pwm直流电机调速课程设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、课程设计的主要目标任务

直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以与少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能与算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能[2]。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。

传统的控制系统采用模拟元件,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,故系统的运行可靠性与准确性得不到保证,甚至出现事故。

目前,直流电动机调速系统数字化已经走向实用化,伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

二、课程设计系统方案选取

1. 直流电动机运行原理

脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需3 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。直流电动机的转速n和其他参量的关系可表示为

图1:直流电机原理图

式中Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE ——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。

如图1所示:

改变直流电机电枢绕组两端电源电压U大小就可以调节直流电机转速的大小;

改变直流电机电枢绕组两端电源电压U方向就可以改变直流电机转速方向。

方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。

方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对电动机的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:采用由三极管组成的H型PWM电路。用单片机控制三极管使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作

在管子的饱和截止模式下,效率非常高;H 型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM 调速技术。

兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。

2. PWM 调速原理

图1为PWM 降压斩波器的原理电路与输出电压波形。在图1a 中,假定晶体

管V 1先导通T 1,秒(忽略V 1的管压降,这期间电源电压Ud 全部加到电枢上),然后关断T 2秒(这期间电枢端电压为零)。如此反复,则电枢端电压波形如图1b 中所示。电动机电枢端电压Ua 为其平均值。

图1 PWM 降压斩波器原理电路与输出电压波形

a) 原理图 b)输出电压波形

1112a d d d T T U U U U T T T

α===+ (3) 式(3)中

(4)

α为一个周期T 中,晶体管V1导通时间的比率,称为负载率或占

空比。使用下面三种方法中的任何一种,都可以改变α的值,从而达到调压的目的:

(1)定宽调频法:T1保持一定,使T2在0~∞范围内变化;

(2)调宽调频法:T2保持一定,使T1在0~∞范围内变化

(3)定频调宽法:T1+T2=T保持一定,使T,在0~T范围内变化。

不管哪种方法,α的变化范围均为0≤α≤l,因而电枢电压平均值Ua的调节范围为0~Ud,均为正值,即电动机只能在某一方向调速,称为不可逆调速。当需要电动机在正、反向两个方向调速运转,即可逆调速时,就要使用图1—2a所示的桥式(或称H型)降压斩波电路。

3. PID调节

PID 控制的直流电动机调速控制原理图如下:e +

-y r αy 测速单元直流电动机直流电动机驱动单元数字PID控制器单片机

图3:电动机调速控制原理图

基于PID 的电动机调速控制程序流程图如下:(扩展功能) PWM波产生定时器1中断程序定时参数PID及转速参数外部中断0程序

定时器0中断程序

绘制转速变化曲线PID参数改变串口中断程序上位机程序

串口 通讯计算转速初始化PID控制发送转速数据

延时单片机主程序及子程序脉冲周期串口通讯

转速设定

图4:基于PID 的电动机调速控制程序流程图

6. 数据处理

速度检测一般有三种方法:M 法测速、T 法测速、M/T 法测速。

1.M 法测速:是在规定时间T c 内[12],对位置脉冲信号是个数m 1进行计数,从而得到转速的测量值,

n =

相关文档
最新文档