风电塔筒制造工艺课件
风力发电混凝土塔筒制作过程
风力发电混凝土塔筒制作过程1. 前言:风儿的家嘿,大家好!今天咱们来聊聊风力发电塔筒的制作过程。
听起来好像很复杂,但其实就像煮一碗泡面,简单又有趣。
想象一下,那些高高的风力发电塔就像在空中翩翩起舞,跟着风儿摇摆,简直就像是在跳迪斯科!不过,塔筒的制作可不是一件轻松事儿,它需要技术、材料,还有满满的热情。
接下来,我们就一起来看看这些“高个子”的制作秘辛吧!2. 材料准备:选料有道2.1 混凝土的选择首先,咱们得选材料。
这可是个门道大得很的活儿。
混凝土是塔筒的“骨骼”,没有它,就像没了灵魂的小鱼,游不动!一般来说,混凝土需要有足够的强度和耐久性,能够抵抗风吹雨打的考验。
可别小看这混凝土,里面的水泥、砂子、碎石儿,全都是精挑细选的。
要是选错了,塔筒可就得哭了。
2.2 加入秘密成分再来,有些厂家会在混凝土中加入一些“秘密成分”,比如添加剂。
听说这些添加剂可以提高混凝土的抗压强度,就像给塔筒穿上了一层“防弹衣”,让它更加坚固。
哎呀,要是混凝土能够开口说话,肯定要感谢这些神奇的小伙伴们。
3. 制作过程:一步一个脚印3.1 模具的制作接下来,咱们得开始制作塔筒了。
首先要用钢材做一个模具,这个模具就像是塔筒的外衣。
模具的形状决定了塔筒的样子,所以设计的时候得细心些。
咱们可不能让塔筒“穿着”不合身的衣服,毕竟高高在上,要有气势!3.2 浇筑混凝土好了,模具准备好了,咱们就可以开始浇筑混凝土了。
把混凝土倒进模具里,就像给它“喂饭”。
这时候得注意,要慢慢倒,让混凝土在模具里均匀分布,不能急躁。
想象一下,混凝土在模具里慢慢流动,简直就像是跟我们打招呼:“嘿,我来啦!”当混凝土都倒好后,得好好振动一下,让它更紧实,别留下空气泡泡,省得将来漏气。
3.3 等待固化然后,咱们就得耐心等待混凝土固化。
这可不是一蹴而就的事情,得花上几天的时间,让它慢慢变得坚硬。
期间可别打扰它,像小朋友午睡一样,让它安静成长。
等到固化完成,塔筒就会变得坚固无比,准备好迎接风的挑战。
风塔塔筒制作工艺7-外观处理
1、适用范围本工艺适用于本公司风电塔架的制作。
2、编制依据2.塔架总图及相关零部件图。
2.2风塔塔架技术条件。
3、风塔塔架制作工艺流程4、外观处理、火焰矫形工艺H 原材料入厂检验H 材料复验及焊接工艺评定H 数控切割下料K 坡口加工K 滚弧K 纵缝焊接H 回圆H VT UTH 法兰与相邻筒节组对K 环缝焊接H VT UT RTH 外观处理、火焰矫形 H 喷漆 包装发运K: 关键工序H :停检点 H 筒体与筒体依次组对H VT UT RTK 环缝焊接H VT UT RTK 开孔并组对焊接门框H 检测塔架同轴度平行度等H VT MTK 定位并焊接风塔附件4.1 外观处理外观表面缺陷的存在会影响油漆的附着,导致油漆不能发挥其最佳的防腐性能,在这些区域会导致过早的锈蚀出现,因此,在进行表面处理前必须要对钢结构上的缺陷进行处理,以减少或消除结构缺陷对涂装质量的影响。
结构缺陷的处理可以依据ISO8501-3之规范要求进行:4.2 火焰矫形外观合格后采用火焰矫形,注意火焰温度不能过高,形成切割火焰。
探伤检测合格后,用激光测平仪检测法兰平面度及内倾度。
不合格的标出超差位置及超差数值来确定矫形程度。
使上段上法兰平面度达到各项目要求,其它法兰平面度达到各项目要求。
上段上法兰内倾度,下段下法兰内倾度,其它法兰内倾度具体见各项目技术协议或工艺卡片。
威海龙江重工机械装备有限公司企业标准QJ/ZD 11-03-06风塔塔架通用制造工艺外观处理、火焰矫形作业指导书版本:编制:审核:批准:2011-04-15发布2011-04-20实施威海龙江重工机械装备有限公司发布。
风塔塔筒制作工艺3-滚弧回圆
1、适用范围本工艺适用于本公司风电塔架的制作。
2、编制依据2.塔架总图及相关零部件图。
2.2风塔塔架技术条件。
3、风塔塔架制作工艺流程4、滚弧及回圆制作工艺H 原材料入厂检验 H 材料复验及焊接工艺评定H 数控切割下料 K 坡口加工 K 滚弧K 纵缝焊接 H 回圆 H VT UT H 法兰与相邻筒节组对 K 环缝焊接 H VT UT RT H 外观处理、火焰矫形H 喷漆 包装发运K: 关键工序 H :停检点H 筒体与筒体依次组对H VT UT RTK 环缝焊接H VT UT RT K 开孔并组对焊接门框H 检测塔架同轴度平行度等H VT MT K 定位并焊接风塔附件4.1滚制筒体与组对纵缝在卷板机上先压头,后滚圆。
滚制筒体时应注意,把钢印号滚在筒体内侧。
