一个新的问题,如圆的直径与圆的
面积有何关系?
2.学生们积极思考,讨论并提出自己的见解。
3.学生们将自己的思考结果与其他同学进行分享和讨论。
六、课堂总结
1.教师帮助学生总结今天学到的知识和方法,强调辅助圆在求解最值
问题中的重要作用。
2.学生们对今天的学习进行总结,并主动回答教师提出的问题,巩固
所学知识。
七、作业布置
1.教师布置一些与辅助圆相关的作业,例如写一篇关于辅助圆在求解
最值问题中的应用方法的小短文。
2.学生们积极完成作业,并在下节课上进行互相交流和评价。
教学反思:
通过本节课的教学,学生们对辅助圆的概念和性质有了更深入的了解,并能够运用辅助圆解决最值问题。
在教学过程中,通过教师的引导和提问,学生们积极思考,能够独立解答问题,并提出自己的见解。
教师及时给予
指导和帮助,加深学生对辅助圆的理解。
通过学生们的积极参与和讨论,
培养了他们的观察问题、提出问题和解决问题的能力。