函数的概念及图像

合集下载

高中数学《函数的概念》课件

高中数学《函数的概念》课件

定义域和值域
了解函数定义的形式及其定义域 和值域非常重要。
函数的图像
函数图像的概念
掌握如何根据函数的定义、域、值域和公式绘制函数的图像。
如何绘制函数图像
学习如何使用函数的公式和几何方法来绘制函数的图像。
函数的对称性
探究函数的不同对称性,例如奇偶性和周期性。
函数的性质
1
奇偶性与周期性
了解函数的基本性质,例如奇偶性和周期性,可以帮助简化函数的分析。
高中数学《函数的概念》 ppt课件
数学是一门让人兴奋的学科。接下来,我们将探讨高中数学的一个关键主题: 函数的概念。通过本课程,你将深入了解函数的基本定义、图像、性质及其 实际应用。
函数的定义
定义及其常见表示形式
掌握函数的不同表示形式是理解 数学中其他相关概念的基础。
自变量和因变量
发现自变量和因变量之间的关系 对于定义函数是至关重要的。
函数在工程学中的应用
了解如何在工程学中使用函数来 解决复杂的问题,例如建筑和机 械设计。
总结与展望
1
函数的重要性及其实际应用
掌握函数的概念和应用,可以让你更好地理解标准数学中的其他相关主题。

2
未来函数研究的发展趋势
了解当前对函数研究的最新趋势是什么,可以让你更好地理解数学的未来。
3
课程回顾及展望
回顾本课程的内容,并思考如何将所学应用到实际的问题中。
2
单调性和极值
发现函数的单调性和极值有助于确定函数的最大值和最小值。
3
泰勒公式与函数的逼近
了解如何使用泰勒公式来将函数逼近到无穷小的阶数,以获得更多信息。
函数的应用
函数在经济学中的应用
学习如何使用函数来分析经济数 据,例如股票市场和消费趋势。

函数的概念及表示

函数的概念及表示

函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。

函数与图像的基本概念与性质

函数与图像的基本概念与性质

函数与图像的基本概念与性质一、函数的概念与性质1.函数的定义:函数是两个非空数集A、B之间的对应关系,记作f:A→B。

2.函数的性质:(1)一一对应:对于集合A中的任意一个元素,在集合B中都有唯一的元素与之对应。

(2)自变量与因变量:在函数f中,集合A称为函数的定义域,集合B称为函数的值域。

对于定义域中的任意一个元素x,在值域中都有唯一的元素y与之对应,称为函数值。

(3)函数的单调性:若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)<f(x2),则称函数f在定义域上为增函数;若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)>f(x2),则称函数f在定义域上为减函数。

3.函数的分类:(1)线性函数:形如f(x)=ax+b(a、b为常数,a≠0)的函数。

(2)二次函数:形如f(x)=ax²+bx+c(a、b、c为常数,a≠0)的函数。

(3)分段函数:形如f(x)={g1(x), x∈D1}{g2(x), x∈D2}的函数,其中D1、D2为定义域的子集,且D1∩D2=∅。

二、图像的概念与性质1.函数图像的定义:函数图像是指在平面直角坐标系中,根据函数的定义,将函数的定义域内的每一个点(x, f(x))连接起来形成的图形。

2.函数图像的性质:(1)单调性:增函数的图像呈上升趋势,减函数的图像呈下降趋势。

(2)奇偶性:若函数f(-x)=-f(x),则称函数f为奇函数;若函数f(-x)=f(x),则称函数f为偶函数。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