用同径内卡样板检查,要求在板端部1000mm范围之内,其间隙不大于2mm,其它部位间隙不大于3mm。
组对纵缝时须保证与法兰面对接部位的筒体端面须为平齐,其余筒体中点对齐对纵缝。
组对对接间隙0~1mm,纵缝错边量≤2mm。
滚制筒体时注意保护好筒子不被划伤。
在纵缝的延长部位点固引(熄)弧板和产品试板,引(熄)弧板长度至少为100mm(厚度与筒体相同),产品试板为150 mm×600 mm。
应采用与筒体母材相匹配的焊材施工,定位焊长度50~60mm,间距300~400mm,焊高4~5mm。
点焊后经质检员检验合格,转纵缝焊接工序。
4.2回圆回圆前应将引弧板及产品试板火焰切割去除,不允许切割掉母材,切割时要留有2-5mm的打磨余量,切除后应磨平。
按卷板工艺守则校圆,每节筒体最大最小直径差见各项目技术协议或工艺卡片、任意局部表面凹凸度见各项目技术协议或工艺卡片。
筒节对接纵向钢板的翘边误差,见各项目技术协议或工艺卡片。
威海龙江重工机械装备有限公司企业标准QJ/ZD 11-03-02风塔塔架通用制造工艺滚弧回圆作业指导书版本:编制:审核:批准:2011-04-15发布2011-04-20实施威海龙江重工机械装备有限公司发布。
风电塔筒
风电塔筒风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。
风电塔筒风电塔筒的生产工艺流程一般如下:数控切割机下料,厚板需要开坡口,卷板机卷板成型后,点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次较圆,单节筒体焊接完成后,采用液压组对滚轮架进行组对点焊后,焊接内外环缝,直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处理后,完成内件安装和成品检验后,运输至安装现场。
风塔焊接生产线及装备- 无锡罗尼威尔机械设备有限公司 -无锡罗尼威尔机械设备有限公司---------高效自动化风塔焊接生备的引领者基于整合国内外风塔焊接生产线的成功经验和成熟技术的整厂生产工艺;基于对风塔制造整厂各工艺环节的深刻理解和认知;基于已经为国内外众多风塔制造商提供各类生产线及装备的成功案例;我们可为您提供:1、风电塔筒焊接生产线的整厂工艺流程设计规划服务;2、风电塔筒焊接生产线的整厂设备制造安装调试培训服务;3、风电塔筒焊接生产线的整厂设备长期完善的售后服务;客户应用场焊接生产线整厂工艺流程:板材下料切割及坡口加工:数控切割下料坡口加工板材卷制:进口卷板国产卷板机单节塔筒焊接及底法兰焊接:单节塔筒内外纵缝焊接底法兰焊多节塔筒组对焊接生产线:塔筒组对焊接生产线塔筒多统塔筒内环埋弧自动焊接塔筒外环埋弧自塔筒喷砂喷漆系统:塔筒喷砂滚轮架滚轮架焊接滚轮架焊接滚轮架主要用于圆柱形筒体的焊接、打磨、衬胶及装配,有自调式、可调式及平车式、倾斜式、防窜式、移动式等多种结构形式。
可根据客户的需求选择结构,也可为客户设计制造各种特制专用滚轮架。
1.自调式滚轮架主要技术参数:规格型号最大承载重量(t) 使用工件范围(mm) 滚轮直径与宽度(橡胶轮)(mm) 电机功率(kw) 滚轮线速度(m/min)HGZ5 5 ¢250-2300 250×100 0.75 0.1-1 采用交流变频无级调速HGZ10 10 ¢320-2800 300×120 1.1 HGZ2020¢500-3500350×120 1.5 HGZ40 40 ¢600-4200 400×120 3 HGZ60 60 ¢750-4800 450×120 4 HGZ8080¢850-5000500×1204HGZ100 100 ¢1000-5500 500×120 5.5 HGZ150 150 ¢1000-6500 550×120 5.5 HGZ200200¢1000-6500 550×1207.52.可调式滚轮架规格型号最大承载重量(t) 使用工件范围(mm)滚轮直径与宽度(橡胶轮)(mm) 间距调节方式电机功率(kw) 滚轮线速度(m/min)橡胶轮金属轮 HGK5 5 ¢250-2300 ¢250×100 / 手动丝杆可调或螺钉分档可调2×0.37 0.1-1采用交流变 频无级调速 HGK10 10 ¢320-2800 ¢300×120 / 2×0.55 HGK20 20 ¢500-3500 ¢350×120 / 2×1.1 HGK40 40 ¢600-4200 ¢400×120 / 2×1.5 HGK60 60 ¢750-4800 ¢450×120 / 2×2.2 HGK80 80 ¢850-5000 ¢500×120 / 螺钉分档可调2×3HGK100 100 ¢1000-5500 ¢500×120×2/ 2×4 HGK150 150 ¢1100-6000 ¢500×120×3/2×4HGK250 250 ¢1100-7500 / ¢660×2602×5.5 HGK400 400 ¢1100-7500 / ¢750×3202×7.5 HGK500 500¢1100-7500/¢750×4002×113.