高一数学(必修一)《第五章-任意角和弧度制》练习题及答案解析-人教版

合集下载

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

5.1 任意角和弧度制【题组一 基本概念的辨析】1.(2020·河南林州一中高一月考)已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角} D .以上都不对【正确答案】D【详细解析】∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D .2.(2020·浙江高一课时练习)下列命题中正确的是( ). A .第一象限角一定不是负角 B .小于90°的角一定是锐角 C .钝角一定是第二象限角 D .终边和始边都相同的角一定相等 【正确答案】C【详细解析】300︒-为第一象限角且为负角,故A 错误;5090-︒<︒,但50︒-不是锐角,故B 错误;终边与始边均相同的角不一定相等,它们可以相差360,k k Z ︒⋅∈,故D 错误.钝角一定是第二象限角,C 正确. 故选:C .3.(2020·汪清县汪清第六中学高一期中(文))下列结论中正确的是( ) A .小于90°的角是锐角 B .第二象限的角是钝角 C .相等的角终边一定相同 D .终边相同的角一定相等 【正确答案】C【详细解析】对于A,小于90︒可能是负角,不是锐角;对于B,第二象限的角可能是负角,不是钝角;对于C,两个角相等,始边一致,则终边一定相同;对于D,终边相同的角,可能相差360°的倍数,不一定相等.故选C.4.(2020·全国高一课时练习)(1)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) (2)将时钟拨快20分钟,则分针转过的度数是________. 【正确答案】② 120-︒【详细解析】(1)①锐角的范围为()0,90︒︒是第一象限的角,命题①正确;②第一象限角的范围为()()360,90360k k k Z ⋅︒︒+⋅︒∈,故第一象限角可以为负角,故②错误; ③根据任意角的概念,可知小于180°的角,可以为负角,故③错误; 故正确答案为:②(2)将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒ 故正确答案为:120-︒5.(2020·全国高一课时练习)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) 【正确答案】①【详细解析】锐角指大于0°小于90°的角,都是第一象限角,所以①对;由任意角的概念知,第一象限角也可为负角,小于180°的角还有负角、零角,所以②③错误.故正确答案为:① 6.(2020·全国高一课时练习)下列命题正确的是____________( 填序号). ①-30°是第一象限角; ②750°是第四象限角; ③终边相同的角一定相等; ④-950°12′是第二象限的角. 【正确答案】④【详细解析】①30-︒是第四象限的角度,故①错误;②750°的终边与30︒的终边相同,故其为第一象限的角度,故②错误; ③终边相同的角度不一定相等,故③错误;④-950°12′与-950°12′108012948+︒=︒′的终边相同,其为第二象限的角,故④正确. 故正确答案为:④.【题组二 角度与弧度转换】1.(2019·伊美区第二中学高一月考)300-化为弧度是( ) A .43π-B .53π-C .23π-D .56π-【正确答案】B【详细解析】300530023603ππ-=-⨯=- 2.(2020·全国高一课时练习)把85π化为角度是( )A .270°B .280°C .288°D .318°【正确答案】C【详细解析】因为1801rad π⎛⎫=︒ ⎪⎝⎭,故8818028855πππ︒︒⎛⎫=⨯= ⎪⎝⎭.故选:C. 3.(2020·灵丘县豪洋中学高一期中)320-︒化为弧度是( ) A .43π-B .169π-C .76π-D .56π-【正确答案】B【详细解析】320-︒化为弧度是16320=1809ππ-︒⨯-.故选:B 4.(2020·金华市江南中学高一期中)1500︒转化为弧度数为( ) A .253B .163πC .163D .253π【正确答案】D【详细解析】由1180rad π︒=,所以15001550002318ππ︒=⨯=rad 故选:D 5.(2019·长沙铁路第一中学高一月考)将300o 化为弧度为( ) A .43πB .53π C .76π D .74π 【正确答案】B【详细解析】53003001803ππ︒=⨯=.故选:B . 6.(2020·通榆县第一中学校高一期末)512π=( )A .70°B .75°C .80°D .85°【正确答案】B【详细解析】因为1801rad π⎛⎫=︒⎪⎝⎭,故512π=51807512ππ⎛⎫⨯︒=︒ ⎪⎝⎭.故选:B. 7.(2020·全国高一课时练习)将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)712π(4)-115π. 【正确答案】(1)20°=9π;(2)-15°=-12π;(3)712π=105°;(4)-115π=-396°.【详细解析】(1)20°=20180π=9π.(2)-15°=-15180π=-12π.(3)712π=712×180°=105°.( 4)-115π=-115×180°=-396°.【题组三 终边相同】1.(2020·浙江高一课时练习)与405°角终边相同的角是( ). A .45360,k k Z ︒︒-+⋅∈ B .405360,k k Z ︒︒-+⋅∈ C .45360,k k Z ︒︒+⋅∈ D .45180,k k Z ︒︒+⋅∈【正确答案】C【详细解析】由于40536045︒︒︒=+,故与405°终边相同的角应为45360,k k Z ︒︒+⋅∈.故选:C 2.(2020·永州市第四中学高一月考)在0360~︒︒的范围内,与510︒-终边相同的角是( ) A .330︒ B .210︒C .150︒D .30︒【正确答案】B【详细解析】因为510720210︒-=-+,则在0360~︒︒的范围内,与510︒-终边相同的角是210︒,故选:B. 3.(2020·合肥市第八中学高一月考)下列各个角中与2020°终边相同的是( ) A .150︒- B .680°C .220°D .320°【正确答案】C【详细解析】由题,20202205360︒=︒+⨯︒,故选:C4.(2020·汪清县汪清第六中学高一期中(文))在0°~360°范围内,与-1050°的角终边相同的角是( )A .30°B .150°C .210°D .330°【正确答案】A【详细解析】因为1050336030-︒=-⨯︒+︒所以在0°~360°范围内,与-1050°的角终边相同的角是30故选:A5.(2020·北京延庆·高一期末)与角196π终边相同的角为( ) A .6π-B .6π C .56π-D .56π 【正确答案】C 【详细解析】与角196π终边相同的角可写成192,6παπ=+∈k k Z 令2k =-,则56πα=-故选:C6.(2020·辉县市第二高级中学高一期中) 下列与的终边相同的角的表达式中正确的是( )A .2k π+45°( k ∈Z)B .k ·360°+π( k ∈Z)C .k ·360°-315°( k ∈Z)D .k π+( k ∈Z)【正确答案】C 【详细解析】与的终边相同的角可以写成2k π+( k ∈Z),但是角度制与弧度制不能混用,所以只有正确答案C 正确.故正确答案为C7.(2020·陕西大荔·高一月考)已知角2α是第一象限角,则α的终边位于( )A .第一象限B .第二象限C .第一或第二象限D .第一或第二象限或y 轴的非负半轴上【正确答案】D 【详细解析】∵由角2α是第一象限角,∴可得π2π2π,22k k k α<<+∈Z ,∴4π4ππ,k k k α<<+∈Z .即α的终边位于第一或第二象限或y 轴的非负半轴上.故选:D.8.(2020·宁县第二中学高一期中)已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.【正确答案】{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【详细解析】在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅{}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【题组四 象限的判断】1.(2020·广东高一期末)下列各角中,与2019°终边相同的角为( ) A .41° B .129°C .219°D .﹣231°【正确答案】C【详细解析】因为20195360219=⨯+,所以219与2019°终边相同.故选:C. 2.(2020·湖南隆回·高一期末)下列各角中,与60终边相同的角为( )A .30B .120C .420D .300【正确答案】C【详细解析】与60终边相同的角的集合是{}60360,k k Z αα=+⋅∈,当1k =时,420α=.故选:C 3.(2020·河南项城市第三高级中学高一月考)设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二C .三D .四【正确答案】B【详细解析】∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈,∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角.故选:B .4.(2020·辉县市第二高级中学高一期中)角–2α=弧度,则α所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【正确答案】C【详细解析】角–2α=弧度,2(,)2ππ-∈--,∴α在第三象限,故选:C .5.(2020·全国高一课时练习)若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限【正确答案】D【详细解析】2π-5与-5的终边相同,∵2π-5∈0,2π⎛⎫⎪⎝⎭,∴2π-5是第一象限角,则-5也是第一象限角. 故选:D6.(2020·浙江高一课时练习)若θ是第四象限角,则角2θ的终边在( ) A .第一象限 B .第一或第三象限 C .第四象限D .第二或第四象限【正确答案】D【详细解析】取80θ=-︒,则402θ=-︒,在第四象限;取320θ=︒,则1602θ=︒,在第二象限.故选:D .7.(2020·浙江高一课时练习)试求出终边在如图所示阴影区域内的角的集合.【正确答案】222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.【详细解析】因为42233πππ+=,所以43π的终边与23π-的终边相同,则终边在题图所示阴影区域内的角的集合为222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.8.(2020·上海高一课时练习)用弧度制写出终边在阴影部分的角的集合:(1)(2)【正确答案】(1)222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭;(2),6k k k Zπαπαπ⎧⎫+∈⎨⎬⎩⎭【详细解析】(1)边界对应射线所在终边的角分别为222,() 43k k k Zππππ++∈,所以终边在阴影部分的角的集合为222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭(2)边界对应射线所在终边的角分别为222,2,()667k k k k k Z πππππππ+++∈,, 所以终边在阴影部分的角的集合为722,22,66k k k Z k k k Z ππαπαπαππαπ⎧⎫⎧⎫≤+∈⋃+≤+∈⎨⎬⎨⎬⎩⎭⎩⎭=,6k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭【题组五 扇形】1.(2020·山东潍坊·高一期末)已知某扇形的半径为4cm ,圆心角为2rad ,则此扇形的面积为( ) A .232cm B .216cmC .28cmD .24cm【正确答案】B【详细解析】由题意,某扇形的半径为4cm ,圆心角为2rad , 根据扇形的面积公式,可得22211241622S r cm α==⨯⨯= 所以此扇形的面积为216cm .故选:B. 2.(2020·江西省铜鼓中学高一期末)一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1C D .2【正确答案】D【详细解析】圆心角为51506πα==,设扇形的半径为R ,2215152326S R R ππα=⋅⇒=⨯, 解得2R =.故选:D3.(2020·武威第八中学高一期末)已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( ) A .24cm B .26cmC .28cmD .216cm【正确答案】A【详细解析】设此扇形半径为r ,扇形弧长为l=2r 则2r +2r =8,r=2,∴扇形的面积为12l r=224r cm =故选A 4.(2020·辉县市第二高级中学高一期中)已知扇形的圆心角为2,周长为8,则扇形的面积为( ) A .2 B .4C .8D .16【正确答案】B【详细解析】设该扇形的半径为r ,弧长为l ,则2lr =,且28l r +=,所以有42l r =⎧⎨=⎩,所以,该扇形的面积为142S lr ==.故选:B. 5.(2020·河南宛城·南阳中学高一月考)中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3πB .1)πC .1)πD .2)π【正确答案】A【详细解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 故选:A6.(2020·永昌县第四中学高一期末) 如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.【正确答案】12π-【详细解析】∵120°=π=π,∴l =6×π=4π,∴AB 的长为4π.∵S 扇形OAB =lr =×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =×AB ×OD =×2×6cos 30°×3=9.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9.∴弓形ACB 的面积为12π-9.【题组六 生活中实际】 1.(2020·全国高一课时练习)将时钟拨快20分钟,则分针转过的度数是________.【正确答案】-120°【详细解析】将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒故正确答案为:120-︒ 2.(2020·全国高一课时练习)已知α=30°,将其终边按逆时针方向旋转三周后的角度数为________.【正确答案】1110°【详细解析】一个角为30,其终边按逆时针方向旋转三周后的角的度数为:3603301110︒⨯+︒=︒. 故正确答案为:1110︒.3.(2020·全国高一课时练习)写出下列说法所表示的角.(1)顺时针拧螺丝2圈;(2)将时钟拨慢2小时30分,分针转过的角.【正确答案】(1)-720°;(2)900°.【详细解析】(1)顺时针拧螺丝2圈,即旋转了2360=720⨯︒︒,顺时针旋转得到的角为负角,故转过的角是720-︒; (2)拨慢时钟需将分针按逆时针方向旋转,时针拨慢2小时30分,是2.5周角,角度数是2.5360900⨯︒=︒;又分针是逆时针旋转,转过的角是900︒.4.(2020·浙江高一课时练习)在一昼夜中,钟表的时针和分针有几次重合?几次形成直角?时针、分针和秒针何时重合?请写出理由.【正确答案】正确答案见详细解析.【详细解析】时针每分钟走0.5°,分针每分钟走6°,秒针每分钟走360°,(1)一昼夜有24601440⨯=(分钟), 时针和分针每重合一次间隔的时间为36060.5-分钟, 所以一昼夜时针和分针重合14402236060.5=-(次).(2)假设时针不动,分针转一圈与时针两次形成直角,但一昼夜时针转了两圈,则少了4次垂直,于是时针和分针一共有242444⨯-=(次)形成直角.(3)秒针与分针每重合一次间隔的时间为3603606-分钟,由3603606-和36060.5-的“最小公倍数”为720,而720分钟=12小时,所以一昼夜只有0:00与12:00这两个时刻“三针”重合.。

高中数学必修第一册第五章课后答案

高中数学必修第一册第五章课后答案

第五章三角函数5.1任意角和弧度制5.1.1任意角P171练习1.锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.【答案】锐角是第一象角,第一象限角不一定是锐角;直角为终边在坐标轴上的角(不属于任何象限),但终边在坐标轴上的角不一定为直角;钝角为第二象角,但第二象角不一定为钝角.2.今天是星期三,那么7()k k Z ∈天后的那一天是星期几?7()k k Z ∈天前的那一天是星期几?100天后的那一天是星期几?【答案】每周7天,呈周期性变化,今天是星期三,则7()k k ∈Z 天后的那一天是星期三;7()k k ∈Z 天前的那一天仍然是星期三;1007142=⨯+,所以100天后的那一天是星期五.3.已知角的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,作出下列各角,并指出它们是第几象限角:(1)420︒;(2)75︒-;(3)855︒;(4)510︒-.【答案】(1)如图①,是第一象限角;(2)如图②,是第四象限角;(3)如圈③,是第二象限角;(4)如图④,是第三象限角.①②③④4.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)5418-︒';(2)3958︒';(3)119030-︒'.【答案】【小问1】因为541836030542'-'+= ,所以在0360 范围内,与角5418-︒'终边相同的角为30542' ,是第四象限角.【小问2】因为3958360358''-= ,所以在0360 范围内,与角3958' 终边相同的角为358' ,是第一象限角.【小问3】因为119030436024930'-'=-⨯+ ,所以在0360 范围内,与角119030-' 终边相同的角为24930' ,是第三象限角.5.写出与下列各角终边相同的角的集合,并找出集合中适合不等式720360β︒︒-<≤的元素β:(1)130318︒';(2)225︒-.【答案】(1){}|130318360,k k Z ββ︒︒'=+⋅∈,分别令5,4,3k =---,得49642β︒'=-,13642︒-',22318︒';(2){}|225360,k k Z ββ︒︒=-+⋅∈,分别令1,0,1k =-,得585,225,135β︒︒︒=--.5.1.2弧度制P175练习1.把下列角度化成弧度:(1)2230︒';(2)210-︒;(3)1200︒.【答案】【小问1】2.把下列弧度化成角度:(1)12π;(2)43π-;(3)310π.3.用弧度表示:(1)终边在x 轴上的角的集合;(2)终边在y 轴上的角的集合.【答案】(1){|2,}{|2,}{|,}k k k k n n ααπααππααπ=∈⋃=+∈==∈Z Z Z ;4.利用计算工具比较下列各对值的大小:(1)cos0.75︒和cos0.75;(2)tan1.2︒和tan1.2.【答案】(1)由计算器可算出cos 0.75 1.000︒≈,cos0.750.712≈所以cos0.75cos0.75︒>(2)由计算器可算出tan1.20.021︒≈,tan1.2 2.572≈所以tan1.2tan1.2︒<5.分别用角度制、弧度制下的弧长公式,计算半径为1m 的圆中,60︒的圆心角所对的弧的长度(可用计算工具).6.已知半径为120mm 的圆上,有一条弧的长是144mm ,求该弧所对的圆心角(正角)的弧度数.习题5.1P175复习巩固1.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角:(1)265-︒;(2)1000-︒;(3)84310-︒';(4)3900︒.【答案】(1)95o ,第二象限角(2)80 ,第一象限角(3)23650' ,第三象限角(4)300o ,第四象限角2.写出与下列各角终边相同的角的集合,并找出集合中适合不等式360360β-︒<≤︒的元素β:(1)60︒;(2)75-︒;(3)82430'-︒;(4)475︒;(5)90︒;(6)270︒;(7)180︒;(8)0︒.【答案】(1){}|60360,S k k Z αα==︒+︒∈ ;300,60-︒︒.(2){}|75360,S k k Z αα==-︒+︒∈ ;75,285-︒︒.(3){}82430|360,S k k Z αα'-=+︒︒=∈ ;0,210543035'︒︒'-.(4){}5|360,47S k k Z αα==+︒︒∈ ;245,115-︒︒.(5){}0|360,9S k k Z αα==+︒︒∈ ;270,90-︒︒.(6){}|270360,S k k Z αα==︒+︒∈ ;90,270-︒︒.(7){}0|360,18S k k Z αα==+︒︒∈ ;180,180︒-︒.(8){}|0360,S k k Z αα==︒+︒∈ ;0,360︒︒.3.分别用角度和弧度写出第一、二、三、四象限角的集合.【答案】第一象限角:{}|36036090,k k k ββ︒︒︒⋅<<⋅+∈Z ,第二象限角:{}|36090360180,k k k ββ︒︒︒︒⋅+<<⋅+∈Z ,第三象限角:{}|360180360270,k k k ββ︒︒︒︒⋅+<<⋅+∈Z ,4.一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?【答案】解:不等于1弧度,这是因为等于半径长的弧所对的圆心角为1弧度的角,而等于半径长的弦所对的弧比半径长.5.把下列角度化成弧度:(1)36︒;(2)150-︒;(3)1095︒;(4)1440︒.6.把下列弧度化成角度(第(3)(4)题精确到0.01︒):(1)76π-(2)103π-(3)1.4;(4)23.【答案】(1)210-(2)600-o (3)80.25 (4)38.22 P176综合运用7选择题(1).已知α是锐角,那么2α是().A.第一象限角B.第二象限角C.小于180°的正角D.第一或第二象限角其中D 选项不包括90 ,故错误.故选:C(2)若α为第一象限角,则2α是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】因为α为第一象限角,8.要在半径100OA cm =的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,那么圆心角AOB ∠是多少度(可用计算工具,精确到1°)?【答案】解:设AOB α∠=.方法1:由l R α=,得112100α=,解得112 1.12()64100rad α︒==≈,方法2:由180R l πα︒=,得100112180πα︒⨯=,解得64α︒≈.9.已知弧长50cm 的弧所对圆心角为200︒,求这条弧所在的圆的半径(可用计算工具,精确到1cm ).P176拓广探索10.每人准备一把扇形的扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算工具算出它的面积1S .(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为2S ,求1S 与2S 的比值;(2)要使1S 与2S 的比值为0.618,则扇子的圆心角应为几度(精确到1︒)?【答案】解:(1)设半径为12,,R S S 所对圆心角分别为,αβ,且2211222122,,12R S S S R S R αααβππββ+=+=∴==.(2)设扇子的圆心角为θ.由2122120.6181(2)2R S S R θπθ==-,得0.618(2)θπθ=-,则2.40138rad θ︒≈≈.11.(1)时间经过4h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知点()在第三象限,则角在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由于点是第三象限角,,在第二象限.【考点】三角函数在各个象限的符号.2.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号3.若角的终边经过点,则的值为.【答案】【解析】由三角函数定义知,==.考点:三角函数定义4.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程5.已知是第二象限的角,,则.【答案】【解析】设的终边有上一点P(x,y)(x<0,y>0),则,不妨令,由三角函数的定义得:.【考点】三角函数的定义.6.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【解析】角的终边过,,.【考点】任意角三角函数的定义.7.若角的终边为第二象限的角平分线,则的集合为______________.【答案】【解析】在上第一个出现终边在第二象限角平分线的角为,之后每隔个单位出现一个终边落在第二象限角平分线上角,因此所求集合为.【考点】终边相同的角的集合.8.有下列说法:①函数y=-cos 2x的最小正周期是π;②终边在y轴上的角的集合是;③把函数的图像向右平移个单位长度得到函数y=3sin 2x的图像;④函数在[0,π]上是减函数.其中,正确的说法是________.【答案】①③【解析】①:的最小正周期为,正确;②:在上第一个出现终边在y轴的角为,之后每隔个单位出现一个终边落在y轴上的角,因此所求集合为,∴②错误;③:函数的图像向右平移个单位长度以后的函数解析式为:,∴③正确;④:当时,,∴函数在[0,π]上是增函数,∴④错误.【考点】1、三角函数的性质;2、终边相同的角的集合.9.=()A.B.C.D.【答案】A【解析】.考点:诱导公式,特殊角的三角函数值.10.与60°角终边相同的角的集合可以表示为( )A.{|=k·360°+,k Z}B.{|=2k+60°,k Z}C.{|=k·180°+60°,k Z}D.{|=2k+,k Z}【解析】A,B把弧度制与角度制混在了一起,不规范,而C,应为=k·360°+60°,D正确.【考点】终边相同的角的集合.11.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.12.已知,,,则的大小关系是()A.B.C.D.【答案】D【解析】,,,故【考点】特殊角的三角函数13.圆的半径为r,该圆上长为r的弧所对的圆心角是()A.rad B.rad C.πD.π【答案】B【解析】由弧长公式可得:,解得.【考点】弧度制.14.若,且,则角的终边所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,又因为,所以,所以角的终边所在象限是第四象限,故选D.【考点】1、三角函数值的符号;2、二倍角的正弦.15.已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.【答案】【解析】因为,横坐标为负数,所以余弦值是负数,根据同角基本关系式:,所以.试题解析:∵sinθ= -,∴角θ终边与单位圆的交点(cosθ,sinθ)=(,-)又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= -.【考点】1.三角函数的定义;2.同角基本关系式.16.与角终边相同的最小正角是.(用弧度制表示)【答案】【解析】因为与角终边相同的角为,所以与角终边相同的角是,其中最小正角是,化为弧度为.【考点】弧度制,终边相同的角.17.的值等于A.B.C.D.【答案】A【解析】【考点】三角函数中正弦两角差公式及特殊角的三角函数值。