(3)周期性:若函数f(x+T)=f(x),则称函数f为周期函数,T为函数的周期。

周期函数的图像具有周期性。

(4)拐点:函数图像在拐点处,曲线的斜率发生改变。

三、函数与图像的关系1.函数与图像的相互转化:通过函数的解析式,可以在平面直角坐标系中绘制出函数的图像;同时,根据函数图像的形状,可以反推出函数的解析式。

函数初高中总结知识点

函数初高中总结知识点

函数初高中总结知识点一、初中阶段的函数知识点总结1. 函数的概念函数是一种对应关系,它将每一个自变量的取值都对应唯一的一个因变量的取值。

数学上通常用字母来表示一个函数,比如y=f(x)。

其中y是因变量,x是自变量,f(x)表示函数关系的表达式。

2. 函数的性质(1)定义域和值域函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。

在初中阶段,我们通常研究的是一元函数,也就是函数的自变量只有一个。

(2)奇函数和偶函数当函数f(x)满足f(-x)=-f(x)时,称函数f(x)为奇函数;当函数f(x)满足f(-x)=f(x)时,称函数f(x)为偶函数。

奇函数的图形关于原点对称,偶函数的图形关于y轴对称。

(3)单调性函数的单调性是指函数在定义域上的增减性质。

如果对于定义域上的任意两个不同的自变量值x1和x2,当x1<x2时,有f(x1)<f(x2),则称函数f(x)在定义域上是递增的;如果对于定义域上的任意两个不同的自变量值x1和x2,当x1<x2时,有f(x1)>f(x2),则称函数f(x)在定义域上是递减的。