其它滚轮架可定制100T-500T防窜动滚轮架可根据用户要求定制各种非标滚轮架批量出口的滚轮架(出口)4.滚轮架在客户现场应用场景高效化自动组对焊接中心自动化焊接中心由焊接操作机、焊接电源及焊接滚轮架或焊接变位机配套组合而成,我们在特别配合筒体液压自动组对滚轮架、自动化焊接核心部件(例如:焊缝跟踪器、电弧高度控制器等)、并采用更加高效的国外先进焊接电源就可形成结构更加稳固、组对效率大幅提高、性能更加可靠、焊接效率极大提升的高效化自动组对焊接中心,该系统可广泛应用于锅炉、压力容器、石油石化、冶金建设、制冷设备、工程机械、船舶制造、电力建设等行业中各种焊缝及其它圆筒形构件的内外纵缝和环缝的焊接。
风电塔筒制造工艺
目录1. 塔筒制造工艺流程图2. 制造工艺3. 塔架防腐4. 吊装5. 运输、塔架制造工艺流程图(一)基础段工艺流程图1. 基础筒节:H原材料入厂检验f R材料复验f R数控切割下料(包括开孔)f 尺寸检验—R加工坡口f卷圆f R校圆f 100%UT检测。
2. 基础下法兰:H原材料入厂检验f R材料复验f R数控切割下料f R法兰拼缝焊接f H 拼缝100%UT检测f将拼缝打磨至与母材齐平f热校平(校平后不平度w 2mm)f H拼缝再次100%UT检测f加工钻孔f与筒节焊接f H角焊缝100%UT检测f 校平(校平后不平度w 3mm)f角焊缝100%磁粉检测。
3. 基础上法兰:外协成品法兰f H入厂检验及试件复验f与筒节组焊f 100%UT 检测f H 平面检测。
4. 基础段组装:基础上法兰与筒节部件组焊f 100UT%检测f H平面度检测f划好分度线组焊挂点f整体检验f喷砂f防腐处理f包装发运。
(二)塔架制造工艺流程图1. 筒节:H原材料入厂检验f R材料复验f钢板预处理f R数控切割下料f尺寸检验f R 加工坡口f卷圆f R组焊纵缝f R校圆f 100%UT检测。
2. 顶法兰:成品法兰f H入厂检验及试件复验f与筒节组焊f 100%UT检测f平面度检测f二次加工法兰上表面(平面度超标者)。
3. 其余法兰:成品法兰f H入厂检验及试件复验f与筒节组焊f 100%UT检测f 平面度检测。
4. 塔架组装:各筒节及法兰短节组对f R检验f R焊接f 100%UT检测f R检验f H划出内件位置线f H检验f组焊内件f H防腐处理f内件装配f包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1 )筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h 应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
风电塔筒制造工艺课件
目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输一、塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
风电塔筒通用制造工艺介绍
风电塔筒通用制造工艺介绍1. 引言风电塔筒是风能发电机组的重要组成部分,承载着风机和风力发电机的重量,并为其提供稳定的支撑结构。
本文将介绍风电塔筒的通用制造工艺,包括材料选择、焊接工艺、机械加工等方面。
2. 材料选择风电塔筒一般采用高强度低合金钢作为材料,以满足对强度和耐久性的要求。
常用的材料包括Q345(国内材料)和ASTM A572等(国际材料)。
材料的选择应考虑强度、焊接性能、耐久性、成本等因素。
在选择材料时,还需考虑到生产和加工的可行性,以确保生产效率和质量。
3. 制造工艺3.1 塔筒板材切割首先,根据风电塔筒的设计图纸,将所选材料切割成合适的尺寸。
常用的切割方法包括等离子切割、火焰切割和激光切割等,根据具体情况选择合适的切割工艺。
3.2 胶接焊接将切割好的板材进行弯曲成筒状,并使用胶接焊接工艺将板材的边缘连接在一起。
胶接焊接需要保证焊缝的质量和可靠性,一般采用自动化焊接机器人进行操作,确保焊缝的一致性和工艺稳定性。