新高考高中数学必修一-任意角和弧度制同步测试题(含解析)

新高考高中数学必修一-任意角和弧度制同步测试题(含解析)

人教A 版(2019)必修第一册 5.1 任意角和弧度制一、单选题1.已知第二象限角α的终边上一点()sin ,tan P ββ,则角β的终边在 A .第一象限 B .第二象限C .第三象限D .第四象限2.“角A 小于2π”是“角A 是第一象限角”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件3.下列选项中,满足αβ<的是( ) A .1α=,2β=︒ B .1α=,60β=-︒ C .225α=︒,4β= D .180α=︒,πβ=4.下列各组的两个角中,终边不相同的一组角是( ) A .-56°与664° B .800°与-1360° C .150°与630° D .-150°与930°5.角α和β满足关系:2()k k αππβ=+-∈Z ,则角α与β的终边( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .以上答案都不对6.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个7.半径为1cm ,圆心角为120︒的扇形的弧长为( ) A .1cm 3B .2cm 3C .cm 3πD .2cm 3π8.已知()1,4k k k πθααπ⎧⎫∈=+-⋅∈⎨⎬⎩⎭Z ,则角θ的终边所在的象限是( )A .第一象限B .第二象限C .第一或第二象限D .第三或第四象限9.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为()0ααπ<≤.若一个半径为1的扇形的圆心角为α,则该扇形的面积为( )A .2πB .4π C .8π D .16π10.已知扇形的圆心角为120°,半径为3,则扇形面积为( ) A .2π B .3πC .154π D .52π11.下列说法:①终边相同的角必相等;①锐角必是第一象限角;①小于90︒的角是锐角;①第二象限的角必大于第一象限的角;①若角α的终边经过点(0,3)M -,则角α是第三或第四象限角,其中错误的是( ) A .①①①B .①①①C .①①①①D .①①①①{}|4590,B k k Z ββ==︒+⋅︒∈,则( )A .AB =∅ B .B①AC .A①BD .A B =二、填空题13.已知本次数学考试总时间为2小时,你在奋笔疾书沙沙答题,分针滴答滴答忙着转圈.现在经过了1小时,则此时分针转过的角的弧度数是 _______.14.已知角2020α=-︒,则与α终边相同的最小正角是______.15.大于360-︒且终边与角75︒重合的负角是________.16.已知扇形的周长为16cm ,面积为162cm ,则扇形的圆心角α的弧度数为___________.三、解答题17.已知扇形的周长为20cm ,求扇形面积的最大值,并求此时圆心角的弧度数.18.一扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形面积最大,并求此扇形的最大面积.19.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图7-1-7所示).20.把下列各角化为2(02,)k k πααπ+<∈Z 的形式且指出它是第几象限角,并写出与它终边相同的角的集合. (1)463π-; (2)1485-︒;21.分别写出当角α在第四象限时,角2α的所在象限.参考答案:1.C根据第二象限横纵坐标的正负值判断得sin 0,tan 0,ββ<⎧⎨>⎩再判断角β的象限即可.【详解】因为点()sin ,tan P ββ在第二象限,所以有sin 0,tan 0,ββ<⎧⎨>⎩所以β是第三象限角.故选:C本题考查各象限三角函数值的正负.属于基础题. 2.D利用特殊值法结合充分、必要条件的定义判断可得出结论. 【详解】若角A 小于2π,取4A π=-,此时,角A 不是第一象限角,即“角A 小于2π”⇒“角A 是第一象限角”;若角A 是第一象限角,取24A ππ=+,此时,2A π>,即“角A 小于2π”⇐/“角A 是第一象限角”. 因此,“角A 小于2π”是“角A 是第一象限角”的既不充分也不必要条件.故选:D. 3.C先判断出B ,D 不满足αβ<;然后利用角度制与弧度制的互化,判断出C 正确. 【详解】解:对于选项B ,有αβ>, 对于D ,有αβ=; 对于A ,因为1801()2π=︒>︒,所以满足αβ>, 对于C ,因为18044()225π=⨯︒>︒,满足αβ<.故选:C . 4.C利用终边相同的两个角符合的规律逐一判断各选项即可得解. 【详解】因终边相同的两个角总是相差360的整数倍,对于A ,664(56)7202360--==⋅,即角-56°与664°终边相同,A 不正确; 对于B ,800(1360)21606360--==⋅,即角800°与-1360°终边相同,B 不正确; 对于C ,6301504801360120-==⋅+,即角150°与630°终边不相同,C 正确; 对于D ,930(150)10803360--==⋅,即角-150°与930°终边相同,D 不正确, 所以角150°与630°终边不相同. 故选:C 5.B根据终边相同角的定义判断可得; 【详解】解:因为角α和β满足关系:2()k k αππβ=+-∈Z , 因为β与πβ-的终边关于y 轴对称, 而2()k k αππβ=+-∈Z 与πβ-的终边相同, 所以角α与β的终边关于y 轴对称 故选:B 6.B若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 【详解】若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为1326ππ⨯⨯=,圆的周长为122ππ⨯=,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为2166ππ⨯=,正三角形的面积1112S =⨯⨯,则一个弓形面积6S π=则整个区域的面积为3(62ππ= 而圆的面积为2124ππ⎛⎫= ⎪⎝⎭,不相等,故错误;综上,正确的有2个, 故选:B.本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键. 7.D利用扇形弧长公式直接计算即可. 【详解】圆心角120︒化为弧度为23π, 则弧长为221cm 33ππ⨯=. 故选:D.8.C利用终边相同的角的概念,对当k 是奇数和偶数进行分类讨论,即可得解. 【详解】由已知,()1,4k k k πθααπ⎧⎫∈=+-⋅∈⎨⎬⎩⎭Z ,当()2k m m =∈Z 时,24m πθπ=+,即角θ的终边在第一象限;当()21k m m =+∈Z 时,324m πθπ=+,即角θ的终边在第二象限. 所以角θ的终边在第一或第二象限. 故选:C 9.C求出α的值,利用扇形的面积公式可求得扇形的面积. 【详解】由图可知,1284παπ=⨯=,所以该扇形的面积212481S ππ=⨯⨯=.故选:C. 10.B把圆心角化为弧度,然后由面积公式计算. 【详解】 21203π︒=.2123323S ππ=⨯⨯=. 故选:B . 11.C①取特殊角:0︒与360︒进行判断;①根据锐角的范围直接判断; ①取负角进行否定; ①取特殊角进行否定; ①取特殊角进行否定. 【详解】①终边相同的角必相等错误,如0︒与360︒终边相同,但不相等; ①锐角的范围为(0,90)︒︒,必是第一象限角,正确; ①小于90︒的角是锐角错误,如负角;①第二象限的角必大于第一象限的角错误,如120︒是第二象限角,390︒是第一象限角; ①若角α的终边经过点(0,3)M -,则角α是终边在y 轴负半轴上的角,故①错误. 其中错误的是①①①①. 故选C .(1)要证明一个命题为真命题,需要严格的证明;要判断一个命题为假命题,举一个反例就可以了.(2)角的概念的辨析题中,通常可以取特殊角来否定结论. 12.D考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系. 【详解】. 45180,k k Z α=︒+⋅︒∈ 表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈ 表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈ 表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥ , 它们构成直线y x =、直线y x =-,故A B =. 故选:D.本题考查终边相同的角,注意180k α⋅︒+的终边与α 的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α 的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题. 13.2π-先明确1小时是60分钟,得到分针转过的角度,再算出弧度数. 【详解】因为1小时是60分钟,分针正好转过一周360-, 所以转过的角的弧度数是2π-. 故答案为:2π-本题主要考查弧度制,还考查了理解辨析的能力,属于基础题. 14.140°先求出与α终边相同角的集合,再通过解不等式进行求解即可. 【详解】与2020α=-︒终边相同的角的集合为{}2020360,k k Z θθ=-︒+⋅︒∈, 令20203600k -︒+⋅︒>︒,解得10118k >,故当6k =时,140θ=︒满足条件. 故答案为:140° 15.285-︒根据终边相同的角的概念进行判断. 【详解】大于360-︒且终边与角75︒重合的负角是285-︒. 故答案为:285-︒本题考查终边相同的角,属于基础题. 16.2设扇形圆心角为α,半径为r ,列方程组求出α的值.【详解】解:由扇形的周长为16cm ,面积为216cm ,可设扇形圆心角为α,且(0,2)απ∈,半径为r , 则22161162r r r αα+=⎧⎪⎨⋅=⎪⎩, 解得24r α=⎧⎨=⎩所以2α=.故答案为:2.17.面积最大值为225cm ,此时圆心角弧度数为2设扇形的半径为R ,弧长为l ,依题意有220l R +=,利用扇形面积公式12S lR =扇形,利用基本不等式即可求得答案.【详解】解:设扇形的半径为R ,弧长为l ,则220l R +=.()()()210112021025222R R S lR R R R R -+⎡⎤==-⋅=-⋅=⎢⎥⎣⎦扇形(当且仅当5R =时取等号). S 扇形最大值为25,此时5R =,10l =.故扇形圆心角的弧度数2l Rα==. 所以扇形面积最大值为225cm ,此时圆心角弧度数为2.18.2α=弧度,最大面积225cm设扇形的半径为r ,得出弧长为202,010r r -<<,确定扇形面积函数式,利用二次函数的性质,求出面积最大时半径和弧长的值,即可得出结论【详解】设扇形的半径为r ,其周长为20,则扇形弧长为202r -,且2020,010r r ->∴<<, 扇形面积221(202)10(5)252S r r r r r =-=-+=--+, 当=5r ,1025α==时,S 取最大值为25, 所以圆心角为2弧度时,扇形面积最大为25.本题考查扇形面积、弧长公式的应用、以及二次函数的最值,合理设元是解题的关键,考查计算求解能力,属于基础题.19.(1)522,612k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; (2)3322,44k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; (3),62k k k ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭Z .将角度化成弧度,结合任意角概念表示出来即可.【详解】对图(1),可看作5,612ππ⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角概念,可表示为522,612k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; 对图(2),可看作33,44ππ⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角概念,可表示为3322,44k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; 对图(3),可看作由,62ππ⎡⎤⎢⎥⎣⎦的范围角,经过旋转半圈整数倍形成的角,故可表示为,62k k k ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭Z .20.(1)第二象限角,终边相同的角的集合为22,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣;(2)第四象限角.终边相同的角的集合为72,4k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣;(3)第四象限角,终边相同的角的集合为{2(820),}k k ββππ=+-∈Z ∣.利用与角α终边相同的角的集合的结论,即可得出结果.【详解】(1)4628233πππ-=-⨯+,它是第二象限角,终边相同的角的集合为22,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣. (2)714855*********ππ-︒=-⨯︒+︒=-⨯+,它是第四象限角.终边相同的角的集合为72,4k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣. (3)2042(820)ππ-=-⨯+-,而382022πππ<-<. 所以20-是第四象限角,终边相同的角的集合为{2(820),}k k ββππ=+-∈Z ∣. 21.答案见解析由终边相同的角和象限角的定义进行判断即可【详解】(1)当角α在第一象限时,即22,2k k k Z ππαπ<<+∈,则,24k k k Z απππ<<+∈, 当2k n =(n Z ∈)时,22,24n n n Z απππ<<+∈,则2α为第一象限的角, 当21k n =+(n Z ∈)时,(21)(21),24n n n Z απππ+<<++∈,即522,24n n n Z αππππ+<<+∈,则角2α为第三象限的角, 综上,角2α在第一或第三象限; (2)当角α在第二象限时,即22,2k k k απ+π<<π+π∈Z ,则,422k k k αππ+π<<+π∈Z , 当2k n =(n Z ∈)时,22,422n n n Z παπππ+<<+∈,则 2α为第一象限的角,当21k n =+(n Z ∈)时,(21)(21),422n n n Z παπππ++<<++∈,即5322,422n n n Z παπππ+<<+∈,则 2α为第三象限的角, 综上,角2α在第一或第三象限; (3)当角α在第三象限时,即322,2k k k Z πππαπ+<<+∈,则3,224k k k Z παπππ+<<+∈, 当2k n =(n Z ∈)时,322,224n n n Z παπππ+<<+∈,则2α为第二象限的角, 当21k n =+(n Z ∈)时,3(21)(21),224n n n Z παπππ++<<++∈,即3722,224n n n Z παπππ+<<+∈,则2α为第四象限的角, 综上,角2α在第二或第四象限; (4)当角α在第四象限时,即3222,2k k k Z ππαππ+<<+∈,则3,42k k k Z παπππ+<<+∈, 当2k n =(n Z ∈)时,322,42n n n Z παπππ+<<+∈,则2α为第二象限的角, 当21k n =+(n Z ∈)时,3(21)(21),42n n n Z παπππ++<<++∈,即 7222,42n n n Z παπππ+<<+∈,则2α在第二或第四象限, 综上,角2α在第二或第四象限。

任意角和弧度制测试题(含解析)

任意角和弧度制测试题(含解析)

任意角和弧度制测试题一、单选题1.在单位圆中,200∘的圆心角所对的弧长为( )A. 7π10B. 10π9C. 9πD. 10π二、多选题2.给出下列说法正确的有()A. 终边相同的角同一三角函数值相等;B. 不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;C. 若sinα=sin⁡β,则α与β的终边相同;D. 若cosθ<0,则θ是第二或第三象限的角3.下列说法错误..的是.( )A. 若角α=2rad,则角α为第二象限角B. 将表的分针拨快5分钟,则分针转过的角度是30°C. 若角α为第一象限角,则角α2也是第一象限角D. 若一扇形的圆心角为30°,半径为3cm,则扇形面积为3π2cm24.下列结论正确的是( )A. 是第三象限角B. 若圆心角为的扇形的弧长为,则该扇形面积为C. 若角的终边过点,则D. 若角为锐角,则角为钝角三、填空题5.(1)第三象限角的集合表示为(以弧度为单位).(2)弧度数为3的角的终边落在第象限.(3)−2π3弧度化为角度应为.(4)与880∘终边相同的最小正角是.(5)若角α的终边经过点A(−2,3),则tanα值为.(6)已知扇形的圆心角α=2π3,半径r=3,则扇形的弧长l为.6.下列说法中,正确的是.(填序号)①第一象限的角必为锐角;②锐角是第一象限的角;③终边相同的角必相等;④小于900的角一定为锐角;⑤角α与−α的终边关于x轴对称;⑥第二象限的角必大于第一象限的角.7.集合{α|k⋅180∘+45∘⩽α⩽k⋅180∘+90∘,k∈Z}中,角所表示的取值范围(阴影部分)正确的是(填序号).8.−600°是第象限角,与−600°终边相同的最小正角为弧度.9.线段OA的长度为3,将OA绕点O顺时针旋转120∘,得到扇形的圆心角的弧度数为,扇形的面积为.四、解答题10.已知角β的终边在直线y=−x上.(1)写出角β的集合S;(2)写出S中适合不等式−360°<β<360°的元素.答案和解析1.⁡B 根据弧长公式,l =nπR 180,代入计算即可.2.⁡AB 解:对于A ,由任意角的三角函数的定义知,终边相同的角的三角函数值相等,故A 正确;对于B ,不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,故B 正确; 对于C ,若sinα=sinβ,则α与β的终边相同或终边关于y 轴对称,故C 错误;对于D ,若cos θ<0,则θ是第二或第三象限角或θ的终边落在x 轴的非正半轴上,故D 错误. 3.⁡BCD 解:对于选项A .若角α=2rad ,2∈(π2,π),则角α为第二象限角,正确;对于选项B .将表的分针拨快5分钟,则分针转过的角度是−30°,故错误;对于选项C .若角α为第一象限角,2kπ<α<π2+2kπ,k ∈Z ,则kπ<α2<π4+kπ,k ∈Z , 当k =2n ,n ∈Z 时,2nπ<α2<π4+2nπ,k ∈Z ,即角α2是第一象限角;当k =2n +1,n ∈Z 时,2nπ+π<α2<5π4+2nπ,k ∈Z ,即角α2是第三象限角; 则角α2是第一或第三象限角,故错误;对于选项D .扇形面积为30°π·32360°=3π4cm 2,故错误. 4.⁡BC 解:A 、−7π6=−2π+5π6,所以−7π6与5π6终边相同,是第二象限角,所以不正确; B 、若圆心角为π3的扇形半径为r ,由弧长为π3⋅r =π,则半径r =3,所以该扇形面积为12×π×3=3π2,正确;C 、若角α的终边过点P(−3,4),则r =√(−3)2+42=5,cos α=−35,正确; D 、若角α为锐角,设α=30∘,则角2α=60∘为锐角,所以不正确. 5.解:(1)第三象限角的集合表示为{α|π+2kπ<α<3π2+2kπ,k ∈Z}. 故答案为{α|π+2kπ<α<3π2+2kπ,k ∈Z}. (2)∵π2<3<π,∴弧度数为3的角为第二象限角,故其终边落在第二象限,故答案为二.(3)−2π3=−23×180°=−120°,故答案为−120∘.(4)与880∘终边相同的角α=880°+360°×k (k ∈Z ),当k =−2时,α=160∘即为最小正角,故答案为160∘.(5)根据任意角三角函数的定义,可知tanα=y x =−32,故答案为−32. (6)l =|α|·r =2π,故答案为2π. 6.解:命题①,390°角的终边在第一象限内,但不是锐角,故说法错误;命题②,锐角是第一象限角,故说法正确;命题③,390°角与30°角的终边相同,但两个角不相等,故说法错误;命题④,−30°小于90°,但不是锐角,故说法错误;命题⑤,角α与角−α的终边关于x 轴对称,故说法正确;命题⑥,120°角是第二象限角,390°角是第一象限角,120°小于390°,故说法错误. 故答案为②⑤.7.解:集合{α|k ⋅180∘+45∘⩽α⩽k ⋅180∘+90∘,k ∈Z}中,当k 为偶数时,集合为 {α|n ⋅360∘+45∘⩽α⩽n ⋅360∘+90∘,n ∈Z},当k 为奇数时,集合为 {α|n ⋅360∘+225∘⩽α⩽n ⋅360∘+270∘,n ∈Z},符合题意的只有③8.解:由−600°=(−2)×360°+120°,∴−600°在第二象限,∴与−600°终边相同的最小正角为120°,而120°=2π3,故答案为二;2π3. 9.解:由题意得扇形的圆心角α=−120∘ =−2π3,故扇形的面积S =12|α|⋅|OA|2= 12×2π3×9=3π.10.解:(1)直线y =−x 过原点,它是第二、四象限的角平分线所在的直线,故在0°~360°范围内,终边在直线y =−x 上的角有两个:135°,315°.因此,终边在直线y =−x 上的角的集合S ={β|β=135°+k ·360°,k ∈Z}∪{β|β=315°+k ·360°,k ∈Z}={β|β=135°+2k ·180°,k ∈Z}∪{β|β=135°+(2k +1)·180°,k ∈Z} ={β|β=135°+n ·180°,n ∈Z}.(2)由于−360°<β<360°,即−360°<135°+n ·180°<360°,n ∈Z .解得−114<n <54,n ∈Z.所以n =−2,−1,0,1.所以集合S 中适合不等式−360°<β<360°的元素为:135°−2×180°=−225°;135°−1×180°=−45°;135°+0×180°=135°; 135°+1×180°=315°;⁡(2)在集合S 内,分别取k =−2,−1,0,1,可得适合不等式−360°<β<360°的元素.。

高中数学新教材必修第一册第五章 三角函数 5.1 任意角和弧度制(南开题库含详解)

高中数学新教材必修第一册第五章  三角函数 5.1  任意角和弧度制(南开题库含详解)