3. 函数的图像初中阶段,我们接触到的函数的图像,一般是一元一次函数、一元二次函数和一元绝对值函数的图像。

一元一次函数的图像是一条直线;一元二次函数的图像是一个抛物线;一元绝对值函数的图像是一个V形。

以上就是初中阶段的函数知识点总结,接下来我们来看一下高中阶段的函数知识点。

二、高中阶段的函数知识点总结1. 函数的概念在高中阶段,我们将学习更多种类的函数,如多项式函数、指数函数、对数函数、三角函数等。

这些函数都是我们在高中数学中要重点学习的内容。

2. 函数的性质(1)函数的奇偶性除了初中阶段学习的奇函数和偶函数外,高中阶段还要学习更多类型的奇偶函数,如正弦函数、余弦函数等。

这些函数的奇偶性对于函数的图像和性质具有很大的影响。

(2)周期性在高中阶段,我们还要学习到周期函数的性质。

函数的定义与图像的绘制

函数的定义与图像的绘制

函数的定义与图像的绘制函数是数学中一个非常重要的概念,也是初中数学的基础知识之一。

理解函数的定义和掌握图像的绘制对于学习数学和解题都有很大的帮助。

本文将以对应标题题型进行举例、分析和说明,旨在帮助中学生和他们的父母更好地理解函数的概念和图像的绘制方法。

一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

简单来说,函数就是输入和输出之间的一种对应关系。

我们可以用符号来表示一个函数,例如f(x) = 2x,其中f(x)表示函数的输出,2x表示函数的输入。

例如,考虑函数f(x) = 2x,当x取值为1时,函数的输出为2;当x取值为2时,函数的输出为4。

这个函数的定义域是所有实数,值域是所有正实数。

函数的定义域是指函数可以取值的范围,值域是指函数的输出的范围。

二、图像的绘制图像是函数的可视化表示,通过绘制函数的图像,我们可以更直观地理解函数的性质和特点。

绘制函数的图像需要掌握一些基本的方法和技巧。

首先,我们需要确定函数的定义域和值域。

根据函数的定义域和值域,我们可以确定图像的横坐标和纵坐标的范围。

其次,我们可以选择一些特殊的点来绘制图像,例如函数的零点、极值点和拐点等。

通过计算这些点的坐标,我们可以将它们连接起来,得到函数的图像。

例如,考虑函数f(x) = x^2,我们可以选择x取值为-2、-1、0、1、2等特殊点。

计算这些点的坐标,我们可以得到(-2, 4)、(-1, 1)、(0, 0)、(1, 1)、(2, 4)等点。

将这些点连接起来,我们就可以绘制出函数f(x) = x^2的图像,它是一个抛物线,开口朝上。

三、函数图像的性质通过观察函数的图像,我们可以得到一些关于函数性质的重要信息。

首先,我们可以判断函数的增减性。

如果函数的图像从左往右逐渐上升,那么函数是递增的;如果函数的图像从左往右逐渐下降,那么函数是递减的。

其次,我们可以判断函数的奇偶性。

如果函数的图像关于y轴对称,那么函数是偶函数;如果函数的图像关于原点对称,那么函数是奇函数。

函数图像的画法

函数图像的画法

04 利用计算器或软件绘制函 数图像
使用计算器绘制函数图像
确定函数表达式
首先需要确定要绘制的函数表达式, 例如 y = x^2。
选择计算器功能
在计算器上找到绘制函数图像的功能, 通常在科学计算器上会有专门的图形 功能键。
输入函数表达式
将函数表达式输入到计算器的相应位 置。
开始绘图
按下绘图功能键,计算器会自动绘制 出该函数的图像。
函数图像的画法
contents
目录
• 函数图像的基本概念 • 常见函数的图像画法 • 函数图像的变换 • 利用计算器或软件绘制函数图像 • 函数图像的应用
01 函数图像的基本概念
函数图像的定义
函数图像
函数图像是将函数的每一个自变 量x值与对应的因变量y值,用点 表示出来,并将这些点用线连接 起来形成的图形。
二次函数的图像
总结词
抛物线形状
详细描述
二次函数图像是抛物线。根据抛物线的开口方向和顶点位置,二次函数可以分为开口向上、向下、向左和向右四 种类型。在直角坐标系中,二次函数的标准形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,a 不等于 0。
三角函数的图像
总结词
周期性波形
详细描述
THANKS FOR WATCHING
感谢您的观看
缺点
需要一定的编程基础,对于初学者来说可能需要一定的学习 成本。另外,软件绘图可能需要较长时间才能掌握其各种功 能和操作技巧。
05 函数图像的应用
在数学中的应用
解析几何
函数图像可以用来表示解析几何中的曲线、曲面等,帮助理解几 何概念和性质。
微积分
函数图像在微积分中用于描述函数的单调性、极值、拐点等,有助 于理解函数的性质和变化规律。