3.3 筒体整形经过焊接后,需要对筒体进行整形加工,以达到设计要求的形状和尺寸。
常用的整形加工方法包括辊压、碾压和拉伸等。
整形加工过程中需要注意保证筒体的强度和形状的一致性。
3.4 焊缝焊接对筒体进行最终的焊缝焊接,以提高连接的强度和稳定性。
焊缝焊接需要采用合适的焊接工艺,保证焊接质量和机械性能。
常用的焊接方法包括埋弧焊和气体保护焊等。
3.5 表面处理对焊接完成的风电塔筒进行表面处理,包括除锈、喷涂和防腐等工艺。
表面处理可以提高风电塔筒的耐久性和外观质量,延长使用寿命。
3.6 附件安装最后,将所需的附件如登梯、平台等安装在风电塔筒上,以满足安全和操作的需要。
安装附件需要考虑结构的牢固性和连接的可靠性。
4. 质量控制在风电塔筒的制造过程中,需进行严格的质量控制,以保证产品的质量和安全性。
4.1 材料检测在原材料采购时,需进行材料的化学成分和力学性能检测,确保选用的材料符合要求。
风塔塔筒制作工艺8-安装附件
本工艺适用于本公司风电塔架的制作。
2、编制依据2.塔架总图及相关零部件图。
2.2风塔塔架技术条件。
3、风塔塔架制作工艺流程4、组对附件H 原材料入厂检验H 材料复验及焊接工艺评定H 数控切割下料K 坡口加工K 滚弧K 纵缝焊接H 回圆H VT UTH 法兰与相邻筒节组对K 环缝焊接H VT UT RTH 外观处理、火焰矫形 H 喷漆 包装发运K: 关键工序H :停检点 H 筒体与筒体依次组对H VT UT RTK 环缝焊接H VT UT RTK 开孔并组对焊接门框H 检测塔架同轴度平行度等H VT MTK 定位并焊接风塔附件梯子中心线4.1划线根据风塔项目的排版图、技术规范、焊接附件图纸进行划线。
根据法兰上的0°,90°,180°,270°标记划附件位置线(梯子中心线、梯子连接板、支撑耳板等),先画高度线,再根据高度位置和角度计算出附件确定的位置线。
划线后一定要互检尺寸,防止出现偏差、错误。
采用快速划线法划出梯子连接件的位置。
如下图所示:先划出梯子中心线并用等腰三角形法校正,再根据纵向、周向定位尺寸划出A 、B 、C 、D 四点的位置线,连接AC 、BD 线(注意校正AC 、BD 之间的弦长),再根据图纸给出的纵向尺寸划出AC 、BD 上其它各点的定位线。
定位线划好后,将梯子连接件组焊在筒体上。
其他附件划线参照梯子划线方法。
4.2组装根据划线位置,点焊塔架附件,附件要避开塔架焊缝,注意相互位置关系的确认,防止出错。
首台进行试装(不允许强行组装),确定尺寸位置,试装合格后拆卸安装附件。
4.3焊接按焊接工艺焊接,清除熔渣和毛刺,焊缝和热影响区表面不允许有裂纹,开放型缩孔,气孔,夹渣,未熔合,深度>0.5mm 的咬边及低于焊缝高度的弧坑等。
4.4无损检测附件与塔筒焊接后,焊缝进行100%磁粉检测,按JB4730.4-2005规定Ⅰ级为合格。
4.5安装附件所有靠紧固件连接的附件,应在最终涂装后安装。
风电塔筒制造工艺
目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输一、塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H 划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
风电塔筒通用制造工艺介绍
秋风清,秋月明,落叶聚还散,寒鸦栖复惊。
风电塔筒通用制造工艺目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输注:本工艺与具体项目的技术协议同时生效,与技术协议不一致时按技术协议执行一.塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
风电塔筒制作工艺
塔筒制作工艺1、塔筒制作需注意问题:1)、塔筒制作整个工序必须按照工艺传递卡严格执行,并实行“三检”制度,每个工序又准人负责。
2)、下料后必须对钢板实行钢字码标识,具体内容包括材质零件号,字高7~10mm,要求清晰、无误,并进行材料跟踪。
3)、坡口必须按照下料图纸要求进行备置,小于16mm,不予开坡口,大于16mm。
按照下料图开坡口,要求内部表面光滑平整呈金属光泽。
4)、卷板前必须清理钢板上杂物,铁屑,氧化咋,卷板过程中必须用严格控制弧度与样板间隙和椭圆度,样板长度不小于1200mm,5)、单节组对,焊接矫正,卷板的同时进行单节筒体的纵缝组对,当管节卷制弧度大刀要求时,检查管节扭曲,周长等,然后进行管节的纵焊缝的点焊加固,组对筒体时,控制筒体对接间隙0-1mm,错口量为1/4t,且不大于1.5mm。