第五章三角函数 5.1 任意角和弧度制一、选择题(共40小题;共200分)1. 下列四个选项中,与角终边相同的角是A. B. C. D.2. 已知一个扇形的圆心角的弧度数为,则该扇形的弧长与半径的比等于A. B. C. D.3. 的弧度数是A. B. C. D.4. 与的终边相同的角是A. B. C. D.5. 把表示成的形式,使最小的的值是A. B. C. D.6. 与角的终边相同的角是A. B. C. D.7. 将化为弧度为A. B. C. D.8. 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. 一个扇形的圆心角为,半径为,则此扇形的面积为A. B. C. D.10. 已知为第二象限角,则所在的象限是A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限11. 在单位圆中,面积为的扇形所对的弧长为A. B. C. D.12. 与角终边相同的角是A. B. C. D.13. 下列说法正确的是A. 第二象限的角比第一象限的角大B. 若,则C. 三角形的内角是第一象限角或第二象限角14. 将分针拨慢分钟,则分钟转过的弧度数是A. B. C. D.15. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.16. 已知集合,,则等于A.B.C.D. 或17. ,则的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限18. 圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为A. B. C. D.19. 时钟经过一小时,时针转过了A. B. C. D.20. 集合中的角的终边所在的范围(阴影部分)是A. B.C. D.21. 下列命题中:①小于的角是锐角,②第二象限角是钝角,③终边相同的角相等,④若与有相同的终边,则必有,正确的个数是A. B. C. D.22. 时钟经过一小时,时针转过了A. B. C. D.23. 设小于的角,锐角,第一象限的角,小于但不小于的角,那么有A. B.C. D.A. 轴正半轴上B. 轴正半轴上C. 轴或轴上D. 轴正半轴或轴正半轴上25. 已知扇形的半径为,周长为,则扇形的圆心角等于A. B. C. D.26. 设集合,,那么A. B. C. D.27. 若一扇形的圆心角为,半径为,则扇形的面积为A. B. C. D.28. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.29. 下列结论中错误的是A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点,则D. 若扇形的周长为,半径为,则其中心角的大小为弧度30. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限的角.其中正确命题的个数是A. B. C. D.31. 设集合,集合,则.A. B. C. D.32. 若是第二象限角,那么和都不是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角33. 若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为A. B. C. D.34. 设集合,,那么A. B. C. D.35. 已知扇形的周长是,面积是,则扇形的圆心角的弧度数是A. 或B.C.D.36. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.37. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.38. 设,下列终边相同的角是A. 与B. 与C. 与D. 与39. 中心角为的扇形,它的弧长为,则三角形的内切圆半径为A. B. C. D.40. 一圆内切于圆心角为,半径为的扇形,则该圆的面积与扇形面积之比为A. B. C. D.二、填空题(共40小题;共200分)41. 若是第三象限的角,则是第象限角.42. 若角,则角的终边在第象限.43. 如图,射线绕顶点顺时针旋转到,再逆时针旋转到达,则的度数为.44. 将化为弧度为.45. 若是第四象限,则是第象限角.46. 已知扇形的半径为,圆心角为弧度,则该扇形的面积为.47. 已知角的终边经过点,且为第三象限角,则的取值范围是.48. 若扇形的中心角为,则扇形的内切圆的面积与扇形面积之比为.49. 终边与角的终边互相垂直的角的集合是.50. 某蒸汽机上的飞轮直径为,每分钟按顺时针方向旋转转,则飞轮每秒钟转过的弧度数是;轮周上的一点每秒钟经过的弧长为.51. 与角终边相同的角的集合是,它们中最小的正角是,最大的负角是,它们是第象限角.52. 的角化为角度制的结果为,的角化为弧度制的结果为.53. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为.54. 设,且角的终边与角的终边相同,则.55. 如图所示,用集合表示终边在阴影部分的角的集合为.56. 已知,的终边所在的象限是.57. 有下列四个结论:①角和的终边重合,则,;②角和的终边关于原点对称,则,;③角和的终边关于轴对称,则,;④角和的终边关于轴对称,则,.其中正确的有.(填序号)58. 如果把化为(,)的形式,那么,.59. 在集合中,属于区间的角的集合是.60. 若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.61. 把写成的形式为.62. 已知圆心角为的扇形的弧长为,则它的内切圆半径是.63. 如图,点,,是圆上的点,且,,则劣弧的长为.64. 如图,已知扇形的圆心角为,半径为,则扇形中所含弓形的面积是.65. 若将时钟拨慢,则时针转了;若将时钟拨快,则分针转了.66. 已知扇形的面积为,扇形圆心角的弧度数是,那么扇形的周长为.68. 巳知一扇形的圆心角,那么此扇形的面积与其内切圆的面积之比为.69. 下列说法:①终边相同的角一定相等;②第二象限角大于第一象限角;③的角是第一象限角;④小于的角是钝角,直角或锐角.⑤弧度是的圆心角所对的弧;⑥弧度是长度等于半径的圆弧所对圆心角;⑦弧度等于.其中正确的序号为(把正确的序号都写出来).70. 给出下列命题:第二象限角大于第一象限角;三角形的内角是第一象限角或第二象限角;不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;若,则与的终边相同;若,则是第二或第三象限的角.其中不正确的命题是.71. 若扇形的圆心角为,弧长为,则扇形的半径为.72. ()终边在直线上的角的集合是.()若角的终边与角的终边相同,则在内终边与角的终边相同的角的个数为.73. 若角的终边与角的终边关于直线对称,且,则.74. 有下列四个结论:①角和角的终边重合,则,;②角和角的终边关于原点对称,则,;③角和角的终边关于轴对称,则,;④角和角的终边关于轴对称,则,.其中正确的有.(填序号)75. 扇形的周长为,若这个扇形的面积为,则圆心角的大小为 .76. 已知扇形的周长为,那么当扇形的半径为时,扇形的面积最大.77. 若某扇形的面积是,它的周长是,则该扇形圆心角的弧度数为.78. 如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为.79. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点和点重合)沿着圆周顺时针滚动,经过若干次滚动,点第一次回到点的位置,则点走过的路径的长度为.80. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点与点重合)沿圆周逆时针滚动,点第一次回到点的位置,则点走过的路径的长度为.三、解答题(共20小题;共260分)81. 将集合中的角(角度制)在数轴上表达出来,并表示出第一象限角,锐角,负角的区间.82. 今天是周日,那天后是周几?过多少天是周二?在数轴上表达:如图,周二是那些天?如何统一表达?83. 已知角的终边与的终边相同,求在内与终边相同的角.84. 已知,若的终边与角的终边重合,求角.85. 用弧度制表达.写出终边在下列阴影部分内的角的集合(含边界).(1)(2)86. 已知,求,并指出的终边位置.87. 集合,,试确定集合与之间的关系.88. (1)写出与下列各角终边相同的角的集合,并把中适合不等式的元素写出来:①;②(2)试写出终边在直线上的角的集合,并把中适合不等式的元素写出来.89. 试求出终边在如图所示阴影区域内的角的集合.90. 如图,三棱锥内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知,,,,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求经过圆锥的侧面到点的最短距离.91. 如图,动点,从点出发,沿着圆周做匀速运动.点按逆时针方向每秒转,点按顺时针方向每秒转,求点,第一次相遇时所用的时间及点,各自走过的弧长.92. 请回答下列问题:(1)设,,用弧度制表示它们,并指出它们各自所在的象限.(2)设,,用角度制表示它们,并在~的范围内找出终边相同的所有角.93. 己知弦长为,它所对的圆心角,求所夹的扇形面积以及所对的弓形的周长.94. 已知是第二象限的角,求,是第几象限的角.95. 设是第二象限角,试比较,,的大小.96. 如图,在扇形中,,弧长为,求此扇形内切圆的面积.97. 如图所示,点在半径为且圆心在原点的圆上,.点从点出发,依逆时针方向匀速地沿圆周旋转,已知在内转过的角度为,经过到达第三象限,经过后又回到出发点,求,并判断其是第几象限角.98. 已知扇形的圆心角是,半径是,弧长为.(1)若,,求扇形的面积;(2)若扇形的周长为,求扇形面积的最大值,并求此时扇形圆心角的弧度数.99. (1)已知扇形的周长为,面积为,求扇形的圆心角的弧度数.(2)已知扇形的周长为,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?100. 如图,一个扇形的周长为,问它的圆心角取何值时,扇形的面积最大?并求出最大值.答案第一部分1. C2. C3. A4. D5. C6. A7. B8. B9. A 【解析】因为扇形的圆心角为,半径为,所以扇形的面积.10. C11. B12. D13. D14. C15. A【解析】设扇形的弧长为,扇形所在圆的半径为,由题意得解得.扇形16. D17. C18. C19. B 【解析】钟表的指针按顺时针方向转动,角为负角.20. C【解析】当时,;当时,,应选C.21. B22. B 【解析】钟表的指针按顺时针方向转动,角为负角.23. D24. C25. B26. B.27. B 【解析】,所以扇形28. A 【解析】由题意得解得所以.29. C30. A【解析】由于第一象限角不小于第二象限角,故①错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于,但与的终边不相同,故④错;当,时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.集合31. D 【解析】集合,所以.32. B 【解析】因为是第二象限角,所以,,所以,,所以是第一或第三象限角,而是第三象限角,所以是第四象限角.33. D 【解析】如图,等边三角形是半径为的圆的内接三角形,则线段所对的圆心角,作,垂足为,在中,,,所以,,所以,由弧长公式得.34. B35. A36. B37. B38. A39. B40. B第二部分41. 四42. 二43.44.45. 三46.【解析】根据扇形的弧长公式可得,根据扇形的面积公式可得.47.48.49. 略50. ,51. ;,;,;,三52. ,53.【解析】设扇形的半径为,所以,,所以,扇形的弧长为,半径为,扇形的面积为.54.55.【解析】由题图知,终边落在射线上的角为,以为终边的角与角的终边相同,所以终边落在图中阴影部分的角的集合为.56. 一、二象限57. ①②③④58. 略,略59.60.【解析】设圆半径为,则圆内接正方形的对角线长为,所以正方形边长为,所以圆心角的弧度数是.61.62.【解析】如图,设内切圆半径为,则扇形的半径为,扇形弧长,解得.63.【解析】.64.【解析】因为扇形(),(),所以弓形扇形().65. ,【解析】将时针拨慢,时针按逆时针方向转动,转过的是正角,转过的度数为.将时针拨快,分针按顺时针方向转动,转过的是负角,转过的度数为.66.【解析】设扇形的半径为,则,所以,所以扇形的周长为.67.【解析】,,,解得,又,故,,,角为,,.68.【解析】设扇形的半径为,内切圆的半径为,则,即.又扇,内切圆,所以扇内切圆.69. ⑥【解析】(1)明确各种角的定义,逐一判断即可.对于①,终边相同的角不一定相等,终边相同的角有无数多个,它们相差的整数倍,故①是错误的;对于②,角是第一象限角,角是第二象限角,,所以②错误;对于③,的角是指的角,其中角不是任何象限的角,为轴线角,故③错误;对于④,小于的角指满足的角,其中也包括负角和零角,故④错误.(2)弧度角的定义:把长度等于半径长的弧所对的圆心角叫做弧度的角.由此可知,只有⑥正确.⑤⑦错误.70.【解析】由于第一象限角不小于第二象限角,故错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故错;正确;由于,但与的终边不相同,故错;当,时既不是第二象限角,又不是第三象限角,故错.综上可知只有正确.71.【解析】由,解得.72. ,【解析】()在内终边在直线上的角为,所以终边在直线上的角的集合为.()因为,所以,依题意,,所以,所以=,即在内与角的终边相同的角为,,共三个.73.74. ①②③④75. 或76.【解析】设扇形的圆心角为,半径为,扇形的弧长.因为,,所以扇形当时,扇形的面积最大.77.【解析】设扇形的半径为,弧长为,由题意知解得所以扇形的圆心角的弧度数为.78.【解析】设,,由题意知劣弧长为,由于圆的半径为,所以.设,则,,所以的坐标为.79.【解析】由题意知,圆的半径,正方形的边长.由图可知,以正方形的边为弦时所对的圆心角为.正方形在圆上滚动时点的顺序依次为如图所示.当点首次回到点的位置时,正方形滚动了圈共次.设第次滚动,点的路程为,则;;;,因此,点所走过的路径的长度为.80. .【解析】每次转动一个边长时,圆心角转过,正方形有边,所以需要转动次,回到起点.在这次中,半径为的次,半径为的次,半径为的次,点走过的路径的长度= + = .第三部分81. 略.82. 略.83. 略84. 略85. (1)略.(2)略.86. 略87. 因为集合表示终边在四个象限的角平分线上角的集合,集合表示终边在坐标轴上(为偶数时)和四个象限的角平分线上(为奇数时)的角的集合,所以.88. (1)①,其中适合不等式的元素为:,,;②,其中适合不等式的元素为:,,.(2)终边在直线上的角的集合其中适合不等式的元素为:,.89. 因为,所以终边在题图所示阴影区域内的角的集合为.90. (1)因为,,,所以为底面圆的直径侧.圆锥的侧面展开图是一个扇形,设此扇形的中心角为,弧长为,则,所以,所以.(2)沿着圆锥的侧棱展开,在展开图中,,,.91. ,得秒,走过的弧长为,走过的弧长为.92. (1),所以在第二象限;,所以在第一象限.(2),与它终边相同的角可表示为,,由,得,所以,,即在~的范围内与终边相同的角是,.同理,在~范围内与终边相同的角是.93. ();().94. ①因为为第二象限角,则,,所以,,所以是第三或第四象限角,以及终边落在轴的非正半轴上的角.②,.令,则,所以为第一象限角.令,则,所以为第二象限角.令,则,所以为第四象限角.所以是第一或第二或第四象限角.95. 因为是第二象限角,所以,,所以,,所以是第一或第三象限角(如图阴影部分).结合单位圆上的三角函数线可得,(i)当是第一象限角时,,,,从而得;(ii)当是第三象限角时,,,,从而得.综上,当是第一象限角,即,时,;当是第三象限角,即,时,.96. 设扇形的半径为,其内切圆的半径为,由已知得,.又因为,所以.所以内切圆的面积为.97. 由题意,有.所以.又,即,所以,且所以或.故或.易知,故当,是第一象限角;当,是第二象限角.98. (1).(2)由题意知,即,,当时,的最大值为,当时,,.即扇形面积的最大值为,此时扇形圆心角的弧度数为.99. (1)设扇形的圆心角的弧度数为,弧长为,半径为.由题意得:解得:,当时,,此时(舍)当时,,此时,∴扇形圆心角的弧度数是.(2)设扇形的圆心角为,半径为,弧长为,面积为,.所以当时,扇形的面积最大,这个最大值是,此时.当它的半径和圆心角分别取和弧度时,才能使扇形的面积最大,最大面积是.100. 设扇形的半径为,则周长,所以..因为,当且仅当,即时等号成立.此时,所以当时,取得最大值为.。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.2.下列各式中,值为的是A.B.C.D.【答案】D【解析】;;;.【考点】二倍角的正弦、余弦、正切公式.3.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.4.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.5.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.6.已知点P()在第三象限,则角在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由已知得,即,则角在第二象限。

【考点】(1)三角函数值符号的判断;(2)象限角的判断。

7. 2400化成弧度制是()A.B.C.D.【答案】C【解析】本题考查度与弧度的互化,利用公式弧度,可得.【考点】度与弧度的互化.8.的值是()A.B.C.D.【答案】C【解析】.任意角的三角函数值可利用诱导公将角化为锐角的三角函数值求得.【考点】诱导公式,特殊角的三角函数值.9.若,且,则角的终边所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,又因为,所以,所以角的终边所在象限是第四象限,故选D.【考点】1、三角函数值的符号;2、二倍角的正弦.10.设为第四象限角,其终边上的一个点是,且,求和.【答案】;.【解析】利用余弦函数的定义求得,再利用正弦函数的定义即可求得的值与的值.∵为第四象限角,∴,∴,∴,∴,∴=,∴,.【考点】任意角的三角函数的定义.11.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.12.下列角中终边与330°相同的角是()A.30°B.-30°C.630°D.-630°【答案】B【解析】与330°终边相同的角可写为,当时,可得-30°.【考点】终边相同的角之间的关系.13.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.14.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.15.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.16.已知【答案】【解析】由已知得,又因为,所以,而,故答案为.【考点】1.诱导函数;2.特殊角的三角函数值.17.一钟表的分针长5 cm,经过40分钟后,分针外端点转过的弧长是________cm【答案】【解析】分针每60分钟转一周,故每分钟转过的弧度数是,分针经40分钟,分针的端点所转过的角的弧度数为2π×=,代入弧长公式l=αr,得出分针的端点所转过的长为×5=(cm).故答案为:。

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知2tan 5α=-,则1sin 2cos 2αα+=( ) A .1318B .522 C .37-D .372.若1sin 84x π⎛⎫-= ⎪⎝⎭,则sin 24x π⎛⎫+= ⎪⎝⎭( )A .14-BC .78D .3.已知sin cos αβ+=cos sin αβ+sin()αβ+=( )A .12B C .12- D .4.sin cos 44ππαβ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭化为和差的结果是( )A .11sin()cos()22αβαβ++-B .11cos()sin()22αβαβ++-C .11sin()sin()22αβαβ++- D .11cos()cos()22αβαβ++-5.已知()11cos 3cos cos 42πππαα⎛⎫⎛⎫+=-+ ⎪⎪⎝⎭⎝⎭,则cos2=α( )A B .13- C .23- D .136.0000cos80cos130sin100sin130-等于A B .12C .12-D .7.已知25cos2cos αα+=,()4cos 25αβ+=与0,2πα⎛⎫∈ ⎪⎝⎭和3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A .45- B .44125C .44125-D .458.已知π2cos()33α+=,则πsin()6α-=( )A B . C .23-D .139.图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =二、填空题10.数列{}n a 的通项公式为[]2log n a n n =+,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为__________.11.已知,2παπ⎛⎫∈ ⎪⎝⎭,且()23cos sin 210απα++=,则tan α=__________.12.已知1sin 3α=,cos()1αβ+=-则sin(2)αβ+=______.13.已知sin 2πααπ<<,则tan α=______________. 14.已知角0,2πθ⎛⎫∈ ⎪⎝⎭对任意的x ∈R ,()()2213cos 4sin 122x x x θθ+≥⋅恒成立,则θ的取值范围是_____.三、解答题15.已知函数()()1tan cos f x x x =+⋅(1)若44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,求tan x ;(2)若,02πα⎛⎫∈- ⎪⎝⎭时,则()f α=,求cos2α.16.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2A C =.(1)若a c =,求cos B 的大小; (2)若1b =,3c =求sin A .17.已知函数22π()sin 2cos sin ,6f x x x x x ⎛⎫=+-+∈ ⎪⎝⎭R .(1)求()f x 求函数的最小正周期及对称中心. (2)求函数()y f x =在π0,2x ⎡⎤∈⎢⎥⎣⎦值域.18.ABC 的内角,,A B C 的对边分别为,,a b c ,已知()sin sin cos cos 2cos a A B c A a A b B +=+ (1)求B ;(2)若6b AB CB =⋅=,求ABC 的周长19.已知向量(sin ,cos 1)a x x =-,(3cos ,cos 1)b x x =+和1()2f x a b =⋅+. (1)求函数的最小正周期T 及单调递增区间; (2)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.四、双空题 20.已知4sin 5α,且α是第二象限角,则cos α=______;sin 2α=_______. 参考答案与解析1.D【分析】结合二倍角公式,将所求表达式转化为只含tan α的式子,由此求得正确答案. 【详解】原式222222cos sin 2sin cos 1tan 2tan cos sin 1tan ααααααααα++++==-- 4491932552542121712525+-====-. 故选:D 2.C【分析】利用诱导公式和二倍角公式可得解.【详解】1sin 84x π⎛⎫-= ⎪⎝⎭sin 2sin 2cos 2cos 244248x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2712sin 88x π⎛⎫=--= ⎪⎝⎭故选:C . 3.A【分析】将两个已知等式两边平方相加,再根据两角和的正弦公式可求出结果.【详解】由sin cos αβ+=225sin cos 2sin cos 4αβαβ++⋅=由cos sin αβ+=227cos sin 2cos sin 4αβαβ++⋅=两式相加得22(sin cos cos sin )3αβαβ++=,得1sin()2αβ+=.故选:A 4.B【分析】利用积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤=++-⎣⎦化简即可. 【详解】解:原式1sin sin()22παβαβ⎡⎤⎛⎫=+++- ⎪⎢⎥⎝⎭⎣⎦11cos()sin()22αβαβ=++-. 故选:B .【点睛】本题考查积化和差公式的应用,属于基础题. 5.B【分析】首先根据诱导公式以及同角三角函数的基本关系求得tan α=再根据二倍角公式以及“1”的代换求得cos2α.【详解】由诱导公式化简原式,得cos 2αα-=,故tan α=所以22222222cos sin 1tan 1cos 2cos sin sin cos tan 13ααααααααα--=-===-++. 故选:B . 6.D【详解】试题分析:原式3cos80cos130sin 80sin130cos(80130)cos(18030)2=-=+=+=-. 考点:三角恒等变换. 7.B【解析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果.【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题. 8.C【分析】利用诱导公式化简变形可得结果【详解】解:因为π2cos()33α+=所以π2sin()sin cos cos 662633ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=---=-+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 故选:C 9.A【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论.【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A . 10.631【分析】由[]22log [log ]n a n n n n =+=+,分析n 的不同取值对应的2[log ]n 的取值情况,分组求和即得解 【详解】由题意[]22log [log ]n a n n n n =+=+ 当1n =时,则2[log ]0n =; 当2,3n =时,则2[log ]1n =; 当4,5,6,7n =时,则2[log ]2n =; 当8,9,10,...,15n =时,则2[log ]3n =; 当16,17,18,...,31n =时,则2[log ]4n =; 当32n =时,则2[log ]5n =; 故{}n a 的前32项和为:3212...32102142831645S =++++⨯+⨯+⨯+⨯+⨯+(132)321035281036312+⨯=+=+= 故答案为:631 11.-7【详解】22221tan 131cos 232tan 31tan cos sin(2)sin 21021021tan 10αααααπααα-+++++=∴-=∴-=∴+ tan 7,tan 1αα=-= (舍).12.13-【分析】先由cos()1αβ+=-,得sin()0αβ+=,再由sin(2)sin()sin cos()+cos sin()αβααβααβααβ+=++=⋅+⋅+即可求出结果.【详解】因cos()1αβ+=-,得sin()0αβ+=所以1sin(2)sin()sin cos()+cos sin()3αβααβααβααβ+=++=⋅+⋅+=-.【点睛】本题主要考查三角函数的两角和差化积公式,熟记公式即可,属于常考题型. 13.-2【分析】利用同角的三角函数中的平方和关系求出cos α,再利用同角的三角函数关系中的商关系求出tan α即可.【详解】2sin sin cos tan 22cos παααπααα=<<∴===-. 【点睛】本题考查了同角三角函数关系中的平方和关系和商关系,考查了角的余弦值的正负性的判断,考查了数学运算能力. 14.5,1212ππ⎡⎤⎢⎥⎣⎦【分析】根据题意转化为22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立,利用基本不等式求得2234()cos ()sin sin 243x x θθθ+≥,得到1sin 22θ≥,结合三角函数的性质,即可求解.【详解】由()()2213cos 4sin 122x x x θθ+≥⋅,即()()2213cos 4sin 324x xx x θθ+≥⋅⋅即22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立又由2234()cos ()sin 2sin cos sin 243x x θθθθθ+≥=所以1sin 22θ≥又因为0,2πθ⎛⎫∈ ⎪⎝⎭,可得()20,θπ∈,所以5266ππθ≤≤,解得51212ππθ≤≤即θ的取值范围是5[,]1212ππ.故答案为:5[,]1212ππ.15.(1)tan 1x =(2)9【分析】(1)根据同角三角函数的关系、两角和正弦公式、诱导公式化简即可求解; (2)根据角的变换及两角差的正弦公式,二倍角的余弦公式计算即可求解. (1) ()sin cos 4f x x x x π⎛⎫=++ ⎪⎝⎭由44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭2x x π⎛⎫=+ ⎪⎝⎭即有sin cos x x =,所以tan 1x =. (2)由()43f παα⎛⎫=+= ⎪⎝⎭1sin 43πα⎛⎫+= ⎪⎝⎭∵,02πα⎛⎫∈- ⎪⎝⎭∴,444πππα⎛⎫+∈- ⎪⎝⎭∴cos 4πα⎛⎫+= ⎪⎝⎭∴4sin sin 446ππαα⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦故22cos 212sin 12αα=-=-⨯=⎝⎭16.(1;(2. 【分析】(1)由正弦定理求出cos C ,进而求得sin C 、sin A 及cos A ,再利用和角公式即可得解;(2)由(1)结合余弦定理求得a ,进而求得cos C 及sin C 即可得解. 【详解】(1)ABC 中由正弦定理可得sin sin 22cos sin sin a A CC c C C===所以cos C =,sin C =和sin 2sin cos A C C ==221cos cos sin 3A C C =-=-所以cos cos()B A C =-+cos cos sin sin A C A C =-+13= (2)由(1)可知2cos aC c=,所以2cos 6cos a c C C ==由余弦定理可知222cos 2a b c C ab +-=282a a -=,于是2862a a a a -=⋅⇒=则cos C =,sin C =所以sin 2sin cos A C C =2==17.(1)π ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)由三角恒等变换可得正弦型三角函数,据此求周期、对称中心即可; (2)利用整体代换法求正弦函数的值域即可. (1)1()2co πs 2cos 2sin 226f x x x x x ⎛⎫=+-=- ⎪⎝⎭ 所以函数的最小正周期为2ππ2= ()sin 26πf x x ⎛⎫=- ⎪⎝⎭,令π2π6x k -=解得ππ212k x =+ ∴()f x 的对称中心是ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)令π26t x =-由π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ5π2,666t x ⎡⎤=-∈-⎢⎥⎣⎦则1()12f x ≤-≤所以()y f x =的值域是1,12⎡⎤-⎢⎥⎣⎦.18.(1)3B π=;(2)【分析】(1)根据()sin sin cos cos 2cos a A B c A a A b B +=+,利用正弦定理结合两角和与差的三角函数化简为2sin cos sin B B B =求解;(2)利用余弦定理得到()2312a c ac +-=,然后由6AB CB ⋅=求得ac 代入即可. 【详解】(1)因为 ()sin sin cos cos 2cos a A B c A a A b B +=+ 所以()sin sin cos cos cos 2cos a A B A B c A b B -+= 所以cos()cos 2cos a A B c A b B -++= 所以cos cos 2cos a C c A b B +=由正弦定理得sin cos sin cos 2sin cos A C C A B B += 整理得()sin 2sin cos sin A C B B B +== 因为在ABC 中所以sin 0B ≠,则2cos 1B = 所以3B π=(2)由余弦定理得 2222cos b a c ac B =+-即()2312a c ac +-=因为1cos 62AB CB BA BC ac B ac ⋅=⋅=== 所以12ac = 所以()23612a c +-=解得a c +=所以ABC 的周长是【点睛】方法点睛:在解有关三角形的题目时,则要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则则考虑用正弦定理;以上特征都不明显时,则则要考虑两个定理都有可能用到. 19.(1)πT = πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)根据平面向量数量积的坐标表示公式,结合降幂公式、辅助角公式、二倍角公式、正弦型函数的最小正周期公式以及单调性进行求解即可;(2)利用换元法,结合正弦型函数的最值性质进行求解即可. (1)由211()3sin cos cos 22f x a b x x x =⋅+=+-1π2cos 2sin 226x x x ⎛⎫=+=+ ⎪⎝⎭ 故函数()f x 的最小正周期πT = 当πππ2π22π(Z)262k x k k -≤+≤+∈时,则函数单调递增 解得ππππ36k x k -+≤≤+ Z k ∈函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭,ππ,63x ⎡⎤∈-⎢⎥⎣⎦令π26t x =+,则sin y t =,π5π,66t ⎡⎤∈-⎢⎥⎣⎦所以当π6t =-即π6x =-时,则min 1()2 f x =-当π2t =即π6x =时,则min ()1 f x =故函数()f x 的值域为1,12⎡⎤-⎢⎥⎣⎦.20.352425-【分析】根据正余弦恒等式求出cos α,再利用二倍角的正弦公式求出sin 2α. 【详解】因为4sin 5α,且α是第二象限角所以3cos 5α==-4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故答案为:352425-。