函数的基本概念和图像特征

函数的基本概念和图像特征

函数的基本概念和图像特征函数是数学中一个非常重要的概念,它就像是一座桥梁,连接着不同的数学领域和实际应用。

理解函数的基本概念和图像特征对于我们解决数学问题、理解自然界的规律以及进行各种科学研究都具有极其重要的意义。

让我们先来谈谈函数的基本概念。

简单来说,函数就是一种特殊的对应关系。

想象有两个集合,比如集合 A 里装着各种输入值,集合 B 里装着对应的输出值。

如果对于集合 A 中的每一个元素,按照某种特定的规则,在集合 B 中都能找到唯一确定的元素与之对应,那么我们就说这构成了一个函数。

比如说,我们有一个函数 f(x) = 2x 。

这里的 x 就是输入值,当 x 取 1 时,通过“乘以2”这个规则,得到的输出值就是 2 ;当 x 取 2 时,输出值就是 4 。

每一个输入的 x ,都能通过这个规则得到唯一确定的输出值,这就是函数的本质。

函数通常用符号 f(x) 来表示,其中 x 被称为自变量,f(x) 被称为因变量。

自变量可以是任何数或者其他数学对象,而因变量则是根据自变量和函数规则计算出来的值。

函数的定义域和值域也是非常重要的概念。

定义域就是自变量可以取值的范围,比如在上面的函数 f(x) = 2x 中,如果没有其他限制,定义域通常是所有实数。

值域则是因变量可能取得的值的范围。

对于这个简单的函数,因为可以取到任意实数作为自变量 x ,所以值域也是所有实数。

接下来,我们聊聊函数的图像特征。

函数的图像就像是函数的“照片”,它能够直观地展现函数的性质和特点。

以最简单的线性函数 y = x 为例,它的图像是一条经过原点、斜率为 1 的直线。

这条直线一直向右上方延伸,表明随着 x 的增大,y 也随之增大,而且增大的速度是均匀的。

再看二次函数 y = x²,它的图像是一条开口向上的抛物线。

当 x <0 时,函数值随着 x 的增大而减小;当 x > 0 时,函数值随着 x 的增大而增大。

抛物线的最低点就是函数的最小值点。

第六章 函数的概念和图象

第六章 函数的概念和图象

第六章函数的概念和图象一、内容综述:1.函数的有关概念:一般地,设在某变化过程中有两个变量x,y。

如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就说y是x的函数,x叫做自变量,y叫因变量。

对于函数的意义,应从以下几个方面去理解:(1)我们是在某一变化过程中研究两个变量的函数关系,在不同研究过程中,变量与常量是可以相互转换的,即常量和变量是对某一过程来说的,是相对的。

(2)对于变量x允许取的每一个值,合在一起组成了x的取值范围。

(3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都有唯一确定的值与它对应。

2.函数值与函数值有关的问题可以转化为求代数式的值。

二、例题分析:例1.判断y=x与y=是否是同一函数。

解:∵ y==|x|当x≥0时,y=x,当x<0时, y=-x.∴ y=x与y=不是同一函数。

说明:虽然这两个函数的自变量取值范围都是全体实数,但当x<0时,两个函数的对应关系不同(如当x=-2时,y=x=-2, 而y==2), 所以它们不是同一个函数。

例2.不画图象,求函数y=-x+的图象上一点P,使点P到x轴,y轴的距离相等。

解:当点P在第一,三象限内,依题意,设P(a,a)∴ a=-a+解得:a=1.当点P在第二,四象限内,设P(b,-b)∴ -b=-b+解得:b=-3,∴点P坐标为(1,1)或(-3,3)。

说明:由点P到x轴、y轴的距离相等知点P在各象限角平分线上,由于第一,三象限角平分线上的点M(x,y)满足x=y的关系,而第二,四象限角平分线上的点N(x,y)满足x=-y的关系,所以可根据点P的位置特点来设点P的坐标,通过此例训练分类讨论思想。

例3.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元. 若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;分析:由一般车辆停放次数x表示变速停放的辆次数,由保管费列出函数关系再化简,但要在函数式后注明自变量x的取值范围。

高中数学函数概念

高中数学函数概念

精品文档函数1、 函数的概念定义:一般地,给定非空数集A,B,按照某个对应法那么f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。

记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。

定义域,值域,对应法那么称为函数的三要素。

一般书写为y=f(x),x ∈D.假设省略定义域,那么指使函数有意义的一切实数所组成的集合。

两个函数相同只需两个要素:定义域和对应法那么。

已学函数的定义域和值域一次函数b ax x f +=)()0(≠a :定义域R, 值域R;反比例函x kx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ;二次函数c bx ax x f ++=2)()0(≠a :定义域R ,值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|22、 函数图象定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。

这些点在平面上组成的图形就是此函数的图象,简称图象。

常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x ²+3x+1 反比例函数f(x)=1/x 3、定义域的求法函数的解析式,假设未加特殊说明,那么定义域是使解析式有意义的自变量的取值范围。

一般有以下几种情况: 分式中的分母不为零;偶次根式下的数或式大于等于零;实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。