焊完后管节再次吊进卷板机进行回圆,筒体回圆后菱角度检查时用内弧样板检查,圆度检查样板弦长为1200mm,样板与筒体之间间隙不超过3mm,管节成型后要求其内表面无压痕,拉伤现象,尺寸精度φ±6mm。
椭圆度小于0.3%。
6)、法兰与管节组对:首先确定法兰的配对性,并仔细检查筒节与法兰的椭圆度,筒节的椭圆度不大于3mm,否则必须进行校圆并达到要求后才能组装。
A、筒节与法兰组对前仔细检查椭圆度,要求椭圆度不大于3mm,否则必须进行调整大刀要求后组装。
B\、同一台套上的连接法兰必须是出厂时的成对法兰。
C\、反向平衡法兰的纵缝与筒体的纵缝相错180度。
D、组对前塔体及法兰坡口内极其两侧各50mm用磨光机打磨除锈,油等杂质。
E、组装后要求坡口间隙小于2mm,错边小于2mm。
7)、筒节组装:筒节组装前必须仔细检查筒节的椭圆度不大于6mm。
A、筒节之间组装前仔细检查筒节椭圆度,不大于6MM。
否则必须进行校圆并达到要求后组装,组装后坡口间隙要求小于2MM,错边小于3MM.B、相邻筒节纵焊缝相错180度。
C\、管节对接错边及翘边小于2MM。
风电塔筒通用制造工艺
风电塔筒通用制造工艺1. 引言风电塔筒是风力发电机组的重要组成部分,承担着支撑风力发电机的重要任务。
风电塔筒的制造工艺对于风力发电机组的安全稳定运行具有重要影响。
本文将介绍风电塔筒的通用制造工艺,包括材料选型、工艺流程、质量控制等方面的内容。
2. 材料选型风电塔筒通常由钢材制成,其主要要求是具有较高的强度和耐腐蚀性能。
常用的材料包括低合金结构钢、碳素结构钢和耐候钢等。
选用材料时需要考虑风力发电机组的设计要求、施工条件和使用环境等因素。
3. 工艺流程风电塔筒的制造工艺流程一般包括以下几个步骤:3.1 材料准备根据设计要求,选择合适的钢材,并进行下料、切割和加工准备工作。
同时,准备好所需的焊接材料和焊接设备。
3.2 焊接工艺风电塔筒的制造主要依赖焊接工艺。
常用的焊接方法有电弧焊、气体保护焊和等离子焊等。
具体的焊接工艺参数需要根据材料的特性和设计要求进行调整。
3.3 热处理焊接完成后,需要对风电塔筒进行热处理,以提高其强度和耐腐蚀性能。
常用的热处理方法包括淬火、回火和正火等。
热处理过程需要控制温度和时间,以确保制造出符合要求的风电塔筒。
3.4 表面处理经过热处理后,还需要对风电塔筒进行表面处理,以提高其防腐性能和美观度。
常用的表面处理方法包括喷涂防锈漆和热浸镀锌等。
3.5 质量检测在制造过程中,需要对风电塔筒进行质量检测,以确保其符合设计要求和相关标准。
常用的检测方法有尺寸检测、焊缺陷检测和材料性能检测等。
4. 质量控制为了确保风电塔筒的质量,需要进行全程监控和质量控制。
主要包括以下几个方面:4.1 工艺参数控制在制造过程中,需要控制焊接工艺参数、热处理参数和表面处理参数等,确保在合理范围内。
同时,还需要对操作人员进行培训,提高其技术水平和操作规范性。
4.2 质量检测在制造过程中,需要进行质量检测,及时发现和解决问题。
对于不合格产品,需要进行返修或报废处理,确保出厂产品的质量。
4.3 文件记录在制造过程中,需要做好各种工艺参数、质量检测结果和工艺记录等文件的记录。
风电塔筒通常制造工艺标准
风电塔筒通用制造目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输注:本工艺与具体项目的技术协议同时生效,与技术协议不一致时按技术协议执行一.塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
风电塔筒制造工艺标准
目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输一、塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
风电塔筒制造工艺课件
目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输一、塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
塔筒
低温型风力发电机, 如果环境温度低于-30 ℃,不得进行维 护和检修工作。
如果超过下述的任何一个限定值,必须立即停止工作。 不得进行维护和检修工作。
4 检查维护