高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版

高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版

高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是( )A .30°B .﹣30°C .60°D .﹣60°2.将880-︒化为360k α+⨯︒(0360α︒≤<︒,Z k ∈)的形式是( )A .()1603360︒+-⨯︒B .()2002360︒+-⨯︒C .()1602360︒+-⨯︒D .()2003360︒+-⨯︒3.下列角中终边在y 轴非负半轴上的是( )A .45︒B .90︒C .180︒D .270︒4.下列说法中正确的是( )A .锐角是第一象限的角B .终边相同的角必相等C .小于90︒的角一定为锐角D .第二象限的角必大于第一象限的角 5.在0°到360范围内,与405终边相同的角为( )A .45-B .45C .135D .2256.若750︒角的终边上有一点(),3P a ,则a 的值是( )AB .C .D .-7.下列命题:①钝角是第二象限的角;②小于90的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,则时针转过的角度为60;⑥若 4.72α=-,则α是第四象限角.其中正确的命题的个数是( )A .1B .2C .3D .48.角296π-的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.下列命题中正确的是( ).A .第一象限角一定不是负角B .小于90°的角一定是锐角C .钝角一定是第二象限角D .第一象限角一定是锐角 10.已知α为第三象限角,cos 02α>和tan 3α=,则tan 2α的值为( )A .13-B .13C .13-D .13-+13-11.下列与94π的终边相同的角的集合中正确的是( ) A .(){}245Z k k ααπ=+︒∈ B .()9360Z 4k k ααπ⎧⎫=⋅︒+∈⎨⎬⎩⎭C .(){}360315Z k k αα=⋅︒-︒∈D .()5Z 4k k πααπ⎧⎫=+∈⎨⎬⎩⎭12.已知集合{}9045,M x x k k ==⋅︒+︒∈Z ,集合{}4590,N x x k k ==⋅︒+︒∈Z ,则有( )A .M NB .N MC .M ND .M N ⋂=∅13.若角α的终边与函数()1f x x =-的图象相交,则角α的集合为( )A .π5π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭B .3π7π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭C .3ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭D .5ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭二、双空题14.与角-2021°终边重合的最大负角是__________,与角2022°终边重合的最小正角是__________.三、填空题15.如图,终边落在阴影部分(不含边界)的角的集合是________.16.若角α的终边在函数y x =-的图象上,试写出角α的集合为_________.四、多选题17.如果2θ是第四象限角,那么θ可能是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角参考答案与解析1.D【分析】根据分针旋转方向结合任意角的定义即可求出【详解】因为分针为顺时针旋转,所以10分钟时间钟表的分针走过的角度是 360606︒-=-︒. 故选:D .2.D【分析】根据给定条件直接计算即可判断作答.【详解】880200()3360-︒=︒+-⨯︒.故选:D3.B【分析】求出以x 轴的非负半轴为始边,终边在y 轴非负半轴上的一个角即可判断作答.【详解】因x 轴的非负半轴绕原点逆时针旋转90°即可与y 轴非负半轴重合因此,以x 轴的非负半轴为始边,y 轴非负半轴为终边的一个角是90°于是得:终边在y 轴非负半轴上的角的集合为{|36090,Z}k k αα=⋅+∈显然,A ,C ,D 不满足,符合条件的是B.故选:B4.A【分析】根据锐角的定义,可判定A 正确;利用反例可分别判定B 、C 、D 错误,即可求解.【详解】对于A 中根据锐角的定义,可得锐角α满足090α︒<<︒是第一象限角,所以A 正确; 对于B 中例如:30α=与390β=的终边相同,但αβ≠,所以B 不正确;对于C 中例如:30α=-满足90α<,但α不是锐角,所以C 不正确;对于D 中例如:390α=为第一象限角,120β=为第二象限角,此时αβ>,所以D 不正确.故选:A.5.B【分析】根据终边相同角的概念判断即可;【详解】解:因为40536045=+,所以在0°到360范围内与405终边相同的角为45;故选:B6.B【分析】结合已知条件可求得750与30的终边相同,然后利用三角函数值的定义即可求解.【详解】因为750236030=⨯+所以750与30的终边相同从而223cos750cos3023a a ===+,解得a =故选:B.7.A【分析】利用任意角的定义逐项判断可得出合适的选项. 【详解】①因为大于90小于180的角为钝角,所以钝角的终边在第二象限,钝角是第二象限的角对; ②小于90的角包含负角,负角不是锐角,所以小于90的角是锐角错;③330-是第一象限角,所以第一象限角一定不是负角错;④120是第二象限角,390是第一象限角120390<,所以第二象限角一定大于第一象限角错; ⑤因为时针顺时针旋转,所以针转过的角为负角23060-⨯=-,⑤错; ⑥3 4.7124 4.722π-≈->-,且 4.722π->-,即32 4.722ππ-<-<-,所以α是第四象限角错. 故正确的命题只有①故选:A.8.C 【分析】将角化为k πα+(k Z ∈)的形式,由此确定正确选项.【详解】29566πππ-=-+,在第三象限. 故选:C9.C【分析】明确锐角、钝角、象限角的定义,通过举反例排除错误的选项,得到正确的选项.【详解】解:A 不正确,如330-︒就是第一象限角.B 不正确,如30-︒是小于90︒的角,但30-︒并不是锐角.C 正确,因为钝角大于90︒且小于180︒,它的终边一定在第二象限.D 不正确,如330-︒就是第一象限角,但330-︒并不是锐角.故选:C .10.A 【分析】利用正切的二倍角公式可得23tan 2tan 3022αα+-=,求出tan 2α,再根据α的范围可得答案.【详解】∵tan 3α=,∴22tan231tan 2αα=- 即23tan2tan 3022αα+-=∴1tan 23α=-1tan 23α=-α为第三象限角,所以()3ππ2π2π2k k k α+<<+∈Z ()π3πππ224k k k α+<<+∈Z ∵cos02α>,∴2α为第四象限角 ∴tan 02α<,∴1tan23α=-故选:A.11.C【分析】由任意角的定义判断 【详解】94057203154rad π︒=︒=-︒,故与其终边相同的角的集合为9{|2,}4k k Z πααπ=+∈或{|315360,}k k Z αα=-︒+⋅︒∈角度制和弧度制不能混用,只有C 符合题意故选:C12.CN ∴中存在元素x M ∉;M N ∴.故选:C .13.C【分析】只有当角α的终边与在直线y x =上时,则与函数()1f x x =-的图象无交点,其余情况一直有交点,结合选项可得答案.【详解】当角α的终边与直线y x =重合时,则角α的终边与函数()1f x x =-的图象无交点.又因为角α的终边为射线 所以3ππ2π2π44k k α-<<+ k ∈Z . 故选:C14. -221° 222°【分析】根据终边相同的角相差360︒的整数倍,利用集合的描述法可写出符合条件的集合,给k 赋值进行求解即可.【详解】解:根据终边相同的角相差360︒的整数倍故与-2021°终边相同的角可表示为:{|3602021k αα=︒-︒ }k Z ∈则当4k =时,则53602021221α=⨯︒-︒=-︒,此时为最大的负角.与角2022°终边相同的角可表示为:{|3602022k αα=︒+︒ }k Z ∈当5k =-时,则53602022222α=-⨯︒+︒=︒,此时为最小的正角.故答案为:-221°,222°15.{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈ 【解析】写出与OA 终边相同的角的集合和与OB 终边相同的角的集合,根据区域角的表示方法即可得解.【详解】由题图可知与OA 终边相同的角的集合为{}|360120,k k Z αα︒︒=⋅+∈与OB 终边相同的角的集合为(){}|36045,k k Z αα︒︒=⋅+-∈,故终边落在阴影部分(不含边界)的角的集合是{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈.故答案为:{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈ 【点睛】此题考查区域角的表示方法,关键在于准确找准区域边界所对应的角的表示方式.16.{|180135,}k k αα=⋅︒+︒∈Z【解析】函数y x =-的图象是第二、四象限的平分线,可以先在0︒~360︒范围内找出满足条件的角,再进一步写出满足条件的所有角,并注意化简.【详解】解:函数y x =-的图象是第二、四象限的平分线,在0︒~360︒范围内,以第二象限射线为终边的角为135︒,以第四象限射线为终边的角为315︒∴α的集合为{|360135k αα=⋅︒+︒或360315,}k k Z α=⋅︒+︒∈{|180135,}k k Z αα==⋅︒+︒∈故答案为:{|180135,}k k Z αα=⋅︒+︒∈【点睛】本题考查终边相同角的表示,角的终边是以原点为顶点的一条射线,因此当只有角的终边在直线上时,则要分类讨论.由原点把直线分成两条射线.17.BD【解析】依题意求出2θ的取值范围,从而得出θ的取值范围,即可判断θ所在的象限; 【详解】解:由已知得2222k k ππθπ-<<,k Z ∈所以4k k ππθπ-<<,k Z ∈当k 为偶数时,则θ在第四象限,当k 为奇数时,则θ在第二象限,即θ在第二或第四象限.故选:BD .。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知扇形面积为,半径是1,则扇形的圆心角是()A.B.C.D.【答案】A【解析】扇形面积公式为,r为半径。

设该扇形的圆心角弧度数为,则,所以解得,故选A.【考点】扇形面积公式\弧度制。

2.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.已知,则()A.3B.C.D.【答案】A【解析】.【考点】三角计算.5.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.6.=_______.【答案】1【解析】∵;;∴原式.【考点】三角函数值的计算.7.有下列说法:①函数y=-cos 2x的最小正周期是π;②终边在y轴上的角的集合是;③把函数的图像向右平移个单位长度得到函数y=3sin 2x的图像;④函数在[0,π]上是减函数.其中,正确的说法是________.【答案】①③【解析】①:的最小正周期为,正确;②:在上第一个出现终边在y轴的角为,之后每隔个单位出现一个终边落在y轴上的角,因此所求集合为,∴②错误;③:函数的图像向右平移个单位长度以后的函数解析式为:,∴③正确;④:当时,,∴函数在[0,π]上是增函数,∴④错误.【考点】1、三角函数的性质;2、终边相同的角的集合.8.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.9.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.10.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.11.的值是()A.B.C.D.【答案】C【解析】.任意角的三角函数值可利用诱导公将角化为锐角的三角函数值求得.【考点】诱导公式,特殊角的三角函数值.12.圆的半径为r,该圆上长为r的弧所对的圆心角是()A.rad B.rad C.πD.π【答案】B【解析】由弧长公式可得:,解得.【考点】弧度制.13.在平面直角坐标系中,已知角的终边经过点,且,则()A.1B.C.1或D.1或3【答案】A【解析】,,解得或,因为,则,即。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。

高一数学必修第一册 第5章 第一节 课时2 弧度制(解析版)

高一数学必修第一册  第5章 第一节 课时2 弧度制(解析版)