4、值域的求法①观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

函数概念ppt课件

函数概念ppt课件
复合函数的运算规则
复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1

02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。

函数的概念(优秀课)ppt课件

函数的概念(优秀课)ppt课件
函数的表示方法
解析法、列表法和图象法。
函数的定义域、值域与对应关系
01
函数的定义域
使函数有意义的自变量$x$的 取值范围。
02
函数的值域
函数值的集合,即${ y|y=f(x),x in D}$。
03
函数的对应关系
自变量$x$与因变量$y$之间的 对应法则。
函数的性质:奇偶性、周期性、单调性
奇偶性
01
角度计算
反三角函数可以用于计算角度,如已知三角形的两边长,可以利用反正
弦或反余弦函数计算出夹角。
02
工程应用
在工程中,反三角函数常用于解决与角度、长度等相关的实际问题,如
建筑设计、机械制造等领域。
03
复合函数
反三角函数可以与其他函数组合形成复合函数,用于解决更复杂的数学
问题。例如,可以将反三角函数与多项式、指数函数等进行复合,得到
0,+∞)上是减函数。
指数函数与对数函数的应用举例
增长率问题
通过指数函数可以描述某些量的增长速 度,如人口增长、细菌繁殖等。
利息计算
通过指数函数可以计算复利问题中的本 金和利息。
对数运算
通过对数函数可以简化某些复杂的运算 ,如计算幂、开方等。
数据分析
通过对数函数可以对某些数据进行归一 化处理,以便更好地进行数据分析和可 视化。
对数函数的图像与性质
对数函数的定义
形如y=log_a x(a>0且a≠1) 的函数称为对数函数。
对数函数的图像
当a>1时,图像在x轴上方,且 随着x的增大,y值也增大;当 0<a<1时,图像在x轴下方,且
随着x的增大,y值减小。
对数函数的性质

函数的概念ppt课件

函数的概念ppt课件

函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。

函数的基本概念

函数的基本概念

函数的基本概念函数是数学中一个非常重要的概念,广泛应用于各个领域的数学问题求解和实际生活中的应用。

在数学中,函数是指两个集合之间的一种特殊关系,它把一个集合的每一个元素都唯一地对应到另一个集合的元素上。

1、函数的定义函数可以简单地理解为一种对应关系,形式上可以表示为:f: A→B,其中A和B是两个集合,称为定义域和值域。

对于A中的每一个元素a,函数f把它映射到B中的一个唯一元素上,我们用f(a)表示这个映射后的结果。

例如,我们可以定义一个简单的函数f: ℝ→ℝ,它把实数集合映射到实数集合上,其中f(x) = x^2。

对于任意实数x,函数f会把它映射到x的平方上。

2、函数的特性函数具有一些重要的特性,例如:(1)定义域和值域:函数的定义域是指所有可以输入的元素组成的集合,值域是指函数的输出结果组成的集合。

在定义函数时,需要明确指定定义域和值域。

(2)单射性:单射性是指不同的输入元素对应不同的输出元素。

即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b。

(3)满射性:满射性是指每一个值域中的元素都有对应的定义域中的元素,即对于任意b∈B,都存在a∈A,使得f(a) = b。

(4)一一对应:一一对应是指函数同时具有单射性和满射性。

即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b,并且对于任意b∈B,都存在唯一的a∈A,使得f(a) = b。