1. 叶片位于工作位置和顺桨位置之间的任何位置 5-分钟 平均值(平均风速) 10 m/s 5-秒 平均值 (阵风速度) 19 m/s
塔筒段 上段塔架
中段 塔架
中上 中下
下段塔架
基础环 合计
参数 顶部法兰外径 mm
高度 m 重量(含附件)吨
高度 m 重量(含附件)吨
高度 m 重量(含附件)吨
高度 m 重量(含附件)吨 底法兰外径 mm
高度 m 重量 吨 高度(不含基础环) m 重量(含附件)吨
65m 2696 22.4 24.2 22.4 37.5
基础应有足够的强度要求,以承受设计所要求的动、静载 荷。
基础不应该发生明显的、不均匀的下沉
47
风机安装基础的组成
48
风机安装基础的组成
1.基础环 2.钢筋混凝土底座 3.电缆管 4.接地系统 5.排水管
49
基础环
基础环由基础环上部法兰,钢板,基础环底部法兰和3个 避雷螺拄组成。
下面的数字表示螺栓的强 度等级,圆点前的数字表示螺栓 的抗拉强度Mpa的百分之一。 圆点后的数字表示螺栓的屈服 强度与抗拉强度的比的10倍 。
抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其 抵抗变形能力又重新提高,此时变形虽然发展很快,但 却只能随着应力的提高而提高,直至应力达最大值。此 后,钢材抵抗变形的能力明显降低,并在最薄弱处发生 较大的塑性变形,此处试件截面迅速缩小,出现颈缩现 象,直至断裂破坏。钢材受拉断裂前的最大应力值(b 点对应值)称为强度极限或抗拉强度。
风电塔筒制造工艺
目录1. 塔筒制造工艺流程图2. 制造工艺3. 塔架防腐4. 吊装5. 运输一、塔架制造工艺流程图(一)基础段工艺流程图1. 基础筒节:H原材料入厂检验f R材料复验f R数控切割下料(包括开孔)f 尺寸检验—R加工坡口f卷圆f R校圆f 100%UT检测。
2. 基础下法兰:H原材料入厂检验f R材料复验f R数控切割下料f R法兰拼缝焊接f H拼缝100%UT检测f将拼缝打磨至与母材齐平f热校平(校平后不平度w 2mm)f H拼缝再次100%UT检测f加工钻孔f与筒节焊接f H角焊缝100%UT 检测f校平(校平后不平度w 3mm)f角焊缝100%磁粉检测。
3. 基础上法兰:外协成品法兰f H入厂检验及试件复验f与筒节组焊f 100%UT 检测f H平面检测。
4. 基础段组装:基础上法兰与筒节部件组焊f 100UT%检测f H平面度检测f划好分度线组焊挂点f整体检验f喷砂f防腐处理f包装发运。
(二)塔架制造工艺流程图1. 筒节:H原材料入厂检验f R材料复验f钢板预处理f R数控切割下料f尺寸检验f R加工坡口f卷圆f R组焊纵缝f R校圆f 100%UT检测。
2. 顶法兰:成品法兰f H入厂检验及试件复验f与筒节组焊f 100%UT检测f平面度检测f二次加工法兰上表面(平面度超标者)。
3. 其余法兰:成品法兰f H入厂检验及试件复验f与筒节组焊f 100%UT检测f 平面度检测。
4. 塔架组装:各筒节及法兰短节组对f R检验f R焊接f 100%UT检测f R检验f H划出内件位置线f H检验f组焊内件f H防腐处理f内件装配f包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h 应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1.塔筒制造工艺流程图2.制造工艺3.塔架防腐4.吊装5.运输一、塔架制造工艺流程图(一)基础段工艺流程图1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。
2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。
3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。
4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。
(二)塔架制造工艺流程图1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。
2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。
3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。
4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。