第5章 第一节 课时2 弧度制一、单选题1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1︒的角是周角的1,1rad 360的角是周角的12πC .1rad 的角比1︒的角要大D .用弧度制度量角时,角的大小与圆的半径有关 【答案】D【分析】利用角度和弧度的定义及转化关系分别进行判断即可. 【详解】根据角度和弧度的概念可知二者都是角的度量单位,1︒的角是周角的1360,1rad 的角是周角的12π,故A 、B 正确; 1rad 的角是180()57.301π︒︒︒≈>,故C 正确; 无论哪种角的度量方法,角的大小都与圆的半径无关,只与角的始边和终边的位置有关,故D 错误. 故选:D2.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A .π3B .π6C .-π3D .-π6【答案】B【分析】由于是晚一个小时,所以是逆时针方向旋转,时针旋转过程中形成的角的弧度数为6π. 【详解】由题意小明需要把表调慢一个小时,所以时针逆时针旋转π6弧度.故选B.【点睛】本题考查了弧度数的方向与计算,属于基础题. 3.下列转化结果正确的是( ) A .60°化成弧度是rad 6πB .rad 12π化成角度是30°C .1°化成弧度是180radD .1rad 化成角度是180π⎛⎫⎪⎝⎭︒ 【答案】D【分析】根据弧度制与角度制的互化:1801rad π=即可求解.【详解】对于A ,60°化成弧度是rad 3π,故A 不正确;对于B ,rad 12π化成角度是11801512⨯︒=︒,故B 不正确; 对于C ,1°化成弧度是rad 180π,故C 不正确;对于D ,1rad 化成角度是180π⎛⎫ ⎪⎝⎭︒,故D 正确.故选:D .4.下列各角中,终边相同的角是( )A .23π和240︒B .5π-和314︒ C .79π-和299πD .3和3︒【答案】C【分析】通过角度与弧度的互化,逐一分析四个选项得答案. 【详解】解:对于A 选项,42403π︒=,不合题意; 对于B 选项,365π-=-︒,314(36)350︒--︒=︒,不合题意;对于C 选项,297()499πππ--=,符合题意; 对于D 选项,3357.3171.9≈⨯︒=︒,171.93168.9︒-︒=︒,不合题意. 故选:C .【点睛】本题考查角度制与弧度制的互化,考查终边相同角的概念,属于基础题. 5.若扇形的弧长是3cm π,面积是26cm π,则该扇形圆心角的弧度数θ=( ) A .3πB .4π C .23π D .34π 【答案】D【解析】利用扇形的弧长公式与面积公式可求得θ的值.【详解】由题意得,设扇形的半径为r cm ,则扇形的面积为1362S r ππ=⨯=,解得4r cm =,所以343r ππθ==. 故选:D.6.若一扇形的圆心角为2,圆心角所对的弦长为2,则此扇形的面积为( ) A .2 B .1C .21sin 1D .21cos 1【答案】C【分析】利用扇形的面积公式即可求解.【详解】因为扇形的圆心角为2,圆心角所对的弦长为2, 故扇形所在圆的半径1sin1r =, 扇形的面积为221sin 1122sin 11⎛⎫=⎪⎝⎭⨯⨯, 故选:C .7.一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为 A .2πB .3π CD【答案】C【详解】试题分析:设圆内接正方形的边长为a,所以弧长等于a的圆弧所对的圆心角为l rα== C. 【解析】弧长公式.8.密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( ) A .1250- B .1750- C .2100- D .3500-【答案】B【分析】计算出扇形所对圆心角的弧度数,可计算出扇形圆心角的密位数,结合密位制可得结果.【详解】设扇形所对的圆心角为α,α所对的密位为n ,则217226απ⨯=,解得7π12α=, 由题意可得71260002n ππ=,解得76000175024n =⨯=, 因此,该扇形圆心角用密位制表示为1750-. 故选:B.二、填空题9.若三角形三内角之比为3:4:5,则三内角的弧度数分别是______.【答案】5,,4312πππ【分析】由三角形的内角和为π,根据三角形三内角之比为3:4:5,利用弧度制的表示,即可求解.【详解】由题意,可知三角形的内角和为π,又由三角形三内角之比为3:4:5, 所以三内角的弧度数分别是34,34543453ππππ⨯=⨯=++++,5534512ππ⨯=++,故答案为5,,4312πππ.【点睛】本题主要考查了弧度制的表示,以及三角形的内角和定理的应用,其中解答中熟记弧度制的表示是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 10.已知扇形AOB 的面积为43π,圆心角为120°,则该扇形所在圆的半径为______. 【答案】2【分析】利用扇形的面积公式即可求解. 【详解】21203π︒=,扇形AOB 的面积为43π, 所以2241123223r r ππα==⨯,解得2r =. 故答案为:211.在Rt PBO 中,90PBO ∠=,以O 为圆心、OB 为半径作圆弧交OP 于A 点.若圆弧AB 等分POB 的面积,且AOB α∠=弧度,则tan αα=___________.【答案】2【解析】用,OB α求出扇形面积和直角三角形面积可得.【详解】如图,tan PB OB α=,211tan 22POB S OB PB OB α=⨯⨯=△,S 扇形AOB212OB α=,由题意2211212tan 2OB OB αα⋅=,所以tan 2αα=. 故答案为:2.三、解答题12.已知()1,4k k k θπ=π+-⋅∈Z ,试判断角θ的终边所在的象限.【答案】第一象限或第二象限【分析】分k 为奇数和k 为偶数,两种情况讨论,根据终边相同角的表示,即可求解,得到答案.【详解】由题意,当k 为奇数时,设21k n =+,则()213(21)12,44n n n n πθπ+π=+π+-⋅=+∈Z , 此时θ与34π的终边相同,所以θ的终边位于第二象限; 当k 为偶数时,设2k n =,则()2212,44nn n n πθππ=π+-⋅=+∈Z , 此时θ与4π的终边相同,所以θ的终边位于第一象限, 综上可得,角θ的终边所在的象限为第一象限或第二象限.【点睛】本题主要考查了终边相同角的表示,其中解答中熟记终边相同角的表示方法是解答的关键,着重考查了推理与运算能力,属于基础题. 13.已知角2025α=︒.(1)将角α改写成2k βπ+(k Z ∈,02βπ≤<)的形式,并指出角α是第几象限的角; (2)在区间[)5,0π-上找出与角α终边相同的角. 【答案】(1)5104παπ=+,是第三象限角;(2)19113,,444πππ---.【分析】(1)先把度数改写弧度,再改写成2k βπ+形式,并确定所在象限; (2)解不等式520k πβπ-≤+<可得结论. 【详解】(1)2025α=︒=45520251018044ππππ⨯==+,54π是第三象限角,∴α是第三象限角.(2)由55204k πππ-≤+<得25588k -<<-,因为k Z ∈,∴3,2,1k =---,对应角依次为19113,,444πππ---. 【点睛】本题考查终边相同的角,解题关键是把解写出2,k k Z πβ+∈或360k β⋅︒+,k Z ∈形式,考查角度与弧度的互化.属于基础题. 14.如图,已知圆O 的半径r 为10,弦AB 的长为10.(1)求弦AB 所对的圆心角α的大小;(2)求圆心角α所对应的弧长l 及阴影部分的面积S . 【答案】(1)3πα=(2)103l π=;3503S π⎛= ⎝⎭【分析】(1)根据AOB 为等边三角形,可得3πα=,即可求解.(2)利用扇形的弧长公式以及扇形的面积公式即可求解. 【详解】(1)由于圆O 的半径r 为10,弦AB 的长为10, 所以AOB 为等边三角形,3AOB π∠=,所以3πα=.(2)因为3πα=,所以103l r πα=⋅=, 111050102233AOB S lr ππ==⨯⨯=扇.又110532532AOB S =⨯⨯△所以5032535033AO B B AO S S S ππ⎛-=-= ⎝=⎭扇△. 15.已知相互啮合的两个齿轮,大轮有60齿,小轮有45齿. (1)当小轮转动一周时,求大轮转动的弧度数;(2)当小轮的转速是120r /min 时,大轮上每1s 转过的弧长是60cm π ,求大轮的半径. 【答案】(1)32π; (2)20cm . 【分析】(1)设大轮的半径为R ,小轮的半径为r ,求得43R r =,再利用弧长公式,即可求解.(2)由(1)和小轮的转速为120r /min ,求得小轮转动1s 的的弧长为3R π,利用弧长公式,列出方程,即可求解.【详解】(1)由题意,相互啮合的两个齿轮,大轮有60齿,小轮有45齿 设大轮的半径为R ,小轮的半径为r ,则260245R r ππ=,即43R r =,即43R r =,当小轮转动一周时,设大轮转动的弧度数为α,则2R r απ=, 即423r r απ⨯=,解得32πα=,即大轮转动的弧度数为32π.(2)由(1)知,大轮的半径为R ,小轮的半径为r ,且43R r =, 因为小轮的转速为120r /min ,当小轮转动1s时,小轮转过的弧度数为1202460ππ⨯=, 其转过的弧长为34434r R R πππ=⨯=,又由大轮上每1s转过的弧长是60π ,所以360R ππ=,解得20R cm =. 【点睛】本题主要考查了扇形的弧长公式的实际应用,其中解答中正确理解题意,合理利用扇形的弧长公式,列出方程求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 16.在一块顶角为23π、腰长为2的等腰三角形钢板废料OAB 中裁剪扇形,现有如图所示的两种方案.(1)求两种方案中扇形的周长之差的绝对值; (2)比较两种方案中的扇形面积的大小. 【答案】(1)23π-; (2)3π,3π. 【分析】(1)根据题意,求得方案一和方案二对应的圆心角和半径,利用弧长公式,即可求解;(2)由(1)中的扇形的圆心角和半径,利用扇形的面积公式,即可求解. 【详解】(1)由题意,顶角为23π、腰长为2的等腰三角形钢板废料OAB 中裁剪扇形, 方案一:可得1,26OAD R π∠==,所以扇形的周长为1112224633C R R πππ=+⨯=⨯+=+;方案二:可得22,13MON R π∠==,所以扇形的周长为222222212633C R R πππ=+⨯=⨯+=+,所以两种方案中扇形的周长之差的绝对值122(4)(2)2333C C πππ-=+-+=-.(2)由(1),根据扇形的面积公式,可得方案一:扇形面积为221111122263S R ππα==⨯⨯=;方案二:扇形面积为2222211212233S R ππα==⨯⨯=. 【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.17.已知扇形的圆心角为α,半径为r .(1)若扇形的周长是定值C (0C >),求扇形的最大面积及此时α的值; (2)若扇形的面积是定值S (0S >),求扇形的最小周长及此时α的值.【答案】(1)2α=,面积最大值为216C ; (2)2α=,周长的最大值为【分析】(1)由扇形的周长是定值C ,求得2l C r =-,再由扇形的面积公式,结合二次函数的性质和弧长公式,即可求解. (2)由扇形的面积是定值S ,求得2Sl r=,再由扇形的弧长公式和本不等式,即可求解.【详解】(1)由题意知,扇形的圆心角为α,半径为r ,设扇形的弧长弧长为l , 若扇形的周长是定值C (0C >),则2r l C +=,即2l C r =-, 又由扇形的面积为222111(2)()222416C C S lr C r r r Cr r ==-=-+=--+,当4C r =时,扇形的面积取得最大值,此时最大值为216C ,此时22C l C r =-=,又由扇形的弧长公式,可得24C Cα=⨯,解得2α=. (2)由扇形的圆心角为α,半径为r ,设扇形的弧长弧长为l ,若扇形的面积是定值S (0S >),则12S lr =,即2Sl r =,又由扇形的弧长公式,可得扇形的周长为222S C r l r r =+=+≥=当且仅当22Sr r=时,即r =时,等号成立,此时l==α2α=. 【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式,以及基本不等式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,利用基本不等式准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.。

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。

高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知sin(α+45°)sin2α等于( ) A .-45B .-35C .3 5D .4 52.已知13a =,4log 3b =和sin 210c =︒,则( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<3.()sin cos f x x x =最小值是 A .-1B .12-C .12D .14.关于函数sin cos y x x =+,以下说法正确的是( ) A .在区间0,2π⎛⎫⎪⎝⎭上是增函数B .在区间0,2π⎛⎫⎪⎝⎭上存在最小值C .在区间,02π⎛⎫- ⎪⎝⎭上是增函数D .在区间,02π⎛⎫- ⎪⎝⎭上存在最大值5.函数()22f x cos x sinx =+ 的最小值和最大值分别为( ) A .3,1-B .2,2-C .332-,D .322-,6.将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是A .[2,2]-B .[3,4]C .[0,3]D .[0,4]7.sin15sin 75的值为( )A .14B .12C D 8.已知tan α和tan 4πα⎛⎫- ⎪⎝⎭是方程20ax bx c ++=的两个根,则,,a b c 的关系是( )A .b a c =+B .2b a c =+C .c b a =+D .c ab =9.设sin18cos44cos18sin 44a =︒︒︒+︒,2sin 29cos29b =︒︒和cos30c =︒,则有( ) A .c a b <<B .b c a <<C .a b c <<D .b a c <<二、填空题10.若sin 2α=()sin βα-=π,π4α⎡⎤∈⎢⎥⎣⎦和3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是________.11.已知角α的终边经过点(3,1)P t ,且3cos()5πα+=,则tan α的值为_________.12.函数44cos sin y x x =-的最小正周期是______ 13.22sin 20cos 50sin 20cos50︒+︒+︒︒=______.14.已知α为第二象限角,sinα+cosαcos2α=________. 15.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin(2)12πα+的值为____________.16.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,其图象的对称轴与对称中心之间的最小距离为4π,3x π=-是函数()f x 的一个极小值点.若把函数()f x 的图象向右平移()0t t >个单位长度后,所得函数的图象关于点,03π⎛⎫⎪⎝⎭对称,则实数t 的最小值为___________.三、解答题17.已知函数()()sin 2(0),,04f x x πϕϕπ⎛⎫=+<< ⎪⎝⎭是该函数图象的对称中心(1)求函数()f x 的解析式;(2)在ABC 中角,,A B C 的对边分别为,,a b c ,若()1,23f C C π=->和1c =,求2+a b 的取值范围.18.函数()cos()f x A x ωφ=+(其中 0A >,0>ω和||2ϕπ<)的部分图象如图所示,先把函数 ()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),把得到的曲线向左平移4π个单位长度,再向上平移1个单位,得到函数()g x 的图象.(1)求函数()g x 图象的对称中心.(2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则求 ()g x 的值域.(3)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则方程 ()()2()230g x m g x m +-+-=有解,求实数m 的取值范围.19.在ABC 中角A ,B ,C 所对边分别为a ,b ,c ,且1b c -=,2cos 3A =和ABC S =△(1)求边a 及sinB 的值;(2)求cos 26C π⎛⎫- ⎪⎝⎭的值.20.求444sin 10sin 50sin 70︒︒︒++的值.21.已知函数()222cos 36f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ x ∈R .(1)求()6f π的值及()f x 的最小正周期;(2)当[0,]x π∈时,则求函数()f x 的零点所构成的集合.参考答案与解析1.B【分析】利用两角和的正弦函数化简已知条件,利用平方即可求出所求结果.【详解】sin(α+45°)=(sin α+cos α∴sin α+cos α. 两边平方,得1+sin2α=25,∴sin2α=-35.故选B【点睛】本题目是三角函数正弦函数的题目,掌握同角三角函数的二倍角公式是解题的关键. 2.A【分析】根据诱导公式求出c ,再根据对数函数的单调性比较,a b 的大小,即可得出答案. 【详解】解:()1sin 210sin 18030sin 302c =︒=︒+︒=-︒=-113244441log 4log 4log 2log 33a ==<=<所以c a b <<. 故选:A. 3.B【详解】试题分析:∵()sin cos f x x x =1sin 22x =,∴当sin2x=-1即x=()4k k Z ππ-∈时,则函数()sin cos f x x x =有最小值是12-,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题 4.C【分析】将原式化简为)4y x π=+,再结合正弦函数的性质,即可求解.【详解】解:sin cos )4y x x x π=++∴令22,242k x k k Z πππππ-+++∈ ∴322,44k x k k Z ππππ-++∈即函数的单调递增区间为32,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦故选项A 错误,选项C 正确 当2,42x k k Z πππ+=-+∈,即32,4x k k Z ππ=-+∈时,则y 取得最小值,故在区间(0,)2π上不存在最小值,故选项B 错误 当2,42x k k Z πππ+=+∈,即2,4x k k Z ππ=+∈时,则y 取得最大值,故在区间(,0)2π-上不存在最大值,故选项D 错误. 故选:C . 5.C 【详解】()112sin22sin 2sin 2f x x x x ⎛⎫- ⎪⎝⎭=-+=-232+. ∴当1sin 2x =时,则()3max ?2f x =,当1sinx =- 时则()3min f x =- ,故选C. 6.D【分析】按照图象的平移规律,写出()g x 的表达式,利用正弦函数的图象,求出()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【详解】因为函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,所以()2sin[2()]22sin(2)2666g x x x πππ=+-+=++230,(2)[,]sin((2)[1,1]3662)[0,4]6x x x g x πππππ∈⎡⎤∴+∈∴+∈-∴⎢⎥⎣⎦∈,故本题选D. 【点睛】本题考查了正弦型函数的平移、以及闭区间上正弦型函数的最值问题,正确求出平移后的函数解析式,是解题的关键. 7.A【分析】利用诱导公式结合二倍角的正弦公式化简可得结果.【详解】()11sin15sin 75sin15sin 9015sin15cos15sin 3024=-===.故选:A. 8.C【分析】根据根与系数的关系以及两角和的正切公式可得结果. 【详解】由题意可知,tan tan ,tan tan 44b ca aππαααα⎛⎫⎛⎫+-=--= ⎪ ⎪⎝⎭⎝⎭tantan 44ππαα⎛⎫∴=+- ⎪⎝⎭tan tan 4111tan tan 4b a ca πααπαα⎛⎫+--⎪⎝⎭===⎛⎫--- ⎪⎝⎭1b ca a∴-=- b a c ∴-=- c a b ∴=+. 故选:C .【点睛】本题考查了根与系数的关系,考查了两角和的正切公式,属于基础题. 9.B【分析】先利用两角和的正弦公式对a 化简,利用二倍角公式对b 化简,然后利用正弦函数的单调性即可比较大小【详解】解:sin18cos 44cos18sin sin(1844)sin 4624a ︒︒=︒+︒==︒︒+︒ 2sin 29cos29sin58b =︒︒=︒ cos30sin60c =︒=︒ 因为sin y x =在(0,90)︒︒上为增函数,且586062︒<︒<︒ 所以sin58sin60sin62︒<︒<︒,即可b c a << 故选:B【点睛】此题考查两角和的正弦公式和二倍角公式的应用,考查正弦函数的单调性,属于基础题 10.74π【分析】依题意,可求得ππ,42α⎡⎤∈⎢⎥⎣⎦,进一步可知π5,π24βα⎡⎤-∈⎢⎥⎣⎦,于是可求得()cos βα-与cos2α的值,再利用两角和的余弦公式及角βα+的范围即可求得答案. 【详解】因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦因为sin 2α=π2,π2α⎡⎤∈⎢⎥⎣⎦,即ππ,42α⎡⎤∈⎢⎥⎣⎦所以cos 2=α因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦所以π5,π24βα⎡⎤-∈⎢⎥⎣⎦因为()sin βα-=所以()cos βα-==所以()()cos cos 2βαβαα+=-+()()=cos cos2sin sin 2βααβαα---=⎛⎛⨯ ⎝⎭⎝⎭因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,所以5π,24βαπ⎡⎤+∈⎢⎥⎣⎦所以7=4παβ+. 故答案为:74π 11.43-【解析】先计算出3cos 5α=-,再点的坐标特征可得角的终边的位置,从而可求tan α的值.【详解】因为3cos()5πα+=,故3cos 5α=-,故角α的终边在第二象限或第三象限又P 的纵坐标为1,故角α的终边在第二象限,所以sin 0α>所以sin 4tan cos 35ααα====--. 故答案为:43-【点睛】方法点睛:(1)角的终边的位置可根据三角函数值的正负来确定,也可以根据终边上的点的坐标特征来确定;(2)三个三角函数值,往往是“知一求二”,这里利用方程的思想. 12.π【分析】逆用二倍角公式将原式降幂,原式化简为cos()y A x ωϕ=+形式,利用2T ωπ=即可求得函数最小正周期. 【详解】()()442222cos sin cos sin o s =c s +in y x x x x x =--22cos sin cos 2x x x =-=22==2T πππω=T π∴=故答案为:π.【点睛】本题考查二倍角的余弦公式的应用、余弦三角函数最小正周期公式2T ωπ=,属于基础题. 13.34【分析】)(1cos 203020sin 202︒+︒︒-︒,化简计算即可得出结果. 【详解】原式)()(22sin 20cos 2030sin 20cos 2030=︒+︒+︒+︒︒+︒2211sin 2020sin 20sin 2020sin 2022⎫⎫=︒+︒-︒+︒︒-︒⎪⎪⎪⎪⎭⎭⎝⎝2222311sin 20cos 20sin 20sin 20442=︒+︒+︒-︒34=. 故答案为:3414【详解】∵sinα+cosα∴(sinα+cosα)2=13∴2sinαcosα=-23,即sin2α=-23.∵α为第二象限角且sinα+cosα∴2kπ+2π<α<2kπ+34π(k ∈Z),∴4kπ+π<2α<4kπ+32π(k ∈Z),∴2α为第三象限角,∴cos2α15【分析】利用二倍角公式,同角三角函数的基本关系式、两角差的正弦公式求得所求表达式的值.【详解】α为锐角2663πππα<+<3sin 65πα⎛⎫+== ⎪⎝⎭.sin(2)sin(2)22123433πππππαααα⎛⎫⎛⎫+=+-=++ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1666πππααα⎤⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎣⎦234421555⎤⎛⎫=⨯⨯-⎥ ⎪⎝⎭⎢⎥⎣⎦.16.512π##512π 【分析】对称轴与对称中心之间的最小距离为4π,可求得函数的周期,从而可求出2ω=,再由3x π=-是一个极小值点,可求得6π=ϕ,从而可得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,进而可得()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,再由()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,可得5212k t ππ=-+,从而可求出实数t 的最小值【详解】因为对称轴与对称中心之间的最小距离为4π,所以44T π=,所以T π= 22πωπ== 因为3x π=-是一个极小值点所以()2232k k z ππϕπ-+=-+∈,又因为02πϕ<<,所以6π=ϕ()sin 26f x x π⎛⎫+ ⎝=⎪⎭.把函数()f x 的图象向右平移()0t t >个单位长度后得函数()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,则()2236t k k z πππ-+=∈ 5212k t ππ=-+ 因为0t >,当0k =时,则实数t 的最小值为512π. 故答案为:512π17.(1)()cos2f x x = (2)()1,2【分析】(1)由题意得2,Z 4k k πϕπ⨯+=∈,则可求出2ϕπ=,从而可求出函数()f x 的解析式;(2)由()12f C =-可求出23C π=,由正弦定理得,a A b B ==,从而可表示出2+a b ,化简后利用三角函数的性质可求得结果 (1) 由题知2,Z 4k k πϕπ⨯+=∈因为0ϕπ<<,所以2ϕπ=所以函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭即为()cos2f x x =. (2)由题知()12f C =-,即1cos22C =-因为3C ππ<<,所以2223C ππ<<,所以423C π= 即21,33C A B ππ=+=.所以由正弦定理得sin sin sin a b c A B C === 所以,a Ab B == 2a b A B +=+)sin 2sinA B =+sin 2sin3B B π⎤⎛⎫=-+ ⎪⎥⎝⎭⎦sin cos cos sin 2sin33B B B ππ⎫=-+⎪⎭3sin2B B ⎫=+⎪⎪⎭2sin 6B π⎛⎫=+ ⎪⎝⎭因为10,3B π<<所以662B πππ<+<所以1sin 126B π⎛⎫<+< ⎪⎝⎭,所以12sin 26B π⎛⎫<+< ⎪⎝⎭ 所以2+a b 取值范围为()1,2.18.(1)(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;(2)30,2⎡⎤⎢⎥⎣⎦;(3)3310⎡⎤⎢⎥⎣⎦.【分析】(1)观察图象,由函数最值求出A ,由周期求出ω,再将7,112π⎛⎫- ⎪⎝⎭代入得出 ϕ,即可求出函数()f x 的解析式,进而得出函数()g x 的解析式以及对称中心; (2)由x 的范围结合余弦函数的性质可得()g x 的值域;(3)将已知方程参变分离,利用对勾函数的性质求出值域,可得实数m 的取值范围. 【详解】(1)根据图象可知1A = 174123T ππ=- ∴T π=,∴22Tπω== ()()cos 2f x x φ=+ 将7,112π⎛⎫-⎪⎝⎭代入得 7cos 16πϕ⎛⎫+=- ⎪⎝⎭ 即726k πϕππ+=+,解得 26k πϕπ=- k Z ∈ ∵2πϕ<,∴0k = 6πϕ=-∴()cos 26f x x π⎛⎫=- ⎪⎝⎭.函数()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),可得 cos 46y x π⎛⎫=- ⎪⎝⎭,曲线再向左平移4π个单位长度,再向上平移1个单位得()5cos 416g x x π⎛⎫=++ ⎪⎝⎭令54,62x k k Z πππ+=+∈,解得 124k x ππ=-+ ∴此函数图象的对称中心为(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z . (2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则 54514,cos 41,63362x x ππππ⎡⎤⎛⎫⎡⎤+∈⇔+∈- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦()53cos 410,62g x x π⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦,即 ()g x 的值域为30,2⎡⎤⎢⎥⎣⎦. (3)()()()2230g x m g x m +-+-=()()()2231g x g x m g x ⇔++=+⎡⎤⎣⎦()()()2231g x g x m g x ++⇔=+令()1s g x =+,由(2)知51,2s ⎡⎤∈⎢⎥⎣⎦2223310s m s s s +⎡⎤==+∈⎢⎥⎣⎦因此m 的取值范围为3310⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题考查三角函数图象的应用,考查余弦函数的性质,考查有解问题的应用,解决本题的关键点是将已知方程化简,参变分离,利用对勾函数的性质求出对应函数的值域,进而得出参数的取值范围,考查学生计算能力,属于中档题.19.(1)a = sin 1B =【分析】(1)先由cos A 求得sin A ,结合三角形面积公式可得6bc =,根据条件可得b ,c 的值,再利用余弦定理求得a ,利用正弦定理求得sin B ;(2)由(1)可知2B π=,则2sin cos 3C A == cos sin C A ==. (1)因为2cos 3A =,()0,A π∈所以sin A =因为1sin 2ABCS bc A =6bc = 又1b c -=,所以3b = 2c =所以a ==因为sin sin a b A B =3sin B =,所以sin 1B =. (2)在ABC 中由(1)可知2B π=,则2A C π+=所以2sin cos 3C A == cos sin C A ==则sin 22sin cos C C C ==221cos 2cos sin 9C C C =-=所以cos 2cos 2cos sin 2sin 666C C C πππ⎛⎫-=+= ⎪⎝⎭20.98【分析】先将题中正弦值利用诱导公式转化为余弦值,再用降次公式将式子中高次转化为1次,再观察题中角度与特殊角的联系,再用两角和差公式展开化简求值.【详解】444sin 10sin 50sin 70︒︒︒++444cos 80cos 40cos 20︒︒︒=++2221cos1601cos801cos40222︒︒︒⎛⎫⎛⎫⎛⎫+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()222132cos1602cos802cos40cos 160cos 80cos 404︒︒︒︒︒︒=++++++ ()3111cos401cos1601cos80cos20cos80cos40424222︒︒︒︒︒︒⎛⎫+++=+-+++++ ⎪⎝⎭ ()95cos80cos40cos2088︒︒︒=++- ()()95cos 6020cos 6020cos2088︒︒︒︒︒⎡⎤=+++--⎣⎦ ()952cos60cos20cos2088︒︒︒=+-98=. 【点睛】本题考查了三角恒等变换,运用降次公式,两角和与差公式进行化简求值,注意观察角度间的联系及与特殊角的联系,还考查了学生的分析观察能力,运算能力,难度较大.21.(1)()16f π=,最小正周期为π; (2)0,,3ππ⎧⎫⎨⎬⎩⎭【分析】(1)利用三角恒等变换化简函数()f x 的解析式,利用正弦函数的性质即可求解;(2)令()0f x =,可得266x ππ+=或56π或136π,即可求解x 的值.(1)解:因为()222cos 2cos 213633f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2sin 212sin 21366x x πππ⎡⎤⎛⎫⎛⎫=+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2sin 1162f ππ⎛⎫=-= ⎪⎝⎭,最小正周期为 22T ππ==. (2)令()0f x =,则1sin 262x π⎛⎫+= ⎪⎝⎭,因为[0,]x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以266x ππ+=或56π或136π,即0x =或3π或π,所以函数()f x 的零点所构成的集合为0,,3ππ⎧⎫⎨⎬⎩⎭.。