3、函数的图像函数的图像是函数的可视化表示方式,它可以帮助我们更直观地理解函数。

函数的图像通常是在笛卡尔坐标系中绘制的,横坐标表示定义域的元素,纵坐标表示对应的函数值。

以函数f(x) = x^2为例,我们可以将其图像绘制为一个抛物线。

当x 取负值时,函数值也是正数,所以抛物线在原点的左侧也有对应的点。

4、函数的表示方法除了使用公式的形式表示函数外,函数还可以使用其他方式进行表示。

常见的函数表示方法有:(1)函数表格:函数表格是一种简洁明了的表示方式,可以把函数的输入和输出结果都列在表格中。

函数的概念ppt课件

函数的概念ppt课件
在经济学、社会学等领域中, 函数图像被用来描述和分析各 种数据之间的关系和变化趋势

THANKS
感谢观看
插值法
利用已知的离散数据点,通过数学计算得到更多的数据点,从而绘制出 更精确的函数图像。
03
பைடு நூலகம்计算几何法
利用几何知识,将函数表达式转换为几何图形,从而得到函数的图像。
函数图像的性质
01
02
03
04
连续性
函数图像在定义域内连续不断 ,没有间断点。
单调性
函数在某个区间内单调增加或 单调减少。
奇偶性
函数图像关于原点对称或关于 y轴对称。
周期性
函数图像呈现周期性变化。
函数图像的应用
数学分析
通过函数图像分析函数的性质 和变化规律,解决数学问题。
自然科学
在物理学、化学、生物学等自 然科学领域中,函数图像被广 泛应用于实验数据的分析和解 释。
工程学
在工程学中,函数图像可以用 来描述各种实际问题的变化规 律,如机械运动、电路电流等 。
经济和社会科学
函数的乘法
总结词
函数乘法是指将两个函数的输出值相乘,得到一个新的函数。
详细描述
函数乘法是一种数学运算,其操作是将两个函数的输出值逐一对应相乘。假设有 两个函数f(x)和g(x),函数乘法就是将f(x)和g(x)的输出值相乘,得到一个新的函 数h(x)=f(x)*g(x)。
函数的除法
总结词
函数除法是指将一个函数的输出值除以另一个函数的输出值,得到一个新的函数。
函数的实际应用
生活中的函数
总结词:无处不在
详细描述:函数的概念在日常生活中随处可见,如物品价格与数量的关系、时间 与路程的关系等。这些关系都可以通过函数来描述和预测。

高中函数图像知识点总结

高中函数图像知识点总结

一、函数图像的基本概念1. 函数的概念函数是一种特殊的关系,它把所有属于定义域的元素映射到值域中唯一确定的元素上。

函数的符号表示为 y = f(x),其中 x 是自变量,y 是因变量,f 表示函数名。

2. 函数的图像函数的图像是函数在坐标平面上的几何表示,通常用曲线、直线或点的方式表示。

3. 自变量与因变量在函数中,自变量是独立的变量,通常表示为 x;因变量是依赖于自变量的变量,通常表示为 y。

4. 坐标系坐标系是用来表示函数图像的平面,它通常由横轴和纵轴组成。

横轴表示自变量,纵轴表示因变量。

坐标系被分成四个象限,分别用来表示不同的正负值。

二、函数图像的特性1. 函数的奇偶性若对任意x∊D,都有 f(-x)=f(x),则称函数 f(x) 是偶函数;若对任意x∊D,都有 f(-x)=-f(x),则称函数 f(x) 是奇函数。

2. 函数的周期性若存在常数 T>0,使得对任意x∊D,都有 f(x+T)=f(x),则称函数 f(x) 是周期函数,T 称为函数的周期,最小的正周期称为函数的基本周期。

3. 函数的增减性若对任意x1,x2∊D,若 x1<x2,有f(x1)≤f(x2),则称函数在区间 D 上是增函数;若对任意x1,x2∊D,若 x1<x2,有f(x1)≥f(x2),则称函数在区间 D 上是减函数。

4. 函数的最值和极值函数在定义域 D 上的最大值和最小值称为函数的最值;函数在定义域 D 上的极大值和极小值称为函数的极值。

1. 一次函数 y = kx + b一次函数的图像是一条直线,其斜率 k 表示直线的倾斜程度,截距 b 表示直线与 y 轴的交点。

2. 二次函数 y = ax^2 + bx + c二次函数的图像是一条抛物线,其开口方向由 a 的正负确定,开口向上时为正,开口向下时为负,顶点坐标为 (-b/2a, c-b^2/4a)。