二、塔架制造工艺(一)工艺要求:1.焊接要求(1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。
焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。
(2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作筒体纵缝焊接试板,产品焊接试板的厚度范围应是所代表的工艺评定覆盖的产品厚度范围,在距筒体、法兰及门框焊约50mm处打上焊工钢印,要求涂上防腐层也能清晰看到;(3)筒节纵环焊缝不允许有裂纹、夹渣、气孔、未焊透、未融合及深度>0.5mm 的咬边等缺陷,焊接接头的焊缝余高h应小于焊缝宽度10%;(4)筒节用料不允许拼接,相邻筒节纵焊缝应尽量错开180度,筒节纵焊缝置于法兰两相邻两螺栓孔之间。
(5)焊工资格要求:焊接工作由取得相应项次资格的焊工担任。
(6)焊接材料要求:焊接材料的选用,必须经过严格的严格焊接工艺评定,正式焊接时必须按工艺评定合格的焊材选用,焊接材料的性能必须符合焊接工艺评定要求,并提交焊接材料质量证书。
(7)焊接条件及要求:所有多层焊要求层间温度控制在100~200℃之间,或按焊接工艺执行,焊接环境温度不得低于0℃(低于0℃时,应在施焊处100mm范围内加热到15℃以上),相对相对湿度不得大于90%。
特殊情况需露天作业,出现下列情况之一时,须采取有效措施,否则不得施焊。
a)风速:气体保护焊时>2m/s;其他方法>10m/s。
b)相对湿度>90%。
c)雨雪环境。
d)环境温度<5℃。
2筒节下料要求(1)板材均应进行外形尺寸及板材表面的外观检查,合格后方可投料使用。
(2)下料车间用数控切割机进行下料,下料时按塔筒筒节展开的实际尺寸进行,不必加上刨边余量。
(注:必需对塔筒展开的实际尺寸校核);下料后,长度和宽度方向的尺寸允许偏差为±1mm,对角线尺寸允许偏差为±2mm。
(3)塔筒的每一节筒节下料完成后,由下料车间负责进行标记,其内容包括:产品编号、炉批号、筒节的件号及板料厚度,画出该节外形示意图并标出外形尺寸。
3筒体的组焊要求(1)机械加工用磁力切割机进行切割纵缝坡口,清除距坡口边缘20mm范围内泥土、油污及预处理底漆等。
(2)塔体筒节按图纸和技术要求进行滚圆,依据焊接工艺焊接筒节纵缝,然后进行筒节校圆(滚圆和校圆时,要将卷板机的上、下辊表面清理干净,不允许有任何异物存在),保证同一断面内其最大内径与最小内径之差不得大于3mm,同一节锥段最长与最短母线差不得大于1mm,每一段端口处的外圆周长允许偏差为±5mm。
(3)塔体筒节环缝坡口按焊接工艺所定尺寸利用磁力切割机进行切割,并将坡口打磨光滑,清除切割留下的氧化残渣和据坡口边缘20mm范围内泥土、油污及预处理底漆等。
(4)塔体的组对:①组对时,为保证壳体外表面的质量,组对用的工卡具应焊接在塔体的内表面。
工卡具拆除时,不得伤及塔体表面,宜用碳弧气刨方法去除,且留2-3mm的焊肉厚度,切割后用砂轮将切割部位的焊疤打磨与周围母材平齐,并将母材上的飞溅彻底清理干净;焊接时,引弧要在坡口内进行不得随意起弧和熄弧,焊缝成型必须保证均匀一致,焊接完成后,应彻底清除药皮和飞溅。
②每组对(点焊)一段筒节,沿4条向心线测量其母线的长度,最长与最短母线差不得大于2mm,然后再进行正式焊接。
风机塔最长与最短对角线长度不得超过5mm。
塔体纵、环焊缝组对间隙:0~1mm;纵、环焊缝对口错边量≤δ/5(δ为板料厚度),且不大于3mm。
4.风机塔底座部分(1)筒体下料后,长度和宽度方向的尺寸允许偏差为±1mm,对角线尺寸允许偏差为±2mm。
筒体上所有孔数控切割,切割后将熔渣打磨干净。
(2)底法兰环与筒节组对点焊,焊接底座底法兰环与筒节的角缝,该角焊缝超声检测合格后,然后对底座底法兰环进行校平,平面度≤3mm。
(3)底座上法兰与筒节的焊接按焊接工艺执行。
(二)质量要求(1)对接接头错变量要求:纵、环缝对口错变量≤δ/5(δ为板料厚度),且不大于3mm。
(2)直段塔节的圆度要求:同一断面内其最大内径与最小内径之差不得大于10mm;其直线度允差要求:任意3000mm长圆筒段偏差不得大于3mm,塔体各段的总偏差均应小于20mm;塔架筒节的母线偏差要求最长与最短母线差不得大于2mm(3)每一段筒体预制完成后,及时通知质检科人员进行检查,合格后方可进入下道工序。