高中数学(人教A版)必修一课后习题:任意角(课后习题)【含答案及解析】

高中数学(人教A版)必修一课后习题:任意角(课后习题)【含答案及解析】

第五章三角函数任意角和弧度制任意角课后篇巩固提升合格考达标练1.(2021山西太原高一期末)475°角的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限475°=360°+115°,又因为115°是第二象限角,而475°与115°终边相同,故475°角的终边所在的象限是第二象限.故选B.2.若θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.3.(2021广东潮州高一期末)下列角中终边与340°相同的角是()A.20°B.-20°C.620°D.-40°340°角终边相同的角的集合为{x|x=340°+k·360°,k∈Z},当k=-1时,可得x=-20°.故选B. 4.如图,终边在阴影部分(含边界)的角的集合是()A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z},终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.故选C.5.已知角α,β的终边关于直线x+y=0对称,且α=-60°,则β=.30°+k·360°,k∈Z-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为-45°+15°=-30°,所以β=-30°+k·360°,k∈Z.6.与-2 020°角终边相同的最小正角是;最大负角是.°-220°-2 020°=-6×360°+140°,140°-360°=-220°,所以最小正角为140°,最大负角为-220°. 7.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合.0°~360°范围内,终边落在阴影部分内的角为30°<α<150°与210°<α<330°,故所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.等级考提升练8.(2021北京西城高一期末)下列各角中,与27°角终边相同的是()A.63°B.153°C.207°D.387°27°角终边相同的角的集合为{α|α=27°+k·360°,k∈Z},取k=1,可得α=387°.故与27°角终边相同的是387°.故选D.9.射线OA绕端点O逆时针旋转120°到达OB位置,由OB位置绕端点O旋转到达OC位置,得∠AOC=-150°,则射线OB旋转的方向与角度分别为()A.逆时针,270°B.顺时针,270°C.逆时针,30°D.顺时针,30°,∠AOB=120°,设∠BOC=θ,所以∠AOC=∠AOB+∠BOC=120°+θ=-150°,解得θ=-270°,故需要射线OB绕端点O顺时针旋转270°.10.已知集合M={x|x=k·180°2±45°,k∈Z},P={x|x=k·180°4±90°,k∈Z},则M,P之间的关系为() A.M=P B.M⊆PC.M⊇PD.M∩P=⌀M,x=k·180°2±45°=k·90°±45°=(2k±1)·45°,k∈Z,对于集合P,x=k·180°4±90°=k·45°±90°=(k±2)·45°,k∈Z.∴M⊆P.11.(多选题)(2020海南临高高一期末)已知A={第一象限角},B={锐角},C={小于90°的角},那么A,B,C的关系是()A.B=A∩CB.B∪C=CC.B∩A=BD.A=B=CA,A∩C除了锐角,还包括其他角,比如-330°角,所以A选项错误.对B,锐角是小于90°的角,故B选项正确.对C,锐角是第一象限角,故C选项正确.对D,A,B,C中角的范围不一样,所以D选项错误.12.(多选题)已知角2α的终边在x轴的上方,那么角α可能是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2α的终边在x轴的上方,所以k·360°<2α<k·360°+180°,k∈Z,则有k·180°<α<k·180°+90°,k∈Z.故当k=2n,n∈Z时,n·360°<α<n·360°+90°,n∈Z,α为第一象限角;当k=2n+1,n∈Z时,n·360°+180°<α<n·360°+270°,n∈Z,α为第三象限角.故选AC.13.终边落在直线y=-√33x上的角的集合是.β|β=150°+k·180°,k∈Z}0°~360°范围内,终边落在直线y=-√33x上的角有两个,即150°角与330°角(如图),又所有与150°角终边相同的角构成的集合S1={β|β=150°+k·360°,k∈Z},所有与330°角终边相同的角构成的集合S2={β|β=330°+k·360°,k∈Z},于是,终边落在直线y=-√33x上的角的集合S=S1∪S2={β|β=150°+k·360°,k∈Z}∪{β|β=330°+k·360°,k∈Z}={β|β=150°+k·180°,k∈Z}.14.若α与288°角终边相同,则在0°~360°内终边与角α4终边相同的角是 .°,162°,252°,342°,得α=288°+k ·360°(k ∈Z ),α4=72°+k ·90°(k ∈Z ).又α4在0°~360°内,所以k=0,1,2,3,相应地有α4=72°,162°,252°,342°.15.已知α=-1 910°.(1)把α写成β+k ·360°(k ∈Z ,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.设α=β+k ·360°(k ∈Z ),则β=-1 910°-k ·360°(k ∈Z ).令-1 910°-k ·360°≥0,解得k ≤-1 910360=-51136.k 的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限角.(2)令θ=250°+n ·360°(n ∈Z ),取n=-1,-2就得到符合-720°≤θ<0°的角.250°-360°=-110°,250°-720°=-470°.故θ=-110°或θ=-470°. 新情境创新练16.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.,α+β=-280°+k ·360°,k ∈Z .∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.① α-β=670°+k ·360°,k ∈Z .∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.② 由①②,得α=15°,β=65°.。

第五章-5.1-任意角和弧度制高中数学必修第一册人教A版

第五章-5.1-任意角和弧度制高中数学必修第一册人教A版


第二象限角时, 的终边在标号为“二”的位置上.故 可能是第一象限
3
3
角、第二象限角或第四象限角.
图5.1-8
【学会了吗|变式题】
2.[多选题](2024·福建省厦门市期末)
已知角
的终边与120∘
A.第一象限角

角的终边关于轴对称,则 是(
2
B.第二象限角
C.第三象限角
BD
)
D.第四象限角
【解析】∵ 角 的终边与120∘ 角的终边关于轴对称,∴ 角 的终边与−120∘ 角
=−
②③
的是______.
【解析】在①中, 与 的始边相同, 的终边为 的始
边, 与 的终边相同,所以 = + .
在②中, 与 的始边相同, 的终边为− 的始边,−
与 的终边相同,所以 = + − = − .
同理可知,
③中 = − ,④中 = + .
(1)405∘ ;
【解析】405∘ 角是第一象限角.405∘ = 45∘ + 360∘ ,所以在0∘ ∼ 360∘ 范围内,与
405∘ 角终边相同的角是45∘ 角.
(2)−45∘ ;
【解析】−45∘ 角是第四象限角.−45∘ = 315∘ − 360∘ ,所以在0∘ ∼ 360∘ 范围内,与
−45∘ 角终边相同的角是315∘ 角.
4
AB