3. 指数函数 y = a^x指数函数的图像是以底数 a (a>1) 为底,自变量 x 为指数的幂函数。

初中函数的概念ppt课件

初中函数的概念ppt课件

二次函数的定义
形如y=ax^2+bx+c(a, b,c是常数,a≠0)的函 数称为二次函数。
二次函数的图像
二次函数y=ax^2+bx+c 的图像是一个抛物线。
二次函数的性质
当a>0时,抛物线开口向 上,有最小值;当a<0时 ,抛物线开口向下,有最 大值。
03 函数的应用
函数在生活中的实际应用
人口增长模型
提供工具。
04 函数的扩展知识
复合函数的概念
定义
如果y是u的函数,而u是x的函数,那么y关于x的函数叫做由基本函 数f(u)和g(x)构成的复合函数。
表示方法
y = f(u),u = g(x)
分解
把一个复合函数分解成若干个基本初等函数,并分别指出各基本初等 函数在复合函数中的作用。
函数的奇偶性
THANKS 感谢观看
微积分
函数是微积分的基础,可以用来研 究物体的运动、变化和趋势等。
统计学
函数可以用来描述数据的分布特征 ,为统计分析提供工具。
函数在物理问题中的应用
力学
函数可以用来描述物体的运动状 态,如速度、加速度等。
热力学
函数可以用来描述温度、压力等 物理量的变化情况,为热力学研
究提供工具。
电学
函数可以用来描述电流、电压等 物理量的变化情况,为电学研究
函数的定义通常包括定义域和值域,定义域是指自变量的取值范围,值域是指因变 量的取值范围。
函数的表示方法
函数的表示方法有三种:表格法、图 象法和解析式法。
图象法是用图形来表示函数关系,它 直观形象,可以反映函数的单调性、 增减性等性质。
表格法是最简单的一种表示方法,它 将自变量和因变量的对应关系列成表 格,适用于简单的函数关系。

中职数学课件:函数的概念

中职数学课件:函数的概念

余弦函数:y=cos(x)
正切函数:y=tan(x)
余切函数:y=cot(x)
正割函数:y=sec(x)
余割函数:y=csc(x)
函数的运算
第三章
函数的加法、减法、乘法、除法
加法:将两个函数相加,得到新的函数 减法:将两个函数相减,得到新的函数 乘法:将两个函数相乘,得到新的函数 除法:将两个函数相除,得到新的函数
函数的实际应用
第四章
函数在实际问题中的应用
数学建模:函数是数学建模的重要 工具,可以用于描述和解决实际问 题
经济问题:函数在经济学中用于描 述和预测经济现象,如供需关系、 价格波动等
添加标题
添加标题
添加标题
添加标题
物理问题:函数在物理问题中广泛 应用,如力学、光学、热力学等
工程问题:函数在工程问题中用于 描述和优化设计,如结构设计、控 制系统设计等
绘制函数图像 标注关键点和特殊点 检查图像是否正确
函数图像的变换
平移变换:函 数图像沿x轴或 y轴移动
伸缩变换:函 数图像沿x轴或 y轴拉伸或压缩
旋转变换:函 数图像绕原点 旋转一定角度
对称变换:函 数图像关于x轴 或y轴对称
复合变换:以 上变换的组合, 如先平移再旋 转等
函数图像的几何意义
函数图像是函 数值的集合, 表示函数在某 一范围内的取
第二章
一次函数
定义:形如y=kx+b的函数,其中 k和b为常数
应用:广泛应用于物理、化学、生 物等学科
添加标题
添加标题
添加标题
添加标题
性质:直线函数,斜率为k,截距 为b
例子:y=2x+1,y=3x-2等
二次函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念及图象
一、知识要点概述
(一)函数有关概念
1、常量:在某一变化过程中保持不变的量.
2、变量:在某一变化过程中可取不同数值的量.
3、函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
4、函数的表示方法
5、画函数图象的步骤:①列表;②描点;③连线,通常称为描点法.
6、函数自变量的取值范围
(二)平面直角坐标中点的坐标特征
3、平行于坐标轴的直线上的点
(1)平行于x轴的直线上任意两点的纵坐标相同;
(2)平行于y轴的直线上任意两点的横坐标相同.
4、对称点的坐标:
(1)点P(a,b)关于x轴的对称点坐标是P
(a,-b)即横坐标相同,纵坐标互为相反
1
数.
(-a,b)即横坐标互为相反数,纵坐标相
(2)点P(a,b)关于y轴的对称点坐标是P
2
同.
(-a,-b)即横、纵坐标都互为相反数.
(3)点P(a,b)关于原点的对称点坐标是P
3
5、各象限角平分线上的点
(1)第一、三象限角平分线上的点的横、纵坐标相等.
(2)第二、四象限角平分线上的点的横、纵坐标互为相反数.
6、点与原点、坐标轴的距离
(1)点P(a,b)与原点的距离是.
(2)点P(a,b)与x轴的距离是|b|(即其纵坐标的绝对值).
(3)点P(a,b)与y轴的距离是|a|(即其横坐标的绝对值)
二、典型例题剖析
例1、现有点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第________象限.
分析:
本题主要考查各象限内点的坐标符号特征.由于点M在第二象限,
,所以N点在第三象限.
解:三
例2、若m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标是()
A.(-3,-3)B.(-3,-2)
C.(-2,-2)D.(-2,-3)
分析:
根据第三象限点的符号特征,建立不等式组求出字母m的取值范围,再确定m的值,从而可得P点坐标.
解:选A.
例3、点A(1,m)在函数y=2x图象上,则点A关于y轴的对称点的坐标是(________,________)
分析:
把A(1,m)代入函数式y=2x中,求m=2,则A(1,2),再根据对称点的符号规律求A点的对称点坐标.
解:(-1,2)
例4、已知P点关于x轴的对称点P
1的坐标是(2,3),那么点P关于原点的对称点P
2