(4)法兰与塔体组焊完毕后,上法兰的下平度≤3mm,二次加工后上法兰的不平度≤0.5mm;底座底法兰环的不平度≤5mm;其余法兰的不平度≤2mm(要求向内凹-0.5~1.5mm)。
(5)制造中应避免钢板表面的机械损伤。
最与尖锐伤痕、刻槽等缺陷应予修磨,修磨范围的斜度至少为1:3。
修磨的深度应不大于该部位钢材厚度的5%,且不大于2mm,否则应予焊补,补焊后打磨至与周围母材齐平。
(6)各段筒体在喷砂前,必须进行联检,联检合格后,方可进行喷砂。
(三)工艺过程控制1材料:(1)所有法兰均采用整体锻造(基础下法兰除外),机械性能和化学成分应满足相应的国家标准GB/T1591-94要求,材质、锻件级别按图纸要求,各项性能要求指标应符合JB4726/JB4726要求,所有法兰材料必须按不同炉号进行复验,材料应具备完整的质量证明文件。
(2)基础下法兰材料符合图纸要求,基础下法兰一般采用钢板拼接,拼缝要求100%UT探伤检查,符合JB/T4730-2005II级合格要求。
考虑焊接收缩,组对时外环摆放线尺寸在图纸外圆直径上增加5mm。
(3)筒体材料选用按图纸及技术协议要求,机械性能和化学成分应满足相应的国家标准,材料必须按不同炉号复验,所有材料应具备完整的质量证明文件。
2筒节的制备(1)钢板预处理(基础段除外):钢板进行抛丸处理,彻底清除钢板表面氧化物、油污等污物,钢板表面粗糙度达Sa2.5级(即表面粗糙度40~80um),喷环氧富锌底漆15um。
(2)下料:对每一筒节编程,单节筒节高度方向留0.5~1mm的焊接收缩余量,采用数控火焰切割下料,切割后用记号笔做好标识,内容包括项目名称、产品编号、筒节编号、钢板规格、材质等。
半自动仿形切割加工坡口,坡口切割表面要求光滑平整。
做好炉批号标记移植及记录,所有标识在筒节内表面。
下料尺寸偏差要求按下表(3)卷圆:按压力容器滚圆工艺进行滚圆,卷制过程中对筒节两端分别用样板检测(样板尺寸:弦长不小于1/6Di)。
(4)焊接:筒节纵缝采用自动埋弧焊,应采取双面焊接,内壁破口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,对接间隙0.5~1mm,错边量≤1.0mm。
筒节纵缝及焊接试板,均应设置引弧板和息弧板,距焊缝约50mm处,打上焊工钢印。
(5)校圆:按压力容器校圆工艺进行校圆,棱角度如下图及下表:筒节对接纵向钢板的翘边误差(棱角度)如下图及下表:(单位mm)(6)筒节成形后的控制筒体成形后形状公差要求如下:筒节任意横切断面公差应为:Dmax/Dmin ≤1.005如图所示。
同一截面直径差应小于3mm 。
筒体任意局部表面凸凹度如下图及下表:(单位mm )横向 纵向3部件组装(总装)(1)筒节与法兰的组对及筒节间组焊复查筒体坡口质量和尺寸满足要求后方可组对,单节筒节与法兰及筒节间组焊前应仔细检查筒节和法兰椭圆度,筒节的椭圆度符合要求后才能组装,尽量减小筒体的椭圆度,以减小焊接变形。
组装后坡口间隙要求<2mm ,环缝组对要求外口对齐,焊件装配应尽量避免强行组装及防止焊缝裂纹和减少内应力,筒体外侧不允许打卡子。
a、环缝错边量公差要求如下图及下表:(单位mm)b、法兰焊接后平面度,内倾要求见下表(2)法兰与筒体焊接后必须在塔架筒体环缝组对前进行,所有法兰要求按下图将相邻法兰间用工艺螺栓把紧,法兰内圆采用米字形支撑使法兰椭圆度满足要求,在焊接过程中,要随时检查螺栓的紧固情况,如有松动应把紧后在施焊。
(3)对于顶部法兰,单台无法进行相邻两法兰组对,但必须按上图要求增加米字型拉筋两处,一处位于法兰内圆,另一处顶部筒节内圆,要求将法兰和筒节的椭圆度尽量减小,(可按下图采用两台法兰配合组对)。
注:1生产无法控制顶部法兰焊接变形,则顶部法兰焊接前必须预留余量,在与相邻的一个筒节焊接后再进行法兰的平面度或孔加工。
2所有法兰在焊接后必须认真检查几何尺寸,确保能满足要求后方可进行其他环焊缝的组装和焊接。
(4)塔架分段毛坯制造完成后,支撑部位不允许设置在靠边法兰的部位(距法兰0.3米以上)。
必须采用工装的形式支撑于法兰(采用支架)或靠近重心(采用马鞍座)的位置。
(5)塔架下段和上段主体完工后应进行总体组对,须保证上、下法兰的平行度、平面度和同轴度符合图纸要求,同时检查焊接变形等情况。
0110102A A 2C 2C (B2D2)(B1D1)a . 所示做中心支架在01(02)位置分别固定找出中心孔,要求孔拴上钢卷尺(或钢琴弦)。
b .在另一端用弹簧称拴在钢卷尺上,用相同的拉力(约5-10公斤)测量并记录A.B.C.D四个象限斜边长,其相对差值3mm以内为合格。