,故A正确;
4
+ 2π , ∈ ,

,故B正确;
4
+ 2π =

− ,解得
4
+ 2π =
13π
,解得
4
=

高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.为了得到函数()()5sin 212f x x π=-的图象,可以将函数()sin 2g x x =图象上所有的点( ) A .向右平移512π个单位长度 B .向左平移512π个单位长度 C .向右平移524π个单位长度 D .向左平移524π个单位长度 2.下列图像中,符合函数sin 2()1cos xf x x=-的是( )A .B .C .D .3.已知函数()()πcos 2sin 06f x x x ωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π,将函数()y f x =的图像向左平移π6个单位长度后得到函数()y g x =的图像,则( )A .()g x xB .()g x x =C .()π26g x x ⎛⎫=- ⎪⎝⎭D .()2g x x4.函数sin y x =-在[0,2]π上的图像是( )A .B .C .D .5.要想得到正弦曲线,只需将余弦曲线( ) A .向右平移2π个单位 B .向左平移2π个单位 C .向右平移π个单位 D .向左平移π个单位6.将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===7.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M 3π,04⎛⎫⎪⎝⎭对称,且在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,则ω和φ的值分别为( )A .23和π4 B .2和π3 C .2和π2 D .103和π28.已知函数()π()cos 002f x A x A ωϕωϕ=+>><(,,)的部分图象如图所示,若先将函数()f x 图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数()g x 的图象;再把()g x 图象上所有点向左平行移动2π3个单位长度,得到函数()h x 的图象,则当2π[π,]3x ∈-时,则函数()h x 的值域为( )A .[-2,0]B .[-1,0]C .[0,1]D .[0,2]9.已知函数()π4f x x ⎛⎫=- ⎪⎝⎭,则下列结论中正确的是( )A .()f x 的最小正周期为πB .()f x 的最大值为2C .()f x 在区间3π0,4⎛⎫ ⎪⎝⎭上单调递增 D .()f x 的图像关于直线π4x =对称10.将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,]64ππ-上为增函数,则ω最大值为( )A .32B .2C .3D . 11.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3C A π=-,则ba的取值范围是( )A .2)B .C .D .4)12.已知函数()4sin sin ,(0)33f x x x ππωωω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭的最小正周期为π,将其图象沿x 轴向左平移(0)m m >个单位,所得图象关于直线3x π=对称,则实数m 的最小值为( )A .6πB .3π C .34π D .4π 13.已知函数3()2sin 242f x x ππϕϕ⎛⎫⎛⎫=+-< ⎪⎪⎝⎭⎝⎭是奇函数,为了得到函数()y f x =的图象,可把函数52cos 26y x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度14.某种商品一年内每件出厂价在7千元的基础上,按月呈()()cos f x A x B ωϕ=++的模型波动(()f x 的单位:千元,x 为月份,112x ≤≤且*x ∈N ).已知3月出厂价最高,为9千元,7月出厂价最低,为5千元,则()f x 的解析式为( ) A .()ππ2sin 744f x x ⎛⎫=++ ⎪⎝⎭B .()9si 44πn πf x x ⎛⎫=- ⎪⎝⎭C .()πn 74f x x =+D .()π2sin 744πf x x ⎛⎫=-+ ⎪⎝⎭15.函数()sin cos f x x x =+的图象可以由函数()sin cos g x x x =-的图象( )A .向右平移π4单位得到B .向左平移π4单位得到C .向右平移π2单位得到D .向左平移π2单位得到16.将函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭的图象向右平移6π个单位长度,得到函数()g x 的图象,则下列关于()g x 的说法正确的是( ) A .图象关于直线3x π=-对称 B .图象关于6x π=对称 C .图象关于点5,012π⎛⎫- ⎪⎝⎭中心对称D .图象关于点,03π⎛⎫⎪⎝⎭中心对称17.将偶函数()()()2cos 2(0π)f x x x ϕϕϕ=+-+<<的图象向右平移π6个单位,得到()y g x =的图象,则()g x 的一个单调递减区间为( ) A .ππ,36⎛⎫- ⎪⎝⎭B .π7π,1212⎛⎫ ⎪⎝⎭C .π2π,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、解答题18.已知函数()()3sin 2f x x πϕϕ=+∈-,(,2π)函数关于4x π=对称.(1)求()f x ϕ的值及的解析式;(2)用五点法在下列直角坐标系中画出()f x 在744ππ⎡⎤-⎢⎥⎣⎦,上的图象;(3)写出()f x 的单调增区间及最小值,并写出取最小值时自变量x 的取值集合. 19.不画图,说明下列函数的图象可由正弦曲线经过怎样的变化得出: (1)1π8sin 48y x ⎛⎫=- ⎪⎝⎭;(2)1πsin 337y x ⎛⎫=+ ⎪⎝⎭.20.已知函数()cos()(0f x x ωϕω=+>,0)ϕπ<<为奇函数,且其图象上相邻的一个最高点与一个最低点之(1)求()f x 的解析式;(2)若已知三点坐标1,0A ,1,12B f πα⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭和()1,2C f πα⎛⎫- ⎪⎝⎭.若//AB AC ,且0,2πα⎛⎫∈ ⎪⎝⎭,求sin cos αα+的值.21.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为4,且满足1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的解析式; (2)求方程()102f x +=在区间[]22-,上所有解的和.22.已知函数1cos 2y x x =+,说明此函数是由sin y x =如何变换而来的. 23.已知函数()2sin f x x ω=,其中常数0>ω. (1)若函数()y f x =的最小正周期为2π,求ω的值;(2)若()y f x =是2,43ππ⎡⎤-⎢⎥⎣⎦上的严格增函数,求ω的取值范围;(3)当2ω=时,则将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[],(,?R,)a b a b a b ∈<且满足:()y g x =在[],a b 上至少含有30个零点,在所有满足上述条件的[],a b中,求b a -的最小值.三、填空题24.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π0,2f x g x x ⎫⎛⎫+=∈ ⎪⎪⎝⎭⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭ k ∈Z③函数()y f x =与函数()y g x =图象关于7π24x =对称. 25.将函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象与函数()f x 的图象重合,则ω的最小值为______.26.将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于原点对称,则ϕ的一个取值为_________.27.已知数列{}n a 满足()1111n n a n N a *+=-∈+,11a =.若从四个条件:①A =;②2ωπ=;③3πϕ=;④12B =中,选择一个作为条件补充到题目中,将数列{}n a 的通项n a 表示为sin()0,||2A n B πωϕωϕ⎛⎫++>< ⎪⎝⎭的形式,则n a =___________.四、多选题28.已知函数()()cos 21f x A x ϕ=+-(0A >,0ϕπ<<),若函数()y f x =的部分图象如图所示,函数()()sin g x A Ax ϕ=-,则下列结论不正确的是( )A .函数()g x 的图象关于直线12x π=-对称B .函数()g x 的图象关于点,02π⎛⎫⎪⎝⎭对称C .将函数()1y f x =+的图象向左平移12π个单位长度可得到函数()g x 的图象 D .函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦29.将函数()2sin(2)6f x x π=-的图像向左平移6π个单位后,得到函数()g x 的图像,则下列结论中正确的是( )A .()2sin 2g x x =B .()g x 的图象关于点(,0)12π-中心对称C .()g x 的图象关于3x π=-对称D .()g x 在区间[,]66ππ-上单调递增参考答案与解析1.C【分析】由条件根据函数 y =A sin(ωx +φ)的图象变换规律,可得结论. 【详解】因为()()()55sin 2sin 21224f x x x ππ⎡⎤=-=-⎢⎥⎣⎦所以应将函数()sin 2g x x =的图象上所有的点向右平移524π个单位长度. 故选:C. 2.A【分析】根据函数的奇偶性及函数值验证选项即可得出答案. 【详解】由()sin 21cos x f x x =-知 ()()sin 21cos xf x f x x--==-- ()f x ∴是奇函数,选项B 错误;()sin 2101cos1f =>-, ()()()sin 2ππ01cos πf --==--所以选项C 和选项D 错误,选项A 正确. 故选:A. 3.A【分析】先将()f x )6x πω+,根据最小正周期求出ω,再根据正弦函数的图像平移得到答案.【详解】因为()ππcos 2sin 66f x x x x ωωω⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭的最小正周期为π,所以2ω=.将()π26f x x ⎛⎫+ ⎪⎝⎭的图像向左平移π6个单位长度后得到函数()ππ2266y g x x x⎡⎤⎛⎫==++= ⎪⎢⎥⎝⎭⎣⎦的图像. 故选:A. 4.D【解析】利用五点法找到特殊点3(0,0),,1,(,0),1,(2,0)22ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由此判断选项即可【详解】根据五点法找出五个特殊点,分别为3(0,0),,1,(,0),1,(2,0)22ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,然后描点并用光滑的曲线连接 故选:D【点睛】本题考查正弦型函数的图像,考查五点法作图的应用 5.A【分析】由诱导公式及函数图象平移规则即得.【详解】因为cos sin()2y x x π==+所以将余弦曲线向右移2π个单位可得sin()sin 22y x x ππ=-+=.故选:A . 6.D【分析】由图象求得()f x 的表达式,然后由图象变换得结论.【详解】设()()sin (0,0,)f x A x A ωαωαπ=+>><,由函数图象,知52,212122T A πππ⎛⎫==--= ⎪⎝⎭,所以2,2T Tππω===.所以()()2sin 2f x x α=+. 又函数图象过点5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πα⎛⎫⨯+=- ⎪⎝⎭.所以532,62k k ππαπ+=+∈Z ,解得22,3k k παπ=+∈Z . 因为απ<,所以23πα=.所以()22sin 22sin233f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以1,2,23m n πϕ===.故选:D. 7.C【分析】由f (x )是偶函数及0≤φ≤π可得φπ2=.由图象关于点M 3π,04⎛⎫ ⎪⎝⎭对称,且在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,结合ω>1及余弦函数的图象与性质可求ω. 【详解】解:由f (x )是偶函数 φ=k ππ2+ k ∈Z ∵0≤φ≤π,∴当k =0时,则φπ2=. ∴f (x )=sin (ωx π2+)=cos ωx ∵f (x )图象上的点关于3π,04M ⎛⎫⎪⎝⎭对称∴3π4f ⎛⎫= ⎪⎝⎭3πcos 04ω=,故3π4ω=k ππ2+ k ∈Z即()2213k ω=+ k ∈Z . ∵f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,可得π12ππ22ωω≤⋅=,即ω≤2. 又∵()2213k ω=+ k ∈Z ω>1∴当k =1时可得ω=2. 故选:C . 8.D【分析】由图可求出函数的周期πT =,从而可求出2ω=,由图可得2A =,然后将点13,212π⎛⎫⎪⎝⎭代入函数中可求出ϕ的值,进而可求得函数解析式,根据三角函数图象变换规律求出()h x ,再由2ππ,3x ⎡⎤∈-⎢⎥⎣⎦求出3262πππx -≤+≤,再由余弦函数的性质可求得()h x 的值域. 【详解】由题意得313341234T πππ=-=,∴πT = 2π2T ω== 当13π12x =时,则ππ132212x k ωϕϕ+=⨯+= ()Z k ∈ ∴()132ππZ 6k k ϕ=-∈π2ϕ<,,令1k =可得π6ϕ=-又易知2A =,故()π2cos 26f x x ⎛⎫=- ⎪⎝⎭由三角函数图象的变换可得1π1π()2cos(2)2cos()4626g x x x =⨯-=-所以()1212cos 2cos 23626πππh x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∵2ππ3x -≤≤,∴3262πππx -≤+≤ ∴1π10cos 26x ⎛⎫≤+≤ ⎪⎝⎭,故函数()g x 的值域为[]0,2.故选:D 9.C【分析】根据三角函数图象性质结合选项一一判断即可.【详解】由()π4f x x ⎛⎫=- ⎪⎝⎭对A 项()f x 的最小正周期为2π,故A 错;对B 项()f x ,故B 错;对C.项当3π0,4x ⎛⎫∈ ⎪⎝⎭时,则有πππ442x -<-<,因为sin y x =在ππ,42⎛⎫- ⎪⎝⎭上单调递增所以()f x 在区间3π0,4⎛⎫⎪⎝⎭上单调递增,故C 正确;对D.项,当π4x =时,则有πππ0444f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以π4x =不是()f x 的对称轴,故D 错.故选:C 10.B【分析】先求出()g x ,又因为()y g x =在ππ[,]64-上为增函数,则ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤,即可求出ω最大值.【详解】函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象则()ππ2sin 2sin 33g x x x ωωω⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦又因为()y g x =在ππ[,]64-上为增函数 所以ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤解得2ω≤,故ω的最大值为2.11.C【分析】根据题意可得2B A =,由锐角三角形可求出A 的范围,再由正弦定理及余弦函数的值域即可求解. 【详解】3C A =-π sin sin 22cos ,sin sin b B A A a A A∴=== 2(0,),2B A =∈π3(0,)2C A =-∈ππ(,)64A ∴∈ππcos A ∴∈ba∴∈. 故选:C 12.A【分析】由已知,先对函数()f x 进行化简,根据最小正周期为π,求解出ω,然后根据题意进行平移变换,得到平移后的解析式,再利用图象关于直线π3x =对称,建立等量关系即可求解出实数m 最小值.【详解】解:()ππ114sin sin 4sin sin 3322f x x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫=+-=+ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭22111cos 231cos 24sin 42cos 2124242x x x x x ωωωωω⎡⎤⎫-+⎛⎫⎛⎫⎢⎥=-=⋅-⋅=--⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦即()2cos21f x x ω=--,由其最小正周期为π,即22ππω=,解得1ω= 所以()2cos21f x x =--将其图象沿x 轴向左平移m (0m >)个单位,所得图象对应函数为()()2cos212cos 221y x m x m =-+-=-+- 其图象关于3x π=对称,所以2π2π,Z 3m k k +=∈,所以 ππ,Z 32k m k =-+∈ 由0m >,实数m 的最小值为π6.故选:A. 13.D【分析】根据()f x 是奇函数可求得4πϕ=-,利用诱导公式得52cos 22sin 263y x x ππ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭,即可得【详解】因为()f x 是奇函数,所以3,Z 4k k πϕπ-=∈,即3,Z 4k k πϕπ=+∈ 因为2πϕ<,所以4πϕ=-,所以()()2sin 22sin 2f x x x π=-=-因为52cos 22sin 263y x x ππ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭所以可把函数52cos 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度.故选:D. 14.D【分析】先根据最值,求出,A B ,求出最小正周期,进而求出2ππ4T ω==,代入特殊点坐标求出π4ϕ=-,求出正确答案.【详解】解:由题意得95A B A B +=⎧⎨-+=⎩,解得27A B =⎧⎨=⎩,又最小正周期为()2738⨯-=所以2ππ4T ω==,所以()π2sin 74f x x ϕ⎛⎫=++ ⎪⎝⎭将()3,9代入,解得3π2sin 794ϕ⎛⎫++= ⎪⎝⎭,则3ππ242πk ϕ+=+ Z k ∈π2π,Z 4k k ϕ=-+∈因为π2ϕ<,所以当0k =时,则π4ϕ=-符合题意 综上:()π2sin 744πf x x ⎛⎫=-+ ⎪⎝⎭故选:D 15.D【分析】根据辅助角公式,结合正弦型函数图像变换的性质进行求解即可.【详解】因为()sin cos )4g x x x x π=--,()sin cos ))442f x x x x x πππ=+=+=-+所以函数()sin cos g x x x=-向左平移2π单位得到函数()sin cos f x x x =+的图像 故选:D 16.C【分析】根据三角函数图象的平移变换可得()sin 26g x x π⎛⎫=- ⎪⎝⎭,结合三角函数对称轴、对称中心的定义与验证法依次判断选项即可.【详解】由题意得,()sin 2sin 2366g x x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴132g π⎛⎫-=- ⎪⎝⎭,162g π⎛⎫= ⎪⎝⎭和13g π⎛⎫= ⎪⎝⎭故A ,B ,D 错误,又5012g π⎛⎫-= ⎪⎝⎭∴()g x 图象关于点5,012π⎛⎫- ⎪⎝⎭中心对称.故选:C . 17.C【分析】根据辅助角公式,结合偶函数的性质求出ϕ值,再根据余弦函数图象的变换规律求出函数()g x 的解析式,最后根据余弦型函数的单调性进行求解即可.【详解】()()()π2cos 22sin 26f x x x x ϕϕϕ⎛⎫+-+=+- ⎪⎝⎭.因为函数()f x 是偶函数,所以()()ππ2ππ623k k k k ϕπϕ-=+∈⇒=+∈Z Z 因为0πϕ<<,所以2π3ϕ=,所以()2ππ2sin 22cos 236f x x x ⎛⎫=+-= ⎪⎝⎭ 因为函数()f x 的图象向右平移π6个单位,得到()y g x =的图象所以()ππ2cos 22cos 263y g x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭当()π2π22ππ3k x k k ≤-≤+∈Z 时,则函数()g x 单调递减 即当()π2πππ63k x k k +≤≤+∈Z 时,则函数()g x 单调递减 当0k =时,则函数()g x 在π2π63x ≤≤时单调递减. 故选:C 18.(1)4πϕ=()3sin 4f x x π⎛⎫=+ ⎪⎝⎭(2)详见解析(3)单调递增区间是,23244k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈最小值为3-,取得最小值的x 的集合52,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.【分析】(1)根据函数的对称轴,列式,42k k Z ππϕπ+=+∈,求ϕ;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解. (1)因为函数关于直线4x π=对称,所以,42k k Z ππϕπ+=+∈,4k k Z πϕπ=+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以4πϕ=所以()3sin 4f x x π⎛⎫=+ ⎪⎝⎭(2)首先根据“五点法”,列表如下:(3) 令22242k x k πππππ-≤+≤+解得32244k x k ππππ-≤≤+ k Z ∈ 所以函数的单调递增区间是,23244k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈ 最小值为3-令3242x k πππ+=+,得524x k ππ=+ k Z ∈ 函数取得最小值的x 的集合52,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 19.(1)答案见解析;(2)答案见解析【分析】(1)根据先平移,再进行横坐标伸缩变换,最后进行纵坐标伸缩变换求解即可; (2)根据先平移,再进行横坐标伸缩变换,最后进行纵坐标伸缩变换求解即可; 【详解】解:(1)将正弦曲线sin y x =上的所有点向右平移8π个单位长度得到函数sin 8y x π⎛⎫=- ⎪⎝⎭的图象,再将它图象上所有点的横坐标伸长到原来的4倍,纵坐标不变,得到函数1πsin 48y x ⎛⎫=- ⎪⎝⎭的图象,再将它的图象上所有点的纵坐标伸长为原来的8倍,横坐标不变得到函数1π8sin 48y x ⎛⎫=- ⎪⎝⎭的图象.(2)将正弦曲线sin y x =上的所有点向左平移7π个单位长度得到函数sin 7y x π⎛⎫=+ ⎪⎝⎭的图象,再将它图象上所有点的横坐标缩短为原来的13倍,纵坐标不变,得到函数πsin 37y x ⎛⎫=+ ⎪⎝⎭的图象,再将它的图象上所有点的纵坐标缩小为原来的13倍,横坐标不变得到函数1πsin 337y x ⎛⎫=+ ⎪⎝⎭的图象.20.(1)()sin f x x =-【分析】(1)由题意设最高点为()1,1x ,相邻最低点为()2,1x -,则12||2Tx x -=,由三角函数的图象及已知可得222()22T+=,解得T ,利用周期公式可求ω,由(0)cos 0f ϕ==,结合范围0ϕπ<<,可求ϕ的值,即可得解()f x 的解析式.(2)由(1)利用诱导公式化简三点坐标,利用向量平行的坐标表示可得1cos sin 2αα=,进而利用三角函数恒等变换即可求解sin cos αα+的值. (1)解:设最高点为()1,1x ,相邻最低点为()2,1x -,则122T x x -=由三角函数的图象及已知,可得2242T ⎛⎫+= ⎪⎝⎭,即22444T π+=+,解得2T π=,由2T πω=,可得1ω=所以()cos()f x x ϕ=+因为函数()cos()(0f x x ωϕω=+>,0)ϕπ<<为奇函数 所以(0)cos 0f ϕ==,得2k πϕπ=+Z k ∈又0ϕπ<<,所以2ϕπ=于是()cos()sin 2f x x x π=+=-(2)21.(1)()cos 24f x x ππ⎛⎫=+ ⎪⎝⎭(2)1-【分析】(1)由()f x 的最小正周期为4求得ω,由1122f x fx ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭得()f x 的图象的对称中心,并结合02πϕ<<,求出ϕ的值及()f x 的解析式(2)由()102f x +=,得1cos 242x ππ⎛⎫+=- ⎪⎝⎭,解得546x k =+或1146x k =-和k ∈Z ,再由[]2,2x ∈-,可求出x 的值,从而可求得它们的和. (1)因为()f x 的最小正周期为4,所以242ππω==.因为()f x 满足1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称所以1cos 022πϕ⎛⎫⨯+= ⎪⎝⎭,所以()42k k ππϕπ+=+∈Z ,即()4k k πϕπ=+∈Z又02πϕ<<,所以4πϕ=.()f x 的解析式为()cos 24f x x ππ⎛⎫=+ ⎪⎝⎭.(2) 由()11cos 02242f x x ππ⎛⎫+=++= ⎪⎝⎭ 得1cos 242x ππ⎛⎫+=- ⎪⎝⎭,所以22243x k ππππ+=+或22243x k ππππ+=-k ∈Z 解得546x k =+或1146x k =- k ∈Z因为[]2,2x ∈-,所以方程的解集为115,66⎧⎫-⎨⎬⎩⎭所以所有解的和为511166-=-.22.sin y x =向左平移6π个单位【分析】利用辅助角公式化简函数解析式,然后根据左右平移变换即可求出结果.【详解】因为1cos sin 26y x x x π⎛⎫=+=+ ⎪⎝⎭ 根据三角函数的图象变换,将函数sin y x =向左平移6π个单位,即可得到sin()6y x π=+的图象.23.(1)1 (2)304ω<≤ (3)433π【分析】(1)y =A sin(ωx +φ)+B 的最小正周期为2πω;(2)依题意可得42232ππωππω⎧--⎪⎪⎨⎪⎪⎩,解之即可;(3)由条件根据函数sin()y A x ωϕ=+的图象变换规律,可得()g x 的解析式,令()0g x =,即可解出零点的坐标,可得相邻两个零点之间的距离.若b a -最小,则a 和b 都是零点,此时在区间[a ,*]()m a m N π+∈恰有21m +个零点,所以在区间[a ,14]a π+是恰有29个零点,从而在区间(14a π+,]b 至少有一个零点,即可得到a ,b 满足的条件.进一步即可得出b a -的最小值.(1) 解:22ππω=,∴1ω=(2)解:由0ω>,根据题意有42232ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,,解得304ω≤<(3)另一方面,在区间5[12π,514]312πππ++恰有30个零点因此b a -的最小值为431433πππ+=. 24.③【分析】根据图象分别确定,A T ,结合五点作图法可最终求得()f x 解析式,再根据三角函数平移变换求得()g x ;对于①,直接代入()f x ,()g x解析式,结合三角恒等变换化简方程为sin 212x π⎛⎫-= ⎪⎝⎭,再结合x 范围求得方程的根即可;对于②,()()ππ2sin 2sin 2π33tan 2ππ32sin 2cos 263x x g x x f x x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎝⎭⎝⎭===-≥ ⎪⎛⎫⎛⎫⎝⎭+- ⎪ ⎪⎝⎭⎝⎭ππππ2π332k x k +≤-<+和k ∈Z ,解得ππ5ππ,32122k k x ⎡⎫∈++⎪⎢⎣⎭,k ∈Z 故②错误; 对于③,因为()7π7ππ4ππ2sin 22sin 22sin 2126633f x x x x g x ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 所以()y f x =与()y g x =图象关于7π24x =对称,故③正确. 故答案为:③ 25.12【分析】由题意,利用图像平移变换法则得到π6为函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的一个周期,从而得到12kω=()*N k ∈,可得ω的最小值.【详解】将函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度后所得图象与()f x 的图象重合,故π6为函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的一个周期即2ππ6k ω=()*N k ∈,则12k ω=()*N k ∈,故当1k =时,则ω取得最小值12. 故答案为:12 26.4π 【分析】根据平移后的可得函数()cos(22)g x x ϕ=+,根据题意可得(0)0g =可得22k πϕπ=+,取一值即可得解.【详解】将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度 可得()cos(22)g x x ϕ=+,由函数()g x 的图象关于原点对称 可得(0)cos(2)0g ϕ== 所以22k πϕπ=+ 42k ππϕ=+当0k =时,则4πϕ=.故答案为:4π 27134n ππ⎛⎫-+ ⎪⎝⎭或134n ππ⎛⎫++ ⎪⎝⎭ 【分析】由递推关系推出n a 的通项公式,发现n a 周期为2,求出w π=,则排除②,再根据,1a ,2a 的取值,求出14B =,排除④,分别讨论①和③作为条件时是否成立,得到最终的表达式. 所以数列{}n a 周期为2,即22T wπ==,解得w π=,则②不能作为条件,此时sin()n a A n B πϕ=++ 有sin()11sin(2)2A B A B πϕπϕ++=⎧⎪⎨++=-⎪⎩ 解得14B =,则④不能作为条件,此时1sin()4n a A n πϕ=++当①作为条件时,则1)4n a n πϕ=++,11)14a πϕ++=此时sin ϕ=3πϕ=-代入n a 成立,故①可作为条件,此时1)34n a n ππ=-+ 当③作为条件时,则1sin()34n a A n ππ=++,则11sin()134a A n ππ=++=,此时A =n a 成立,故③可作为条件,此时1)34n a n ππ=++. 故答案为:1)34n a n ππ=-+或1)34n a n ππ=++.【点睛】思路点睛:(1)本题在求出数列{}n a 的通项公式后,先根据周期性和特殊值确定ω和B 的值,排除部分选项,然后逐一讨论其他选项是否成立; (2)三角函数中解析式的确定,一般由周期确定ω,由特殊值确定ϕ,由最值确定A ,由对称中心确定B .28.ABD【分析】根据三角函数的图象求得,A ϕ的值,得出函数()f x ,进而求得()g x 的解析式,结合正弦函数的图象与性质,逐项判定,即可求解.【详解】根据函数()y f x =的图象,可知2A =当0x =时,则满足()02f =-,则2cos 12ϕ-=-,即1cos 2ϕ=- 因为0ϕπ<<,所以23ϕπ=,可得()22sin 23g x x π⎛⎫=- ⎪⎝⎭. 对于A 中,当12x π=-时,则112g π⎛⎫-=- ⎪⎝⎭,可得函数()g x 的图象不关于直线12x π=-对称,所以A 项错误;对于B 中,当12x π=时,则12g π⎛⎫= ⎪⎝⎭()g x 的图象不关于点,02π⎛⎫ ⎪⎝⎭对称,所以B 项错误; 对于C 中,因为()212cos 23y f x x π⎛⎫=+=+ ⎪⎝⎭232sin 232x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦52sin 26x π⎛⎫=- ⎪⎝⎭,将其图象向左平移12π个单位,可得函数522sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,所以C 项正确; 对于D 中,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以223323,x πππ⎡⎤-∈⎢⎥⎣⎦-,所以当222,332x πππ⎡⎤-∈--⎢⎥⎣⎦,即[0,]12x π∈时,则()g x 单调递减,所以D 项错误.故选:ABD29.BCD 【分析】进行平移可得()2sin(2)6g x x π=+,根据三角函数的性质,逐项分析判断即可得解. 【详解】2sin 2()2sin(2)666()x g x x πππ⎡⎤=+-=+⎢⎥⎣⎦,故A 错误; 令12x π=-可得()2sin 0012g π-==,故B 正确; 令3x π=-可得()2sin()232g ππ-=-=-,故C 正确; [,]66x ππ∈-,所以2,662x πππ⎡⎤+∈-⎢⎥⎣⎦易知sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦单增,所以()g x 在,62ππ⎡⎤-⎢⎥⎣⎦单增,故D 正确.故选:BCD。

人教A版必修1《5.1 任意角和弧度制》练习卷(2)

人教A版必修1《5.1 任意角和弧度制》练习卷(2)

人教A版必修1《5.1 任意角和弧度制》练习卷(2)一、选择题(本大题共10小题,共50.0分)1.集合{α|kπ+π4≤α≤kπ+π2,k∈Z},中的角所表示的范围(阴影部分)是()A. B.C. D.2.已知角α是第二象限角,则α2所在的象限是()A. 第一象限或第二象限B. 第一象限或第三象限C. 第二象限或第三象限D. 第二象限或第四象限3.已知α是第三象限角,且|cosα3|=−cosα3,则α3是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角4.已知α是第二象限的角,那么α2是()A. 第一象限角B. 第二象限角C. 第一或第二象限角D. 第一或第三象限角5.已知集合M={x|x=kπ4+π4,k∈Z},集合N={x|x=kπ8−π4,k∈Z},则()A. M∩N=⌀B. M⊆NC. N⊆MD. M=N6.角α=−60°+k⋅180°(k∈Z)的终边落在()A. 第四象限B. 第一、二象限C. 第一象限D. 第二、四象限7.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. A∩C=CB. B⊆CC. B∪A=CD. A=B=C8.中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是由从一个圆面中剪下的扇形制作而成,设扇形的面积为S1,圆面中剩余部分的面积为S2,当S1与S2的比值为√5−12≈0.618(黄金分割比)时,扇面看上去形状较为美观,那么此时扇形的圆心角的度数约为()A. 127.50°B. 137.50°C. 147.50°D. 150.50°9.已知α为第三象限角,则α2所在的象限是()A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限10.已知集合M={x|x=m+16,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则M,N,P的关系为()A. M=N⊆PB. M⊆N=PC. M⊆N⊆PD. N⊆P⊆M二、填空题(本大题共4小题,共20.0分)11.设α=2019°−360°×k,β=2019°,若α是与β终边相同的最小正角,则k=__________.12.终边落在y轴上的角的集合可以表示为______ .13.已知扇形的圆心角为60∘,其弧长为π,则此扇形的半径为______,面积为______.14.已知集合A={0,1},B={−1,0,a+3}且A⊆B,则a=________.三、解答题(本大题共6小题,共72.0分)15.写出终边在下列阴影部分内的角的集合(含边界).(1)(2)16.已知α=−1910°,(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且−720°≤θ<0°.17.已知α是第二象限角,且8α与2α的终边相同,判断2α是第几象限角。

高中数学新教材必修第一册第五章 三角函数 5.1 任意角和弧度制(南开题库详解)

高中数学新教材必修第一册第五章  三角函数 5.1  任意角和弧度制(南开题库详解)