坐标是()
A.(-3,-2)B.(2,-3)
C.(-2,-3)D.(-2,3)
分析:
(2,3)关于x轴对称,故求P(2,-3),∴点P(2,-3)关于原点对称由点P与P
1
的点坐标易求.
解:选D.
例5、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为(1,-1),则点B的坐标为()
A.(1,1)B.(-1,-1)
C.(-1,1)D.无法求出
分析:由于圆是轴对称图形,故两圆的两个交点A,B关于x轴对称.
解:选A.
例6、下列各组的两个函数是同一函数吗?为什么?
(1)y=x和
(2)y=πx2和S=πr2(其中x≥0,r≥0)
(3)y=x+2和
分析:
判断两个函数是否为同一函数:①要判断两个函数的自变量取值范围是否相同;②要判断自变量与函数的对应规律是否完全相同.
解:
(1)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≠0的实数;
(2)是同一函数,因为它们的自变量的取值范围相同,而且自变量与函数的对应规律完全相同;
(3)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≥-2.
例7、在函数中自变量x的取值范围是________.
分析:
求函数式中自变量的取值范围的一般思路是:
①函数解析式中的分母不能为0;
②偶次根式的被开方数应为非负数;
③零指幂和负整指数幂的底数不能为0.
此题中,自变量x应满足
解:x≥-1且x≠2.
例8、等腰△ABC周长为10cm,底边BC长为y cm,腰长AB为x cm.
(1)求出y与x的函数关系式;
(2)求x的取值范围;
(3)求y的取值范围;
(4)画出此函数的图象.
分析:
要求y与x的函数关系,关键是找出y与x之间的等量关系,确定x的取值范围应从边长为正数和三角形三边关系方面入手.
画函数的图象应按列表、描点、连线的步骤进行,同时应注意自变量的取值范围对图象的影响.
解:
(1)∵△ABC的周长为10,∴2x+y=10,∴y=10-2x.

(3)由解之得0<y<5.
(4)函数的图象如图所示.
点评:
求实际问题中的函数关系式应标明自变量的取值范围,画有自变量取值范围的函数图象时应注意端点处是实心点还是空心圆圈.。

相关文档
最新文档