第五章三角函数 5.1 任意角和弧度制一、选择题(共60小题;共300分)1. 下列结论正确的是A. 终边相同的角一定相等B. 轴上的角均可表示为C. 第一象限的角都是锐角D. 钝角一定是第二象限的角2. 如果,,则是A. 第一或第三象限角B. 第一或第二象限角C. 第二或第四象限角D. 第三或第四象限角3. 已知角,的终边相同,那么的终边在A. 轴非负半轴上B. 轴非负半轴上C. 轴非正半轴上D. 轴非正半轴上4. 在半径不等的两个圆内,弧度的圆心角A. 所对弧长相等B. 所对的弦长相等C. 所对弧长等于各自半径D. 所对弦长等于各自半径5. 下列四个选项中,与角终边相同的角是A. B. C. D.6. 与的终边相同的角是A. B. C. D.7. 下列命题正确的是A. 第一象限角一定不是负角B. 小于的角一定是锐角C. 钝角一定是第二象限角D. 终边相同的角一定相等8. 若是第二象限角,则是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. 的弧度数是A. B. C. D.10. 已知一个扇形的圆心角的弧度数为,则该扇形的弧长与半径的比等于A. B. C. D.11. 半径为,中心角为的弧长为A. B. C. D.12. 下列各组角中,终边相同的是A. 与,B. 与,C. 与,D. 与,13. 一个扇形的圆心角为,半径为,则此扇形的面积为A. B. C. D.14. 与角终边相同的角是A. B. C. D.15. 圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为A. B. C. D.16. 集合中,各角的终边都在A. 轴正半轴上B. 轴正半轴上C. 轴或轴上D. 轴正半轴或轴正半轴上17. 已知扇形的半径为,周长为,则扇形的圆心角等于A. B. C. D.18. 设集合,,那么A. B. C. D.19. 把表示成的形式,使最小的的值是A. B. C. D.20. 设小于的角,锐角,第一象限的角,小于但不小于的角,那么有A. B.C. D.21. 已知为第二象限角,则所在的象限是A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限22. 下列命题正确的是A. 第一象限角一定不是负角B. 小于的角一定是锐角C. 钝角一定是第二象限角D. 终边相同的角一定相等23. 将表的分针拨快分钟,则分针旋转过程中形成的角的弧度数是A. B. C. D.24. 将化为弧度为A. B. C. D.25. 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角26. 对于始边相同的角,下列命题正确的是A. 第一象限角必定为锐角B. 终边相同的角必定相等C. 相等的角,其终边位置必定相同D. 不相等的角,其终边位置必定不同27. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.28. 下列选项中叙述正确的是A. 三角形的内角是第一象限角或第二象限角B. 锐角是第一象限的角C. 第二象限的角比第一象限的角大D. 终边不同的角同一三角函数值不相等29. 与角的终边相同的角是A. B. C. D.30. 角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限31. ,则的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限32. 已知集合,,则等于A.B.C.D. 或33. 将分针拨慢分钟,则分钟转过的弧度数是A. B. C. D.34. 下列说法正确的是A. 第二象限的角比第一象限的角大B. 若,则C. 三角形的内角是第一象限角或第二象限角D. 不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关35. 时钟经过一小时,时针转过了A. B. C. D.36. 若一扇形的圆心角为,半径为,则扇形的面积为A. B. C. D.37. 时钟经过一小时,时针转过了A. B. C. D.38. 已知第一象限角,锐角,小于的角,那么,,之间的关系是A. B. C. D.39. 周长为,圆心角为的扇形面积为A. B. C. D.40. 已知扇形的圆心角为,半径等于,则扇形的弧长为A. B. C. D.41. 在单位圆中,面积为的扇形所对的弧长为A. B. C. D.42. 集合中的角的终边所在的范围(阴影部分)是A. B.C. D.43. 已知扇形的周长是,面积是,则扇形的圆心角的弧度数是A. 或B.C.D.44. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限的角.其中正确命题的个数是A. B. C. D.45. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.46. 已知弧度的圆心角所对的弦长为,则这个圆心角所对的弧长是A. B. C. D.47. 一圆内切于圆心角为,半径为的扇形,则该圆的面积与扇形面积之比为A. B. C. D.48. 中心角为的扇形,它的弧长为,则三角形的内切圆半径为A. B. C. D.49. 若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为A. B. C. D.50. 设集合,,那么A. B. C. D.51. 下列结论中错误的是A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点,则D. 若扇形的周长为,半径为,则其中心角的大小为弧度52. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.53. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.54. 设,下列终边相同的角是A. 与B. 与C. 与D. 与55. 在一块顶角为,腰长为的等腰三角形钢板废料中裁剪扇形,现有如图所示两种方案,则A. 方案一中扇形的周长更长B. 方案二中扇形的周长更长C. 方案一中扇形的面积更大D. 方案二中扇形的面积更大56. 已知第一象限角,锐角,小于的角,那么,,关系是A. B. C. D.57. 设集合,集合,则.A. B. C. D.58. 下列命题中正确的是A. 若,则是第一或第三象限角B. 若,则C. 若,则与的终边相同D. 若角的终边在坐标轴上,则,59. 已知,则是A. 第一象限或第二象限的角B. 第二象限或第四象限的角C. 第一象限或第三象限的角D. 第二象限或第三象限的角60. 若是第二象限角,那么和都不是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角二、填空题(共30小题;共150分)61. 若角,则角的终边在第象限.62. 与角终边相同的角的集合是,它们中最小的正角是,最大的负角是,它们是第象限角.63. 某蒸汽机上的飞轮直径为,每分钟按顺时针方向旋转转,则飞轮每秒钟转过的弧度数是;轮周上的一点每秒钟经过的弧长为.64. 设,且角的终边与角的终边相同,则.65. 如图所示,用集合表示终边在阴影部分的角的集合为.66. 已知扇形的半径为,圆心角为弧度,则该扇形的面积为.67. 有下列四个结论:①角和的终边重合,则,;②角和的终边关于原点对称,则,;③角和的终边关于轴对称,则,;④角和的终边关于轴对称,则,.其中正确的有.(填序号)68. 若是第四象限,则是第象限角.69. 如果把化为(,)的形式,那么,.70. 已知角的终边经过点,且为第三象限角,则的取值范围是.71. 在集合中,属于区间的角的集合是.72. 终边与角的终边互相垂直的角的集合是.73. 若角的终边与角的终边关于直线对称,且,则.74. 已知扇形的面积为,扇形圆心角的弧度数是,那么扇形的周长为.75. 巳知一扇形的圆心角,那么此扇形的面积与其内切圆的面积之比为.76. 如图,已知扇形的圆心角为,半径为,则扇形中所含弓形的面积是.77. 已知扇形的周长为,那么当扇形的半径为时,扇形的面积最大.78. 已知圆心角为的扇形的弧长为,则它的内切圆半径是.79. 若某扇形的面积是,它的周长是,则该扇形圆心角的弧度数为.80. 若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.81. 若将时钟拨慢,则时针转了;若将时钟拨快,则分针转了.82. 下列说法:①终边相同的角一定相等;②第二象限角大于第一象限角;③的角是第一象限角;④小于的角是钝角,直角或锐角.⑤弧度是的圆心角所对的弧;⑥弧度是长度等于半径的圆弧所对圆心角;⑦弧度等于.其中正确的序号为(把正确的序号都写出来).83. 给出下列命题:第二象限角大于第一象限角;三角形的内角是第一象限角或第二象限角;不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;若,则与的终边相同;若,则是第二或第三象限的角.其中不正确的命题是.84. 若扇形的圆心角为,弧长为,则扇形的半径为.85. 如图,点,,是圆上的点,且,,则劣弧的长为.86. ()终边在直线上的角的集合是.()若角的终边与角的终边相同,则在内终边与角的终边相同的角的个数为.87. 用弧度制表示终边在直线上的角的集合是.88. 有下列四个结论:①角和角的终边重合,则,;②角和角的终边关于原点对称,则,;③角和角的终边关于轴对称,则,;④角和角的终边关于轴对称,则,.其中正确的有.(填序号)89. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点与点重合)沿圆周逆时针滚动,点第一次回到点的位置,则点走过的路径的长度为.90. 如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为.三、解答题(共10小题;共130分)91. 已知,若的终边与角的终边重合,求角.92. 试求出终边在如图所示阴影区域内的角的集合.93. 已知,求,并指出的终边位置.94. 今天是周日,那天后是周几?过多少天是周二?在数轴上表达:如图,周二是那些天?如何统一表达?95. (1)写出与下列各角终边相同的角的集合,并把中适合不等式的元素写出来:①;②(2)试写出终边在直线上的角的集合,并把中适合不等式的元素写出来.96. 已知扇形的圆心角是,半径是,弧长为.(1)若,,求扇形的面积;(2)若扇形的周长为,求扇形面积的最大值,并求此时扇形圆心角的弧度数.97. 如图,动点,从点出发,沿着圆周做匀速运动.点按逆时针方向每秒转,点按顺时针方向每秒转,求点,第一次相遇时所用的时间及点,各自走过的弧长.98. 己知弦长为,它所对的圆心角,求所夹的扇形面积以及所对的弓形的周长.99. 设是第二象限角,试比较,,的大小.100. 如图,在扇形中,,弧长为,求此扇形内切圆的面积.答案第一部分1. D2. A3. A4. C5. C6. D7. C8. A9. A10. C11. D12. D13. A 【解析】因为扇形的圆心角为,半径为,所以扇形的面积.14. D15. C16. C17. B18. B19. C20. D21. C22. C23. C 【解析】将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快分钟,故转过的角的大小应为圆周的 .故所求角的弧度数为 .24. B25. B26. C27. A 【解析】设扇形的弧长为,扇形所在圆的半径为,由题意得解得.扇形28. B29. A30. C【解析】由,知角和角终边相同,在第三象限.31. C32. D33. C【解析】钟表的指针按顺时针方向转动,角为负角..36. B 【解析】,所以扇形37. B 【解析】钟表的指针按顺时针方向转动,角为负角.38. A39. A40. A41. B42. C 【解析】当时,;当时,,应选C.43. A44. A 【解析】由于第一象限角不小于第二象限角,故①错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于,但与的终边不相同,故④错;当,时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.45. A【解析】由题意得解得所以.46. C 【解析】由题设,圆弧的半径,所以圆心角所对的弧长.47. B48. B49. D 【解析】如图,等边三角形是半径为的圆的内接三角形,则线段所对的圆心角,作,垂足为,在中,,,所以,,所以,由弧长公式得.50. B51. C52. B53. B【解析】因为为顶角为,腰长为的等腰三角形,所以,,,所以方案一中扇形的周长,方案二中扇形的周长,方案一中扇形的面积,方案二中扇形的面积.56. B 【解析】因为第一象限角,小于的角,锐角,所以.集合57. D 【解析】集合,所以.58. D 【解析】当时,,但不是第一或第三象限角,所以A不正确;当,时,,所以B不正确;当,时,,但是与的终边不相同,所以C不正确;D 正确.59. C 【解析】提示:由已知,所以,即.故是第一象限或第三象限的角.60. B【解析】因为是第二象限角,所以,,所以,,所以是第一或第三象限角,而是第三象限角,所以是第四象限角.第二部分61. 二62. ;,;,;,三63. ,64.65.【解析】由题图知,终边落在射线上的角为,以为终边的角与角的终边相同,所以终边落在图中阴影部分的角的集合为.66.【解析】根据扇形的弧长公式可得,根据扇形的面积公式可得.67. ①②③④68. 三69. 略,略70.71.72. 略73.74.【解析】设扇形的半径为,则,所以,所以扇形的周长为.75.【解析】设扇形的半径为,内切圆的半径为,则,即.又扇,内切圆,所以扇内切圆.76.【解析】因为扇形(),(),所以弓形扇形().77.【解析】设扇形的圆心角为,半径为,扇形的弧长.因为,,所以扇形当时,扇形的面积最大.78.【解析】如图,设内切圆半径为,则扇形的半径为,扇形弧长,解得.79.【解析】设扇形的半径为,弧长为,由题意知解得所以扇形的圆心角的弧度数为.80.【解析】设圆半径为,则圆内接正方形的对角线长为,所以正方形边长为,所以圆心角的弧度数是.81. ,【解析】将时针拨慢,时针按逆时针方向转动,转过的是正角,转过的度数为.将时针拨快,分针按顺时针方向转动,转过的是负角,转过的度数为.82. ⑥【解析】(1)明确各种角的定义,逐一判断即可.对于①,终边相同的角不一定相等,终边相同的角有无数多个,它们相差的整数倍,故①是错误的;对于②,角是第一象限角,角是第二象限角,,所以②错误;对于③,的角是指的角,其中角不是任何象限的角,为轴线角,故③错误;对于④,小于的角指满足的角,其中也包括负角和零角,故④错误.(2)弧度角的定义:把长度等于半径长的弧所对的圆心角叫做弧度的角.由此可知,只有⑥正确.⑤⑦错误.83.【解析】由于第一象限角不小于第二象限角,故错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故错;正确;由于,但与的终边不相同,故错;当,时既不是第二象限角,又不是第三象限角,故错.综上可知只有正确.84.【解析】由,解得.85.【解析】.86. ,【解析】()在内终边在直线上的角为,所以终边在直线上的角的集合为.()因为,所以,依题意,,所以,所以=,即在内与角的终边相同的角为,,共三个.87.【解析】,,,解得,又,故,,,角为,,.88. ①②③④89. .【解析】每次转动一个边长时,圆心角转过,正方形有边,所以需要转动次,回到起点.在这次中,半径为的次,半径为的次,半径为的次,点走过的路径的长度= + = .90.【解析】设,,由题意知劣弧长为,由于圆的半径为,所以.设,则,,所以的坐标为.第三部分91. 略92. 因为,所以终边在题图所示阴影区域内的角的集合为.93. 略94. 略.95. (1)①,其中适合不等式的元素为:,,;②,其中适合不等式的元素为:,,.(2)终边在直线上的角的集合其中适合不等式的元素为:,.96. (1).(2)由题意知,即,,当时,的最大值为,当时,,.即扇形面积的最大值为,此时扇形圆心角的弧度数为.97. ,得秒,走过的弧长为,走过的弧长为.98. ();().99. 因为是第二象限角,所以,,所以,,所以是第一或第三象限角(如图阴影部分).结合单位圆上的三角函数线可得,(i)当是第一象限角时,,,,从而得;(ii)当是第三象限角时,,,,从而得.综上,当是第一象限角,即,时,;当是第三象限角,即,时,.100. 设扇形的半径为,其内切圆的半径为,由已知得,.又因为,所以.所以内切圆的面积为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学(必修一)《第五章 任意角和弧度制》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、多选题1.已知扇形的周长是12,面积是8,则扇形的圆心角的弧度数可能是( ) A .1 B .4C .2D .3二、单选题2.终边与直线y x =重合的角可表示为( ) A .45180,k k Z ︒︒+⋅∈ B .45360,k k Z ︒︒+⋅∈ C .135180,k k Z ︒︒+⋅∈ D .225360,k k Z ︒︒+⋅∈3.下列角中与116π-终边相同的角是( ) A .30-︒B .40-︒C .20︒D .390︒4.下列说法正确的是( )A .长度等于半径的弦所对的圆心角为1弧度B .若tan 0α≥,则()2k k k Z ππαπ≤≤+∈C .若角α的终边过点()()3,40P k k k ≠,则4sin 5α D .当()224k k k Z ππαπ<<+∈时,则sin cos αα<5.已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π6.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4πm肩宽约为8πm ,“弓”所在圆的半径约为5m 41.414≈和1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m三、填空题7.6730'︒化为弧度,结果是______.8.已知扇形的周长为20cm ,面积为92cm ,则扇形的半径为________.9.折扇最早出现于公元五世纪的中国南北朝时代,《南齐书》上说:“褚渊以腰扇障日.”,据《通鉴注》上的解释,“腰扇”即折扇.一般情况下,折扇可以看作从一个圆面中剪下的扇形制作而成,设扇形的弧长为l ,扇形所在的圆的半径为r ,当l 与r 的比值约为2.4时,则折扇看上去的形状比较美观.若一把折扇所在扇形的半径为30cm ,在保证美观的前提下,此折扇所在扇形的面积是_______2cm .10.设地球半径为R ,地球上北纬30°圈上有A ,B 两点,点A 在西经10°,点B 在东经110°,则点A 和B 两点东西方向的距离是___________.四、解答题11.将下列各角化成360,,0360k k βαα=+⋅︒∈︒≤<︒Z 的形式,并指出它们是第几象限的角:(1)1320︒;(2)315-︒;(3)1500︒;(4)1610-︒.12.根据角度制和弧度制的转化,已知条件:1690α=︒(1)把α表示成2k πβ+的形式[)()Z,02k βπ∈∈,;(2)求θ,使θ与α的终边相同,且()4,2θππ∈--.13.已知一扇形的圆心角是72°,半径为20,求扇形的面积. 14.已知一扇形的圆心角为α,半径为R ,弧长为l. (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,则这个扇形的面积最大? 15.已知扇形的周长为c ,当扇形的圆心角为多少弧度时,则扇形的面积最大.16.某商场共有三层楼,在其圆柱形空间内安装两部等长的扶梯Ⅰ、Ⅱ供顾客乘用,如图,一顾客自一楼点A 处乘Ⅰ到达二楼的点B 处后,沿着二楼地面上的弧BM 逆时针步行至点C 处,且C 为弧BM 的中点,再乘Ⅱ到达三楼的点D 处,设圆柱形空间三个楼面圆的中心分别为半径为8m ,相邻楼层的间距为4m ,两部电梯与楼面所成角的正弦值均为13.(1)求此顾客在二楼地面上步行的路程; (2)求异面直线AB 和CD 所成角的余弦值.17.某地政府部门欲做一个“践行核心价值观”的宣传牌,该宣传牌形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知2OA =米,OB x =米()02x <<,线段BA 、线段CD 与弧BC 、弧AD 的长度之和为6米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记该宣传牌的面积为y ,试问x 取何值时,则y 的值最大?并求出最大值.参考答案与解析1.AB【分析】利用扇形的弧长与面积公式建立方程组求解,再利用圆心角公式.【详解】设扇形的半径为r ,弧长为l ,面积为S ,圆心角为α,则212l r +=,182S lr ==解得2r =和8l =或4r =和4l ,则4lrα==或1.故C ,D 错误. 故选:AB . 2.A【分析】根据终边相同的角的概念,简单计算即可.【详解】终边与直线y x =重合的角可表示为45180,k k Z +⋅∈. 故选:A. 3.D【分析】由角度制与弧度制的互化公式得到113306π-=-︒,结合终边相同角的表示,即可求解. 【详解】由角度制与弧度制的互化公式,可得113306π-=-︒ 与角330-︒终边相同的角的集合为{|330360,}A k k Z αα==-︒+⋅︒∈ 令2k =,可得390α=︒所以与角330α=-︒终边相同的角是390α=︒. 故选:D. 4.D【分析】利用弧度制、三角函数值的正负、三角函数的定义和三角函数线的应用逐一判断选项即可. 【详解】对于A ,长度等于半径的弦所对的圆心角为3π弧度,A 错误; 对于B ,若tan 0α≥,则()2k k k ππαπ≤<+∈Z ,B 错误;对于C ,若角α的终边过点()()3,40P k k k ≠,则4sin 5α=±,C 错误;对于D ,当()224k k k ππαπ<<+∈Z 时,则sin cos αα<,D 正确.故选D.5.D【分析】根据扇形的圆心角、弧长和半径的关系以及扇形的面积求解. 【详解】解:将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r =由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π. 故选:D. 6.B【分析】由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.【详解】如图所示,由题意知“弓”所在的弧ACB 的长54488l ππππ=++=,其所对圆心角58524ππα==则两手之间的距离()522sin 1.768m 44AB AD π==⨯⨯≈.故选:B .7.38π【解析】根据角度制与弧度制的关系180π︒=,转化即可. 【详解】180π︒= 1180π︒∴=36730'67.567.51808ππ︒∴︒==⨯=故答案为:38π 【点睛】本题主要考查了弧度制与角度制的转化,属于容易题. 8.9cm【分析】由题意设扇形的半径为r cm ,弧长为l cm ,由扇形的周长、面积可得1(202)92r r -=,解出r 后,验证即可得解.【详解】设扇形的半径为r cm ,弧长为l cm ,圆心角为θ ∵220l r +=,∴202l r =-∴192lr =,即1(202)92r r -=,解得1r =或9r = 当1r =时,则18l =,则181821l r θπ===>,不合题意,舍去; 当9r =时,则2l =,则229l r θπ==<,符合题意. 故答案为:9cm.【点睛】本题考查了扇形弧长及面积公式的应用,考查了运算求解能力,属于基础题. 9.1080【分析】首先求出弧长,再根据扇形面积公式计算可得;【详解】解:依题意30r =cm , 2.4lr=所以 2.472l r ==cm ,所以117230108022S lr ==⨯⨯=2cm ;故答案为:108010 【分析】求出,O A O B ''的长度,确定AO B ∠'的大小,再由弧长公式求得A,B 两地的东西方向的距离. 【详解】如图示,设O '为北纬30°圈的圆心,地球球心为O则60AOO '∠= ,故AO '=,即北纬30°R由题意可知2π1203AO B '∠==故点A 和B 两点东西方向的距离即为北纬30°圈上的AB 的长故AB 的长为2π3R =11.(1)132********︒=︒⨯+︒,第三象限; (2)()315360145-︒=︒⨯-+︒,第一象限; (3)1500360460︒=︒⨯+︒,第一象限; (4)()16103605190-︒=︒⨯-+︒,第三象限.【分析】先将各个角化为指定形式,根据通过终边相同的角的概念判断出角所在象限.【详解】(1)132********︒=︒⨯+︒,因为240︒的角终边在第三象限,所以1320︒是第三象限角; (2)()315360145-︒=︒⨯-+︒,因为45︒的角终边在第一象限,所以315-︒是第一象限角; (3)1500360460︒=︒⨯+︒,因为60︒的角终边在第一象限,所以1500︒是第一象限角; (4)()16103605190-︒=︒⨯-+︒,因为190︒的终边在第三象限,所以1610-︒是第三象限角. 12.(1)254218α=⨯π+π; (2)4718θπ=-.【分析】(1)先把角度数化成弧度数,再表示成符合要求的形式. (2)由(1)可得252,(Z)18k k θππ=+∈,再按给定范围求出k 值作答. (1)依题意,169251690169081801818παπππ=︒=⨯==+ 所以254218α=⨯π+π. (2)由(1)知252,(Z)18k k θππ=+∈,而(4,2)θππ∈--,则25422,()18k k Z ππππ-<+<-∈,解得2k =- 所以254741818θ=-π+π=-π. 13.80π【分析】先求出弧长,再利用扇形的面积公式直接求解. 【详解】设扇形弧长为l ,因为圆心角272721805ππ︒⨯==rad 所以扇形弧长2·2085l r παπ⨯=== 于是,扇形的面积S =12l ·r =12×8π×20=80π. 14.(1)103π;(2)12;(3)=10,=2l α 【分析】(1)根据扇形的弧长公式进行计算即可.(2)根据扇形的周长公式以及面积公式建立方程关系进行求解 (3)根据扇形的扇形公式结合基本不等式的应用进行求解即可. 【详解】(1)α=60°=rad ,∴l =α·R =×10=(cm).(2)由题意得解得 (舍去),故扇形圆心角为. (3)由已知得,l +2R =20.所以S =lR = (20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,则S 取得最大值25 此时l =10,α=2.【点睛】本题主要考查扇形的弧长公式和面积公式的应用,根据相应的弧长公式和面积公式建立方程关系是解决本题的关键.15.当扇形的圆心角为2rad 时,则扇形的面积最大.【解析】设扇形的半径为r ,弧长为l ,利用周长公式,求得2l c r =-,代入扇形的面积公式,结合二次函数的性质,即可求解.【详解】设扇形的半径为r ,弧长为l 则2l r c +=,即2(0)2c l c r r =-<<由扇形的面积公式12S lr =,代入可得222111(2)()22416c S c r r r cr r c =-=-+=--+当4c r =时,则即22cl c r =-=时,则面积S 取得最小值此时2l rad r α==,面积的最小值为2c 16.【点睛】本题主要考查了扇形的周长,弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 16.(1)2πm【分析】(1)过点B 作一楼地面的垂线,垂足为B ',则B '落在圆柱底面圆上,结合题意计算出1BO M ∠的大小,再利用扇形的弧长公式即可得出结果.(2)建立空间直角坐标系,求出异面直线AB 和CD 的方向向量,再由异面直线所成角的向量公式代入即可得出答案. (1)如图,过点B 作一楼地面的垂线,垂足为B ',则B '落在圆柱底面圆上 连接B A ',则B A '即为BA 在圆柱下底面上的射影 故BAB '∠即为电梯Ⅰ与楼面所成的角,所以1sin 3BAB '∠=.因为4BB AM '==,所以AB '=在AOB '中8OA OB ='=,所以AOB '是等腰直角三角形 连接1O ,B ,1O M ,则1π2BO M AOB '∠=∠= 因为BC CM =,所以BC 的长为π82π4⨯= 故此顾客在二楼地面上步行的路程为2π m . (2)连接2OO ,由(1)可知所在直线两两互相垂直.以O 为原点OB ',OA 和2OO 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图所示,则()8,0,4B ()0,8,0A 与()C 和()D -,所以()8,8,4AB =- ()4CD =-. 设异面直线AB 和CD 所成角为θ,则·42cos cos ,=9AB CD AB CD AB CDθ==故异面直线AB 和CD 17.(1)22(02)2x x x θ+=<<+; (2)当12x =时,则y 的值最大,最大值为94.【分析】(1)根据弧长公式和周长列方程得出θ关于x 的函数解析式;(2)根据面积公式求出y 关于x 的函数表达式,根据二次函数性质可得y 的最大值. (1)根据题意,弧BC 的长度为x θ米,弧AD 的长度2AD θ=米2(2)26x x θθ∴-++=∴22(02)2x x x θ+=<<+. (2)依据题意,可知2211222OAD OBC y S S x θθ=-=⨯-扇扇 化简得:22y x x =-++ 02x <<∴当12x =,则2max 1192224y ⎛⎫=-++= ⎪⎝⎭.∴当12x =时,则y 的值最大,且最大值为94.。

相关文档
最新文档